
21

Pagoda: A GPU Runtime System for Narrow Tasks

TSUNG TAI YEH, Purdue University

AMIT SABNE, Microsoft

PUTT SAKDHNAGOOL, National Electronics and Computer Technology Center

RUDOLF EIGENMANN, University of Delaware

TIMOTHY G. ROGERS, Purdue University

Massively multithreaded GPUs achieve high throughput by running thousands of threads in parallel. To fully

utilize the their hardware, contemporary workloads spawn work to the GPU in bulk by launching large tasks,

where each task is a kernel that contains thousands of threads that occupy the entire GPU.

GPUs face severe underutilization and their performance benefits vanish if the tasks are narrow, i.e., they

contain less than 512 threads. Latency-sensitive applications in network, signal, and image processing that

generate a large number of tasks with relatively small inputs are examples of such limited parallelism.

This article presents Pagoda, a runtime system that virtualizes GPU resources, using an OS-like daemon

kernel called MasterKernel. Tasks are spawned from the CPU onto Pagoda as they become available, and are

scheduled by the MasterKernel at the warp granularity. This level of control enables the GPU to keep schedul-

ing and executing tasks as long as free warps are found, dramatically reducing underutilization. Experimental

results on real hardware demonstrate that Pagoda achieves a geometric mean speedup of 5.52X over PThreads

running on a 20-core CPU, 1.76X over CUDA-HyperQ, and 1.44X over GeMTC, the state-of-the-art runtime

GPU task scheduling system.

CCS Concepts: • Software and its engineering → Compilers; Runtime environments;

Additional Key Words and Phrases: GPU runtime system, utilization, task parallelism

ACM Reference format:

Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, Rudolf Eigenmann, and Timothy G. Rogers. 2019. Pagoda: A

GPU Runtime System for Narrow Tasks. ACM Trans. Parallel Comput. 6, 4, Article 21 (November 2019), 23

pages.

https://doi.org/10.1145/3365657

1 INTRODUCTION

GPGPU computing has demonstrated an ability to accelerate a substantial class of compute-
intensive applications [8, 37]. These applications are often composed by a high degree of
parallelism, where iterations of large parallel loops are executed on the GPU. The significant
performance improvement is shown in this type of applications, since GPU’s hardware resources
are fully utilized by launching enough concurrent threads.

This article was based on “Pagoda: Fine-Grained GPU Resource Virtualization for Narrow Tasks”, published in Proceedings

of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2017.

Authors’ addresses: T. T. Yeh (corresponding author) Purdue University, 465 Northwestern Ave, West Lafayette, IN, USA;

email: yeh14@purdue.edu; A. Sabne; email: sabne@microsoft.com; P. Sakdhnagool; email: putt.sakdhnagool@nectec.or.th;

R. Eigenmann; email: eigenman@udel.edu; T. G. Rogers; email: timrogers@purdue.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2329-4949/2019/11-ART21 $15.00

https://doi.org/10.1145/3365657

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

https://doi.org/10.1145/3365657
mailto:permissions@acm.org
https://doi.org/10.1145/3365657

21:2 T. T. Yeh et al.

The GPU’s performance benefits start to diminish as the degree of parallelism lessens. Conven-
tionally, large parallel loops are offloaded to the GPU, while retaining the execution of smaller ones
on the CPU. The main thesis of this article is that, despite having a smaller degree of parallelism,
applications can benefit from using the GPU, provided that the involved task (or CUDA kernel)
count is sufficiently high. Each such task, called a narrow task, has limited parallelism (which we
empirically defined as < 500 data parallel threads).

Narrow tasks emerge in a number of scenarios. One of such applications are often shown in
latency-driven, real-time workloads. For example, Ethernet is limited by Maximum Transmission
Unit (MTU) and carries out small Ethernet packets (maximum IEEE 802.3 Ethernet packet size
is 1500 bytes [1]), resulting in packets (tasks) with low parallelism. Ethernet routers can receive
many tasks from many sources in a quick succession and require immediate processing. These
workloads have been characterized as having mixed task and data parallelism [33, 34]. Second,
irregular applications can exhibit narrow tasks. These applications often contain varying amounts
of computation among different threads, and/or among loop iterations. To reduce load imbalance,
these applications are often represented using many tasks with low degrees of parallelism [25]. Ir-
regular workloads may also arise in multi-programmed environments. Different applications with
low degrees of parallelism can be co-executed on a node to exploit all the computing resources.

GPU underutilization is the key reason why narrow tasks are conventionally executed on CPUs
and ignored by GPU application developers frequently. This article presents Pagoda,1 a runtime
system that greatly improves GPU utilization in the presence of narrow tasks. Pagoda introduces
novel elements of a massively parallel OS to virtualize and dynamically schedule GPU core re-
sources at warp granularity, enabling hundreds of tasks to execute concurrently.

Prior work has identified the issue of GPU underutilization [9, 15, 26, 38]. One approach to
solve this problem is to statically fuse multiple smaller tasks [9, 38] to accumulate a large kernel.
Advanced approaches [26, 29] use a concurrent kernel mechanism, monitoring and time-slicing
their execution at runtime to obtain fair sharing. These static approaches require the programmer
to fuse tasks manually and none of them have been shown to work beyond ten concurrent tasks.
These mechanisms also require static knowledge of the kernels to be fused, which is not always
possible in multi-programmed or real-time environments. Additionally, individual tasks in a fused
tasks receive the same on-chip resource allocation, e.g., shared memory and registers, thereby
limiting occupancy based on the resource requirements of the largest task.

Dynamic (runtime) solutions can mitigate the above issues of static fusion. NVIDIA’s current-
generation GPUs employ HyperQ [21], which allows 32 tasks to be concurrently executed on one
GPU. However, we observed that narrow tasks can still cause underutilization, as 32 such tasks
may not occupy the entire GPU.

We argue that software mechanisms are needed to achieve flexible kernel concurrency. Prior
work, GPU enabled Many-Task Computing (GeMTC) [15], presents a runtime task-scheduling
mechanism, where a task executes as a single threadblock. Threadblocks are sets of threads consti-
tuting the GPU kernel. Because GPU architectures limit the concurrent threadblock count, execut-
ing narrow tasks in GeMTC may result in poor utilization. In addition, GeMTC uses batch-based
task execution, which results in delayed task launching and load imbalance since the completion
time of a batch is determined by its longest running task.

Pagoda is designed to overcome these issues. The programmer replaces certain CUDA API calls
with equivalent Pagoda calls in the host and device codes, retaining the functionality of the CUDA
programming model. Unlike static solutions, the programmer does not have to tediously fuse the
available tasks. Pagoda achieves high utilization by continually running a MasterKernel, which

1Download Pagoda from http://bit.ly/2hmmY5p.

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

http://bit.ly/2hmmY5p

Pagoda: A GPU Runtime System for Narrow Tasks 21:3

controls the execution of all GPU warps in software. In Pagoda, tasks are spawned by the CPU as
soon as they become available, without batching. On the GPU side, the MasterKernel virtualizes
the GPU’s resource allocation and threadblock scheduling mechanism to allow individual warps
to make progress as soon as resources are available.

There are three key challenges that must be addressed when attempting to launch and run thou-
sands of short-running tasks on a GPU, the combination of which no previous work has solved.

First, CPU-GPU communication overhead must be minimized, while allowing the GPU to asyn-
chronously schedule new tasks on each Streaming Multiprocessor (SM). Launching thousands of
short-running tasks increases the importance of minimizing the time it takes for each task to begin
execution on the GPU. Since the CPU and GPU must coordinate task spawning and scheduling over
the PCIe bus, which currently has no support for atomic operations, the handshaking required is
expensive or impossible if a traditional data structure, such as a queue [19], is used. Previous work
that required OS-like co-ordination over PCIe [13, 32] solved consistency issues using a producer-
consumer model but did not have to optimize the system for many, short running tasks. To support
narrow tasks, Pagoda presents TaskTable, a novel data structure aimed at limiting communication
overhead and enabling asynchronous GPU task pulls.

The second challenge is to keep the overheads involved in task spawning and scheduling low.
Minimizing both the copying of task parameters and the search for free GPU resources is important
when task execution times are short. To limit these overheads, Pagoda performs task scheduling
in parallel and pipelines task spawning, scheduling and execution to overlap their operation.

The third issue is supporting native CUDA functionality such as shared memory usage and
efficient threadblock synchronization. Since Pagoda’s MasterKernel overrides native support for
this functionality, we introduce low-overhead software mechanisms to provide it.

In summary, the following contributions are made to enable the efficient execution of narrow
tasks on GPUs. This article

• introduces a continuous task spawning mechanism to reduce CPU-GPU synchronizations
and obtains a high spawn rate.

• presents a software mechanism to schedule multiple tasks on the GPU in parallel, and de-
scribes a pipelining scheme to overlap several task processing stages.

• describes software solutions for dynamic shared memory management and sub-threadblock
synchronizations.

• methods in a new runtime system, called Pagoda. Pagoda achieves geometric mean speedup
of 5.52x over PThreads running on a 20-core CPU, of 1.76x over CUDA-HyperQ, and of 1.44x
against GeMTC.

2 GPU PROGRAMMING AND ARCHITECTURE

The GPU cores are organized into 28 Streaming Multiprocessors (SMs).2 Each SM has 128 CUDA
cores and can concurrently schedule up to 64 warps. A Warp is the basic Single Instruction, Mul-
tiple Thread (SIMT) work unit, which comprises 32 threads that march in lockstep, executing the
same instruction. Each SM has a 96KB on-chip programmer managed cache, known as shared

memory and 64K, 32-bit registers.
In the CUDA programming model, the programmer organizes parallel work in kernels. Threads

of a kernel are grouped into threadblocks. Multiple threadblocks can reside on each SM, the maxi-
mum number being 32. The threadblock size is limited to 1024 threads, or 32 warps. Each SM can
hold up to 2048 concurrent threads. Both the shared memory and registers of an SM are partitioned

2We use terminology from the NVIDIA Pascal Titan X architecture.

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

21:4 T. T. Yeh et al.

Table 1. Pagoda Programming API

CUDA Function
Pagoda

Function
Caller Return Value Arguments Description

kernel<<<>>> taskSpawn CPU taskId #threads, #threadblocks,
shared memory, sync
flag, kernel pointer,
kernel args

Spawn a task from CPU
onto Pagoda

cudaEventSynchronize wait CPU taskId Wait until the specified
task has finished

cudaEventQuery check CPU true if the task is
done, else false

taskId Returns the status of the
task

cudaDeviceSynchronize waitAll CPU Wait until all tasks in
Pagoda have finished

threadIdx getTid GPU thread Id Get the thread Id of this
thread

syncthreads syncBlock GPU Synchronize all threads
in the block

__shared__ char *arr getSMPtr GPU 32-byte aligned
char pointer

Get shared mem pointer
for the threadblock

among the executing threadblocks. There is not a CUDA primitive for global, kernel-wide synchro-
nization; however, threads in a threadblock can use the __syncthreads() function as a barrier.

A way of measuring the GPU utilization is occupancy. Occupancy is the ratio of the total number
of resident GPU warps divided by the maximum number of warps that can co-exist in the GPU
(i.e., 64 × the number of SMs in the GPU). The kernel occupancy is affected by three factors,
namely, (i) size of threadblocks, (ii) kernel’s register count, and (iii) size of the requested shared
memory. Balancing these three factors requires programmer expertise, making high occupancy
often difficult to achieve. In one scenario of narrow tasks, where one task contains 256 threads, or
8 warps. If only one task is executed on the GPU at a time, the occupancy would be (8/(64 × 28)) ×
100% = 0.45%. With HyperQ, 32 kernels may co-execute, meaning that 32 narrow tasks can run
simultaneously. The achieved occupancy then would still be low, i.e., (8 × 32/(64 × 28)) × 100% =
14.29%.

3 PAGODA PROGRAMMING PRIMITIVES

Programmers are required to use Pagoda API functions in their applications to access the Pagoda
runtime system. Pagoda follows programming primitives of CUDA programming model to tai-
lor new Pagoda APIs. Pagoda API functions shown in Table 1 override the corresponding CUDA
functions. The Pagoda API functions belong to the following two categories:

CPU-Side API. The taskSpawn function launches a task from the CPU onto Pagoda. The pro-
grammer specifies the number of threads per threadblock, and the number of threadblocks as
arguments. The programmer also specifies the kernel to execute, along with the parameters. The
size of the shared memory needed per threadblock in bytes may be specified. The sync flag indi-
cates if threadblock-level synchronization is necessary for the task. TaskSpawn is a non-blocking
function. The CPU can synchronize with the spawned task(s) using wait and waitAll functions,
or can check the task status with check function. One difference in functionality with respect to
CUDA is that Pagoda returns a taskID for each task. The taskIDs are essential to use functions such
as wait.

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

Pagoda: A GPU Runtime System for Narrow Tasks 21:5

Fig. 1. Pagoda runtime system overview. The source task kernel and CPU code require few changes to an

equivalent CUDA code. The MasterKernel design is shown for NVIDIA Pascal Titan X GPU. The 56 MasterK-

ernel threadblocks (MTBs) have 1024 threads each. TaskTable is mirrored on both the CPU and GPU. The

CPU threads spawn tasks into the CPU TaskTable, which are then sent to the GPU counterpart. Scheduler

warps inside each MTB find free executor warps to launch tasks on. The WarpTable performs bookkeeping

for each executor warp.

GPU-Side API. Since Pagoda virtualizes the GPU resources, the CUDA-based shared memory al-
location and threadblock synchronization cannot be directly used. Pagoda allocates shared mem-
ory and barriers for each threadblock when it gets scheduled, and the API provides functions that
allow the threadblock to obtain a pointer to its shared memory, and to perform barrier synchro-
nizations. Pagoda also offers a function to obtain the threadId of the current thread.

Figure 1(a) shows a possible implementation of Pagoda host code, while Figure 1(c) shows the
corresponding device code for FilterBank. The two CPU threads spawn tasks and wait for their
completion. Calling wait() in a nested task allows the CPU thread to progress, without getting
blocked. One key distinction from CUDA is that the task kernels are written as __device__ func-
tions, instead of __global__. In CUDA, GPU functions declared as __global__ are called kernels and
are called from the host. Functions declared as __device__ can only be called from the device side.

4 PAGODA RUNTIME SYSTEM

This section first describes the design of MasterKernel that achieves GPU resource virtualization.
Next, the Pagoda task spawning mechanism is described in Section 4.2. Pagoda task spawning
mechanism employs TaskTable, a novel data structure that allows simultaneous updates from both
the CPU and GPU, and is mirrored in both their memories. TaskTable drastically reduces the CPU-
GPU handshaking communication by allowing lazy aggregate updates. Last, the section presents
Pagoda’s GPU scheduling mechanism that parallelizes the scheduling process, and overlaps vari-
ous task processing stages.

4.1 Resource Virtualization via MasterKernel

The MasterKernel is a __global__ CUDA kernel, offered by all GPU resources such as warps,
shared memory, and registers. The MasterKernel is launched at the start of Pagoda runtime and is

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

21:6 T. T. Yeh et al.

continually executed until the end of the computation of entire tasks. The kernels of tasks are trans-
lated into __device__ kernels of the MasterKernel. The MasterKernel allocates its own resources
to these sub-kernels dynamically in Pagoda.

Figure 1 describes our MasterKernel design on the NVIDIA Pascal Titan X GPU. The Master-
Kernel acquires all warps of each SM (64) by launching two, 32-warp threadblocks, called MTBs
(MasterKernel Threadblocks). Each MTB statically allocates 32 KB shared memory, which later
gets assigned to different tasks. The MasterKernel uses the remaining shared memory of the SM
to store some of the scheduling data sturctures. The register count of each thread is capped at 32
(using -maxrregcount) to ensure 100% occupancy for the MasterKernel.

In Figure 1, the first warp of each MTB is called a scheduler warp, while the remaining 31 warps
are called executor warps. The scheduler warp is responsible for scheduling tasks on the executor
warps in the MTB. It also manages shared memory allocations and barriers. The MasterKernel
contains two scheduling data structures. The first one, called TaskTable, is mirrored on the CPU
and GPU, and is used for task spawning. Each entry in the TaskTable holds a task. The GPU Task-
Table receives online updates from the CPU TaskTable, and is therefore placed in the GPU device
memory. The second data structure is called WarpTable. Each MTB contains its own WarpTable,
which is placed in the shared memory. Every WarpTable contains 31 slots to maintain the status
of each executor warp.

4.2 Continuous Task Spawning

Scheduling algorithms often involve queues that accumulate tasks, where processing elements
pull tasks from the queue [32]. To simultaneously schedule several tasks, multiple pulls must take
place in a synchronous/atomic manner, which has long been recognized as a critical source of
overhead [19]. Performing global synchronizations or atomic operations on GPUs is extremely
expensive. Therefore, to reduce this contention, one solution would be to use multiple queues, and
only let a smaller set of GPU threads pull from each queue. Even this solution is impractical. As
the CPU-GPU memories are discrete, before the CPU could spawn a task on a GPU queue, it must
gather the queue head and tail pointers from the GPU. Such handshaking is expensive because
it requires data copies over the PCIe bus. Another way to spawn tasks is to use a batch-based
mechanism [15], where the CPU sends a batch of tasks to the GPU. However, such mechanisms
are susceptible to load imbalance across tasks.

The Pagoda design therefore employs TaskTable, a data structure that as we will show, dras-
tically reduces the amount of CPU-GPU handshaking. TaskTable is a 2D array and has multiple
columns and rows. Each TaskTable entry contains the following fields describing the task: (1) num-
ber of threadblocks, (2) number of threads in a threadblock, (3) task kernel pointer, (4) size in bytes
of the shared memory allocation required per threadblock, (5) a flag indicating whether the task
needs thread-block-level synchronization, (6) task inputs, (7) a ready field, and (8) a sched flag. Each
TaskTable column corresponds to an MTB; The scheduler warp in that MTB schedules tasks in the
column’s entries onto the executor warps of that MTB. Having multiple rows in the TaskTable
allows for high availability of tasks to schedule. Pagoda uses 32 TaskTable rows per MTB.

4.2.1 TaskTable Operation. When a task is launched via the Pagoda API (a call to taskSpawn),
the tasks’s parameters must be copied into an entry in the CPU TaskTable, then the entry must be
copied to the GPU for scheduling. Since this copy has to occur while the MasterKernel is in flight,
a ready field is necessary to indicate the finishing of the copy to the GPU. A straightforward way
of implementing this, where the task’s parameter data and the ready flag are copied in one cud-

amemcopy transaction, cannot work because the PCIe bus does not guarantee that the parameters
will arrive in the GPU memory before the ready flag. One solution would be to simply split it into

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

Pagoda: A GPU Runtime System for Narrow Tasks 21:7

Fig. 2. TaskTable State Diagram. The CPU only touches TaskTable entries with reset ready fields, when a task

gets scheduled to warps, and the GPU only touches TaskTable entries with non-zero ready fields, allowing

for simultaneous TaskTable updates from the CPU and GPU. The sched flag determines when the task gets

scheduled on GPU warps.

two cudamemcopy transactions, one for the parameters, and another for the ready flag. However,
this doubles the parameter copying overhead, significantly reducing Pagoda performance. To solve
this issue, we pipeline the launching of tasks. The launch of a task prompts a copy of its parameters
to the GPU, as well as a pointer indicating which task had its parameters copied in the previous
cudamemcopy transaction. In the steady-state, we achieve 1 cudamemcopy per task table entry and
the CUDA streams API guarantees that the parameters are copied before the task is scheduled.

The task arrival rate in a real system can be hard to predict and we do not want a task to wait
indefinitely after its parameters are copied. To alleviate this issue, Pagoda sends out an empty
update to the device when the interval between two tasks arriving crosses a threshold.

4.2.2 Task Spawning Example. Each task’s state comprises its ready field and sched flag. The
ready field of each TaskTable entry can be in one of four states: 0 meaning the task is not ready,
−1 meaning the task’s parameters have been copied to the task table, 1 meaning the task is being
considered for scheduling on the GPU, or it can be a taskID which is an integer > 1. The taskID
provides the necessary indirection to implement the pipelining, indicating which task has already
had its parameters copied to the GPU. The sched flag has two states: 1, indicating that the task is
ready to begin scheduling on an MTB, and 0 meaning otherwise. Figure 2 presents a task’s state
diagram.

Figure 3 presents an example execution of task A (TA). When the taskSpawn function is executed
by the CPU, Pagoda finds a TaskTable entry with a reset ready field and copies the task’s parameters
into the entry. Since TA is the first task, the CPU sets the ready field to −1. For all subsequent tasks,
it sets the ready field to the taskId of the last spawned task, e.g., during task B (TB) spawn, TA is
set as the ready field. The taskIds generated by Pagoda are references to entries in the TaskTable.
Next, the CPU resets the sched flag, and copies the entry to the GPU. If the ready field is a taskID,
i.e., > 1, the continually polling scheduler warp for the TaskTable column (S2) sets the state of the
previous task (TA) to (1, 1). The ready flag reserves taskID, which are brought from another task
located in different MTBs. Both tasks will access the same taskID stored in the device memory in a
serial manner. Next, S2 sets the state of the current task to (−1, 0) (see Algorithm 1, lines 5-13). S2

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

21:8 T. T. Yeh et al.

Fig. 3. Example execution of task TA. TA gets scheduled only after TB is spawned. Our design allows for the

CPU and GPU TaskTable entries to contain mis-matching values.

waits for the state of TA to be (−1, 0) before changing it to (1, 1). This is achieved through polling
orchestrated with CUDA threadfence calls. Now, S1, the scheduler warp for TA, finds that TA has
a set sched flag, and hence schedules TA. To do so, S1 first resets the sched flag and then finds
executor warps for the task. Once the task execution is finished, the last finishing executor warp
for the task sets the ready field to 0, marking the end of the task’s execution, and freeing up the
task entry TA. If the CPU spawner thread observes no new tasks come in, it copies back the status
of the last task, i.e., TB, and if it is (−1, 0), then sets it to (1, 1) and copies it to the GPU, ensuring
the successful execution of the last task.

Lazy Aggregate TaskTable Updates. The above mechanism allows both the CPU and GPU to
simultaneously update the TaskTable. As the CPU only spawns a task if the ready field is reset, the
CPU can keep spawning as long as it finds an entry with a reset ready field. Similarly, since the
GPU only edits TaskTable entries with non-zero ready fields, it can keep scheduling as long as it
finds a task entry with a set sched flag. When the ready fields of all CPU-side TaskTable entries are
non-zero, the CPU can no longer spawn tasks. In that case, it copies back all the TaskTable entries
from the GPU, thereby updating all ready fields. It can then realize which tasks have finished, and
launch new tasks in entries with reset ready fields. The CPU therefore receives updates from GPU
TaskTable in a lazy aggregate manner.

This laziness greatly reduces the number of handshaking communication calls. Furthermore,
aggregated (bulk) copying achieves better data transfer bandwidth on the PCIe bus. The wait and
waitAll functions return only when the ready field(s) of the corresponding task(s) in the TaskTable
is/are reset. The laziness of TaskTable updates may block these functions if the CPU is not spawn-
ing more tasks; these functions therefore use a timeout, after which they enforce a copy-back of
the involved TaskTable entries.

Because the CPU overwrites the TaskTable while the MasterKernel is in flight, coherence issues
may arise. We therefore marked the TaskTable as volatile, and validated that cudaMemCopy()

transfers from the CPU to the GPU update the GPU L2 cache, which is shared between all SMs. Data
written to global memory by the GPU is also visible to the CPU. The GPU L1s are write-through
and cudaMemCopy() calls that transfer data from the GPU to the CPU read from the GPU’s L2. This
behavior has also observed by other work [13, 32] that requires updates to GPU memory from the

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

Pagoda: A GPU Runtime System for Narrow Tasks 21:9

Table 2. WarpTable Entry Fields

warpId maintains the warp ID of the warp, for the current task. It is used to generate the
threadID in the getTid() function.

eNum refers to the task entry in the TaskTable, which is being executed by the warp.
This reference allows each warp to obtain the task kernel arguments.

SMindex indicates the shared memory starting location for the corresponding threadblock.
barId maintains the barrier ID that the warp should synchronize on. It is only valid for

tasks that request threadblock synchronization.
exec acts as a flag for the warp to begin task execution. It is also used to query the

warp status.

CPU, while kernels are in flight. The host side calls cudaStreamSynchronize() to ensure the CPU
and GPU are in sync after the host copies back the GPU task table.

4.3 Concurrent Task Scheduling

Task scheduling in Pagoda involves finding free resources (warps, shared memory) on which to
execute a task. All warps of a given task execute in the same MTB. This design stems from the fact
that narrow tasks need less threads than those available in an MTB.

We found that task spawning and scheduling are high-overhead operations, especially for nar-
row tasks, which can be short running. To mitigate this issue, Pagoda overlaps the three task pro-
cessing stages, namely, spawning, scheduling, and execution. Second, multiple scheduler warps
across different MTBs schedule tasks concurrently, lowering the time to execution for each task.

Two Pagoda data structures facilitate task spawning and scheduling in parallel: the multi-row
TaskTable and the per-MTB WarpTable. While the CPU is spawning tasks on a TaskTable row,
scheduler warp(s) on the GPU may schedule tasks from the remaining rows. The status of each
executor warp is stored in a WarpTable entry, whose fields are described in Table 2.

Algorithm 1 describes the operation of the scheduler and executor warps. The scheduler warp
(Lines 2–28) scans the corresponding column in the TaskTable, and when it finds an entry with
a set sched flag (Line 14), it attempts to schedule the task. It begins by resetting the sched flag.
If the task requires shared memory or synchronization, then the scheduler first allocates shared
memory/barrier (Lines 19–24) for them (Section 5.1) and performs scheduling for each individual
threadblock of the task. If neither shared memory nor synchronization are required, then execution
is based solely on available warp slots (Line 28).

The executor warps remain idle until the exec flag in their WarpTable slot is set. Once this flag
is set, they execute the task (Line 33). Afterwards, they release the shared memory and the syn-
chronization barriers (Lines 36–39). Last, they reset the ready flag in the corresponding TaskTable
entry, and reset the exec flag in the WarpTable element, marking the warp to be free (Lines 41–43).
In order for this mechanism to work, the scheduler and executor warps must have a consistent
view of the WarpTable, which is achieved by the threadfences. The scheduler warp does not ex-
plicitly monitor the end of a task execution. Hence, it cannot free the shared memory used by
the task’s threadblocks immediately after they finish execution. The executor warps cannot them-
selves deallocate the shared memory, since it may lead to inconsistencies if the scheduler warp
is simultaneously allocating the shared memory. To overcome this issue, the last executing warp
of each threadblock requesting shared memory marks the shared memory region to be freed, and
before performing any future shared memory allocation, the scheduler warp first deallocates all
memory blocks marked for freeing (Line 22). The allocation/deallocation mechanism is described
in Section 5.1.

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

21:10 T. T. Yeh et al.

ALGORITHM 1: Pagoda Task Scheduling : Each MTB Executes this Algorithm

Input: gTaskPool - column of task entries in the TaskTable belonging to the given MTB,

numEntriesPerPool - #rows in the TaskTable,ctr[numEntriesPerPool] and

doneCtr[numEntriesPerPool] - counters allocated in shared memory, tid - threadID

1 while (1) do

2 if tid < warpSize then // scheduler warp does this
3 for (i = 0; i < numEntriesPerPool; i++) do

4 entry← gTaskPool[i]

5 taskId = entry.ready

6 if taskId > 0 then

7 prevEntry← taskTable entry for taskId

8 if prevEntry.ready � -1 then

9 threadfence()

10 continue

11 else

12 prevEntry.ready← 1

13 prevEntry.sched← 1

14 if entry.sched then // check if sched flag is set
15 entry.sched← 0

16 doneCtr[i]← ctr[i]← getNumWarps(entry)

17 if entry.SMSize > 0 ∨ entry.sync then // schedule warps per threadblock
18 for (j = 0; j < entry.numTB; j++) do

19 if (entry.sync) then barId← getBarId()

20 if (entry.SMSize > 0) then

21 do

22 deallocMarkedSM() // avoids deadlocking

23 retVal← allocSM(entry.SMSize, &index)

24 while (retVal == false)

25 ctr[i]← getNumWarpsPerTB(entry)

26 pSched(ctr[i]×j, i, index, barId, &ctr[i])

27 else // schedule all warps
28 pSched(0, i, 0, 0, &ctr[i])

29 else // executor warps do this
30 if (warpTable[warpId].exec) then

31 entryId← warpTable[warpId].eNum

32 tEntry← gTaskPool[entryId]

33 *(tEntry.funcPtr))(tEntry.args) // warp executes the task

34 if (laneId == 0) then

35 if lastWarpInBlock() then // only 1 thread per threadblock performs this
36 if (tEntry.SMSize > 0) then // dealloc SM
37 markSMForDealloc(warpTable[warpId].SMindex)

38 if (tEntry.sync) then

39 releaseBarId[tEntry.barId]

40 threadfence_block()

41 if (atomicDec(&doneCtr[entryId]))) then

42 tEntry.ready← 0; // free the task entry

43 warpTable[warpId].exec← 0 // warp is free now

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

Pagoda: A GPU Runtime System for Narrow Tasks 21:11

ALGORITHM 2: Parallel Warp Schedule Function

Input: tid - thread number, baseWarpId - base warp number getting scheduled, eNum - number of the

TaskTable column entry, index - starting address of the shared memory for the threadblock,

barId - barrier Id for the threadblock, warpCtr - count of the number of warps to be scheduled

1 Function pSched (baseWarpId, eNum, index, barId, warpCtr)

2 threadDone← 1 // private per thread

3 i← tid; // private per thread

4 while (1) do

5 if (i < numEntriesPerPool) then

6 threadDone← 0

7 if (!warpTable[tid].exec) then

8 if (id← (atomicDec(warpCtr)) >= 0) then

9 warpTable[i].warpId← id + baseWarpId

10 warpTable[i].eNum← eNum

11 warpTable[i].SMindex← index

12 warpTable[i].barId← barId

13 threadfence_block()

14 warpTable[i].exec← 1

15 if (*warpCtr <= 0) then threadDone← 1

16 if (__all(threadDone == 1) == true) then // Synchronize threads in the scheduler warp
17 break

18 i← i + 32

19 if (i > numEntriesPerPool) then i← tid

Scheduling is performed by the threads of the scheduler warp in parallel, through the PSched

function (Algorithm 2). Note that the scheduler warps across different MTBs operate concurrently.
The threads in the scheduler warp find free executor warps for a given task by checking their exec

flags. If a free warp is found, a counter holding the number of warps that are yet to be sched-
uled is decremented atomically. If the result is positive, then the corresponding warp is scheduled
(Lines 7–14). This counter resides in the GPU shared memory, speeding up the atomic operations.
Note that both branches on lines 7 and 8 are divergent, i.e., different threads may have different
branch outcomes. The threads with a false branch outcome may repeatedly execute the outer while

loop, in spite of the other threads finding free warps. To remedy this problem, all threads in the
scheduler warp must be synchronized after each iteration of the while loop. We achieve this using
__all(), a CUDA warp-level vote function, as opposed to the usual CUDA API for synchronization,
__syncthreads() which will synchronizes all MTB threads. At last, there is a +32 in at the end of the
loop because there are 32-threads in the scheduler warp and on the next iteration of the while(1)
loop, the next 32 warps from the task are evaluated.

5 SUPPORTING NATIVE CUDA FUNCTIONALITY

As tasks in Pagoda are launched by the MasterKernel, native CUDA shared memory and syn-
chronization management cannot be used. This section describes how Pagoda supports these
functionalities.

5.1 Shared Memory Management

CUDA lacks support for software-driven dynamic shared memory allocation once a kernel has
been launched. Tasks in Pagoda piggyback on the MasterKernel, and hence cannot directly use
the shared memory. A need therefore arises for software management of the shared memory. Each

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

21:12 T. T. Yeh et al.

Fig. 4. Allocating 8K of shared memory in Pagoda. The value in each node represents the size of the shared

memory block. Note that not all levels of the tree are shown here. The white nodes are free blocks and the

shaded nodes are allocated blocks.

MTB reserves shared memory when it starts execution, and allocates this memory to threadblocks
of one or more tasks, and frees it after the tasks finish execution.

Our software allocator/deallocator manages small, contiguous regions of shared memory with
low overhead. Unlike many general-purpose allocators that rely on freelists [40], Pagoda’s al-
gorithm is motivated by the buddy system mechanism [14] to reduce overhead. Threads of the
scheduler warp in the MTB are responsible for performing the allocations and deallocations.

Data Structure. The memory blocks are represented as nodes in a tree, as shown in Figure 4. This
tree is arranged as an array in the shared memory itself, allowing fast access. Each level in the tree
corresponds to memory blocks of a given size. The lowest node in the tree represents 512 bytes
of memory, which is the smallest allocation granularity in our mechanism. The parent of a given
node represents a memory block twice as large. Thus, the total number of nodes in the tree is 128,
small enough to fit in the shared memory. A marked node means the block is allocated, otherwise,
it is free. An invariant of this data structure is that if a node is marked, then its parent must be
marked as well.

Allocation. Figure 4 shows a case where a completely free tree receives an 8K allocation request.
The first step is to find the tree level at which node sizes are no smaller than the request. The static
mapping of blocks allows our mechanism to search for a free node on such a level of the tree,
an operation which is performed in parallel by the threads of the scheduler warp. One of these
threads that finds such a free node marks it. The next operation is to mark all descendants and
ancestors of this node. Since the tree contains only 128 nodes, threads of the scheduler warp each
check four nodes, and mark them if they are either the descendants or ancestors of the allocated
node.

Deallocation. Figure 5 shows an example where a block of 4K needs to be freed. First, the threads
of the scheduler warp work in parallel to unmark all descendants of this node. Next, the first thread
of the scheduler warp unmarks the node itself, and keeps going up the tree unmarking the parent
as long as the sibling node is unmarked as well. Recall that both allocation and deallocation are
carried out only by the scheduler warp, and hence no locking is necessary while performing them.

5.2 Sub-Thread Block Synchronization

CUDA __syncthreads() synchronizes threads within a threadblock. If this function is used directly
within the Pagoda kernel code, the synchronization may lead to undefined behavior. This would

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

Pagoda: A GPU Runtime System for Narrow Tasks 21:13

Fig. 5. Deallocating 4K of shared memory in Pagoda. Ancestors of the current node are marked free only if

the sibling is free.

occur because the MTB may be running two different threadblocks simultaneously, and hence all
threads in the MTB may not reach the __syncthreads() barrier.

A naive solution to this issue would force all threadblocks running on the MTB to reach the
same barrier. However, this would lead to excessive wait times in threadblocks that do not require
synchronization. Pagoda presents a sub-threadblock barrier, where only the threads of a given
threadblock can synchronize. Pagoda achieves this using named barriers (using bar.sync instruc-
tion) in the PTX programming model [24]. Each threadblock of a task that annotates the synchro-
nization requirement in the TaskTable entry is provided a unique barrier ID during the scheduling
of the threadblock (Algorithm 1, Line 19). When a threadblock encounters the syncBlock() function,
this barrier ID is used for synchronization. The PTX model allows for only 16 such barriers. The
Pagoda design therefore needs to recycle these IDs once the threadblock is finished. We assume
no kernels having less than 64 threads in one narrow task. Hence, 16 named barriers are enough
for most narrow task applications.

6 EVALUATION

The following subsections detail our experimental setup and results.

6.1 Experimental Setup

The GPU experiments are run on a node with an NVIDIA Pascal Titan X GPU, which con-
tains 3584 1417MHz GPU cores with 12GB RAM. The machine runs Ubuntu 16.04, with 24GB
RAM and an Intel Core-i7 4.0GHz quad-core CPU. All experiments were run on NVIDIA Pas-
cal Titan X GPU except Section 6.8. We enabled 32 concurrent kernels in the HyperQ by setting
the CUDA_DEVICE_MAX_CONNECTIONS environment variable to 32. All CUDA and Pagoda
benchmarks are compiled using nvcc from CUDA 9.0, with the -O3 option. The MasterKernel, along
with all task kernels, are forced to use at most 32 registers in the Pagoda versions. The PThreads
and sequential programs are compiled with gcc -O3 and are executed on two hyperthreaded Intel
Xeon E5-2660 v3 CPUs each having 10 cores running at 2.6GHz.

Table 3 details the applications used in this study. We chose benchmarks from various appli-
cation domains, such as signal and image processing, network security, and scientific computing
where narrow tasks arise often. Table 4 shows the workload characteristics of the benchmarks.

6.2 Runtime Performance

Figure 6 compares the performance of narrow task applications on different CPU (PThread), and
GPU runtime systems (CUDA-HyperQ, GeMTC, and Pagoda). Pagoda achieves geometric mean
speedup of 1.76X over CUDA HyperQ programs, 1.44X over GeMTC, and 5.52X over the pThread

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

21:14 T. T. Yeh et al.

Table 3. Benchmark Description

MB Mandelbrot sets are used in fractal analysis [7]. Each pixel value of the image is
calculated in parallel; however, the required computation per pixel is highly
irregular. Therefore, computation over each pixel is represented as a task that has
low degree of parallelism.

MM This is a standard matrix multiplication implementation, refactored from the
NVIDIA SDK samples [23]. We used small matrix sizes, with each multiplication
running as a task to simulate the behaviour seen in an earthquake engineering
simulator [17]. The behavior arises from concurrent simulation of various
structures, each of which is represented by different but small matrix sizes.

FB Filterbank is a signal processing algorithm that separates input signals into
multiple sub-signals with a set of filters. Multiple radios generate signals,
processing each of them represents a task. Each task contains small amount of
parallelizable computation.

BF Beam former is a signal processing method used to control the direction of signal
reception and transmission. Many independent signal beams receive inputs
asynchronously. Processing individual inputs generate a narrow task.

SLUD This is a sparse matrix solver using multi-frontal method [16]. A matrix is divided
into multiple regular sub-matrices. Sparse LUD is represented as a task-based
application owing to the irregularity in the computation size among different
iterations of a parallel loop.

3DES It is used to encrypt electronic data [6]. Network routers encrypt multiple packets
as they arrive, each of which is represented as a narrow task. We use NetBench [18]
to generate varied sizes of network packets that 3DES encrypts.

DCT The Discrete Cosine Transform (DCT) [22] is commonly used for compression, e.g.,
JPEG (image), MP3 (audio), and MPEG (video) use it. Online surveillance systems
gather image streams from multiple cameras, and operate on images from different
streams in parallel [11]. Processing each image represents a narrow task.

CONV Convolution filters [20] are used in blur and edge detection mechanisms in image
processing. Each filter operation represents a task, which operates in parallel
across pixels.

MPE Pagoda is able to run multi-programmed workloads, where multiple applications
generate narrow tasks asynchronously. To evaluate such a setup, we built a
multi-programmed benchmark of our own. Multi-programmed environments often
encounter heterogeneity in workloads. To simulate that, we chose (1) 3DES and
Mandelbrot, which contain irregular computations, (2) Filterbank, which requires
threadblock-level synchronization, and (3) Matrix multiplication, which uses
shared memory. Each of the benchmarks contained 8K tasks, totalling 32K tasks.

benchmarks. The performance metric in Figure 6 is calculated over the entire execution time,
including the time of both compute and data copy in the GPU benchmarks. We injected 32K narrow
tasks in each application in Figure 6, except SLUD (273K). Each task is composed by 128 parallel
threads in the GPU benchmarks. The small number of narrow tasks does not fully utilize GPU
resources. Increasing the concurrent task counts is helpful for the computational throughtput of
narrow tasks. Therefore, the key reason why Pagoda can outperform other runtime systems is
the high GPU utilization. GeMTC increases the GPU utilization by launching work in batches and
tasks are run within its SuperKernel. We could not implement SLUD in GeMTC; GeMTC needs the

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

Pagoda: A GPU Runtime System for Narrow Tasks 21:15

Table 4. Benchmark Characteristics

Benchmark Source
Task
Type

Input Set per
Task(each task is one
image, signal, matrix
or network packet)

Num
Tasks

% Time spent
in data copy

(CUDA-
HyperQ)

% Time spent in
computation

(CUDA-HyperQ)

May
benefit
from

Shared
Memory

Requires
threadblock

synchronization

Default
Register
Count

Mandelbrot
(MB)

Quinn [28] Irregular 64 × 64 images 32K 24 76 ✗ ✗ 28

MatrixMul
(MM)

CUDA
SDK [23]

Regular 64 × 64 matrix 32K 51 49 � � 30

FilterBank (FB) StreamIt
[36]

Regular Signals of width 2K 32K 35 65 ✗ � 21

BeamFormer
(BF)

StreamIt
[36]

Regular Signals of width 2K 32K 13 87 ✗ ✗ 34

Sparse LU
Decomposition
(SLUD)

OpenMP
Task Suite
[5]

Irregular 32 × 32 matrix 273K 3 97 ✗ ✗ 17

3DES NIST [6] Irregular Network packets sized
2K-64K

32K 74 26 ✗ ✗ 26

DCT8x8 (DCT) CUDA
SDK [22]

Regular 128 × 128 images 32K 81 19 � � 33

Image
Convolution
(CONV)

CUDA
SDK [20]

Regular 128 × 128 images 32K 30 70 ✗ ✗ 25

Fig. 6. Overall Performance Comparison. All applications of this experiment were run on NVIDIA Pascal

GPU. Speedup is normalized to the sequential CPU applications. The number of tasks in each benchmark is

constant (32K), except SLUD, which contains 273K tasks. Each GPU task uses 128 threads. The measurement

of execution time contains both data copy and compute times. Pagoda significantly outperforms CUDA-

HyperQ (1.76x), 20-core PThreads (5.52x), and GeMTC (1.44x) because of the high GPU utilization.

number of tasks to be pre-defined, which is not the case in SLUD. Both GeMTC and Pagoda can
reach 100% GPU occupancy. However, the average performance of GeMTC is 18% less than Pagoda.
The reason is due to the complex task queuing and lock-step communication of GeMTC. GeMTC
performs worse than CUDA-HyperQ in MB, MPE, and 3DES becuase these applications contain
irregular workloads. For a fair comparison with a CPU execution, we have tried to make use of
Python-based thread pooling, OpenMP for data parallelism, pThreads-based task parallelism. We
found the pThreads implementation obtained the best results, which are included in Figure 6.

6.3 Pagoda Performance Scalability

Pagoda is able to run on different types of NVIDIA GPUs after changing the number of SMs in its
system configuration. Figure 7 presents the performance results of Pagoda on NVIDIA Maxwell

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

21:16 T. T. Yeh et al.

Fig. 7. Pagoda Performance Scalability. CUDA-Maxwell and CUDA-Pascal indicates CUDA-HyperQ appli-

cations are run on NVIDIA Maxwell and Pascal Titan X GPU. Pagoda achieves 2.4X speedup compared to

CUDA-Maxwell by running benchmarks on NVIDIA Pascal GPU.

and Pascal Titan X GPU. This section aims to figure out the performance scalability of Pagoda from
NVIDIA Maxwell to Pascal GPU. Each application in Figure 7 includes 32K tasks, 128 threads in
one task and the execution time calcuation does not count the time of data copy in. The number of
cores on NVIDIA Pascal Titan X GPU is 16% higher than on the Maxwell architecture. Additionally,
its compute frequency is 53% higher than on the Maxwell GPU. The average performance speedup
of Pagoda-Pascal is 2.39X and Pagoda-Maxwell achieves a 1.64X speedup compared to CUDA-
Maxwell in Figure 7. The increased number of compute cores and speed on Pascal GPU results in
this performance improvement. CUDA HyperQ programs attach tasks in different CUDA streams
and these tasks are executed when there are available GPU resources. However, the limited number
of task queues on the GPU constrains the degree of task concurrency. As a result, most of the
performance benefit of the CUDA-Pascal applications only comes from the higher GPU speed and
is 30% faster than on the Maxwell GPU.

6.4 Sensivity Analysis for Task Load Imbalance

Task load imbalance impacts the performance and response time of the individual tasks. This sec-
tion presents the performance results of tasks composed of various computations in static task
fusion, CUDA-HyperQ and Pagoda. Static task fusion combines multiple tasks into a monolithic
large task [9, 38]. This method is good for tasks consisting of the same computational work, since
the task fusion method can decrease the CPU-GPU communication overhead and increases the
degree of parallelism within one fused task (kernel). However, this regular workload is not al-
ways seen in the real world. In this experiment, we created tasks comprising various input sizes
and thread counts by using a pseudo-random generator. Each application contains 32K tasks. The
threadblock size was fixed in the fused kernel, and the threadblock size is 256 in this experiment.
We chose this number heuristically, since selecting the best thread count per task is infeasible in
static fusion. The threadblock size in some sub-tasks in a fused kernel are smaller than 256, and
this waste is unavoidable. The SLUD application cannot be fused because the number of tasks is
not known statically.

Figure 8 demonstrates the speedup of static task fusion and Pagoda compared to CUDA-HyperQ.
Pagoda gains 1.8X speedup and the static task fusion method is about 10% slower than CUDA-
HyperQ applications. There are two reasons for the slowdown shown in the static task fusion
benchmarks. First, the longest task in a fused kernel dominates the execution time. This situation
is often shown in compute-intensive applications such as MB, FB and CONV in Figure 8. Second,

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

Pagoda: A GPU Runtime System for Narrow Tasks 21:17

Fig. 8. Performance Comparison of Static Fusion, CUDA-HyperQ and Pagoda with irregular tasks. Dynamic

task spawning mechanism in Pagoda obtains high performance even with irregular workloads.

Fig. 9. Average Latency of Tasks. Pagoda achieves much lower latency compared to static fusion.

the underutilization is shown in a fused kernel because the threadblock size of each sub-task can
be different. In contrast to the static fusion method, Pagoda launches tasks in quick succession
without combining tasks in a batch. Additionally, Pagoda follows the availability of the GPU hard-
ware resources to allocate tasks. Pagoda’s task allocation mechanism can fully utilize the GPU and
satisfy dynamic task workloads.

6.5 Task Latency Analysis

Figure 9 compares the normalized average response time between Pagoda and static fusion ap-
plications. The average response time of static fusion benchmarks is 40% and 440% longer than
Pagoda shown in Figure 9. The batch size in Figure 9 means the number of threadblocks in one
fused kernels. The average response time measures the total task execution time over the number
of injected tasks. Each benchmark in this experiment contains 16K irregular tasks with various
threadlblocks and input sizes. Each task in a statically fused kernel and in a batch-based system
such as GeMTC, is completed until all tasks in the fused kernel or batch have done the work. Thus,
their response time increases with the the number of tasks per batch.

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

21:18 T. T. Yeh et al.

Fig. 10. Benefit of Pagoda Continuous Spawning and Concurrent, Pipelined Task Processing. Pagoda per-

forms both continuous task spawning and concurrent, pipelined task processing. Pagoda-batching only per-

forms task processing. GeMTC performs neither. Pagoda outperms GeMTC in all cases.

In Figure 9, the average response time of BF-Fusion decreases with growing batch size. The
reason is that the large batch size increases the degree of parallelism in the fused kernel. The par-
allelism helps the performance of the fused kernel and response time. However, this growth trend
does not always increase linearly and slows down when the batch size is over 256 in FB-Fusion in
Figure 9. Threadblocks specified in the fused kernel can be over the pre-defined threadblock counts
on GPUs. Over-subscribing threadblocks in the fused kernel increases the contention of resources
and slows down the performance speedup. Instead of batching tasks to increase parallelism, Pagoda
launches tasks successively on the GPU. Pagoda allocates tasks to the GPU dynamically based on
the availability of hardware resources and decreases the resource contention.

6.6 Lock-Step Communication Overhead

To understand the benefit of continuous task spawning, this experiment creates a Pagoda version
that spawns tasks in batches. This batch Pagoda version does not spawn tasks until all tasks in
the previous batch are done. Figure 10 compares the performance of Pagoda, Pagoda-batch, and
GeMTC. Each application in Figure 10 contains 32K tasks and their threadblock size is 128. In Fig-
ure 10, Pagoda gains 2.53X speedup compared to GeMTC. This performance improvement comes
from the concurrent task scheduling in Pagoda. GeMTC’s complicated task queue method hindered
the task concurrency within its batch. In addition, on average, the Pagoda-batch implementation
incurs 29% overhead because of its lock-step task launch mechanism. Pagoda overlaps the task
spawning and execution to achieve this speedup compared to the Pagoda-batch alternative. In
Figure 10, CONV only gets 5% performance benefit from continuous task spawning because its
regular, extremely short running task. However, MPE demonstrates the exceptionally high benefit
in the presence of unbalanced tasks.

6.7 Pagoda Task Scheduling Overlead Analysis

Figure 11 shows the overhead of Pagoda task scheduling for various threadblock and input size.
In Figure 11, the threadblock size of the HyperQ applications is 256, and both benchmarks contain
32K tasks. In the CUDA-HyperQ programs, the GPU hardware distributes threadblocks of one
task (kernel) to other SMs. However, Pagoda only uses 31 executor warps from the MasterKernel
ThreadBlock (MTB) to feed the request of one task. Hence, some warps in one task must wait for
executor warps to finish. This case occurs in the big task comprising a large number of threadblocks
in Pagoda. As shown in Figure 11, Pagoda obtains 3% runtime overhead in MM task as its input size

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

Pagoda: A GPU Runtime System for Narrow Tasks 21:19

Fig. 11. Effects of varying threads per task for different input size.

is 256 × 256 and 32K threads. The speedup of HyperQ programs increases linearly with increasing
of threadblock size from 32 to 512. The increase of parallelism in one task facilitates this speedup in
HyperQ applications. However, the speedup of HyperQ does not improve beyond their threadblock
size of 1024, as the GPU is fully utilized. On the other hand, the performance of Pagoda does not
fluctuate with changing threadblock size, since Pagoda increases the number of concurrent tasks in
small threadblock size configurations. Furthermore, 256× 256 input size and 64K threads of CONV,
the speedup of Pagoda improves again. We attribute this behavior to the warp-level scheduling in
Pagoda versus the threadblock-level scheduling in CUDA. CUDA prevents a new threadblock from
launching until all warps of the previous threadblock finish, where as Pagoda can schedule a warp
from a new threadblock as soon as another warp completes.

6.8 Effects of Varying Threads in Narrow Tasks

Figure 11 presents the speedup of Pagoda after varying the number of threads in narrow tasks.
For small threads, Pagoda outperforms HyperQ in all input sizes. For large thread counts, Pagoda
may still outperform HyerQ because its finer grain of scheduling.

6.9 Effects of Sub-Threadblock Synchronization

Pagoda demonstrates the impact of the sub-threadblock synchronization on the MM and DCT
applications. Both applications use shared memory and sub-threadblock synchronization. Pagoda
performs software management of the GPU shared memory, as described in Section 5.1. To com-
pare the obtainable performance benefits from the use of shared memory, we show performance
results on the DCT and MM benchmarks. These two codes can potentially benefit from the use of
shared memory. We created two versions for each: with and without using shared memory. Table 5
compares the speedups achieved by these versions over the CUDA-HyperQ versions, which also
use the shared memory. The shared memory requirement may reduce the achieved occupancy; yet,
Pagoda shared memory versions achieve performance benefits. None of the other static-fusion or
runtime batching solution offer shared memory utilization, and miss out on such benefits.

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

21:20 T. T. Yeh et al.

Table 5. Compute Performance Comparison of Tasks Run in Pagoda

with and without Shared Memory Allocation

Benchmark Pagoda with Shared Memory Pagoda without Shared Memory

Speedup over HyperQ
using Shared memory

Achieved
Occupancy

Speedup over HyperQ
using Shared memory

Achieved
Occupancy

DCT 1.13x 25% 1.02x 97%
MM 1.47x 97% 1.32x 97%

Each version runs 32K tasks. DCT tasks have 64 threads, MM tasks contain 256 threads. Only the compute time is

compared. The shared memory usage offers considerable benefits.

7 RELATED WORK

Task-based models [2, 4] employ a runtime system which governs task executions on various
engines, such as CPUs and GPUs. These systems, however, always execute narrow tasks on CPUs,
believing that their low parallelism degree cannot overcome the overhead of memory copies.

Static task fusion is the preliminary approach to deal with GPU underutilization. Wang et al. [38]
present a mechanism where such fusion achieves higher utilization, resulting in energy benefits.
KernelMerge [9] statically fuses kernels, and explores round-robin and fair-partitioned execution
schemes for these kernels. The GPU programming models, such as CUDA and OpenCL, allocate
same resources to each thread. Therefore, the resource usage in static fusion schemes gets limited
by the requirements of the most resource-hungry task. A more sophisticated approach is therefore
to perform fusion at the runtime. Two approaches [26, 29] perform kernel consolidation leverag-
ing the GPU concurrent kernel executions. They launch multiple concurrent kernels, where re-
sources not being used by one kernel can be yielded to another. The first approach [29] relies on
a threadblock-level launching scheme. The second approach [26] presents a compiler scheme that
transforms kernels so that they can automatically support any threadblock configuration. This
ability helps in finding the best sharing configuration for different kernels. Zhong and He [42]
present an approach where a large kernel is split into independent smaller kernels that co-execute
to achieve better utilization. Kato et al. [12] propose a software scheduler at the device driver layer
to prevent interference among concurrently running GPU applications, trading off response la-
tency for throughput. However, all these approaches are restricted by the 32 kernel limit imposed
by the CUDA-HyperQ, and fail to efficiently execute narrow tasks.

Runtime systems that virtualize GPU resources can naturally overcome the hardware-imposed
kernel limit. Additionally, they offer low execution latencies compared to static fusion. Closest
to our work is GeMTC [15]. Like the MasterKernel in Pagoda, GeMTC runs a SuperKernel that
virtualizes GPU resources. The use of large dameon-like kernels is similar to persistent thread-
ing [10]. Unlike the MasterKernel, the SuperKernel does not guarantee an occupancy of 100%, and
therefore may face underutilization. Second, the GeMTC design uses a single FIFO queue for its
batch-based task launching scheme, resulting in significant task scheduling overhead. Third, GPU-
specific functionalities, such as the shared memory and threadblock-level synchronization, remain
unsupported.

GPU researchers have exploited pipelining [30] to overlap data transfers with kernel com-
putations. The distinguishing factor in the Pagoda pipelined task processing is that it overlaps
spawning, which comprises CPU finding a free task entry and performing a data copy, with GPU
scheduling, which is only a sub-part of the overall task processing. Yang et al. [41] showed that
fusing cross-kernel threadblocks can obtain better shared memory performance. By contrast, the
Pagoda shared memory management schedules threadblocks as long as shared memory is found at
runtime.

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

Pagoda: A GPU Runtime System for Narrow Tasks 21:21

Prior research has explored preemptive hardware techniques to improve GPU utilization in the
presence of concurrent low-occupancy kernels [27, 35, 39]. In contrast to these works, which re-
quire hardware changes, Pagoda provides a software only solution that runs on contemporary GPU
hardware and could be applied to any future GPU hardware that supports the CUDA programming
model.

Virtualizing GPU resources has also been explored to improve GPU utilization via multi-tenancy
in cloud computing. Sengupta et al. [31] focus on virtualizing the GPU as a whole in a cloud with
multiple GPUs. Becchi et al. [3] study a virtual memory system that isolates the memory spaces
of concurrent kernels and allows kernels whose aggregate memory footprint exceeds the GPU’s
memory capacity to execute concurrently. By contrast, Pagoda virtualizes the compute resources
of a single GPU at the granularity of a warp.

8 CONCLUSION

This article has presented Pagoda, a GPU runtime system that overcomes underutilization in the
presence of narrow tasks. Pagoda virtualizes GPU resources via MasterKernel, a continually ex-
ecuting daemon on the GPU. Pagoda launches tasks on the GPU as long as some free warps are
available. Unlike previous work, Pagoda supports most functionality of the native CUDA model.
A key distinction in Pagoda is the task spawning and scheduling mechanism. It contains a novel
data structure, called TaskTable, that greatly reduces CPU-GPU handshaking during task spawn-
ing. Pagoda achieves concurrent task scheduling, and overlaps task spawning, scheduling, and
execution through pipelining. The experimental evaluation showed that Pagoda achieves a geo-
metric mean speedup of 1.76x over CUDA- HyperQ, 1.44x over GeMTC, and 5.52x over 20-core
CPU PThreads. The evaluation also showed that Pagoda can outperform static fusion schemes
by 1.79x, and achieves much lower latency per task. We believe that the Pagoda design makes it
easy to exploit GPUs for applications exhibiting narrow tasks, and will encourage porting of many
non-traditional workloads to GPUs.

REFERENCES

[1] IEEE Standards Association. 2012. 802.3-2012-IEEE Standard for Ethernet. [Online]. Available: http://standards.ieee.

org/findstds/standard/802.3-2012.html (accessed March. 5, 2018).

[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. 2011. StarPU: A unified platform

for task scheduling on heterogeneous multicore architectures. Concurr. Comput. : Pract. Exper. 23, 2 (Feb. 2011), 187–

198. DOI:https://doi.org/10.1002/cpe.1631

[3] Michela Becchi, Kittisak Sajjapongse, Ian Graves, Adam Procter, Vignesh Ravi, and Srimat Chakradhar. 2012. A

virtual memory based runtime to support multi-tenancy in clusters with GPUs. In Proceedings of the 21st Inter-

national Symposium on High-Performance Parallel and Distributed Computing (HPDC’12). ACM, New York, 97–108.

DOI:https://doi.org/10.1145/2287076.2287090

[4] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguadé, and J. Labarta. 2012. Productive programming of

GPU clusters with Ompss. In Proceedings of the 2012 IEEE 26th International Parallel Distributed Processing Symposium

(IPDPS). 557–568. DOI:https://doi.org/10.1109/IPDPS.2012.58

[5] Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard Ayguade. 2009. Barcelona Openmp

tasks suite: A set of benchmarks targeting the exploitation of task parallelism in Openmp. In Proceedings of the

2009 International Conference on Parallel Processing (ICPP’09). IEEE Computer Society, Washington, DC, 124–131.

DOI:https://doi.org/10.1109/ICPP.2009.64

[6] PUB FIPS. 1999. 46-3: Data encryption standard (DES). National Institute of Standards and Technology 25, 10 (1999),

1–22.

[7] Fraqtive. 2016. [Online]. Available: http://fraqtive.mimec.org/ (accessed January 5, 2019).

[8] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Manferdelli. 2008. High performance

discrete Fourier transforms on graphics processors. In Proceedings of the 2008 ACM/IEEE Conference on Supercomput-

ing. IEEE Press, 2.

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

http://standards.ieee.org/findstds/standard/802.3-2012.html
http://standards.ieee.org/findstds/standard/802.3-2012.html
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1145/2287076.2287090
https://doi.org/10.1109/IPDPS.2012.58
https://doi.org/10.1109/ICPP.2009.64
http://fraqtive.mimec.org/

21:22 T. T. Yeh et al.

[9] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron. 2012. Fine-grained resource sharing for concur-

rent GPGPU kernels. In Proceedings of the 4th USENIX Conference on Hot Topics in Parallelism (HotPar’12). USENIX

Association, Berkeley, CA, 10–10. http://dl.acm.org/citation.cfm?id=2342788.2342798

[10] Kunal Gupta, Jeff A. Stuart, and John D. Owens. 2012. A study of persistent threads style GPU programming for

GPGPU workloads. In Proceedings of the Symposium on Innovative Parallel Computing (InPar’12). IEEE, 1–14.

[11] A. S. Kaseb, E. Berry, Y. Koh, A. Mohan, W. Chen, H. Li, Y. H. Lu, and E. J. Delp. 2014. A system for large-scale

analysis of distributed cameras. In Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing

(GlobalSIP). 340–344. DOI:https://doi.org/10.1109/GlobalSIP.2014.7032135

[12] Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajkumar, and Yutaka Ishikawa. 2011. TimeGraph: GPU scheduling

for real-time multi-tasking environments. In Proceedings of the 2011 USENIX Conference on USENIX Annual Techni-

cal Conference (USENIXATC’11). USENIX Association, Berkeley, CA, 2–2. http://dl.acm.org/citation.cfm?id=2002181.

2002183

[13] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel, Amir Wated, and Mark Silberstein. 2014.

GPUnet: Networking abstractions for GPU programs. In Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation (OSDI’14). USENIX Association, Berkeley, CA, 201–216. http://dl.acm.org/citation.

cfm?id=2685048.2685065

[14] Kenneth C. Knowlton. 1965. A fast storage allocator. Commun. ACM 8, 10 (Oct. 1965), 623–624. DOI:https://doi.org/

10.1145/365628.365655

[15] Scott J. Krieder, Justin M. Wozniak, Timothy Armstrong, Michael Wilde, Daniel S. Katz, Benjamin Grimmer, Ian T.

Foster, and Ioan Raicu. 2014. Design and evaluation of the GeMTC framework for GPU-enabled many-task com-

puting. In Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed Computing

(HPDC’14). ACM, New York, 153–164. DOI:https://doi.org/10.1145/2600212.2600228

[16] Joseph W. H. Liu. 1992. The multifrontal method for sparse matrix solution: Theory and practice. SIAM Rev. 34, 1

(March 1992), 82–109. DOI:https://doi.org/10.1137/1034004

[17] F. McKenna. 2011. OpenSees: A framework for earthquake engineering simulation. Computing in Science Engineering

13, 4 (July 2011), 58–66. DOI:https://doi.org/10.1109/MCSE.2011.66

[18] Gokhan Memik, William H. Mangione-Smith, and Wendong Hu. 2001. Netbench: A benchmarking suite for network

processors. In Proceedings of the 2001 IEEE/ACM International Conference on Computer-aided Design. IEEE Press, 39–42.

[19] Adam Morrison and Yehuda Afek. 2013. Fast concurrent queues for x86 processors. SIGPLAN Not. 48, 8 (Feb. 2013),

103–112. DOI:https://doi.org/10.1145/2517327.2442527

[20] NVIDIA. 2007. Texture-based Separable Convolution. [Online]. Available: http://developer.download.nvidia.com/

compute/DevZone/C/html_x64/Image_Processing.html. (accessed January 5, 2019).

[21] NVIDIA. 2012. Hyper-Q Example. [Online]. Available: http://developer.download.nvidia.com/compute/DevZone/C/

html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf (accessed January 5, 2019).

[22] NVIDIA. 2012. The White Paper of Discrete Cosine Transform for 8x8 Blocks with CUDA. [Online]. Available: http:

//www.math.uaa.alaska.edu/∼ssiewert/a385_doc/dct8x8.pdf (accessed January 5, 2019).

[23] NVIDIA. 2015. CUDA. [Online]. Available: http://docs.nvidia.com/cuda/cuda-c-programming-guide/ (accessed Jan-

uary 5, 2019).

[24] NVIDIA. 2016. PTX. [Online]. Available: http://docs.nvidia.com/cuda/parallel-thread-execution/ (accessed January 5,

2019).

[25] Kay Ousterhout, Aurojit Panda, Joshua Rosen, Shivaram Venkataraman, Reynold Xin, Sylvia Ratnasamy, Scott

Shenker, and Ion Stoica. 2013. The case for tiny tasks in compute clusters. In Presented as part of the 14th

Workshop on Hot Topics in Operating Systems. USENIX, Berkeley, CA. https://www.usenix.org/conference/hotos13/

case-tiny-tasks-compute-clusters.

[26] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. 2013. Improving GPGPU concurrency with elastic

kernels. In Proceedings of the 18th International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’13). ACM, New York, 407–418. DOI:https://doi.org/10.1145/2451116.2451160

[27] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. 2015. Chimera: Collaborative preemption for multitasking on

a shared GPU. In Proceedings of the 20th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS’15). ACM, New York, 593–606. DOI:https://doi.org/10.1145/2694344.2694346

[28] Michael J. Quinn. 2003. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education Group.

[29] Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and Srimat Chakradhar. 2011. Supporting GPU sharing in cloud

environments with a transparent runtime consolidation framework. In Proceedings of the 20th International Sympo-

sium on High Performance Distributed Computing (HPDC’11). ACM, New York, 217–228. DOI:https://doi.org/10.1145/

1996130.1996160

[30] Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann. 2013. Scaling large-data computations on Multi-GPU acceler-

ators. In Proceedings of the 27th International ACM Conference on International Conference on Supercomputing (ICS’13).

ACM, New York, 443–454. DOI:https://doi.org/10.1145/2464996.2465023

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

http://dl.acm.org/citation.cfm?id$=$2342788.2342798
https://doi.org/10.1109/GlobalSIP.2014.7032135
http://dl.acm.org/citation.cfm?id$=$2002181.2002183
http://dl.acm.org/citation.cfm?id$=$2002181.2002183
http://dl.acm.org/citation.cfm?id$=$2685048.2685065
http://dl.acm.org/citation.cfm?id$=$2685048.2685065
https://doi.org/10.1145/365628.365655
https://doi.org/10.1145/365628.365655
https://doi.org/10.1145/2600212.2600228
https://doi.org/10.1137/1034004
https://doi.org/10.1109/MCSE.2011.66
https://doi.org/10.1145/2517327.2442527
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/Image_Processing.html
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/Image_Processing.html
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
http://www.math.uaa.alaska.edu/~ssiewert/a385_doc/dct8x8.pdf
http://www.math.uaa.alaska.edu/~ssiewert/a385_doc/dct8x8.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/parallel-thread-execution/
https://www.usenix.org/conference/hotos13/case-tiny-tasks-compute-clusters
https://www.usenix.org/conference/hotos13/case-tiny-tasks-compute-clusters
https://doi.org/10.1145/2451116.2451160
https://doi.org/10.1145/2694344.2694346
https://doi.org/10.1145/1996130.1996160
https://doi.org/10.1145/1996130.1996160
https://doi.org/10.1145/2464996.2465023

Pagoda: A GPU Runtime System for Narrow Tasks 21:23

[31] Dipanjan Sengupta, Raghavendra Belapure, and Karsten Schwan. 2013. Multi-tenancy on GPGPU-based servers. In

Proceedings of the 7th International Workshop on Virtualization Technologies in Distributed Computing. 3–10.

[32] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013. GPUfs: Integrating a file system with GPUs. In

Proceedings of the 18th International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’13). ACM, New York, 485–498. DOI:https://doi.org/10.1145/2451116.2451169

[33] Jaspal Subhlok, James M. Stichnoth, David R. O’Hallaron, and Thomas Gross. 1993. Exploiting task and data paral-

lelism on a multicomputer. In Proceedings of the 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP’93). ACM, New York, 13–22. DOI:https://doi.org/10.1145/155332.155334

[34] Jaspal Subhlok and Gary Vondran. 2000. Optimal use of mixed task and data parallelism for pipelined computations.

J. Parallel Distrib. Comput. 60, 3 (2000), 297–319. DOI:https://doi.org/10.1006/jpdc.1999.1596

[35] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and Mateo Valero. 2014. Enabling preemp-

tive multiprogramming on GPUs. In Proceeding of the 41st Annual International Symposium on Computer Architecuture

(ISCA’14). IEEE Press, Piscataway, NJ, USA, 193–204. http://dl.acm.org/citation.cfm?id=2665671.2665702

[36] William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002. StreamIt: A language for streaming applications.

In Compiler Construction. Springer, 179–196.

[37] Vasily Volkov and James W. Demmel. 2008. Benchmarking GPUs to tune dense linear algebra. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis, 2008 (SC 2008). IEEE,

1–11.

[38] Guibin Wang, Yisong Lin, and Wei Yi. 2010. Kernel fusion: An effective method for better power efficiency on

multithreaded GPU. In Green Computing and Communications (GreenCom), Proceedings of the 2010 IEEE/ACM In-

ternational Conference on Cyber, Physical and Social Computing (CPSCom). 344–350. DOI:https://doi.org/10.1109/

GreenCom-CPSCom.2010.102

[39] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo. 2015. Simultaneous multikernel: Fine-grained sharing

of GPGPUs. IEEE Computer Architecture Letters PP, 99 (2015), 1–1. DOI:https://doi.org/10.1109/LCA.2015.2477405

[40] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. 1995. Dynamic storage allocation: A survey and

critical review. In Proceedings of the International Workshop on Memory Management (IWMM’95). Springer-Verlag,

London, UK, 1–116. http://dl.acm.org/citation.cfm?id=645647.664690

[41] Yi Yang, Ping Xiang, Mike Mantor, Norm Rubin, and Huiyang Zhou. 2012. Shared memory multiplexing: A novel

way to improve GPGPU throughput. In Proceedings of the 21st International Conference on Parallel Architectures and

Compilation Techniques (PACT’12). ACM, New York, 283–292. DOI:https://doi.org/10.1145/2370816.2370858

[42] Jianlong Zhong and Bingsheng He. 2014. Kernelet: High-throughput GPU kernel executions with dynamic slicing and

scheduling. IEEE Trans. Parallel Distrib. Syst. 25, 6 (June 2014), 1522–1532. DOI:https://doi.org/10.1109/TPDS.2013.257

Received March 2018; revised March 2019; accepted May 2019

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 21. Publication date: November 2019.

https://doi.org/10.1145/2451116.2451169
https://doi.org/10.1145/155332.155334
https://doi.org/10.1006/jpdc.1999.1596
http://dl.acm.org/citation.cfm?id$=$2665671.2665702
https://doi.org/10.1109/GreenCom-CPSCom.2010.102
https://doi.org/10.1109/GreenCom-CPSCom.2010.102
https://doi.org/10.1109/LCA.2015.2477405
http://dl.acm.org/citation.cfm?id$=$645647.664690
https://doi.org/10.1145/2370816.2370858
https://doi.org/10.1109/TPDS.2013.257

