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Abstract— Most common approaches to one-shot gesture
recognition have leveraged mainly conventional machine learn-
ing solutions and image based data augmentation techniques,
ignoring the mechanisms that are used by humans to perceive
and execute gestures, a key contextual component in this pro-
cess. The novelty of this work consists on modeling the process
that leads to the creation of gestures, rather than observing
the gesture alone. In this approach, the context considered
involves the way in which humans produce the gestures the
kinematic and biomechanical characteristics associated with
gesture production and execution. By understanding the main
“modes” of variation we can replicate the single observation
many times. Consequently, the main strategy proposed in this
paper includes generating a data set of human-like examples
based on “naturalistic” features extracted from a single gesture
sample while preserving fundamentally human characteristics
like visual saliency, smooth transitions and economy of motion.
The availability of a large data set of realistic samples allows the
use state-of-the-art classifiers for further recognition. Several
classifiers were trained and their recognition accuracies were as-
sessed and compared to previous one-shot learning approaches.
An average recognition accuracy of 95% among all classifiers
highlights the relevance of keeping the human “in the loop” to
effectively achieve one-shot gesture recognition.

I. INTRODUCTION

Gestures have been a subject for multidisciplinary research

including linguistics, cognitive sciences, computer science

and engineering given their relevance to human-human and

human-machine interaction. Researchers have studied how

gestures are produced, perceived and mimicked, as well

as how computer systems can detect and recognize them.

However, the overlap between these areas of research has

been rather narrow. For example, in gesture recognition, a

vast number of approaches leverage machine learning and

vision-based techniques [1], but there is little consideration to

the cognitive process, perception, or how gesture production

aspects play a role in that recognition.

Some of the major challenges regarding gesture recogni-

tion lie on representation and robust learning. Recognizing

gestures has the intrinsic difficulty of grouping common traits

within a gesture class considering their high variability due

to human nature, and conversely the ability to perceive key

changes that make two gesture classes different [2].

Most common models used to discern between gesture

classes, include empirical parameters and high-level de-

scriptors to encompass the complexity and diversity among

gestures. These parameters can be fine-tuned with relative

ease when multiple examples of the same gesture class

are available; this is known as N-shot learning [3]. As the

number of samples dramatically decreases to one, entering

the one-shot learning domain, traditional approaches do not

perform well. This difficulty stems not only from lack of

training data but also because the bulk of machine learning

algorithms are focused on N-shot problems, where N is

often large [4]. The focus of this paper is to propose an

approach leveraging state-of-the-art machine learning classi-

fication methods [5]–[7], typically used for N-shot learning,

by virtually generating an entire set of naturalistic training

data from a single example. Naturalistic in the sense that

the data produced shares human like characteristics such as

kinematic or biomechanical aspects.

Extracting a relevant representation from a single example

brings forth challenges. As fewer gesture examples become

available, a biomechanical characterization of such gestures

could be leveraged for context. We propose employing a

model based on physiological constraints and quantifications

of human variability to suggest how real humans might

replicate a previously seen gesture.

Using this model repetitively leads to the creation of an

artificial gesture data set. This data generation process in-

volves the solution of the inverse kinematic (IK) problem for

the human arm [8]. The set of IK solutions are concatenated

sequentially while constraining the overall hand trajectory to

minimum jerk, smooth changes at joint level, and minimum

energy expenditure. Such combination of constraints reflects

realistically gestures that are comfortable and have low

muscular strain. This technique is referred throughout the

paper as the Backward approach, as opposed to an existing

technique called the Forward approach [9].

The contribution of this work is the development of the

artificial data process used for one-shot gesture learning. This

approach includes physical aspects of gesture generation,

from kinematics and biomechanical constraints.

II. BACKGROUND

Most research published and surveyed in the area of

gesture recognition, are in the field of human-computer

interaction [10], human-robot interaction [11] and assistive

technologies [12], [13]. The methods discussed on the gen-

eral field of gesture interaction, can be placed in a continuum

scale according to the conceptual approach used to tackle the

problem of gesture recognition (see Fig. 1).

On one end of the continuum, there are methods that are

outcome-driven towards gesture classification (focused only
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Fig. 1. Continuum for Gesture Production and Recognition

on the data); and on the other, the process-driven methods

that rely in the perception and execution processes leading

to the gestures. Within this continuum most works are on the

outcome-driven side.
Similarly, previous one-shot gesture recognition ap-

proaches are mostly situated towards the outcome-driven end

of the continuum in Fig. 1. The majority of those methods

have relied on computer vision techniques to use a variety of

descriptors (e.g. motion and orientation descriptors) in order

to train and further classify gestures using a single training

instance [14]–[16]. Wan et al. [17] report data augmentation

by synthesizing artificial versions of the acquired sample

using various temporal scales, and adapting their models to

cope with gestures performed at varying speeds.
The limitation of these techniques is that they are not

generalizable to new gestures and the overall recognition

accuracies are below minimal performance requirements to

be used in practice. This calls for new methods that should

focus on the process of gesture generation, rather than only

the outcome. This process shares most likely components

of cognition, physiology and biomechanics. Cabrera and

Wachs [9] reported a human-centered approach for data

augmentation involving anthropometric features to enlarge

the gesture data set artificially. This Forward approach lacked

consideration of biomechanical components in their gesture

generation process.
The work presented by Lake et al. [18] shows similarities

to our proposed method by incorporating human-centered

learning to their approach towards model-learning; given a

single example of a drawn character, they use generative

models using learned primitives to classify, parse and gen-

erate similar drawings for the same character. Their work

is based on a Bayesian program learning framework for

human-level learning that allows previous experience with

related concepts to ease learning of new concept in terms

of compositionality, causality and learning. Rezende et al.

[19] proposed deep generative models capable of one-shot

generalization, performing experiments on the MNIST [20]

and PIE [21] data set. However, their approaches require

large amounts of data to avoid overfitting. Some efforts have

been reported to fine-tune fully trained deep learning models

[22], [23] using an external memory representation and adapt

them to an unseen class based on a single example. These

approaches were applied to image data sets.
Jang et al. [24]discuss a visual analytics system supporting

identification and characterization of gesture patterns from

motion tracking data. Kinematic based techniques often rely

on motion capture systems. Such approaches rely on wear-

able markers and accelerometers which are then detected and

further tracked through special hardware and software. Ruiz

et al. used such a setting towards the study and design of

biomechanical models to describe five different kick gestures

used in Taekwondo [25]. Performance metrics related to

the execution of the motions were obtained by systematic

analysis of the gathered data. A different approach to motion

tracking is done using infrared and RGB-D sensors, like

Microsoft Kinect. A feasibility study to detect upper limb

behavior using Microsoft Kinect 2 [26] showed the collected

data to be of sufficient quality to perform objective motor

behavior in individuals to classify different levels of upper

limb impairment. Cavallo et al. [27] used a biomechanical

model to assess surgical performance in Minimal Access

Surgery using acceleration, jerk, and energy expenditure.

Jerk minimization and energy expenditure are methods

commonly used to model and plan trajectories performed by

human arm and robotic manipulators [28], [29]. For example,

Yazdani [30] predicted human motion based on minimum

jerk. However, their work was limited to a planar motion at

shoulder level. Similarly, Zhou et al. [31] restricted the shoul-

der movements to achieve planar arm motion and effectively

determined arm trajectories. They used low metabolic costs

with biomechanical models for the arm trajectories. However,

such designs reduce the complexity of the inverse kinematics

and musculoskeletal representation of the human arm.

Gibet et al. [32] used biomechanical models for gesture

production. They analyzed gestures from a motor control

perspective finding some commonalities in gesture execution

related to invariance in velocity profiles and minimum jerk.

This supports the idea that the arms and hands follow smooth

trajectories during motion.

In the context of cognition-based approaches, Cabrera et

al. [33] found a relationship between the timing of mu

oscillations and kinematic inflection points. The fact that

positive correlations have been observed between gesture

performance and spikes in electroencephalographic (EEG)

signals above the motor cortex, supports the hypothesis that

inflection points in gesture performance are associated with

distinct neural responses.

There is still a lack of research merging the cognitive and

physiological aspects of gesture perception and production

with the computational aspects of recognition that can be

applied to one-shot gesture recognition effectively. The aim

of this work is to close the gap in the continuum presented

in Fig. 1 by leveraging biomechanical features as input for

more conventional outcome-driven approaches.
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III. METHODOLOGY

This section presents the concepts and implementation

details adopted to achieve one-shot gesture recognition using

the biomechanical principles of human gesture production.

Our approach consists of the following main steps: (1)

collecting a single gesture observation, expressed in terms of

skeleton data; (2) artificially augmenting the single example

per class given, to produce a large set of human-like gesture

instances; (3) training state-of-the-art classifiers to recognize

the class of a new gesture instance, and (4) assessing

performance in terms of accuracy. The gestures considered

are motions performed by peoples upper limbs and acquired

using a Microsoft Kinect 2 sensor. Implementation details

describe the training and testing of multiple classifiers on

a publicly available data set, to compare their recognition

accuracy with the state-of-the-art.

A. Overview of One-Shot Learning Method

The one-shot learning method presented here is an alter-

native approach than the one explained in [9] referred as

the Forward approach. The Forward approach is based on a

reduced anthropometry model (users shoulder and hand posi-

tion) applied to one gesture sample to generate new artificial

gesture instances. The instances are extracted from Gaussian

Mixture Models around inflection points. Conversely, the

approach presented in this paper (referred as the Backward

approach) is mainly based on inverse kinematics solutions

on the gesture trajectorys inflection points.

Let L describe a lexicon formed by N gesture classes

Gi, L = {G1, ...,Gi, ...,GN}. Each gesture class contains

gesture instances gi
j, with j number of instances. Each

gesture instance is a concatenation of trajectory points in

three dimensions (3D) extracted from the centroid of the

hand, gi
k = {(x1,y1,z1), ...,(xH ,yH ,zH)}, where H is the total

number of points within that gesture instance. Using one

instance per class gi
1, a set of inflection points xq =(xq,yq,zq)

are extracted, where q = 1, ...,Q and Q < H.

The overview of the proposed approach is summarized

in Fig. 2. Using a model to describe the kinematics and

biomechanics of the human arm, inverse kinematics solutions

are found at each inflection point xq. These sets of IK

solutions at each inflection point are combined, and smooth

trajectories with low strain are generated on the joint space.

These trajectories are concatenated and stored as new gesture

instances ĝi
j. Once an entire data set of artificially generated

instances is created, state-of-the-art classifiers are trained.

This work proposes a methodology for one-shot gesture

learning that can be used with any classification technique

and for this reason multiple classifiers are considered. Next,

we will describe in detail each of the steps in Fig. 2

B. Backward Approach: Artificial Trajectory Generation
leveraging biomechanics of the human arm

Given one gesture example gi
1 from class i, where i =

1, ...,N key points (xq) in the gesture trajectory are extracted,

with q = 1, ...,Q. These inflection points can be found by

computing the derivative in the gesture trajectory. Inflection

points are associated with abrupt changes in speed and ori-

entation of a gesture, signaling the concatenation of different

gesture phases [34]. In this work, the different gesture phases

are considered the trajectories between each two inflection

points.

First, IK solutions are calculated so the human arm can

reach the positions xq. This modeling follows the fundamen-

tals of serial-link robot kinematics and Denavit-Hartemberg

(D-H) notation [35], [36]. The MATLAB Robotic Toolbox

[37] and notation for the D-H parameters [38] were used to

determine the kinematic model of the human arm (Fig. 3 and

Table I). The last column in Table I represents the absolute

joint constraint (AJCi) per degree of freedom.

TABLE I

DENAVIT-HARTEMBERG (D-H) PARAMETERS FOR HUMAN ARM MODEL

k θ
d a

α AJCi
(rad) (rad) (degrees)

1 q1 0 0 −π/2 -45 to 180
2 q2 +π/2 0 0 −π/2 -45 to 130
3 q3 +π/2 L1 0 π/2 -60 to 180
4 q4 0 0 −π/2 0 to 150
5 q5 +π L2 0 π/2 -70 to 85
6 q6 +π/2 0 0 −π/2 -20 to 40
7 q7 +π 0 0 π/2 -90 to 90

Let Si
q be the set of possible IK solutions sv

q for each

inflection point, where v = 1, ...Vq. The different sv
q were

obtained by varying the configuration parameters for the tool-

box function, such as number of iterations, error tolerance,

variable step size and step size gain. Once all the sets Si
q were

determined, a recursive function (Algorithm 1) combined all

solutions in the sets Si
q exhaustively and generated multiple

trajectories for each gesture phase.

The function F, used to generate trajectory phases between

inflection points, is explained in the following subsection.

Two different strategies were considered, namely minimum

jerk and energy expenditure. Each of these two strategies are

used between two inflection points (xq and xq+1) given IK

solutions for both (sv
q and su

q+1). The output of Algorithm 1

is a list of artificially generated gesture instances ĝi
j.

The complexity of this algorithm is O(Q,V ) based on

asymptotic order analysis, where V = max(|Si
q|) for all i and

q. One of the advantages of this algorithm is that it has tail

recursion which makes it easily converted to a distributed

algorithm. The maximum number of generated trajectories

for class i is determined by ∏Q
1 |Si

q|.
C. Strategies for gesture phase generation

Using the IK solutions for two consecutive inflection

points in the gesture example gi
1, two different strategies for

trajectory generation are considered: minimum jerk (J) and

minimum energy expenditure (EE) as described earlier. The

minimum jerk strategy allows to generate smooth trajectories

with small progressive changes in the joints, consistent

with motion observed in humans. The minimum energy

expenditure strategy is associated with trajectories which are

comfortable and have low muscular strain.
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Fig. 2. Overview of the proposed methodology

Fig. 3. Kinematic Model of the human arm with reference frames
associated to degrees of freedom for each joint

Minimum jerk (Eq.1) was applied on the joint space,

using sv
q and sv

q+1 as the initial and final condition, and

considering that initial and final velocity was zero. Additional

kinematic constraints were included to maintain the angles

for each joint within the human operating range (AJCk). A

fifth-order polynomial function was used for each joint to

determine the coefficients achieving minimum jerk. Once

all the fitted polynomials were determined for each joint,

forward kinematics (FK) were used to determine the 3D

trajectories for the hand.

Algorithm 1 Recursive artificial example generation

Input: index of inflection point q, IK solution sv
q, and array

of concatenated gesture phases (3D trajectories) GestPhase
1: all Gestures = [ ] � All artificial gestures are stored

here

2: gen GestPhase (1 , [ ] , [ ])

3: function GEN GESTPHASE(q , IKsol , GestPhase)

4: if q < Q then
5: for all sv

q with v← 1, ...,Vq do
6: if not empty(IKsol) then
7: gen GestPhase (q+1 , sv

q , F(sv
q, IKsol))

8: else � This goes through all sv
1

9: gen GestPhase (q+1 , sv
q , [ ])

10: end if
11: end for
12: else � GestPhase is a complete gesture

13: all Gestures.append (GestPhase)

14: end if
15: end function
Output: list of all artificially generated gestures ĝi

j of a given

class in all Gestures

min J → min
K

∑
k=1

∫ ...
θk

s.t. {θ1, ...,θK}init = sv
q,{θ1, ...,θK} f inal = sv

q+1

d({θ1, ...,θK}init)

dt
=

d({θ1, ...,θK} f inal)

dt
= 0

θk ≤ AJCk

(1)

Where K is the degrees of freedom. In the case of the

human arm, K = 7.
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The minimum energy expenditure strategy (Eq. 2) is based

on torque calculations for each joint, using Lagrange-Euler

(Eq. 3). Only inertial (M(θ)) and gravitational forces (G(θ))
were considered. Inertia constants were obtained from stan-

dardized anthropometric data [39].

min EE → min
K

∑
k=1

∫
|τk× θ̇k| (2)

τk = M(θ)θ̈ +G(θ) (3)

Analogous to the jerk strategy, third-order polynomial

functions were used for each joint, initial and final conditions

were given by the previously obtained IK solutions. Forward

kinematics were used to determine the 3D trajectories for the

arm from the estimated joint values.

D. Implementation Details

The proposed approach was implemented and tested on

a publicly available data set from Microsoft Research Cam-

bridge (MSRC-12) [40]. This data set consisted of sequences

of human movements, representing 12 different iconic and

metaphoric gestures related to gaming commands and inter-

action with a media player. The number of gesture classes

in the lexicon was reduced to 8 by excluding gestures that

involved leg motion or movement of the whole upper body

(i.e. bow).

From this data set, 100 gesture instances from each class

were used as the testing set, for a total of 800 gesture

motions. Eight additional instances, one for each gesture

class, were used to extract the inflection points representing

the gesture class, and from those 200 artificial observations

per class were created. This artificial data set was used as

training data. Examples of the gestures in this lexicon are

shown in Fig. 4.

Fig. 4. Microsoft Research Data Set MSRC-12. Selected 8 gesture subset

Four different classification algorithms were trained using

the artificially generated data set and their performances

compared in terms of recognition accuracy (Acc%).

Recognition accuracy was determined through response

operating curves (ROC). This was done by selecting a free

parameter, in this case related to the confidence for the

predicted class, and using different thresholds to obtain

multiple pairs of true hit and false alarm rates.

The selected classification algorithms are commonly used

in state-of-the-art gesture recognition approaches, namely:

Hidden Markov Models (HMM), Support Vector Machines

(SVM), Conditional Random Fields (CRF) and Dynamic

Time Warping (DTW). In the case of HMM and SVM, a

one-versus-all scheme was used, while CRF and DTW used

a multi-class scheme assigning the label with the highest

likelihood.

The feature vector considered as input for the classifiers

contained the rate of change in position between two con-

secutive points, both in magnitude and orientation for both

hands. Orientation was described as three different angles

with respect to each axis.

IV. RESULTS

This section presents the results in terms of recognition

accuracy for all classification methods mentioned previously.

Using the implemented backward approach, a data set of

human-like examples was generated for training, originating

from a single example for each selected class of the MSRC-

12 data set.

ROC for all classifiers are shown in Fig. 5. Five different

thresholds were used for all classifiers. Overall accuracies

were obtained by calculating the area under the curve (AUC).

Overall accuracies are summarized in Table II.

Fig. 5. ROC curves for all four classifiers: HMM, SVM, CRF, DTW

TABLE II

OVERALL ACCURACIES FOR ALL CLASSIFIERS

MSRC-12 HMM SVM CRF DTW

AUC 96.6% 97.18% 91.51% 96.43%

The free parameter used to generate the ROCs was ad-

justed to the shortest Euclidian distance to the (1,0) point

for each classifier. Trained classifiers were tested on gesture

examples from the MSRC-12 data set. The results are shown

using confusion matrices for all classifiers in Fig. 6.
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(a) HMM. Accuracy: 95.88%

(b) SVM. Accuracy: 96.13%

(c) CRF. Accuracy: 92.12%

(d) DTW. Accuracy: 96.25%

Fig. 6. Confusion matrices for all trained classifiers: a) HMM, b) SVM,
c) CRF, d) DTW

Previous results reported by Ellis et al. [41] reached

88.7% accuracy, while [42] achieved 91.82%. The previously

mentioned forward approach reported in [9] achieved an

average of 89.2% among the same classifiers.

Artificial generation processes were compared using a k-

fold cross-validation with k = 10. The results are shown in

Fig. 7. A t-test between ACC% for each classification method

was conducted, with the approach used as the independent

variable. All classifiers trained with the Backward approach

had significantly higher recognition accuracy than the clas-

sifiers trained with the Forward approach. These results

indicate a superior performance of the Backward over the

Forward approach for every classifier used.

Fig. 7. Recognition accuracies for all implemented classifiers using two
different approaches for artificial gesture generation. Backward approach
was significantly higher in all classifiers

V. CONCLUSION

This paper presents a novel approach to achieve one-shot

gesture recognition. This approach is based on kinematic

and biomechanical characteristics associated with gesture

production. Using a compact representation from a single

example per class, an augmented data set of human-like sam-

ples is generated and used to train classifiers. Four classifiers

commonly used in state-of-the-art gesture recognition were

trained to evaluate the effect of the approach on the overall

performance. Recognition accuracy was measured for each

classifier using a subset of the publicly available data set

of Microsoft Research MSRC-12. The recognition accuracy

of all classifiers showed a significant improvement over

previous approaches reported in literature, with an average

recognition of 95%. These results highlight the relevance

of including the biomechanical aspects of human motion as

context to achieve one-shot gesture recognition effectively.
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