
Analyzing Machine Learning Workloads Using a
Detailed GPU Simulator

Jonathan Lew*, Deval A. Shah*, Suchita Pati**, Shaylin Cattell*, Mengchi Zhang†, Amruth Sandhupatla*,
Christopher Ng*, Negar Goli*, Matthew D. Sinclair**, Timothy G. Rogers†, Tor M. Aamodt*

*University of British Columbia, **University of Wisconsin-Madison, †Purdue University

Abstract—Machine learning (ML) has recently emerged as
an important application driving future architecture design.
Traditionally, architecture research has used detailed simulators
to model and measure the impact of proposed changes. However,
current open-source, publicly available simulators lack support
for running a full ML stack like PyTorch. High-confidence, cycle-
accurate simulations are crucial for architecture research and
without them, it is difficult to rapidly prototype new ideas.

In this paper, we describe changes we made to GPGPU-Sim, a
popular, widely used GPU simulator, to run ML applications
that use cuDNN and PyTorch, two widely used frameworks
for running Deep Neural Networks (DNNs). This work has the
potential to enable significant microarchitectural research into
GPUs for DNNs. Our results show that the modified simulator,
which has been made publicly available with this paper1, provides
execution time results within 18% of real hardware. We further
use it to study other ML workloads and demonstrate how the
simulator identifies opportunities for architectural optimization
that prior tools are unable to provide.

Index Terms—GPGPU-Sim, Machine Learning, cuDNN, Py-
Torch

I. INTRODUCTION
Machine learning is being employed to tackle a rapidly

growing set of problems. In recent years DNNs have made
striking advances in accuracy. Training DNNs requires massive
amounts of computational power, which GPUs can provide.
While the industry has rapidly introduced changes to GPU
architectures to support ML training, such as Tensor Cores
and NVLINK, academic researchers have largely focused on
designing inference accelerators, partly due to the lack of
support in current GPU architecture simulators for running
these workloads. In this paper, we address this shortcoming
by updating GPGPU-Sim [1], a widely used GPU simulator,
to accurately simulate state-of-the-art GPUs running DNNs.

Popular ML frameworks, such as TensorFlow and PyTorch ,
typically provide a high-level Python application programming
interface (API) to developers. Calls to this API invoke compu-
tation on a GPU via specialized libraries such as cuBLAS and
cuDNN. To achieve the highest levels of performance, these
closed-source, precompiled libraries are typically provided
by hardware vendors and take advantage of the vendor’s
detailed knowledge of their product’s microarchitecture, which
is typically not fully described in publicly available docu-
mentation. As a result, popular open-source GPU architecture
simulators such as GPGPU-Sim, gem5 [2], and Multi2Sim

1Source code available at https://github.com/gpgpu-sim/gpgpu-
sim_distribution (dev branch)

[3] are unable to run applications that make use of these
precompiled libraries. In this paper, we focus on enabling
support for cuDNN, given its wide popularity amongst several
DNN frameworks such as Caffe, PyTorch, and TensorFlow.

Overall, we make the following contributions in this paper:
• We modify GPGPU-Sim to enable running cuDNN- and

PyTorch-based applications.
• We introduce checkpointing support to GPGPU-Sim

given the large runtime overhead of simulators.
• We analyze cuDNN-based workloads in our modified

GPGPU-Sim and identify new opportunities for optimiza-
tions.

II. BACKGROUND
A. Machine Learning Frameworks

GPUs are widely used to accelerate the execution times of
ML workloads. A key enabler is that ML frameworks such as
PyTorch build on top of optimized libraries such as NVIDIA’s
cuBLAS and cuDNN. These libraries employ fast algorithms
(e.g., Winograd) for Matrix Multiplication, the key operation
behind many neural network computations.

B. Measuring GPU performance
1) NVProf: Profilers like NVProf [4] provide high-level

information about the architectural behavior of ML workloads
at low overhead. Like GPGPU-Sim, NVProf gives many
statistics, including IPC and the number of loads and stores
instructions. Recent papers have used tools like NVProf to
profile ML workloads [5], however, they are only able to pro-
vide high-level analysis on the application’s behavior. GPGPU-
Sim provides detailed information on memory usage, power
efficiency, and can easily be extended to provide additional
statistics. In addition, GPGPU-Sim can also be used to proto-
type architectural optimizations.

2) Simulation: Other prior work has simulated ML work-
loads, but they use private simulators [6], making comparison
against our approach difficult. On the other hand, we simulate
ML workloads at high fidelity in the widely-used and publicly-
available GPGPU-Sim, accurately simulating state-of-the-art
Pascal and Volta models [7], [8]. Moreover, the fact that other
papers use disparate simulators for ML workloads makes it
crucial to provide better, publicly available tools.

III. IMPLEMENTATION
In this section, we briefly describe the modifications

that were required to simulate cuDNN-based applications in

https://github.com/gpgpu-sim/gpgpu-sim_distribution/tree/dev
https://github.com/gpgpu-sim/gpgpu-sim_distribution/tree/dev

0 7000 14000 21000 28000 35000 42000 49000 56000

globalCycle

0

10

20

30

40

50

60

70

sh
a
d
e
rI

n
sn

/C
y
cl

e

0

8

16

24

32

40

48

56

64

S
ca

le
:

sh
a
d
e
rI

n
sn

/C
y
cl

e

Fig. 1. Forward Convolution (Winograd Nonfused) Shader IPC Plot

GPGPU-Sim and evaluate it against hardware. Additional
details of the implementation can be found elsewhere [9].
Changes in GPGPU-Sim: GPGPU-Sim extracts all PTX code
embedded within an application using NVIDIA’s cuobjdump
tool and parses it using a program loader. Unfortunately,
cuDNN-based applications are dynamically linked to the
cuDNN library, which cuobjdump does not resolve. We
resolved this by statically linking against the external library.
Additionally, we add support for several CUDA API functions
and additional PTX instructions used by cuDNN kernels.
Additional Support: We also added additional support for
ML workloads including a new approach to debugging func-
tional simulation errors resulting in incorrect outputs. At a
high level, we compare the execution of every instruction
in GPGPU-Sim to the result obtained from executing it on
hardware. Moreover, we add checkpointing support to help
users simulate only a certain region in an application. We
execute the application in the functional simulation mode until
the start of the region and save the state for the user to resume
simulation in Performance mode any number of times.
Correlation: We use a 32-bit floating-point version of MNIST
(LeNet trained with the MNIST dataset) to correlate GPGPU-
Sim’s execution time with a GeForce GTX 1050. We compared
the number of GPU cycles as reported by GPGPU-Sim against
NVProf while running MNIST on hardware. GPGPU-Sim
achieves a correlation of 82%.

IV. CASE STUDY
In this section, we use the modified GPGPU-Sim simulating

a NVIDIA TITAN V to study the characteristics of a cuDNN-
based program, conv_sample, which performs common ML
operations such as forward, backward data, and backward
filter convolutions. Due to space limitations, we only show
results for shader IPC and DRAM efficiency for the Forward
Convolution operation (using Winograd Nonfused algorithm)
– a more detailed study can be found in [9]. This study is
enabled by GPGPU-Sim and AerialVision [10] and uses the
enhanced memory model described in [7]. Figure 1 (the y-
axis is the shader number) shows that the forward convolution
exhibits several distinct phases. For example, in some phases
only a single core actively commits instructions while in other
phases all cores commit many instructions (and achieve high
per-shader IPCs). The hashing described in [7] is not enabled
for this study, which might explain the partition camping
observed in Figure 2. Figures 1 and 2 (the y-axis is the bank

0 7000 14000 21000 28000 35000 42000 49000 56000

globalCycle

0

3

6

9

12

15

18

21

d
ra

m
E
ff

/C
y
cl

e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

S
ca

le
:

d
ra

m
E
ff

/C
y
cl

e

Fig. 2. Forward Convolution (Winograd Nonfused) DRAM Efficency Plot

number) also show that when the IPC is highest, the memory
efficiency is low. This highlights compute-bound phases in
the program (for example, cycles 39000 to 46000). These
results demonstrate how GPGPU-Sim can be used to identify
regions of interest in applications. Furthermore, GPGPU-Sim
can help identify (and prototype) optimization opportunities
that profilers like NVProf cannot, such as turning off cores
during the phases they are not used to reduce power.

V. CONCLUSION
In this paper, we describe changes made to GPGPU-Sim

to enable it to run applications that use NVIDIA’s cuDNN
library (including PyTorch-based applications). We use the
resulting modified simulator, which has been made publicly
available with this paper, to study ML workloads and analyze
their behavior. Our results demonstrate that GPGPU-Sim can
help identify optimization opportunities that higher-level tools
like NVProf cannot. Moreover, since most DNNs deployed
today are trained using GPUs, this work enables significant
microarchitectural research into DNNs.

REFERENCES

[1] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads using a Detailed GPU Simulator,” in
ISPASS, 2009, pp. 163–174.

[2] A. Gutierrez, B. Beckmann, A. Dutu, J. Gross, J. Kalamatianos, O. Kayi-
ran, M. Lebeane, M. Poremba, B. Potter, S. Puthoor, M. D. Sinclair,
M. Wyse, J. Yin, X. Zhang, A. Jain, and T. G. Rogers, “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language
Level,” in HPCA, 2018.

[3] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: a
simulation framework for cpu-gpu computing,” in PACT, 2012, pp. 335–
344.

[4] NVIDIA, “Profiler’s user guide,” 2018.
[5] H. Zhu, A. Phanishayee, G. Pekhimenko, B. Schroeder, B. Zheng,

M. Akrout, A. Pelegris, and A. Jayarajan, “Benchmarking and Analyzing
Deep Neural Network Training,” in IISWC, 2018.

[6] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S. W.
Keckler, “Compressing DMA Engine: Leveraging Activation Sparsity
for Training Deep Neural Networks,” in HPCA, 2018, pp. 78–91.

[7] M. Khairy, A. Jain, T. M. Aamodt, and T. G. Rogers, “Exploring modern
GPU memory system design challenges through accurate modeling,”
CoRR, vol. abs/1810.07269, 2018.

[8] A. Jain, M. Khairy, and T. G. Rogers, “A quantitative evaluation of
contemporary gpu simulation methodology,” POMACS, vol. 2, no. 2,
p. 35, 2018.

[9] J. Lew, D. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla, C. Ng,
N. Goli, M. D. Sinclair, T. G. Rogers, and T. M. Aamodt, “Analyzing
machine learning workloads using a detailed GPU simulator,” CoRR,
vol. abs/1811.08933, 2018.

[10] A. Ariel, W. W. Fung, A. E. Turner, and T. M. Aamodt, “Visualizing
complex dynamics in many-core accelerator architectures,” in ISPASS,
2010, pp. 164–174.

	Introduction
	Background
	Machine Learning Frameworks
	Measuring GPU performance
	NVProf
	Simulation

	Implementation
	Case Study
	Conclusion
	References

