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Abstract—GPU computing has matured to include advanced
C++ programming features. As a result, complex applications
can potentially benefit from the continued performance improve-
ments made to contemporary GPUs with each new generation.
Tighter integration between the CPU and GPU, including a
shared virtual memory space, increases the usability of produc-
tive programming paradigms traditionally reserved for CPUs,
like object-oriented programming. Programmers are no longer
forced to restructure both their code and data for GPU accelera-
tion. However, the implementation and performance implications
of advanced C++ on massively multithreaded accelerators have
not been well studied.

In this paper, we study the effects of runtime polymorphism
on GPUs. We first detail the implementation of virtual function
calls in contemporary GPUs using microbenchmarking. We then
propose Parapoly, the first open-source polymorphic GPU bench-
mark suite. Using Parapoly, we further characterize the overhead
caused by executing dynamic dispatch on GPUs using massively
scaled CPU workloads. Our characterization demonstrates that
the optimization space for runtime polymorphism on GPUs is
fundamentally different than for CPUs. Where indirect branch
prediction and ILP extraction strategies have dominated the
work on CPU polymorphism, GPUs are fundamentally limited by
excessive memory system contention caused by virtual function
lookup and register spilling. Using the results of our study, we
enumerate several pitfalls when writing polymorphic code for
GPUs and suggest several new areas of system and architecture
research that can help alleviate overhead.

I. INTRODUCTION

General-Purpose Graphics Processing Unit (GPGPU) inter-
faces like CUDA [1] and OpenCL [2] have grown to support
modern C++. While GPUs have the potential to improve
parallel code’s performance and energy-efficiency, a barrier to
their adoption as general-purpose accelerators is programma-
bility. CUDA and OpenCL have, to varying degrees, supported
object-oriented code on GPUs for several generations. How-
ever, the compiler and runtime technology for CUDA is more
mature. Table I chronicles the state of CUDA programming
features and NVIDIA GPU capabilities over the last decade.
The programming features accessible on GPUs have been
steadily increasing with each release of CUDA and each
new hardware generation. Despite this increased support for
C++ and object-oriented code, the implementation and runtime
effects of polymorphism on GPUs have not been well studied.

Decades of work on runtime systems, compilers, and ar-
chitecture in CPUs have improved the execution of these
productive programming techniques enough to make general,
reusable code commonplace. However, the implications of

productive programming techniques on GPUs must be studied
to grow the subset of applications that benefit from GPU
acceleration and increase programmer productivity. This paper
takes the first steps to understand the overheads and tradeoffs
of polymorphic, object-oriented code in the GPU space, such
that future systems can run productive code more efficiently
on massively parallel accelerators.

The adoption of GPGPU programming in non-traditional
spaces such as sparse data structures [3] and graph analyt-
ics [4] has demonstrated that massively parallel accelerators
still achieve significant performance and energy-efficiency
gains over CPUs when running complex applications with
enough parallelism. High-performance closed source pack-
ages, like the OptiX raytracing library from NVIDIA [5], use
dynamic dispatch and a quick GitHub search reveals more
than 35k device-side virtual functions in the wild. These signs
indicate an interest in executing polymorphic code on GPUs,
warranting a well-constructed exploration into its behavior.

This paper performs the first detailed characterization of
polymorphic programs on GPUs and provides a foundation
for future software systems and architectural techniques to
evaluate the object-oriented paradigm. To study this problem
from the ground up, we construct a set of microbenchmarks
to understand the implementation of virtual function calls on
GPUs and their performance effects in isolation. We then
propose the first polymorphic GPU benchmark suite: Para-
poly. The Parapoly suite is constructed by porting scalable,
multithreaded CPU applications to CUDA without changing
the core algorithm or underlying data structures. These appli-
cations come from the domains of model simulation, graph
analysis, and computer graphics. The applications in Parapoly
represent a future where parallel code written for the CPU
can be seamlessly offloaded to the GPU without forcing the
programmer to restructure their code.

Using the Parapoly benchmark suite, we analyze the run-
time overheads associated with polymorphic GPU code, which
is implemented by virtual functions in C++. Work in CPUs
shows that the overhead of using virtual functions can be
divided into direct and indirect costs [6]. The direct cost of
a virtual function refers to the instructions added to retrieve
and branch to a function pointer dynamically. The indirect
cost quantifies the compile-time optimization opportunities
lost because the target function is unknown until runtime.
We quantify the effect of both direct and indirect overhead
in Parapoly by exploring the effect different compilation



TABLE I: Progression of NVIDIA GPU programmability and performance

Year 2006 2010 2012 2014 2018 2021
CUDA toolkit 1.x 3.x 4.x 6.x 9.x 11.x
Programming Basic C support C++ class inheritance C++ new/delete Unified Enhanced Unified CUDA C++
features & template inheritance & virtual functions memory memory. GPU page fault standard library
GPU Architecture Tesla G80 Fermi Kepler Maxwell Volta Ampere
Peak FLOPS 346 GFLOPS 1 TFLOPS 4.6 TFLOPS 7.6 TFLOPS 15 TFLOPS 19.5 TFLOPS

techniques have on runtime overheads. This paper details the
reasons for this overhead and identifies areas where software
and hardware support for polymorphism can mitigate this
performance penalty.

The runtime performance cost of polymorphism is a long-
studied problem in the CPU world [6]–[13]. A significant
amount of CPU hardware research has focused on improving
the predictability of indirect branches that implement calls to
virtual functions. However, a fundamental difference between
CPUs and GPUs is that GPUs do not use any speculative ex-
ecution. The high area, complexity, and energy overheads that
speculative execution would have on GPUs make techniques
like branch prediction and out-of-order execution unviable.
Instead, GPUs use thread-level parallelism to hide latency,
making the extraction of instruction-level parallelism less
critical. Our experimental results show that the limiting factor
when executing polymorphic code on GPUs is the memory
system. The memory accesses required to perform the virtual
function lookup, and the register spilling that occurs at virtual
function boundaries increase the load/store unit pressure by an
average of 2×. These extra per-thread memory accesses still
exist in CPUs but are effectively hidden by the cache hierarchy.
In GPUs, the sheer number of threads accessing discrete ob-
jects overwhelms both cache capacity and throughput such that
memory bandwidth becomes the primary bottleneck, resulting
in average performance degradation of 77% versus inlining all
the virtual function calls.

This paper makes the following contributions:

• It performs the first detailed analysis of polymorphic
virtual function calls on GPUs. By reverse-engineering
CUDA binaries and constructing a set of microbench-
marks, we detail the implementation of dynamic dispatch
in CUDA programs.

• It introduces the first open-source polymorphic bench-
mark suite for GPUs: Parapoly. Constructed from scal-
able, polymorphic CPU frameworks and applications,
Parapoly is representative of reusable code that does not
need to be re-written for GPU acceleration, allowing sys-
tem researchers and architects to explore the implications
of productive programming practices on GPUs.

• It demonstrates that there are different performance bot-
tlenecks when executing polymorphic code on GPUs than
on CPUs. The direct overhead on CPUs primarily stems
from mispredicting indirect branches, while the indirect
overhead comes from missed ILP extraction strategies. In
GPUs, both the direct and indirect overhead is dominated
by additional memory traffic from accessing virtual tables

and excessive register spills, respectively.
• Based on our observed overheads, we identify pitfalls that

should be avoided when creating polymorphic GPU code
and suggest areas in the architecture and system software
that can be improved to increase the performance.

II. OBJECT-ORIENTED CODE ON GPUS

Object-oriented programming is defined by four major
characteristics: (1) Data is represented as discrete objects:
data and the operations on said data are coupled together.
Concretely, we use C++ classes that contain member variables
and methods that operate on those variables. (2) Polymor-
phism: A hierarchy of data types is constructed, such that
derived classes share some data and methods with base classes.
Derived classes also override virtual functions in the base
class, necessitating a runtime function lookup to determine
which code should be called. C++ class inheritance is used to
define the polymorphism in our applications. (3) Abstraction:
The precise implementation of a method, or concrete type of a
class does not need to be known by code that uses that class.
(4) Encapsulation: Data internal to a class or class hierarchy
cannot be directly accessed or modified by code outside the
implementation of that class. Polymorphism allows code that
utilizes objects to be written with a higher level of abstraction
and encapsulation, resulting in virtual functions, which incur
runtime overhead.

The implementation details of object-oriented features on
NVIDIA GPUs are not described in any public documenta-
tion. We obtain the information in this section by reverse-
engineering binaries compiled with object-oriented program-
ming. We perform all our analysis using an NVIDIA Volta
GPU. However, we examined code from several different GPU
generations and observe that the implementation of object-
oriented code on NVIDIA GPUs has not significantly changed
since it was first supported in the Fermi architecture. We also
note that although other GPU vendors do not support object-
oriented features like virtual function calls, we anticipate that
the observations made in this study would hold for other
massively parallel accelerators.

When using object-oriented programming, there are two
general forms of overhead: one-time overheads when objects
are created/destroyed, and recurring overheads that occur when
member functions are called. In workloads with frequent
object creation and destruction, initialization overheads can be
significant. However, many scalable applications pre-allocate
data structures to avoid parallel dynamic memory allocation.
While dynamic memory management on GPUs is an interest-
ing problem, it is not the focus of this paper. However, we do



quantify the cost of pre-allocating data in these polymorphic
applications. We envision the most common initial use-case
for object-oriented programs on GPUs to be when the bulk of
the objects in the program are created and initialized either by
the CPU or by the GPU in an initialization phase.

A. Runtime Object-Oriented Features

The layout of objects (and structures) in CUDA follows
the C++ standard, where fields defined sequentially within the
object are laid out sequentially in the virtual address space.
The compiler enforces encapsulation with public, protected,
and private variables and method scope. Virtual function calls
are used to implement runtime polymorphism.

At compilation time, virtual function tables are created in
CUDA’s constant memory address space. In CUDA programs,
constant memory is a small, cached memory space generally
used to store variables constant across all threads in a kernel.
The constant space is private to each CUDA kernel and is
initialized when the program is compiled. CUDA does not
support code sharing across kernels or dynamic code loading
(like Linux does with .so files). As a result, the code for every
virtual function call is embedded in each individual kernel’s
instruction address space. Therefore, code for the same virtual
function implementation has a different address in different
kernels. To support object creation in one kernel and use in
another, a layer of indirection is added.

When a new type is allocated, a second virtual function table
for the same type is created in global memory. This global
table is initialized with references to the constant memory
table, which is different for each kernel. When new objects
are constructed, they contain a pointer to the global virtual
function table for their type, which persists across kernels.
When a virtual function is called, the global table is read and
a constant pointer is returned. The constant table contains the
actual address for the function’s instructions in this particular
kernel. When an object allocated in one kernel has a virtual
function called in another kernel, the constant memory for the
calling kernel is read to find the function’s implementation.
This is important because it adds an additional level of
overhead not found in polymorphic CPU implementations.
However, we observe that the constant memory accesses do
not add significant overhead in practice. Table II, discussed in
Section III, presents the implementation and overhead of this
indirection in more detail.

There is no dynamic inlining or just-in-time compiler op-
timizations performed in contemporary GPUs to mitigate the
cost of calling virtual functions. An indirect call instruction
from the GPU’s instruction set is used to jump to the virtual
function. GPUs use a lock-step Single Instruction Multiple
Thread (SIMT) execution model where sequential threads in
the program are bound together into warps when scheduled on
the GPU’s Single Instruction Multiple Data (SIMD) datapath.
In NVIDIA machines, 32 threads execute in lock-step across
a warp. Consequentially, when a virtual function is called
across a warp, each thread in the warp can potentially jump
to a different virtual function implementation, depending on

1 // Base class
2 class BaseObj {};
3
4 // 32 classes with Func implementation
5 class Obj_0 : public BaseObj {
6 __device__ Func_1(input, output, numCompute)

{
7 while(numCompute--)
8 output += input;
9 }

10 };
11 ...
12 class Obj_31 : public BaseObj {
13 __device__ Func_31(input, output, numCompute

) {
14 while(numCompute--)
15 output += input;
16 }
17 };
18
19 // Initialization kernel
20 __global__ init(BaseObj** objArray, int

divergence_level) {
21 ...
22 switch (tid % divergence_level) {
23 case 0:
24 objArray[tid] = new Obj_1();
25 ...
26 case 31:
27 objArray[tid] = new Obj_31();
28 }
29 }
30
31 // Computation kernel
32 __global__ compute(BaseObj** objArray, float*

inputs, float* outputs, int numCompute, int
divergence_level) {

33 ...
34 switch (tid % divergence_level) {
35 case 0:
36 objArray[tid]->Func_0(inputs[tid],

outputs[tid], numCompute);
37 ...
38 case 31:
39 objArray[tid]->Func_31(inputs[tid],

outputs[tid], numCompute);
40 }
41 }

Fig. 1: Pseudo-code for switch-based microbenchmark.

the objects being accessed in parallel threads. When threads
across a warp traverse different control flow paths, those paths
cannot be executed in the same instruction. This results in a
serialization of the divergent control-flow paths, commonly
referred to as control-flow divergence, resulting in decreased
execution efficiency. Note that this control-flow divergence
is no worse in polymorphic code than in the same program
without virtual function call overheads.

III. MICROBENCHMARKING VIRTUAL FUNCTION CALLS
ON GPUS

Just like in C++, CUDA implements polymorphism via
virtual function calls. Virtual functions are implemented by an
indirect call instruction that jumps to the appropriate function
on a per-thread basis. Unlike indirect function calls on CPUs,
an indirect call on an NVIDIA GPU can branch up to 32 dif-
ferent ways. To evaluate the performance overhead introduced
by virtual function calls, we create two microbenchmarks with
identical control-flow.



1 // Base class with vFunc
2 class BaseObj {
3 virtual __device__ vFunc(...) {}
4 };
5
6 // 32 derived classes with vFunc implementation
7 class Obj_0 : public BaseObj {
8 __device__ vFunc(input, output, numCompute)

{
9 while(numCompute--)

10 output += input;
11 }
12 };
13 ...
14 class Obj_31 : public BaseObj {
15 __device__ vFunc(input, output, numCompute)

{
16 while(numCompute--)
17 output += input;
18 }
19 };
20
21 // Initialization kernel
22 __global__ init(BaseObj** objArray, int

divergence_level) {
23 ...
24 switch (tid % divergence_level) {
25 case 0:
26 objArray[tid] = new Obj_1();
27 ...
28 case 31:
29 objArray[tid] = new Obj_31();
30 }
31 }
32
33 // Computation kernel
34 __global__ compute(BaseObj** objArray, float*

inputs, float* outputs, int numCompute) {
35 ...
36 objArray[tid]->vFunc(inputs[tid], outputs[tid

], numCompute);
37 ...
38 }

Fig. 2: Pseudo-code for virtual function microbenchmark.

One microbenchmark (Figure 1) uses a switch to arbitrate
the control flow, and the other (Figure 2) uses polymorphism,
where control flow is determined by virtual function calls. We
also implemented the switch-based microbenchmark using if-
then-else conditionals and observe that the CUDA compiler
generates the same code in both cases. The body of each
virtual function (and switch case) contains a loop that performs
a configurable number of floating-point additions on fixed
input data. We verified that in both cases, the compiler
generates different function bodies for the 32 different function
implementations. To study the overhead of virtual functions as
the work in each function scales, both the switch-based code
and the virtual function code can scale the number of floating-
point additions performed in each control flow path from 1 to
32k. We call this the compute density of the microbenchmark.
Both microbenchmarks can scale the number of control flow
paths taken by each warp from 1 to 32 to depict the effects
of control-flow divergence overhead. We call this the virtual
function divergence (dvg). At 1 virtual function call per warp,
all threads in the warp make the same virtual function call. At
32 virtual function calls per warp, each thread in a warp calls
a different virtual function.
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Fig. 3: The execution time of the object-oriented virtual
function microbenchmark, normalized to the switch-based
control flow management microbenchmark at the same com-
pute density and level of divergence. We use the number
of additions per function (# Addition/Func) to represent the
compute density and it varies on the x-axis. Each data series
represents a different level of control-flow divergence (dvg).

Figure 3 plots the execution time of the virtual function
microbenchmark, normalized to the switch-based microbench-
mark with the same compute density and control flow. We
quantify the compute density with the number of floating-
point additions per function (# Addition/Func). We also scale
the number of threads in each microbenchmark to occupy
the whole GPU and run each experiment 3 times, taking the
median execution time. The y-axis represents the overhead
added by calling virtual functions versus using less exotic
control flow management. At low-levels of compute-density,
there is a large variance in the overhead added at different
levels of control flow divergence (dvg). At low compute and
low divergence, the overhead caps out at approximately 7.2×.
As the level of divergence increases, the overhead of calling
virtual functions drops off and settles at only 1.3× when
there is a 32-way divergence. As the divergence increases,
the overhead of calling the virtual function becomes a smaller
portion of the overall execution time. For example, at 32-
way divergence, the program spends 32× more time in the
serialized execution of the diverged functions than in the non-
divergent (no-dvg) case. As the compute density increase, the
overhead of the virtual function calls is mitigated since the
computation in each virtual function dominates execution time,
dwarfing the direct overhead of virtual function calls. By a
compute density 4, the overhead of virtual functions in the
fully-diverged case reaches nearly 0. However, in the non-
diverged case (no-dvg), a compute density of 1024 floating-
point additions per function is necessary to hide the virtual
function overhead.

Figure 3 demonstrates that the direct overheads caused by
virtual functions can be significant, depending on the level
of runtime divergence and the computation to perform in
each virtual function, or traverses a different block of the
switch statement. To evaluate which aspects of the overhead
contribute most to the slowdown, we use the NVIDIA Visual



TABLE II: Key direct overhead pseudo-assembly instructions
for the virtual function call. The table lists the overhead at
different levels of concurrency and the number of memory
accesses generated by each load instruction. The overhead and
memory divergence numbers are taken from the workload with
no control-flow divergence (no-dvg) at a compute density of 1.
R2 contains objArray pointer in Figure 2. Ovhd = Overhead,
tid = thread index, cmem = constant memory, fid = function
index, AccPI = Accesses per Instruction.

Instruction Description %Ovhd %Ovhd AccPI
1 warp 10M

warps
1: LDG R2, [R2+tid*8] Ld object ptr 18% 41% 8
2: LD R4, [R2] Ld vTable ptr 34% 52% 32
3: LD R4, [R4+fid*8] Ld cmem offset 26% < 0.1% 1
4: LDC R6, cmem[R4] Ld vfunc addr 0% 7% 1
5: CALL R6 Call vfunc 26% < 0.1% -

Profiler [14] to profile the memory accesses and latency added
by each instruction of the virtual function overhead. Since the
low divergence microbenchmarks have the most overhead, we
study the no-dvg case in detail. Table II details the assembly
instructions primarily responsible for the virtual function over-
head, which consist of 4 additional load instructions to look
up the function pointers and an indirect function call. The
first load reads the pointer for this thread’s object from global
memory. The second load gets the global memory virtual
function table (vTable) pointer (stored in the object’s first 8
bytes) for this object type from memory. This load is generic
(no ‘G’ global specifier in the assembly instruction) because
the compiler cannot statically determine which memory space
the object was allocated in. The third load reads the constant
memory offset for this virtual function from the global vTable.
The final load accesses the kernel’s constant memory space to
find the actual code location, and finally, the call instruction
jumps to the location.

To quantify the overhead added by each operation both with
and without massive multithreading, we run the microbench-
mark with one warp then again, with 10 million warps. Table II
details the overhead (obtained using the GPU’s PC sampling
profiler) added by each instruction in both the 1 warp and
10M warp cases. In the single warp case, the first three load
instructions and the function call contribute roughly the same
level of overhead. However, with 10 million warps, almost
all the overhead comes from the first two loads. Interestingly,
multithreading is able to cover the long latency of the CALL
instruction but the memory system cannot provide enough
bandwidth to cover the memory latency. On each memory
instruction, 32 threads execute in lock-step. Therefore, a single
memory instruction can generate up to 32 different memory
accesses. To cut down on the number of memory accesses
generated, GPUs use memory coalescing hardware to group
accesses from threads in a warp into 32-byte chunks. For
example, if all 32 threads in one warp access the same 32-
byte segment, only one memory access is generated by the
instruction. We quantify the number of accesses generated
per instruction in Table II. Since the threads in a warp

are accessing the same object type, loads 3 and 4 (which
access the vTable) only generate one access. However, loads
1 and 2 access different object instances and generate more
accesses, resulting in more overhead. This study demonstrates
that in GPUs, the direct overhead added to the memory
system dominates the execution time. In single-threaded CPUs,
accurate branch prediction can cover the latency of the call
instruction. However, GPUs need multithreading to hide the
branch latency, Multithreading places increased pressure on
the memory system, resulting in large overhead.

IV. PARAPOLY: A MASSIVELY PARALLEL POLYMORPHIC
BENCHMARK SUITE

To study the effects of object-oriented programming in a
realistic setting, we propose Parapoly, the first open-source
benchmark suites of polymorphic GPU applications. We first
describe the workloads selected and inputs in Section IV-A.
To isolate virtual function overheads, we create a series of
different representations for Parapoly’s workloads using dif-
ferent function calling methods, detailed in Section IV-B. We
outline the features of workloads in Section IV-C, and finally,
we present the setup for our experiments in Section IV-D.

A. Workloads and Inputs

Parapoly is constructed using scalable CPU applications
from the fields of graph processing, model simulation and
graphics rendering. Specifically, the applications that consti-
tute Parapoly come from GraphChi-C++/Java framework [17],
[18], [20], DynaSOAr [15], [16], and an open-source GPU ray-
tracer [19], [21]. Table III presents the names, abbreviations,
and descriptions of all workloads. We use the virtual functions
defined in the GraphChi framework and ray tracer. For the
DynaSOAr workloads, we mirror an object hierarchy present
in CPU implementations of its object-oriented applications. In
the latest CUDA implementation, it is impossible to create
objects with virtual functions on the CPU and use them
on the GPU. This limitation is likely due to needing two
separate virtual function tables (one for the CPU and one
for the GPU). Although this is not a fundamental limitation,
the purpose of this paper is to study the performance effects
of polymorphism using contemporary GPUs and systems.
Therefore, each Parapoly application includes an initialization
phase, where all the objects are constructed, and an execution
phase, where the computation for each workload is performed.

We use the inputs from DynaSOAr [15], [16] for the Dyna-
SOAr workloads and the DBLP network with approximately
300k vertices and 1M edges for GraphChi-vE/vEN workloads.
To provide enough objects to render, we create 1000 objects
and randomize the position and the size of the objects in the
scene for the ray tracer. We run Parapoly on an NVIDIA
Volta V100 GPU. We also verified that Parapoly workloads
run on Accel-Sim in trace-driven SASS simulation [22], where
microarchitecture studies can be performed 1.

1 The code for the workloads can be found at https://github.com/
purdue-aalp/Parapoly

https://github.com/purdue-aalp/Parapoly
https://github.com/purdue-aalp/Parapoly


TABLE III: Workloads, abbreviations and their descriptions for Parapoly. GraphChi-vE workloads apply virtual functions to
only edges for graphs, while GraphChi-vEN workloads use virtual functions on both edges and nodes.

Workload Abbreviation Description
DynaSOAr Workloads [15], [16]

Traffic TRAF A Nagel-Schreckenberg model traffic simulation to model streets, cars and traffic lights for traffic flows.
Game of Life GOL A cellular automaton formulated by John Horton Conway.

Structure STUT Structure uses the finite element method to simulate the fracture in a material. The benchmark models the material with
springs and nodes.

Generation GEN Generation is an extension of GOL benchmark. The cells in Generation have more intermediate states which lead to more
complicated scenarios.

Collision COLI Simulates the movement of particals according to gravitational forces with collision.
NBody NBD Simulates the movement of particals according to gravitational forces.

GraphChi-vE workloads from GrapChi-C++ Framework [17]

Breadth First Search BFS Traverses graph nodes and updates a level field in a breadth-first manner. The GraphChi-vE BFS implementation defines
an abstract class for edges, ChiEdge, and a concrete classEdge, which implements all the virtual functions of ChiEdge.

Connected Components CC Connected Component is commonly used for image segmentation and cluster analysis, it employs an iterativenode
updates according to the labels of adjacent nodes.

Page Rank PR Page rank is a classic algorithm to rank the pages of search engine results using iterative updates for each node.
GraphChi-vEN Workloads from GraphChi-Java Framework [18]

Breadth First Search BFS The GraphChi-vEN BFS implementation also defines an abstract base class for vertex, ChiVertex, and a concrete class
vertex, which implements ChiVertex’s virtual functions.

Connected Components CC GraphChi-vEN CC is similar to GraphChi-vE above. However, GraphChi-vEN CC has both virtual edges and vertices.
Page Rank PR GraphChi-vEN PR is similar to GraphChi-vE above. However, GraphChi-vEN PR has both virtual edges and vertices.

Open Source Ray Tracer [19]

Raytracing RAY RAY performs global rendering of of spheres and planes. The algorithm traces light rays through a scene, bouncing them
off of objects, and back to the screen.
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tions (#VFuncPKI) in Parapoly workloads. #VFuncPKI =
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B. Optimized Workload Representations

To isolate the overheads associated with the virtual func-
tions in object-oriented applications, we create two additional
implementations for each workload, one where regular direct
function calls are used instead of virtual function calls and
another that removes the function call entirely by inlining
the formerly virtual functions at compile time. The first

representation removes the direct overhead from performing
the virtual function lookup, while still incurring all the normal
function calling costs. The second representation avoids call-
ing a function entirely and enables aggressive inter-procedural
optimizations at the expense of code size.

The representations of all three implementations are as
follows:

• Virtual function implementation (VF): The Parapoly
applications with all the associated virtual function call-
ing overhead.

• No virtual function implementation (NO-VF): Virtual
functions prevent optimizations because the targets are
unknown. In NO-VF, we restructure the function calls
such that the function targets are known at compilation
time, and there is no direct overhead. Note that inlining
is disabled, so the applications still need to call the
functions.

• Inline implementation (INLINE): Function inlining en-
ables the compiler to further reschedule the code and
avoid calling the function entirely. Here, all direct and
indirect overhead is eliminated.

We discuss the impact of using the three different program
representations (VF, NO-VF, and INLINE) in Section V.

C. Parapoly Workload Features

Object-oriented workloads usually define a small number
of classes and construct many concrete instances of those
classes. We describe the number of the classes (#class) and
objects (#object) of Parapoly’s workloads in Figure 4. There
are less than 10 class types in all the workloads, while the
numbers of objects created range from 103 to 107. Those
numerous objects are used across a massive number of threads
on GPUs. The allocation and initialization of millions of
objects can incur significant setup overhead, which we explore
in Section V.



TABLE IV: Breakdown of how different representations save
on aspects of direct and indirect overhead.

Direct Cost Indirect Cost

NO-VF Save cost on virtual
function lookup

Save cost with interprocedural
optimization and eliminating
register spills

INLINE Save cost on function call Save cost with code re-scheduling

We detail the number of static virtual functions (#VFunc)
and the number of dynamic virtual function called per thou-
sand instructions (#VFuncPKI) in Figure 5. A higher #VFunc
demonstrates that the application implements a variety of
virtual function calls, while a higher #VFuncPKI indicates
frequent use of those functions at runtime. Figure 5 demon-
strates that Parapoly exhibits significant diversity in both the
frequency and number of virtual functions called and imple-
mented. Notice that the GraphChi-vEN workloads have higher
#VFuncPKI than GraphChi-vE workloads although they have
the same number of objects and classes in Figure 4. This is
because GraphChi-vEN workloads utilize virtual functions for
vertices and edges, whereas in GraphChi-vE, only edges have
virtual functions, as shown in Table III. Generally, a workload
with a higher #VFuncPKI could introduce more overhead if
virtual functions are called frequently, implying that there may
be little work in each virtual function.

D. Experimental Setup

All our experiments are performed on an NVIDIA Volta
V100 GPU. The CUDA 10.1 toolkit is used, including the
NVCC compiler toolchain, runtime library, and SDK utilities.
We also use the CUDA Nsight Compute Command Line
Interface (CLI) 10.1 [14] and NVIDIA Binary Instrumenta-
tion tools (NVBit) [23], [24] to profile and instrument the
workloads.

V. CHARACTERIZING PARAPOLY

This section performs a comprehensive evaluation of object-
oriented workloads running on an NVIDIA Volta V100 GPU.
We first summarize the performance and break down ex-
ecution time into the initialization and computation phases
in Section V-A. We then study the performance differences
between the three different application representations defined
in Section IV-B. Then, we study dynamic instructions, memory
accesses, and cache behaviors to explain the overheads in Sec-
tion V-B. Finally, we detail the compiler optimizations enabled
by the different representations of the Parapoly applications in
Section V-C.

A. Performance Breakdown

Contemporary NVIDIA GPUs utilize dynamic allocation to
construct objects [25]. To understand the fraction of applica-
tion time spent in initialization versus computation we plot
the breakdown in Figure 6. Although initialization consumes
more than half of the total execution time on average, the
breakdown of the two phases varies significantly depending
on the workload. For example, COLI, NBD, and RAY spend
more than 95% on computation, while BFS, CC, and PR spend
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Fig. 7: The execution time for VF, NO-VF and INLINE
implementations normalized to INLINE implementation for
Parapoly. This limit study indicates the overhead when un-
knowing the target and when disable inlining.

99% on their time in initialization. We found that most of the
initialization time is due to dynamically allocating the many
thousands to millions of objects on the GPU [26]. Generally,
the applications with the most objects in Figure 4 have the
greatest relative overhead. The situation is most pronounced
in the graph applications, where there is relatively little work
per object. RAY, COLI, and NBD do significantly more work
per object. This data indicates that there is significant room for
improvement in GPU-side dynamic memory allocators when
allocating small objects.

Driesen et al. [6] break the runtime overhead of virtual
function calls into direct and indirect cost. The additional
instructions required to dynamically load a function pointer
beyond what is required for traditional function calling is
the direct overhead, and the overhead incurred from missed
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compile-time optimizations is the indirect overhead. For exam-
ple, indirect cost can take the form of worse code scheduling
or missed inter-procedural optimizations. Our two alternative
implementations of Parapoly (NO-VF and INLINE) help us
quantify what fraction of the overhead comes direct and
indirect costs. Table IV breaks down the cost savings enabled
by both optimizations. NO-VF eliminates the cost for function
lookup and performs inter-procedural optimizations. INLINE
further lessens function call overhead since the compiler can
reschedule the code and no function calling penalty is paid.

We measure the overhead introduced by VF and NO-VF,
normalized to INLINE in Figure 7. INLINE is used as the
normalization factor since it is the representation with the
least overhead. Disable inlining (NO-VF) introduces a 12%
overhead over INLINE, while using virtual function introduces
extra 65% overhead, which is a total 77% overhead, relative to
INLINE. Figure 7 also demonstrates the diversity of Parapoly.
Some of the workloads, like RAY and TRAF, suffer relatively
little performance loss versus INLINE. Others, like STUT and
BFS-vEN, suffer a much greater loss in performance due to
both function calling and virtual functions. Generally, the bulk
of the added overhead comes between NO-VF and VF. We
detail the reasons for the overheads in Section V-B.

B. Profiling Analysis

Figure 8 plots the SIMD utilization of each Parapoly
workload. SIMD utilization represents how many lanes of each
warp instruction are active when the instruction executes and
provides a measure of control-flow divergence in an applica-
tion. A SIMD utilization of 32 indicates that the instructions
executed with all lanes active, whereas 1 means that only

one thread was active in each warp. Parapoly Workloads have
a relatively diverse divergence distribution. NBD and STUT
have less divergence, while GraphChi-vE and GrapChi-vEN
show more divergence. Both the virtual function features and
the level of divergence affect the overhead of virtual functions
on GPUs. As we noted in Section III, SIMD poor utilization
generally decreases the effect of virtual function overheads.
However, SIMD utilization alone is not enough to predict the
runtime overhead. The compute density and frequency of calls
in the application is also important. As a concrete example,
RAY has a relatively high SIMD utilization, compared to the
graph applications. However, RAY’s higher compute-density
and lower frequency of virtual function calls results in its
overhead being significantly lower than the graph applications.

We measure the dynamic instruction breakdown for NO-VF
and INLINE normalized to VF in Figure 9. We classify instruc-
tion types as either memory (MEM), compute (COMPUTE)
or control (CTRL). On average, NO-VF and INLINE execute
41% and 2.8× less instructions than the VF implementation
of Parapoly respectively. Interestingly, the bulk of the memory
instruction reduction comes from NO-VF because it avoids the
virtual function lookup and allows for some inter-procedural
optimizations. There is a significant reduction in the number of
compute instructions executed by INLINE because it can avoid
the large number of move instructions (which are counted as
compute) required to setup the function calls. However, the
reduction in compute instructions does not translate into as
much of a performance gain as NO-VF. This indicates that
the primary source of the overhead in Parapoly comes from
the additional memory accesses added by virtual function table
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tion (NO-VF) and function inlining (INLINE) implementations.

lookups and register spilling.
NVIDIA GPUs execute one warp instruction for 32 threads.

Thus, each memory instruction may access up to 32 locations
in a warp. To quantify the change in the number of memory
transactions that result from NO-VF and INLINE, we measure
the number of transactions for global loads (GLD), global
stores (GST), local loads (LLD), and local stores (LST) in
Figure 10. 76% of memory transactions are global loads, and
NO-VF reduces global loads by 37% versus VF by removing
virtual function lookup overhead. Moreover, knowing function
targets avoid registers spilling to local memory, which is costly
on GPUs. This reduces 66% of local loads and stores. INLINE
has a minimal effect on memory transactions, reducing com-
pute instructions in the form of moves (Figure 9). Register
spills and fills affect some applications much more than others.
COLI, NBD, and RAY all experience significant memory
traffic in VF. When virtual function calls are eliminated, COLI
and NBD are no longer forced to spill and fill registers, and
locals are eliminated. In RAY, the local accesses come from
local arrays, which are irrelevant to virtual function calls.

We also measure the L1 cache hit rate for VF, NO-VF and
INLINE in Figure 11. The L1 cache hit rate drops from VF to
NO-VF since NO-VF removes numerous global loads to shared
virtual function tables that have locality. Interestingly, even
though the cache hit rate worsens using NO-VF the overall
performance improves because there are fewer accesses to the
cache. This demonstrates that although these accesses have
locality, L1 cache throughput on hits is a bottleneck when
many objects access their virtual function tables at once.

C. Observed Compilation Time Optimizations

In this subsection, we delve into some of the compiler op-
timizations that NVCC cannot perform when virtual functions
are called. Figure 12 depicts an example that NO-VF can
optimize versus VF implementation. VF (top) calls a virtual
function VFunc() that is unknown until run time, while NO-
VF (bottom) knows the target at compilation time and calls a
normal function Func(). Overhead associated with getting the
virtual function pointer is not shown for clarity, as this example
focuses on one aspect of indirect overhead. In the VFunc()
implementation, the object’s fields (p → a and p → b) must
be loaded into registers every time the VFunc() is called. If
the function is called in a loop, this will involve successive
loads to the variables. In the Func() version, the compiler can

VF

NO-VF

VFunc(object* p) {
pa = p->a
pb = p->b
use pa and pb

}

Func(object* p) {
pa = p->a
pb = p->b
use pa and pb

}

Func(type1 pa, type2 pb) {
use pa and pb

}

p->VFunc()

p->Func(pa, pb)

object layout and target unknown

object layout and target known

NVIDIA compiler optimization

pa = p->a
pb = p->b

Fig. 12: Example demonstrating how NVCC will pre-load
registers with function members if function targets are known
at compilation time.

hoist the member loads outside the function call and assume
that the values are loaded into registers (pa and pb) when the
function is called. Note that we also discover that the NVIDIA
assembler optimizes function parameter passing with registers
instead of pushing them on the local memory stack due to
local memory overhead on GPUs. This example demonstrates
one concrete way the compiler is able to effectively reduce
memory pressure with indirect optimizations, even if a func-
tion is not inlined. Knowing the target at compilation time also
allows for smarter register allocation. If we cannot determine
the target at compilation time, the virtual function has to
spill the registers it uses to local memory. This introduces
some of the extra local loads and stores for VF in Figure 10.
On the contrary, the compiler can coordinate the register
usage, and the local accesses can be eliminated in the NO-
VF implementation.

VI. DISCUSSION

In this section, we first summarize the primary sources of
overhead that programmers writing object-oriented code on
contemporary GPUs should avoid. We then document our
discovered opportunities for mitigating this overhead, which
the systems and architecture communities can use to enable
higher performance object-oriented code on GPUs.

A. Pitfalls of GPU Object-oriented Programming

There are two implementation decisions when writing
object-oriented code for GPUs that lead to the biggest pitfalls:

• Using virtual functions in non-diverged control-flow:
As demonstrated in Section III, the relative overhead of
calling virtual functions is increased in dense code with-
out control-flow divergence. Having less active threads
limits the number of objects being accessed at once and
helps mitigate memory pressure. This suggests that the
use of virtual functions in the most regular functions
should be avoided in CUDA.

• Large, register-heavy virtual function implementa-
tions: To address the memory system as the primary



bottleneck for object-oriented Programs on GPUs, pro-
grammers should avoid excessive spills and fills from
large function bodies that the compiler cannot optimize
effectively.

B. Optimization Opportunities in GPUs

Two potential opportunities to decrease the cost of virtual
functions on GPUs are:

• Alternative virtual function implementations: Based
on our analysis, the implementation of virtual functions
on GPUs is remarkably similar to CPU implementations.
Given the vastly different memory and contention char-
acteristics on GPUs, there appears to be an opportunity
to rethink how virtual function calls are implemented in
a massively multithreaded environment.

• New compilation opportunities: Our exploration has
demonstrated that the indirect cost of virtual functions
on GPUs can also place significant pressure on the
memory system. GPUs already employ a CPU-side just-
in-time (JIT) compiler to translate PTX into SASS. It
may be possible to leverage this dynamic compilation
phase to devirtualize functions for certain threads where
the compiler knows which object types they touch.

VII. RELATED WORK

In this section we detail work in the programmability,
benchmark creation and memory allocation spaces this work
touches on.

GPU Programmability: A body of work exists on enabling
CPU-like programmability infrastructures on GPUs. The use
of a file system abstraction [27], network stack [28], IO
system [29], and more advanced memory management [30]
are examples of this. Work on supporting productive languages
on GPUs [31]–[33] focuses on primitive data structures but
not polymorphism and virtual functions. OpenCL supports
the creation of GPU objects but does not support runtime
polymorphism [2], [34], [35]. CUDA [1] started to support
polymorphism beginning in 2012, as shown in Table I. As
the programmability evolves, object-oriented programming as
well as polymorphism is expected to be better supported and
improved on GPUs.

GPU Benchmarks: There are diverse GPU benchmark
suites [21], [36]–[38], and object-oriented CPU suites [39]–
[42] available. There are also workloads for object-oriented
programming on GPUs [15], [16], where they focus on object
allocation. However, no existing GPU benchmark suites fo-
cuses on polymorphism and no work has examined the effects
of object-oriented code with virtual functions on massively
parallel accelerators.

Indirect Branching: A body of CPU work improves indirect
branch [8] prediction [9]–[11], addressing the performance
loss from misspeculation on CPUs. Other work has looked
at profile-guided techniques [8], [12], [13], which increase

single-threaded performance and make the code better suited
to conditional branch predictors. In GPUs, the primary method
of handling an indirect branch has been patented [43]. Intel
Concord [44] utilizes conditional branches to simulate the
functionality of virtual functions in a customized compiler for
integrated Intel CPU/GPU systems. Prior work in the CPU
space has applied various JIT and static compilation techniques
to eliminate the need for virtual functions calls [45]–[50]
There is currently no GPU-specific work on this problem. CPU
work also attempts to apply JIT optimizations [45], [46] that
infer allowed types at call-sites such that recompilation can be
performed.

Memory Allocations on GPUs: A set of work [25], [51]–
[53] has been exploited to support better memory allocations
on parallel architectures. Xmalloc [51] implements a lock-
free allocator with pre-defined space management. ScatterAl-
loc [52] utilizes bitmap to prevent allocation collisions. Issac
et al. [25] splits resource allocation tasks to two-stages to
improve the allocation throughput on NVIDIA GPUs. Springer
and Masuhara [15], [16] develop a parallel memory allocator
for object-oriented programs on GPUs. Winter et al. [26]
perform a survey benchmarking contemporary dynamic allo-
cators on GPUs. As we indicated in Section V-A, allocations
comprise the main part the total execution time for some of
the workloads in Parapoly. Therefore, high throughput parallel
memory allocation is still an active area to exploit for object-
oriented applications on GPUs.

GPU Optimizations on Object-oriented Programs: GPU
work has been done to mitigate memory [54]–[60] and control
flow [61]–[67] irregularities in GPU-unfriendly applications.
While some of these techniques are potentially effective when
applied to Parapoly, their effect on object-oriented code has
not been thoroughly studied. Generally, the type of applica-
tions that these techniques benefit most have a low compute-
to-memory ratio. One way to interpret the conclusions from
our study is that GPU virtual functions can lower the compute-
to-memory ratio of applications.

VIII. CONCLUSION

We perform the first study of polymorphic code on GPUs.
Using microbenchmarking, we reverse-engineer the implemen-
tation of virtual functions on GPUs. We then go on to introduce
Parapoly, the first open-source polymorphic benchmark suite
on GPUs. Parapoly includes a diverse set of workloads from
model simulation, graph analytics, and computer graphics. We
dissect the overhead of polymorphism on these workloads
through careful code transformations, demonstrating an aver-
age 77% overhead versus inlining functions.

Using Parapoly, we isolate the source of polymorphic over-
head, demonstrating that the bottlenecks are fundamentally
different from those previously explored in the CPU space. The
memory system, not ILP extraction mechanisms, dominates
the overhead introduced by virtual function calls on GPUs.
While the massively multithreaded nature of the GPU hides the



latency of the function call itself, it introduces excessive mem-
ory system contention. Moreover, unknown virtual function
targets block inter-procedural optimizations such that register
spills add to the memory contention problem.

Finally, we provide guidance on how polymorphism can be
optimized on GPUs, suggesting areas where the system and
architecture can be improved. It is clear from our characteriza-
tion that there are significant opportunities for improving the
performance of productive programming practices on GPUs.
This work takes steps towards making GPUs more general-
purpose and improving programmer productivity.
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