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ABSTRACT

An experiment was conducted where a robotic platform performs
artificially generated gestures and both trained classifiers and hu-
man participants recognize. Classification accuracy is evaluated
through a new metric of coherence in gesture recognition between
humans and robots. Experimental results showed an average recog-
nition performance of 89.2% for the trained classifiers and 92.5% for
the participants. Coherence in one-shot gesture recognition was
determined to be y = 93.8%. This new metric provides a quantifier
for validating how realistic the robotic generated gestures are.
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1 INTRODUCTION

The topic of mutual grounding is highly relevant to communication
between two humans, between a human and a machine or between
two machines, but humans have the unique ability to quickly adjust
their context, often from only one example. This is called one-
shot learning [3, 4] and it involves developing machines capable of
recognizing gestures from a single observation. This research topic
is difficult, not only because of the lack of training data, but also
because the bulk of machine learning algorithms are focused on
N-shot problems, where N is often very large.

Most existing research has tried to maximize the accuracy of
recognition of one-shot learning. We propose a new metric that
chooses not to maximize the raw accuracy of the recognition of a
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gesture, but to maximize coherence with the recognition charac-
teristics of other humans. In other words, we choose to maximize
agreement with humans, both in when humans classify correctly
and when humans mis-classify.

By including the human aspect within the framework - through
virtual generation of N — 1 additional examples — the human kine-
matic and psycho-physical attributes of the gesture production
process are used to support recognition. Motion features within
gestures were found to be correlated with neural signals associated
to activation of motor and visual cortices [1].

The main focus of this paper is determining just how “realis-
tic” the produced synthetic gestures are in the scope of Human-
Robot Interaction (HRI). A robotic platform is used to perform
these synthetic gestures in two different scenarios and determine
the coherency between them.

2 METHODOLOGY

The overview of the method to achieve one-shot gesture recognition
from a single example of each gesture class is shown in Figure 1.
Using the hands’ trajectories from Kinect’s skeleton data, the “gist
of the gesture” is extracted; it contains salient motion points where
abrupt changes in speed and orientation occur. A human-centered
approach leveraging spatial variability allows to artificially enlarge
the data set to train different state-of-the-art classifiers capturing
significant variability while maintaining a model of the fundamental
structure of the gesture to account for its stochastic process [2].
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Figure 1: Overview of one-shot gesture recognition frame-
work.
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This idiosyncratic approach is tested by training four different
classification methods, namely Hidden Markov Models (HMM),
Support Vector Machines (SVM), Conditional Random Fields (CRF)
and Dynamic Time Warping (DTW).

The dual-arm robotic platform Baxter, from Rethink Robotics,
was used to perform artificially generated gestures. To determine
coherence in one-shot gesture recognition, two scenarios (shown
in Figure 2) were considered: in the first scenario (MH), humans
recognize the gestures. In the second scenario (MH), the gestures
are recognized using four different classification algorithms.
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Figure 2: Scenarios used to determine recognition coherence
between humans and machines.

The selected data set to test the proposed framework is the
Microsoft Research MSRC-12 [5]. The number of gesture classes in
the lexicon was reduced to 8 to avoid gesture classes that are not
performed with the upper limbs.

A metric is proposed to measure the level of coherence between
the recognition accuracy obtained by trained classifiers, and the
accuracy found when humans observe the robot perform artificial
gestures.

Coherency (y) is defined in Eq. 1 as the intersection between
the sets of AIx for both humans and machines. The Agreement
Index (Alx) is the median in the set of all Boolean values for recog-
nition, whether each agent (AIx,,schine and AIXpy,man) correctly
recognized each gesture or not. The value ||Alxpy, man || counts all el-
ements in the set. The higher the coherence, the better the mimicry
of human perception and gesture execution and recognition.

AlxXmachine N AlXpuman (1)
lAIxpymanl

Ten participants were asked to watch a video of a person per-
forming one example of each gesture class in the MSRC-12 lexicon
with the gesture’s respective label. Next, each participant observed
Baxter perform two instances of each gesture class (16 total) in ran-
dom order; finally, they were asked to assign a label to each. Once
the experiment was concluded, participants filled out a question-
naire inquiring whether the characteristics of each gesture were
maintained when the robot performed the gestures.
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3 RESULTS

Recognition accuracies were found for each scenario using 20 lexi-
con sets and then used to determine coherence y. The recognition
accuracies found in both scenarios are summarized in Figure 3.
The recognition accuracy of the participants on the testing
dataset was 92.5%. The gesture ’Shoot’ showed the lowest recogni-
tion rate among the participants. One possible explanation has to
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Figure 3: Recognition Accuracy (%) for different interaction
scenarios: Robot-Human (MH) and Robot-Machine (MM)

do with the hand configuration that comes natural for humans to
mimic a shooting gesture, which is very difficult to be reproduced
with the robotic platform. Using the recognition results from the
previous two scenarios, the metric of coherency was calculated. The
Alx among users and machines were calculated for each gesture
type and instance. The coherency found was y = 93.8%.

4 CONCLUSION

This paper explores gesture recognition and introduces a new met-
ric of coherency to the problem of one-shot gesture recognition in
HRI. The calculated coherency metric is our main indicator that the
generated gestures capture human-like variations of gesture classes,
affirming the desired mutual grounding. Experimental results pro-
vide an average recognition performance of 89.2% for the trained
classifiers and 92.5% for the participants. Coherency in recognition
was determined at 93.8% in average for all 20 lexicon sets performed
by Baxter and recognized by classifiers (MM) and humans (MH).

Future work includes computing coherence in the context of
other approaches for artificial gesture generation and its inherent
use for gesture imitation.
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