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ABSTRACT
Simulating all threads in a scaled GPU workload results in prohibi-
tive simulation cost. Cycle-level simulation is orders of magnitude
slower than native silicon, the only solution is to reduce the amount
of work simulated while accurately representing the program.

Existing solutions to simulate GPU programs either scale the
input size, simulate the first several billion instructions, or simulate
a portion of both the GPU and the workload. These solutions lack
validation against scaled systems, produce unrealistic contention
conditions and frequently miss critical code sections. Existing CPU
sampling mechanisms, like SimPoint, reduce per-thread workload,
and are ill-suited to GPU programs where reducing the number of
threads is critical. Sampling solutions on GPUs space lack silicon
validation, require per-workload parameter tuning, and do not scale.

A tractable solution, validated on contemporary scaled work-
loads, is needed to provide credible simulation results. By studying
scaled workloads with centuries-long simulation times, we uncover
practical and algorithmic limitations of existing solutions and pro-
pose Principal Kernel Analysis: a hierarchical program sampling
methodology that concisely represents GPU programs by selecting
representative kernel portions using a scalable profiling method-
ology, tractable clustering algorithm and detection of intra-kernel
IPC stability. We validate Principal Kernel Analysis across 147 work-
loads and three GPU generations using the Accel-Sim simulator,
demonstrating a better performance/error tradeoff than prior work
and that century-long MLPerf simulations are reduced to hours
with an average cycle error of 27% versus silicon.

CCS CONCEPTS
• Computing methodologies → Cluster analysis; Graphics
processors; Modeling and simulation.

KEYWORDS
GPU, Workload sampling, Simulation methodology

∗Work was completed during his time at Purdue University.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8557-2/21/10.
https://doi.org/10.1145/3466752.3480100

ACM Reference Format:
Cesar A. Baddouh, Mahmoud Khairy, Roland Green, Mathias Payer,
and Timothy G. Rogers. 2021. Principal Kernel Analysis: A Tractable
Methodology to Simulate Scaled GPUWorkloads. InMICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’21), Octo-
ber 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3466752.3480100

1 INTRODUCTION
There is no real ending. It’s just the place where you stop the
story.

Frank Herbert
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Figure 1: Projected hours to simulate, profile 12 statistics (Ta-
ble 2) in-silicon [41] and raw execution time of the 147work-
loads we study (Section 4) on a Volta V100. Projected simula-
tion times are based on Accel-Sim’s [32] simulation rate.

Simulators carry out a cycle-level introspection of GPU work-
loads. These simulators are highly configurable and enable different
analyses such as (i) debugging of workloads on specific simulated
hardware to detect implementation errors [11], (ii) profiling of
workloads to analyze performance bottlenecks [1, 8], or (iii) recon-
figuration of the simulated hardware to analyze model changes [2].
Many such use cases are impossible with silicon profiling [41].

The flexibility and introspection capabilities of simulation come
at a price. Simulating complex hardware like modern GPUs incurs
orders of magnitudemore time for each simulated instruction.What
takes seconds on a GPU would take millennia on a simulator. Due
to the overhead in simulation, existing simulators cannot reason-
ably execute real GPU programs. Even high-performance industrial
simulators used by GPU companies are still not fast enough to
simulate applications that take seconds to minutes on contempo-
rary GPUs [61]. Any simulation platform must therefore restrict the
number of executed instructions.
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Existing approaches restrict either the workload or the simulated
platform, introducing various limitations. Common approaches in-
clude: (i) scaling workload inputs [14, 23, 56], which reduces the
applicability of the simulation results due to the extremely short
runtimes (ignoring scaling effects), (ii) simulating the first several
billion instructions of a scaled workload [10, 32, 60], which restricts
the insights to a limited horizon of simulation (often limiting mea-
surements to the warmup phase), and (iii) reducing the size of the
GPU simulated [29, 42, 49], which forces the workload to adapt to
different hardware. Each of these methodologies has limitations,
and there is no public work validating them against the scaled
workloads and systems they aspire to represent. Furthermore, no
prior work has attempted to simulate or validate representative
large-scale workloads from MLPerf [36, 48] to completion.

To demonstrate the extent of workload realism and simulation
slowdown, Figure 1 plots the silicon execution time and projected
simulation time for 147 workloads from both contemporary GPU
application suites typically used in simulation and 7 applications
from the MLPerf benchmark suite where the datasets are publicly
available. Benchmark authors often adjust the size of traditional
workloads so that simulations complete in a matter of hours or
days. However, these workloads execute in microseconds in silicon,
rendering them impractical. The realistic workloads we study from
MLPerf take several seconds to run in real silicon, and centuries to
simulate. A representative portion of the scaled GPU program must
be selected to make simulation practical.

Traditional mechanisms to select representative portions of CPU
programs [13, 22, 24, 45, 64, 66] focus on selecting basic blocks
from a single thread. This approach is ill-suited to GPU programs.
The control-flow graphs of individual threads in GPU programs
are relatively small, as each thread performs a limited amount of
work compared to a CPU thread. As a result, selecting per-thread-
basic block vectors without curtailing the number of threads does
not significantly reduce simulation time. Prior work on selecting
representative portions of GPU programs [26, 67, 68] lacks silicon
validation, requires per-workload tuning, and does not scale.

Intelligent solutions like TBPoint [26] require full functional
simulation to produce thread-block-level profiling information and
rely on inter-kernel clustering mechanisms. This approach does
not scale to modern workloads such as MLPerf. As a result, no GPU
workload sampling methodology has achieved general acceptance.
In addition, no existing work has evaluated the practical implica-
tions of silicon profiling at scale. Figure 1 quantifies the slowdown
experienced by detailed in-silicon profiling using Nvidia’s latest
profiling tools [41]. Collecting even a limited number of statistics
from long-running workloads quickly becomes impractical and any
sampling methodology that relies on detailed profiling of the entire
program does not scale to contemporary workloads.

We propose the automated Principal Kernel Analysis (PKA)method-
ology which reduces the number and length of kernels used to
represent fully scaled GPU applications. We base Principal Kernel
Analysis on three key observations. First, even though realistic
workloads can launch millions of kernel instances (5.3 million in
MLPerf’s SSD Training), these kernels can be characterized and
grouped by a set of architecture-independent metrics using princi-
pal component analysis obtained from detailed silicon profiling.

Second, detailed silicon profiling is impractical in scaled work-
loads, making two-level profiling necessary. For workloads with
impractical profiling times, PKA performs detailed profiling on a
subset of the application’s kernels and lightweight profiling on the
rest. Using a variety of classifying algorithms (Stochastic Gradient
Descent, Gaussian Naive Bayes, Multilayer Perceptrons) PKA maps
the lightly profiled kernels into the groups identified in the detailed
profiling phase. Using this per-kernel analysis, we perform Prin-
cipal Kernel Selection (PKS) to extract the minimum set of kernels
necessary to obtain a target projected execution time error.

Our third observation comes from the behavior of individual
kernels. We observe that the instantaneous Instructions Per Cycle
(IPC) within one kernel often stabilizes around a value that will be
representative of the kernel’s final IPC. Borrowing a method from
the financial analysis sector that attempts to predict stock price
stabilization over time [20], we track the standard deviation of a
kernel’s IPC throughout simulation. Once our online stabilization
calculation reaches an appropriate confidence interval, we use oc-
cupancy information about the running kernel to make a Principal
Kernel Projection (PKP) based on the amount of work remaining.
Our online mechanism can be executed quickly in simulation and
validated against lightweight silicon profiling.

To evaluate the effectiveness of Principal Kernel Analysis and its
effect on accuracy, we apply our selection and projection mecha-
nisms to the cycle-level GPU simulator Accel-Sim [32]. Using silicon
profiling data, we select a workload’s representative kernels. These
kernels are then simulated until IPC stabilization is detected in the
simulator, at which point the resultant statistics are projected.

This work makes the following contributions:

(1) We perform the first silicon-validated simulation analysis
with scaled GPU workloads, identifying characteristics we
exploit to create concise representations of GPU programs,
reducing simulation time.

(2) We introduce Principal Kernel Selection an inter-kernel, ar-
chitecture independent principal component analysis that
automatically clusters kernels with similar behavior. Using
metrics obtained from two-level silicon profiling, we select
a representative subset of kernels that we use to project the
entire application’s behavior. We demonstrate that the ker-
nels we select from profiling one GPU generation generalize
across Nvidia’s Volta, Turing, and Ampere platforms.

(3) To reduce intra-kernel simulation time with low-overhead,
we leverage an observation that the instantaneous IPC in
many scaled, real-world kernels stabilizes near its final aver-
age. Inspired by methods that predict stock-price stability,
we propose Principal Kernel Projection, which detects IPC
stability and projects per-kernel metrics based on occupancy.

(4) We propose a fully automated characterization and simula-
tion methodology Principal Kernel Analysis that combines
principal kernel selection and projection. Evaluated on Accel-
Sim using 147 workloads, we demonstrate that PKA greatly
reduces simulation time, while maintaining an error rate
close to the baseline simulator. Centuries-long simulation
times from MLPerf are reduced to hours with an average
cycle error of 27% versus silicon.
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Table 1: Landscape of Sampled Simulation Literature.

Sampling
Methodologies

Control-Flow
Reduction [24, 45],

[54, 64, 66]

Synchronization
Regions [13, 22]

GPGPU
-MiniBench
[67, 68]

GT-Pin[30] TBPoint [26],
Clustering [21]

Principal
Kernel Analysis

Threaded Single CPU
Multi-Threaded

GPU
Multi-Threaded

GPU
Multi-Threaded

GPU
Multi-Threaded

GPU
Multi-Threaded

Mechanism Identify common
basic blocks

Inter-barrier
regions

Intra-thread-block
control flow
analysis

Unique kernels &
control flow
analysis

Thread block
reduction [26],
kernel clustering

Thread block/kernel
reduction

Inter-kernel NA NA X ✓ ✓ ✓

Intra-kernel NA NA ✓ X
[26]* Requires
full functional
simulation

✓

Sampling
Clustering Automated Automated Automated Automated Hierarchical

hand-tuned Automated

# GPU
Workloads NA NA 23 25 12 147

Silicon Validated
vs Century-Long
Full-Simulation

X X X X X ✓

2 BACKGROUND AND MOTIVATION
Characterizing programs to reduce simulation time through sam-
pling techniques is a decades-old research area. Table 1 presents a
survey of sampling techniques proposed for single-threaded CPU [24,
45, 64, 66], multithreaded CPU [13, 22, 35] and GPU [26, 67, 68] ap-
plications. Fundamental differences in the nature of CPU programs
makes the direct application CPU techniques to GPUs difficult. CPU
programs contain, at most, tens of threads. These techniques focus
on reducing the work done by each thread, reducing the scope
of the dynamic control-flow graph [24, 35, 45, 64, 66] or selecting
portions of each thread between synchronization points [13, 22],
without decreasing the number of threads.

Prior work has also explored sampling GPU applications. Kam-
badur et al. introduce GT-Pin [30], a dynamic binary instrumenta-
tion tool for OpenCLworkloads on Intel GPUs that can be used to se-
lect representative portions of GPU programs. Using a clustering al-
gorithm based on kernel name, arguments and basic block statistics,
GT-Pin selects representative portions of the program with a kernel
as the smallest granularity. In contrast, Principal Kernel Analysis
focuses on both inter- and intra-kernel reduction, while basing its
inter-kernel clustering on a name-independent feature-vector.

Zhibin et al. [67, 68] proposed GPGPU-MiniBench in which they
profile an application’s control-flow divergence. Their analysis is
similar to SimPoint [24] in that they analyze and define the mini-
mum number of intra-thread-block loops needed to represent a ker-
nel. However, the MiniBench analysis does not address inter-kernel
reduction, inter-thread-block reduction, involves the creation of
proxy-applications, and focused on legacy workloads.

More closely related to PKA is TBPoint [26], which uses sta-
tistical modeling and pure-simulation results to reduce both the
number and length of kernels used to represent a workload. Using
12 legacy workloads and statistics gathered from full functional
simulation [18], TBPoint uses hierarchical clustering to group and
reduce the number of kernels in the program representation.

Although TBPoint attacks both inter- and intra-kernel reduction,
the mechanisms do not scale to the century-long workloads we
study in this paper, and require per-application parameter tuning.
To reduce the number of kernels simulated, TBPoint performs hier-
archical clustering on a feature vector derived from simulation. To

reduce intra-kernel runtimes, per-thread-block simulation statis-
tics are required for the entire kernel. Although precise, TBPoint
cannot be applied to applications that cannot be fully simulated. To
handle contemporary, scaled workloads we argue that the analysis
must be done online, then validated against silicon execution. To
demonstrate the efficacy of PKA on workloads where TBPoint is
tractable, we perform a quantitative comparison against TBPoint
in Section 5.

Despite the well-reasoned related work in this space, a GPU
equivalent of SimPoint has yet to receive widespread adoption.
We aim to fill this gap by introducing the Principal Kernel Anal-
ysis methodology and toolset 1, designed to have the following
characteristics:

(1) Scalable: By using two-level profiler data from real silicon
execution of full-scale workloads, Principal Kernel Analysis
is able to characterize workloads that would be untenable
using prior GPU-centric sampling techniques like TBPoint.

(2) Automatic: The inputs to Principal Kernel Analysis are the
profiled results from silicon, a desired maximum error from
the Principal Kernel Selection phase and a confidence interval
for the Principal Kernel Projection phase. For all the applica-
tions we study, we apply the same desired error and confi-
dence interval such that no per-workload tuning of opaque
clustering parameters is required.

(3) Tunable: There is always a tradeoff between simulation
time and simulation fidelity. The work simulated using Prin-
cipal Kernel Selection and Principal Kernel Projection can be
tuned to the user’s desired error and confidence interval
respectively.

(4) Verified Against Silicon: Simulator versus simulator val-
idation limits the workloads that can be validated to those
possible to simulate in their entirety. Applying Principal Ker-
nel Analysis to Accel-Sim, we compare sampled simulation
results to real silicon results, demonstrating that an open-
source simulator can achieve an acceptable absolute and
relative error on real workloads.

1Fully-automated scripts, profiler data and simulator integration are included in the
paper’s appendix and corresponding Zenodo record [4].
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Figure 2: An illustration of Principal Kernel Analysis by reducing the number of executed kernels and thread blocks.

Table 2: A list of microarchitecture-agnostic characteristics
collected for PCA analysis.

Metric Nsight metric name
Coalesced global loads l1tex__t_sectors_pipe_lsu_mem_global_op_ld.sum
Coalesced global stores l1tex__t_sectors_pipe_lsu_mem_global_op_st.sum
Coalesced local loads l1tex__t_sectors_pipe_lsu_mem_local_op_ld.sum
Thread global loads smsp__inst_executed_op_global_ld.sum
Thread global stores smsp__inst_executed_op_global_st.sum
Thread local loads smsp__inst_executed_op_local_ld.sum
Thread shared loads smsp__inst_executed_op_shared_ld.sum
Thread shared stores smsp__inst_executed_op_shared_st.sum
Thread global atomics smsp__sass_inst_executed_op_global_atom.sum
#Instructions smsp__inst_executed.sum
Divergence efficiency smsp__thread_inst_executed_per_inst_executed.ratio
#thread blocks launch_grid_size

3 PRINCIPAL KERNEL ANALYSIS
In this section, we introduce our two-level hierarchical method
to create concise representations for GPU programs and speedup
simulation. There are two families of techniques to speedup GPU
simulation, inter-kernel and intra-kernel, one acting at kernel-
granularity and the other at thread block-granularity. Our first
method, called Principal Kernel Selection, depicted in Figure 2a, uses
several microarchitecture-agnostic metrics to cluster similar kernels
together and simulates only one representative kernel per cluster.
The second method, called Principal Kernel Projection, depicted in
Figure 2b, reduces the number of simulated thread blocks in the
grid by detecting IPC stability. Figure 2c illustrates Principal Kernel
Analysis, which combines both techniques together to reduce both
the number of kernels and the number of thread blocks within
those kernels.

3.1 Principal Kernel Selection
To reduce the number of simulated kernels, we group similar kernels
together and only simulate the most representative (or principal)
kernels. To achieve this, we profile each application in silicon. We
tell the profiler only to report certain microarchitecture-agnostic
features, such as the number of global loads, stores, and atomic
operations (Table 2). Note that these statistics are dependent only on
the generated GPU code, not the specific GPU being profiled. One
caveat is that different GPU generations use different machine ISA
representations, therefore; the number of instructions and makeup

of specific instructions can vary slightly across generations. We
note that classic CPU methodologies have a similar issue between
the x86 representation of the program and the micro-ops used
by the pipeline. To further demonstrate that these metrics hold
across different GPU generations, Section 5 evaluates the efficacy
of Principal Kernel Selection across the three most recent Nvidia
GPU generations (Volta, Turing and Ampere). In our evaluation,
Principal Kernel Selection is performed for Volta and those same
representative kernels are selected to project the execution time in
Turing and Ampere, without running Principal Kernel Selection on
each machine.

Since GPGPU workloads may have different categories and spe-
cial characteristics, we perform non-supervised machine learning
techniques—Principal Component Analysis (PCA) and K-Means—to
reduce these microarchitecture-agnostic features’ dimensions to
a more manageable number from the components in Table 2. The
PCA data are then clustered using K-Means. As a result,K groups of
similar kernels are formed. It should be noted that clustered kernels
often do not have the same name, groups are usually composed of
several instances of differently named kernels. For each of these
K groups, a single representative kernel is chosen. Because this
kernel summarizes the entire group, we scale its runtime (in cycles)
by the number of kernels (elements) to obtain a projection of each
group’s total runtime. This process is aggregated across all groups
to obtain a projection for all the kernels in the program.

Algorithm for choosing K-Groups: Part of the reason why
we choose PCA+K-Means is explain-ability. By applying PCA, we
can trivially consider a broader set of characteristics. We know
that the principal dimensions will have the most variance. With K-
Means, we can directly change the number of groups. By combining
PCA and K-Means, we avoid the curse of dimensionality when
clustering. Another benefit is that the K parameter represents a
less abstract notion than other clustering techniques, like sigma
and hierarchy clustering used by TBPoint [26]. Most importantly,
k-means clustering can scale to the millions of kernels in our large
workloads, where hierarchical clustering demands an impractical
amount of memory and runtime.

By varying the K parameter in K-means, the trade-offs are ap-
parent. We start by sweeping across different values of K, typically
from 1 to 20, and generating different clustering configurations. For
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Figure 3: PKA’s two-level profiling mechanism

each clustering configuration, we find the most representative ker-
nels. We scale the number of cycles of each representative kernel by
the number of elements in the group and aggregate them to obtain
a total runtime projection. We end with K different projections. For
each projection, we calculate its error with respect to the total sili-
con number of cycles. The smallest K value whose projected error
falls below a threshold is chosen. A smaller K is preferred, since
fewer groups results in a greater reduction in the number of kernels
required to represent the program. The only input the user gives to
the process is the desired execution time error. In all the data we
present, we set the Principal Kernel Selection cycle error threshold
to 5%. Less error will require more groups. Therefore, linked to
choosing the number of groups is selecting the most representative
kernel within each group.

To determine which kernels should be selected as the principal
one we experimented with random selection, selecting the closest
to the center and selecting the first chronologically. We empiri-
cally determined that random selection has an inconsistent error
rate. In contrast, the performance difference between choosing the
cluster-center and first-chronologically kernels is negligible. Se-
lecting the first chronological kernel has practical advantages in
reducing tracing and profiling times, thus we use it for Principal
Kernel Selection.

Two-level profiling: For workloads where detailed silicon pro-
filing is intractable (i.e. if the profiling takes more than one week),
we propose a novel two-level profiling approach. Figure 3 shows a
visualization of our approach. We perform detailed profiling on the
first j kernels and create our k-groups based on their characteristics
(i.e. we apply Principal Kernel Selection). We profile the remain-
ing kernels using the low-overhead Nsight-systems profiler, where
only the kernel name and grid dimensions are collected. For the
MLPerf workloads, we augment Nsight-systems with information
supplied by Nvidia’s PyProf. PyProf is a PyTorch-compatible tool
that provides an additional layer of per-kernel logging via NVTX
annotations. The extra information is tensor dimensions, a program
trace, and a pointer to which layer of the neural network is asso-
ciated with each kernel. The n − j kernels where only lightweight
information is available are then labeled with one of the k groups
identified from detailed profiling. We use three different classifica-
tion models (Stochastic Gradient Descent, Naive Bayes Gaussian,
and Multi-Layer perceptrons) to map the augmented data to groups.

Table 3: An example of Principal Kernel Selection’s output.
The last two columns show the set of kernel IDs selected to
represent each group and the number of kernels per group.

Suite Workload Selected
Kernel ID Group Count

Rodinia gaussian_208 0 414
bfs 65k 0 20

Parboil histogram 0,1,2,3 20,20,20,20
cutcp 0,1,2 2,3,6

Polybench fdtd2d 0,2 1000,500

gramschmidt 0, 1, 2, 1439,
2783, 4127

2048, 2273, 479
448, 448, 448

Cutlass 2560 x 128
x 2560 wmma 0 7

4096 x 4096
x 4096 sgemm 0 7

Group Selection Examples: Table 3 depicts an example of Prin-
cipal Kernel Selection analysis output for a few selected workloads
with a target error of 5%. In the example the analysis of the appli-
cation gaussian clusters 414 similar kernels into only one group.
In this scenario, only one kernel (kernel id=0) is selected. In gram-
schmidt, the clustering analysis determines six different groups are
necessary (ranging in size from 448 kernels to 2273 kernels), and
thus six representative kernels (out of 6411 kernels) are selected.

In Figure 4, we depict the per-group kernel composition after
applying Principal Kernel Selection to the long-running ResNet 5.0
workload from the MLPerf suite. As shown in the figure, we end
up with nine different groups and each group contains hundreds of
kernels. It is worth mentioning that kernels in the same cluster have
different names/code implementations. We notice that compute-
intensive kernels (e.g., convolution operations and fully connected
layers) are combined in the same group, whereas memory-intensive
kernels (e.g., element-wise operations) are clustered in the same
group. In addition, some kernels with the same name are sorted into
different groups. This often happens when the kernel is launched
several thousand times with different grid and/or thread block
dimensions. Since we use unsupervised learning to create this clus-
tering, these groupings naturally fell out from silicon profiling.

3.2 Principal Kernel Projection
Principal Kernel Selection only addresses the number of kernels an
application runs; long-running kernels may still be a bottleneck.
To reduce the runtime of individual kernels, we introduce Principal
Kernel Projection. The key insight exploited in Principal Kernel Pro-
jection is that each thread in the grid executes the same code and the
code tends to have few phases, as the lifetime of threads are much
shorter than their CPU peers. As a result, we have observed that the
IPC of most GPU kernels stabilizes around the final average, even
in some irregular applications like graph processing. Therefore,
Principal Kernel Projection is designed to detect a stable IPC when
it occurs, ending simulation then and projecting final statistics.

To detect stability, we calculate the rolling average and standard
deviation of the last n cycles (we use 3000 across all our workloads).
If the standard deviation falls below another user-defined variable s,
the IPC is considered quasi-stable. The standard deviation variable
s is the only user-facing input variable to Principal Kernel Projection
and the user can select a value of s to reflect the confidence interval
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Figure 4: Per-group kernel composition after applying PKS to ResNet. The x-axis shows the number of kernel instances for
each named kernel in the 9 groups identified by PKS.
desired in IPC stabilization. To show that Principal Kernel Projection
does not require extensive hand-tuning to generate reasonable
results, we select an s value of 0.25 for all our experiments. A smaller
value will increase the confidence that the IPC has stabilized at the
expense of more simulation time.

To ensure resource contention is properly captured, we impose
an additional constraint on classifying the signal as stable; the num-
ber of finished thread blocks must be more than the amount that
fills the GPU’s cores, i.e., enough thread blocks to reach the highest-
possible occupancy of the kernel in question. We call this quantity
a wave. Once enough thread blocks have finished to complete the
wave where quasi-stability occurs, we consider the signal stable. To
project the number of cycles it would take to finish the kernel, we
take the number of unfinished thread blocks and linearly project
the number of cycles left. If a kernel launches less thread blocks
then a wave, we ignore this conditional and stop the kernel as soon
as stability occurs. Since kernels with few CTAs do not experience
CTA ending/beginning phases, we find that removing this condition
for low-CTA kernels results in acceptable error.

To illustrate the operation of Principal Kernel Projection, Figure 5
presents a visualization of application IPC versus time for a regular
workload (ATAX in Figure 5a) and an irregular workload (BFS in
Figure 5b). Also included in the graph are the L2 Miss rate and
DRAM util as different time series. The stopping conditions for
Principal Kernel Projection at different s values are indicated with
vertical lines. The results in the regular workload are unsurprising
in that it quickly ramps up to its peak IPC value and stays there for
the duration of each kernel. For each of the three kernels shown
for the irregular workload, the results are more surprising. Despite
having significant control and memory divergence, over time the
IPC, L2 miss rate and DRAM utilization of BFS does stabilize. De-
spite the fact that each thread in the system is performing different
amounts of work, in the aggregate a collision of irregularity in all
the threads results in stability. Figure 5 also illustrates the effect
different threshold values have on the stopping point of Principal
Kernel Projection. We empirically find that 0.25 results in a good
compromise between accuracy and speedup across all our apps.
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(b) Three kernels from BFS: An irregular application.

Figure 5: IPC, L2 miss rate and DRAM utilization vs time
for kernels from two applications. Solid lines show Princi-
pal Kernel Projection stopping points at different s values.

4 MEASUREMENT SETUP
To evaluate Principal Kernel Analysis we combine experiments on
both silicon and simulation, using three generations of Nvidia GPUs.
Principal Kernel Selection requires silicon profiling to infer kernel
similarity. For detailed and lightweight profiling, we use Nsight
Compute and Nsight Systems respectively [41]. We evaluate Princi-
pal Kernel Selection in both silicon and simulation, while we show
Principal Kernel Projection for simulation only. We obtain the princi-
pal kernels by applying Principal Kernel Selection to a V100 [15]. We
use these kernels to evaluate their effectiveness on a Turing RTX
2060 [12] and an Ampere RTX 3070 [16]. To evaluate both selection
and projection, we use Accel-Sim [1, 9, 32, 63].

We evaluate our technique with the complete benchmark sets
of Rodinia [14], Parboil [56], Polybench [23], the machine learn-
ing suite DeepBench [5], and the GeMM-based CuTLASS [40]
benchmark suite. We also evaluate the subset of the reference im-
plementations of the applications in MLPerf [48] for which we
could get realistic datasets and confirm correct functionality in
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Figure 6: Simulation time using full simulation, PKS and
PKA. Y-axis is log scale hours.

silicon. Specifically those are: ResNet [25] using the ImageNet
dataset [50], SSD [34] using the COCO dataset [33], GNMT [65]
using the German and English euro database, BERT [17] using the
SQUAD dataset [47], the medical imaging 3D-Unet [28] using the
BRATS dataset [37] [6] [7]. Application are compiled using CUDA
11.1 and cuDNN 8.0.2.

5 EVALUATION
We stipulate that the combination of Principal Kernel Selection and
Principal Kernel Projection drastically reduce the expected simula-
tion time with an acceptable loss of accuracy. In this evaluation
section we set out to answer the following research questions:
RQ1: How accurately do Principal Kernel Selection and Projection

individually and collectively predict performance and reduce
simulation time and how do they compare to prior work
(Section 5.1)?

RQ2: How do the characteristics of applications affect the efficacy
of Principal Kernel Analysis, and do our results generalize
across architectures (Section 5.2)?

RQ3: Given that architects care most about the relative accuracy
of a simulator, how well do Principal Kernel Selection and
Projection predict the relative performance of the different
architectures we study (Section 5.3)?

In section 5.1, we analyze and compare the achieved simula-
tion speedup and accuracy of Principal Kernel Analysis versus: (1)
a commonly-used technique to only simulate the first 1 billion
instructions, and (2) state-of-the-art sampled simulation of GPU
applications, TBPoint [26] in simulation using Accel-Sim version
1.1 [32]. In Section 5.2, we perform a deep-dive into the data for
each application suite and configuration we study in both silicon
and in simulation. In section 5.3 we present two case studies of
how Principal Kernel Analysis predicts the relative performance of
different architectures.

5.1 Overall Effectiveness
In this subsection, we compare the efficacy of PKA to prior work in
simulation using Accel-Simmodeling an Nvidia Volta V100. Figure 6
plots the simulation times we achieve versus the original simulation
times originally shown in Figure 1 across our benchmarks sorted by
their simulation time. The figure demonstrates that Principal Kernel
Analysis is able to reduce the simulation time of every workload
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Figure 7: Simulation speed up of PKA, TBPoint and 1B in-
structions over full simulation in all the applications that
can complete in simulation.

we study from up to several centuries down to less than one week.
The figure demonstrates that many applications see significant
reduction from PKS. The effect of the intra-kernel reduction is more
skewed. There is a significant constant-factor speedup on most of
the longer-running workloads (reducing simulation time from days
to hours in some cases). However, the bulk of the reduction in
simulation comes from PKS. Most complex applications are divided
into multiple kernel launches, hence PKS shows the most benefit
when application runtimes are long. The full error results with this
speedup are shown in Table 4 and discussed in Section 5.2.

To evaluate the effectiveness of PKA compared to previous work,
Figure 7 plots the reduction in cycles of PKA, TBPoint [26], and
the commonly used practice of executing the first 1 billion instruc-
tions. Only the applications that complete in full simulation (and
are hence possible using TBPoint) are plotted here. In lieu of the
hand-tuned threshold setting that TBPoint originally required, our
implementation of TBPoint sweeps across 20 threshold values be-
tween 0.01 and 0.2 and follows the same criteria Principal Kernel
Selection does to decide the best one. In these classic workloads, PKA
is able to reduce the number of cycles almost as much as the simple,
high-error mechanism of executing the first 1 billion instructions.
Although TBPoint is able reduce simulation time significantly, it
requires 2.19× more simulation than PKA.

Figure 8 plots the absolute IPC error for the same three mech-
anisms, sorted by the baseline error of full simulation. Although
1B instructions provides a significant speedup, the error is 5.4×
higher than full simulation. TBPoint’s relatively conservative re-
duction mechanism results in an error 0.56 points higher than full
simulation, while PKA’s error is 4.44 points higher. Comparing TB-
Point to PKA, PKA provides a 2.19× reduction in simulation time
over TBPoint for only slightly more error. While this tradeoff is
appealing, the main advantages of PKA over TBPoint is the ability
to evaluate scaled workloads and the automated nature of PKA’s
selection mechanisms. We discuss the error and speedup of PKA
on the scaled MLPerf applications in Section 5.2.

5.2 Results Analysis
To help perform a side-by-side analysis of our various configura-
tions, hardware platforms and applications, Table 4 aggregates the
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Figure 8: Accel-Sim simulation error using full simulation,
1B instructions, PKA and TBPoint.

raw results of Principal Kernel Analysis in both silicon and in simula-
tion. The first 6 columns of the table present the error and speedup
results for the three GPUs we study when applying Principal Ker-
nel Selection to silicon-only results. Speedup (SU) represents the
reduction in total execution time that is achieved with the adjacent
error. The next 5 columns are the simulated Volta error and speedup
results for both Principal Kernel Selection alone and when combined
with Principal Kernel Projection (i.e. PKA).

Only the Volta V100 GPU has enough memory to run the MLPerf
workloads we study, hence we subdivide this section into first dis-
cussing the silicon Volta results (Section 5.2.1) using Principal Kernel
Selection in isolation, contrasting those results with Turing and Am-
pere’s silicon results in Section 5.2.2 and finish with a discussion of
the full volta simulation results in Section 5.2.3.

5.2.1 Volta Silicon Results. In this subsection we discuss the first
two columns of Table 4. The Rodinia application suite commonly
used in architecture studies has inputs sized such that they finish in
simulation, resulting in real execution times of under a millisecond.
However, Principal Kernel Selection is able to significantly reduce
the simulation time of many of the applications that launch a large
number of kernels. Overall, the error introduced by Principal Kernel
Selection in Rodinia is 1.6% with a geomean speedup of 7.2×. Par-
boil and Polybench are similar (1.3% error/5.8× speedup and 0.8%
error/4.2× speedup respectively). Single-kernel applications see no
benefit, while apps with many kernels see speedups of up 711.1×,
with little accuracy loss.

Cutlass and the various implementations of Deepbench represent
highly-tuned machine-learning kernels evaluated in isolation and
are used as a reasonable proxy for the matrix-multiplication kernels
found in neural networks. They are hand-tuned byNvidia engineers,
and make use of tensor cores. Although the error rates remain
low, the speedup is also muted, in comparison to the other suites
(ranging between 1 and 7×). Since these applications launch fewer,
targeted kernels, Principal Kernel Selection is less effective.

The final suite of applications are from the MLPerf suite. Among
all the considered suites, these are the longest workloads. We are
running the reference implementations of MLPerf release 1.0. We
should note that the input sizes utilized for both inference and
training workloads were either above or equal to the minimum
sizes dictated by the MLPerf 1.0 inference [38] and training [39]
submission policies. Running the BERT inference pass using the

Offline scenario takes roughly 10 minutes in silicon. Profiling these
workloads was challenging, as the number of kernels is orders of
magnitude larger than the other suites. For the vision and classifica-
tion inference workloads, ResNet and 3D-Unet, a complete profiling
was achievable using Nsight Compute. For the larger workloads, the
hierarchical clustering technique was used. The effects of which is
clear because of the penalty said technique incurs in the mean error.
The largest workload is SSD training, with 5.3 million kernels, of
which 20 thousand kernels were profiled in detail. The average error
across the runs of MLPerf benchmarks is 10.0%, and the geomean
speedup is 1987×.

5.2.2 Turing and Ampere Silicon Results. In this subsection, we
discuss columns 3-6 in Table 4. To validate our hypothesis that
the principal kernels identified using the volta are representative,
regardless of architecture, we use them to evaluate Principal Kernel
Analysis’s accuracy in other generations.

For Rodinia, Parboil and Polybench, the overall error and perfor-
mance trends are maintained inter-generation; if applying Principal
Kernel Selection to Rodinia yields a speedup above 400 × in Volta,
we see the same trend in Turing and Ampere. The performance of
Turing and Ampere in the Cutlass Perf Suite SGEMM presents a
negligible mean error and a geomean speedup of 6×. The Tensor
Core version keeps the mean error under 1% for both Turing and
Ampere and yields the same speedup of 7× as the Volta card did.
The reduced kernel projection of Turing and Ampere performs
roughly the same for Parboil and Polybench suites as the Volta
GPU did. If the selected kernels work in Volta, they work in Turing
and Ampere, and the complement is also true.

The next suite of workloads is Deepbench. Starting with the
convolution inference workloads, both the CUDA and Tensor Core
variants. We see the same sensible errors and modest speedups
across all GPU generations, a mean error of 0.8% and a speedup
of 1.5×. In training, things get interesting due to a quirk with the
cuDNN libraries. Out of the five workloads, only one workload
per card had the same number of kernels as the Volta card. One
of the cuDNN functions selects the best performing backward and
forward propagation algorithms based on some metrics at runtime.
Introducing the profiler in the mix resulted in several different
combinations of algorithms being used, therefore the work being
done was no longer guaranteed to be the same across multiple runs.
The Turing card had an error of 51.3% and a speedup of 5×, while
the Ampere card had an error of 0.5% and a speedup of 3.6×. The
GEMM bench and RNN bench results are similar for both cards in
both CUDA and Tensor Core variants.

5.2.3 Simulation Results. Finally, we discuss columns 7-11 in Ta-
ble 4 which evaluate PKS and PKS+PKP (i.e. PKA) in simulation
using Accel-Sim and the V100 model [32]. In Table 4 we report the
simulator error with respect to silicon ("SimError") so PKS and PKA
can be put into context.

We start with the Rodinia, Parboil and Polybench suites. The av-
erage error between the baseline simulator and PKS is consistently
very close, with the speedups tracking what we saw in silicon (Sec-
tion 5.2.1). Applying full-PKA to these applications is a mixed bag,
where many of the applications see the bulk of their speedup from
PKS. There are a few exceptions to the rule, in-particular fdtd2d,
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Table 4: Cycle error and speedup for PrincipalKernel Selection (PKS) in silicon andusingAccel-Sim. PrincipalKerenelAnalysis
(PKA) results shown for simulation. "*"= no data (explained in Section 5). SU=Speedup (in ×). Errors are in %. H=Hours.

Application Silicon Simulation Metrics
Volta Turing Ampere Volta DRAM Util

Error
[%] SU Error

[%] SU Error
[%] SU SimError PKS

Error

PKS
SimTime [H]

(SU)

PKA
Error

PKA
SimTime [H]

(SU)
Full PKA

Rodinia Suite
b+tree 0 1 0 1 0 1 5.8 5.8 0.4 H (1.0) 3.5 0.2 H (1.7) 14.3 14.2
backprop 0 1 0 1 0 1 4.3 4.3 0.1 H (1.0) 4.3 0.1 H (1.0) 35.0 55.0
bfs1MW 5 1.5 0.4 1.2 0.7 1.3 36.7 34.5 1.4 H (1.5) 12.1 1.0 H (1.7) 24.0 30.4
bfs4096 1.6 1.2 2 1.2 1.8 1.2 15.5 23.0 0.1 H (1.2) 23.0 0.1 H (1.2) 0 0
bfs65536 1.9 19.6 35.6 31.1 2.8 19.4 14.2 12.1 0.0 H (21.4) 12.5 0.0 H (22.2) 0 0
dwt2d_192 1.2 3.5 1.4 3.2 6.3 3.3 45.2 48.3 0.0 H (3.5) 48.3 0.0 H (3.5) 0 0
dwt2d_rgb 0.3 2.3 1.2 2 0.1 2 1.6 0.1 0.1 H (2.4) 0.1 0.1 H (2.4) 25.4 41.36
gauss_208 5 435.6 7.8 449 7.2 446.1 56.7 63 0.0 H (429.6) 51 0.0 H (431.1) 0 0
gauss_mat4 1.8 5.9 0.9 5.9 1.1 6.1 77.8 86.8 0.0 H (6.0) 86.8 0.0 H (6.0) 0 0
gauss_s16 2.5 14.9 2.9 14.8 0.1 14.5 73.5 84.5 0.0 H (15.0) 73.5 0.0 H (20.1) 0 0
gauss_s64 0.7 60.1 1.6 61.3 2.4 62 69.8 79.0 0.0 H (63.7) 67.9 0.0 H (74.0) 0 0
gauss_s256 0.4 226.3 8.5 167.9 3.8 232.4 53.4 65.8 0.0 H (248.0) 50.8 0.0 H (258.4) 0 0
hots_1024 0 1 0 1 0 1 3.9 3.1 0.2 H (1.0) 9.1 0.1 H (1.3) 23.5 20.4
hots_512 0 1 0 1 0 1 16.1 16.1 0.0 H (1.0) 16.1 0.0 H (1.0) 0 0
hstort_500k 4.8 4.4 6 4.6 3.9 4.4 45.1 46.5 0.3 H (4.3) 46.5 0.3 H (4.3) 1.0 1.28
hstort_r 4.6 5.6 7.8 6.6 5.9 6 49.5 47.8 2.3 H (5.6) 45.4 2.2 H (5.7) 14.1 34.9
kmeans_28k 1.4 1.6 0 1.3 0 1.6 15.8 16.6 17 M (1.6) 16.6 17 M (1.6) 9.4 6.6
kmeans_819k 0 1.2 0 1.3 0.1 1.4 60.8 38.9 5.1 H (1.1) 3 1.5 H (3) 31.2 32.6
kmeans_oi 0.1 1.2 0 1.3 0.1 1.4 57.6 32.8 3.8 H (1.1) 0.2 1.8 H (2.0) 29.8 32.0
lavaMD 0 1 0 1 0 1 13.2 13.2 8.0 H (1.0) 0.1 6.7 H (1.2) * *
lud_i 2 19.5 6.7 13.2 4 16 10.6 15.8 0.0 H (18.2) 11.6 0.0 H (18.7) 0.4 0.0
lud_256 0.4 8.5 0.5 7.8 0.6 8 11.8 15.7 0.0 H (7.6) 11.8 0.0 H (7.2) 0.1 0.0
myocyte * * * * * * * * * * * * *
nn 0 1 0 1 0 1 38 38 0.0 H (1.0) 38 0.0 H (1.0) 0 0
nw 3.6 88.2 7.7 92.1 2.9 87.5 0.1 1.3 0.0 H (87.1) 2.5 0.0 H (87.6) 0 0
scluster 0.9 128.9 1.9 127.5 1.2 128.5 25.9 30.4 0.0 H (125.5) 30.4 0.0 H (119.5) * *
srad_v1 2 98.2 0.9 99.2 0.6 99.5 2 2.3 0.1 H (101.8) 2.3 0.1 H (101.8) 0 0
Parboil Suite
bfs 4.2 1.1 3.9 1.1 4 1.1 37.8 40.4 0.9 H (1.1) 40.4 0.9 H (1.1) * *
cutcp 3.3 4.1 2.9 4 3 4 17.5 19.5 0.9 H (4.0) 19.5 0.9 H (4.0) * *
histo 0.4 20.1 0.2 20 0.3 19.9 60.9 57.4 0.2 H (18.4) 57.4 0.2 H (18.4) 14.0 14.5
mri 0.4 3 0.2 3 0.3 3 8.2 8.2 0.2 H (2.9) 8.2 0.2 H (2.9) 0.3 2.1
sad 0 1 0 1 0 1 7.8 7.8 0.3 H (1.0) 7.8 0.3 H (1.0) 10.0 10.0
sgemm 0 1 0 1 0 1 153.9 153.9 2.9 H (1.0) 153.9 2.9 H (1.0) 5.1 5.1
spmv 2.2 48.9 0.8 50.4 0.5 50.3 14.2 12.4 0.1 H (50.9) 12.4 0.1 H (50.9) * *
stencil 0 100 1.3 101.3 0.3 99.7 30.1 30.1 0.0 H (1) 30.1 0.0 H (1) 0.1 5
Polybench Suite
2Dcnn 0 1 0 1 0 1 12 17 1.3 H (1.0) 42 0.2 H (4.6) 53.5 36.0
2mm 0 2 0.1 2 0 2 6.8 1.7 99.7 H (2.0) 15 3.8 H (1.3) * *
3dconvolution 4.6 242.9 2.2 259.8 0.4 253 50.3 56.6 0.0 H (243.7) 56.6 0.0 H (249.7) 0 0
3mm 0.4 3 0.1 3 0.5 3 11.4 11.6 1.7 H (3.0) 7.9 1.3 H (4.0) 0.4 0.6
atax 0 1 0 1 0 1 22.4 22.4 2.3 H (1.0) 22.4 2.3 H (1.0) 6.5 6.5
bicg 0 1 0 1 0 1 23 23 2.2 H (1.0) 23 2.2 H (1.0) 6.5 6.5
correlation 0 1 0 1 0 1 42.8 42.8 494.4 H (1.0) 42.8 494.4 H (1.0) * *
covariance 0 1 0 1 0 1 43.4 43.4 502.6 H (1.0) 43.4 502.6 H (1.0) * *
fdtd2d 1.6 711.1 1.3 722.5 1.6 706.9 6.5 2.6 0.3 H (725.6) 2.6 0.1 H (2725.5) * *
gemm 0 1 0 1 0 1 12.8 12.8 1.9 H (1.0) 7.5 1.5 H (1.3) 0.5 0.7
gsummv 0 1 0 1 0 1 0.1 0.1 2.5 H (1.0) 0.1 2.5 H (1.0) 6.7 5.9
gramschmidt 4.9 498.2 6.8 507.1 4.3 494.5 27.8 26.3 1.1 H (500) 26.3 1.1 H (500) * *
mvt 0 1 0 1 0 1 22.9 22.9 2.3 H (1.0) 22.9 2.3 H (1.0) 6.5 6.5
syr2k 0 1 0 1 0 1 119 188 50 D (1.0) 11.0 24 H (50) 0.1 0.2
syrk 0 1 0 1 0 1 1.7 1.7 45.2 H (1.0) 17.6 8.2 H (5.5) * *
Cutlass Perf Suite SGEMM (10 inputs)
Mean 0.3 6.0 0.0 6.0 0.0 6.0 1.9 1.9 4.9 H (6.1) 3.7 2.4 H (7.6) 6.1 5.3
Cutlass Perf Suite WGEMM (TensorCore) (10 inputs)
Mean 0.3 7.0 0.7 7.0 0.1 7.0 44.9 45.0 1.8 H (7.0) 42.7 0.4 H (12.3) 11.0 10.3
Deepbench Suite - Convolution - Inference (5 inputs)
Mean 0.8 1.5 0.9 1.5 0.6 1.6 13.4 13.5 2.3 H (1.4) 13.6 2.1 H (1.5) 1.2 0.6
Deepbench Suite - Convolution - Training (5 inputs)
Mean 1.3 2.8 51.3 5.0 0.5 3.6 * * * * * 1.8 6.1
Deepbench Suite - Convolution - Inference (TensorCore) (5 inputs)
Mean 0.9 1.5 0.2 1.5 0.2 1.5 11.1 11.9 2.9 H (1.4) 13.0 2.5 H (1.6) 1.8 0.8
Deepbench Suite - Convolution - Training (TensorCore) (5 inputs)
Mean 2.1 1.9 * * * * 21.6 25.8 14.8 H (1.7) 28.3 12.5 H (2.9) 0.6 2.0
Deepbench Suite - GEMM bench - Inference (5 inputs)
Mean 2.4 1.1 4.1 1.2 4.2 1.2 10.3 12.4 2.2 H (1.2) 12.4 2.2 H (1.3) 21.1 38.0
Deepbench Suite - GEMM bench - Training (5 inputs)
Mean 0.9 1.3 0.2 1.6 0.6 1.5 12.6 11.6 3.5 H (1.3) 11.6 3.4 H (1.4) 23.4 29.3
Deepbench Suite - GEMM bench - Inference (TensorCore) (5 inputs)
Mean 2.4 1.1 4.0 1.2 4.0 1.2 10.4 12.5 3.1 H (1.2) 12.5 3.1 H (1.2) 21.1 38.1
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Application Silicon Simulation Metrics
Volta Turing Ampere Volta DRAM Util

Error
[%] SU Error

[%] SU Error
[%] SU SimError PKS

Error

PKS
SimTime [H]

(SU)

PKA
Error

PKA
SimTime [H]

(SU)
Full PKA

Deepbench Suite - GEMM bench - Train (TensorCore) (5 inputs)
Mean 0.8 1.3 0.1 1.5 0.8 1.5 12.7 11.8 4.2 H (1.3) 11.8 4.1 H (1.3) 25.2 27.0
Deepbench Suite - RNN bench - Inference (9 inputs)
Mean 3.3 3.0 5.6 5.3 3.2 4.5 18.7 13.0 6.1 H (1.9) 13.0 6.1 H (1.9) 0.1 6.0
Deepbench Suite - RNN bench - Train (5 inputs)
Mean 0.5 1.1 1.5 1.2 1.1 1.1 19.4 18.8 6.3 H (1.2) 18.8 6.3 H (1.2) 0.3 5.8
Deepbench Suite - RNN bench - Inference (TensorCore) (10 inputs)
Mean 3.4 3.2 6.6 5.0 3.6 4.3 18.8 13.3 5.7 H (2.1) 13.3 5.7 H (2.1) 0.1 6.0
Deepbench Suite - RNN bench - Train (TensorCore) (5 inputs)
Mean 0.6 1.1 1.6 1.2 0.7 1.1 19.6 19.0 6.0 H (1.2) 19.0 6.0 H (1.2) 0.3 5.0
MLPerf Suite
BERT Offline Inference 12.5 21564 * * * * * 29.51 0.4 H 29.51 0.4 H (1) * *

SSD Training 32.5 13000 * * * * * 35.9 4.5 H 28 0.5 M (500) * *
ResNet 50 64b Inference 3.2 1144 * * * * * 6.4 10 H 18 1.3 H (17) * *
ResNet 50 128b Inference 3.8 851 * * * * * 3.5 8 H 12 1.5 H (5) * *
ResNet 50 256b Inference 0.7 330 * * * * * 2.2 18 H 24 1.6 H (11) * *

GNMT Training 16.2 9630 * * * * * 17.0 36 H 39 25 H (1.4) * *
3D-Unet Inference 2.8 141 * * * * * 49.3 0.1 H 49.3 0.1 H (1) * *

syr2k, syrk, 2mm, 2Dcnn and others show large reductions in sim-
ulation time when PKP is applied. We experienced some issues
with myocyte, where the profiling and tracing runs (necessary for
Accel-Sim) ran a mismatched number of kernels.

Cutlass and Deepbench show little additional accuracy loss be-
tween full-simulation and PKS. The average simulation time of
these workloads is 17 hours, while enabling PKS drops the average
simulation time to 3 hours. The mean error across all Deepbench
workloads is 15.0% in Accel-Sim, and 14.5% with PKS enabled, cut-
ting simulation time in half. Here, PKA is generally more effective,
since the kernels tend to be longer and there are fewer of them. In
the Deepbench convolution training application, we experienced
the same kernel-id mismatch we did with myocyte.

For the MLPerf workloads we can identify two situations. The
first one is when theworkload can be completely profiledwith detail
using Nsight Compute. This is the case with ResNets Inference
and the 3D-Unet Inference, which in conjunction present a low
average Principal Kernel Selection silicon error of 2% and a geomean
speedup of 460×. The simulations show an average error of 15%, no
speedup is reported, because these workloads cannot be simulated
to completion. Therefore we just present the time to simulate in
hours for Principal Kernel Selection, while the speedup of Principal
Kernel Analysis is presented relative to Principal Kernel Selection.
The second situation is when we cannot profile with detail, and
use our two-level technique. These are Single Stage Detector (SSD)
training, GNMT training (RNN translation), and BERT inference.
These workloads have millions of kernels. The error is higher, an
average of 20%, and the speedup is considerably larger.

Finally, the last two columns in Table 4 show the DRAM utiliza-
tion (as a percentage) reported by full simulation and by using PKA
to project DRAM utilization respectively. This analysis demon-
strates that PKA can be used to project metrics other than just
execution time. Only applications that complete in full simulation
are listed to enable accuracy comparison between PKA and the
simulator. With a few exceptions, the DRAM utilization predicted
by PKA very closely matches the full simulation report.
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Figure 9: Volta V100 speedup over Turing RTX 2060
in silicon, when using full simulation and when using
Principal Kernel Analysis.

5.3 Case Studies on Relative Accuracy
In this subsection, we explore the particular use-case architects
care about when using simulators: If a change is introduced to the
architecture, does the trend of the simulator match the trend of final
hardware? To evaluate the effectiveness of Principal Kernel Analysis
in this scenario, we perform two case studies where we measure the
speedup of an architectural change and calculate the corresponding
speedup measured by Principal Kernel Analysis.

In Figure 9, we evaluate the relative speedup of a high-end Volta
V100 over a lower-end (but newer architecture) Turing RTX 2060.
Note that not all the workloads are executable on the Turing card,
in particular MLPerf, due to its limited memory capacity. Figure 9
demonstrates that Principal Kernel Analysis closelymatches the pre-
dicted speedup of full simulation (although the baseline simulator
has some inaccuracy). The simulator’s inaccuracy is independent
from Principal Kernel Analysis’s effectiveness.

To cover all theworkloads, while still evaluating a silicon-validated
architectural change, we halve the number of SMs on the V100 using
Nvidia’s Multi-Process Service (MPS). Figure 10 plots the resulting
speedup of using 100% of the SMs over using 50% for silicon, full
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Figure 10: Speedup of using 80 cores over 40 cores in a
Volta V100 evaluated in silicon, full simulation and using
Principal Kernel Analysis.

simulation and Principal Kernel Analysis. Again, despite perturba-
tions in the baseline simulator’s accuracy, Principal Kernel Analysis
tracks very closely to full simulation for the workloads that can be
fully simulated. For the MLPerf workloads (for which there are no
full simulations results), PKA’s speedup error is less than 10%.

6 RELATEDWORK
Prior work on CPUs showed that single-threaded applications could
have varying performance characteristics over time [52] and that
Basic Block Vectors can be used as an architecture-independent way
for capturing these features [19, 46, 53]. Harmony [31] introduced
parallel block vectors for summarizing the degrees of parallelism
at the granularity of basic blocks. Eeckhout et al. [19] propose PCA
plus clustering based workload characterization for CPU SPEC
workloads. Phansalkar et al. [46] pointed out the importance of
selecting microarchitecture-independent characteristics.

Later work on CPUs showed that sampling based on basic block
vectors could be used to automatically characterize large-scale
behaviors of programs with a direct application for improving
simulation time [54]. Furthermore, this understanding of program
behavior could be implemented in hardware at a minimal cost, and
be used to detect phase-based program behavior [55].

Furthermore, Sherwood et al. [27, 54] showed that CPU phases
are often stable over millions of cycles. This idea has been used
by later works such as the Application Slowdown Model [57] for
sampling performance metrics over time to represent large-scale
behaviors. Tallam et al. [59] showed that traces of control flow could
be used to capture the data dependencies in applications faster, for
use in code optimization and dynamic program slicing.

Recent work on accelerating GPU simulation showed that par-
allelization of the simulator itself could improve simulation time
between 2.5x and 3.5x compared to serial simulation for multi-
ple GPUs [58]. Parallelization has also been used CPUs [51]. Pai
et al. [43] predict kernel execution to improve performance and
fairness at runtime for preemptive multi-kernel execution. They
show that kernel execution time can be obtained by sampling, pos-
sibly as soon as a single thread block finishes execution. Recent
work by Pati et al. [44] select representative iterations for sequence-
based neural networks to drastically reduce the simulation time.
Similarly, work by Villa et al. [62] details NVIDIA’s solution to

the same problem, unreasonably long simulation times. While the
techniques presented in the paper are mostly focused on their pro-
prietary hybrid execution-trace driven simulator, NVArchSim, their
simulation methodology on MLPerf can be compared to Principal
Kernel Analysis. Instead of running the entire MLPerf application,
the authors run a single iteration and scale the results appropriately.
We evaluated this methodology on ResNet from MLPerf and find
that it yields accuracy comparable to Principal Kernel Analysis, but
requires significantly longer simulation time. Simulating a single
iteration would roughly take 3× times as long versus Principal Ker-
nel Selection and 48× times as long versus Principal Kernel Analysis
at a comparable accuracy. Although intuitive and practical in some
cases, using a single iteration for machine learning workloads is
not a general solution, as it requires contextual knowledge of the
application, and has scaling issues as the network size increases.

7 CONCLUSION
This paper presents Principal Kernel Analysis, a silicon-verified
mechanism to concisely represent GPU applications such that simu-
lation times for scaled, real-world workloads are tractable. Principal
Kernel Analysis is a hierarchical mechanism that reduces both the
number of kernels executed through Principal Kernel Selection, and
decreases the number of thread blocks executed in each kernel with
Principal Kernel Projection. We demonstrate the effectiveness and
generality of Principal Kernel Selection over 147 workloads across
the three most recent Nvidia GPU generations, resulting in average
speedup and error rates that range from an average of 7.2×@12.6%
error across Rodinia to 1987× @28.5% error across 7 MLPerf appli-
cations. We then perform a case study applying Principal Kernel
Analysis to Accel-Sim, demonstrating that the centuries-long simu-
lation times for MLPerf can be reduced to a matter of hours with
error rates that are in-line the baseline simulator.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact provides the entire environment to perform Principal
Kernel Analysis (PKA). The simulation framework, benchmarks,
and tools necessary to run PKA are all either included or gener-
ated by the Dockerfile. Scripts are offered to validate the results
presented in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Principal kernel analysis
• Program: Python, CUDA
• Compilation: GCC 7
• Data set: Rodinia, Parboil, Polybench, MLPerf
• Run-time environment: Dockerfile
• Hardware: Nvidia V100, Nvidia RTX 2060, Nvidia RTX 3070
• Metrics: cycles
• Output: Table
• How much disk space required (approximately)?: 2 TB regu-
lar (+8 TB complete)

• Howmuch time is needed to prepareworkflow (approximately)?:
5 hours

• Howmuch time is needed to complete experiments (approx-
imately)?: 3 hours

• Publicly available?: Yes
• Workflow framework used?: GPGPU-Sim, Accel-Sim

A.3 Description
We provide a Dockerfile to compose the experimental environment. Within
the Dockerfile we offer options via commented blocks to download addi-
tional benchmarks and their associated traces. Since running all applications
is impossible, we by default only enable all of those which can be simulated
in under 3 hours. We note that the combined size of the traces and the
visualizer logs for all suites can weigh in the order of 10 TB.

A.3.1 How to access. The scripts and the Dockerfile are included in the
Zenodo record [3, 4]. The Dockerfile will generate an environment with
the CUDA toolkit 11.2. It will pull the Accel-Sim-Framework and gpu-
app-collection repositories from the Accel-Sim repository, set all the paths
variables correctly and compile.

A.3.2 Hardware dependencies. For the silicon results, the experiment uti-
lized three different GPUs: Nvidia V100, Nvidia RTX 2060 and Nvidia RTX
3070. For this artifact, we assume only the V100 is present.

For the simulation results a 1000-threaded XEON server was used.

A.3.3 Software dependencies. The host computer should have the CUDA
11.2 toolkit and compatible drivers installed, alongside nvidia-docker2. The
newer versions of the profiler software Nsight Compute and Nsight Systems
require special permissions to run, we defer to Nvidia’s documentation on
the matter.

A.3.4 Data sets. The data sets associated with the classic benchmarks will
be downloaded. Certain MLPerf applications require special data sets that
cannot be freely distributed, we defer to the documentation by MLPerf on
steps to obtaining them.

A.4 Installation
Once the requirements of the CUDA toolkit 11.2, compatible drivers and
nvidia-docker2 have been met, build the Docker environment by running
the included make-docker.sh script.

$ . make_docker . sh

The dockerfilewill pull anNvidia containerwith CUDA-11.2 pre-installed
and configured. The script installs everything required to run Accel-Sim and
the benchmarks, including fetching data sets and compiling the benchmarks.

Once this initial setup is done, the traces will be downloaded. The total
(uncompressed) size of the traces for the entire classic benchmarks suite is
5.5 TB, only the smaller ones will be downloaded (≈ 9 GB compressed, 220
GB uncompressed). The rest of the traces can be obtained by uncommenting
the option inside the Dockerfile.gpu file, and running make-docker.sh again.
To run the benchmarks we use the run_docker.sh shell script, which runs
the previously generated container.

$ . run_docker . sh

A.5 Evaluation and expected results
Running the shell script file Run_PKA.sh will generate the big table included
in the paper (Table 4), alongside several pkl files containing the number of
principal groups, the principal kernels associated with each group and their
respective weights.

Note that since we assume only the V100 is included, only the columns
associated with it will be populated. Some applications take months to
simulate, so expect fewer applications to appear in the table. Simulating
(almost) everything will require continuously running the container for a
few months.

As explained in the paper, some cuDNN applications are expected to
generate a different amount of kernels depending on the level of overhead
experienced by the application. We believe that the cuDNN function cudnn-
FindConvolutionForwardAlgorithmEx is somewhat responsible. As a rule
of thumb, if the number of kernels don’t match, we exclude the workload.

A.6 Experiment customization
Because of the aforementioned issue of simulation run-time, we are by
default only selecting those smaller classic workloads (Rodinia 3.1).

If the user wants to include more benchmarks, they can uncomment the
blocks inside the Dockerfile.gpu associated with said benchmark, and re-run
the make_docker.sh script. Once the other benchmarks are downloaded, the
user can modify the Run_Updateable.sh shell script follwing the instructions
indicated in said file. The user can also start the docker in interactive shell
mode and configure things manually. The command is

$ Nvid ia −docker run − i t micro −2021−pka / b in / bash

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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