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Abstract— User’s intentions may be expressed through spon-
taneous gesturing, which have been seen only a few times
or never before. Recognizing such gestures involves one shot
gesture learning. While most research has focused on the
recognition of the gestures themselves, recently new approaches
were proposed to deal with gesture perception and production
as part of the recognition problem. The framework presented in
this work focuses on learning the process that leads to gesture
generation, rather than treating the gestures as the outcomes
of a stochastic process only. This is achieved by leveraging
kinematic and cognitive aspects of human interaction. These
factors enable the artificial production of realistic gesture
samples originated from a single observation, which in turn are
used as training sets for state-of-the-art classifiers. Classification
performance is evaluated in terms of recognition accuracy and
coherency; the latter being a novel metric that determines the
level of agreement between humans and machines. Specifically,
the referred machines are robots which perform artificially
generated examples. Coherency in recognition was determined
at 93.8%, corresponding to a recognition accuracy of 89.2% for
the classifiers and 92.5% for human participants. A proof of
concept was performed towards the expansion of the proposed
one shot learning approach to adaptive learning, and the results
are presented and the implications discussed.

I. INTRODUCTION

The problem of recognizing gestures from a single ob-
servation is called One-Shot Gesture Recognition [1]. In the
considered scenario a single training observation is available
for each gesture to be recognized. The limited amount of
information provided by that single observation makes this
problem ill-posed [2]; achieving generalization in recognition
becomes even more challenging without enough resources to
mine information from. That is why pure machine learning
approaches have not yet offered a significant result compared
to state-of-the-art recognition based on multiple training
examples. For example, HMM, SVM, PCA based techniques
were applied to this challenge obtaining suboptimal perfor-
mances as reported at the ChaLearn 2011 competition [3].
Therefore, one can conclude that currently those algorithms
are not the most suitable to tackle the one-shot recognition
problem. To overcome this limitation, we resort to learn from
context. In the case of gesture production, context is given by
the entity generating the observation (e.g. human or robot).
By understanding the gist of the kinematic and psycho-
physical processes leading to the generation of that single
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observation [4], a series of new artificial observations can be
generated. These artificial observations can later be used as
training examples for classical machine learning classifiers.

Yet, determining the underlying principles governing ges-
ture production is particularly challenging due to human vari-
ability in gesture performance, perception and interpretation.
In the approach presented in this paper, artificial observations
are generated based on distinctive elements (placeholders)
in the 3D gesture trajectory which are highly correlated to
neurological signatures, as was recently reported by Cabrera
et al. [5]. These placeholders are further used to propagate
and augment a dataset of gestures which all preserve the
salient characteristics of each gesture type while embedding
the variabilities in human motion within a compact represen-
tation [4]. Once the datasets are created, classifiers are trained
with the artificial observations and subsequently tested on
real gestures datasets. Two metrics are used to assess per-
formance: recognition accuracy and recognition coherency.
The first is about the percentage of observations correctly
classified over the total number of observations. The second
metric refers to the level of agreement that displayed both the
human observers and the machines. Whether a machine and
an observer agree on which gestures are recognized or not,
would indicate the level of success with which our algorithm
can mimic human performance.

We expect that once machines are trained using the
one-shot learning paradigm they would be able to interact
naturally with their users even when encountering gestures
seen only once before. During real-time interaction, gestures
will be observed again and again which suggests adopting
an adaptive learning approach (from 1-shot to N-shot). Thus,
in this paper we also present an incremental progression
of the developed framework for one-shot gesture recogni-
tion to adaptive learning. The idea of adaptive learning is
implemented by applying the same methodology of dataset
augmentation for the training examples but with different
proportions. As more real-life gestures become available
when interacting with a robot, the ratio of real over artificial
data would increase, thus acting as a form of learning from
demonstration [6] paradigm.

II. BACKGROUND

A. Relevance of gestures in communication/interaction

Gestures are a form of engaging our body into expressions
with the objective of conveying a message, completing an
action, or as a reflection of a bodily state. Humans are quite
adept at communicating effectively with gestures even when
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some of the gestures are spontaneously evoked during inter-
action [7]. Communication grounding and context allows the
observers to infer the meaning of the gesture even when that
specific expression form was not seen before.

It would be beneficial to enable machines to understand
these forms of spontaneous physical expressions that have
been only seen once before. To achieve that goal, one should
consider existing mechanism of communication that include
not only the outcome and meaning of a particular gesture,
but the process involved during gesture production that are
common to different human beings. Such process involves
both cognitive and kinematic aspects.

The cognitive aspects referred are those events that occur
during the production of human gestures. Such events have
been related to improvement of memory and problem solving
[8]–[10]. Research has been conducted to relate gestures to
speech on the neurological level [11], [12], yet the cognitive
processes related to gesture production and perception have
not been considered as a source of valuable information
representative of gestures. These events (fluctuations in EEG
signals related to mu rhythms oscillations) have been linked
recently to gesture comprehension [5]. These cognitive sig-
natures related to observed gestures may be used to compress
a gesture in memory while retaining its intrinsic characteris-
tics. When a gesture is recalled, these key points associated
with the cognitive signatures are used to unfold the gesture
into a physical expression. We plan to use these key points
as a global form of gesture representation.

B. One-Shot learning in gesture recognition
One-Shot learning in gesture recognition has gained much

traction since initial works proposed for the ChaLearn ges-
ture challenges in 2011 and 2012 [13]. Results of the chal-
lenge were reported by Guyon et al. using the Levenshtein
Distance (LD) metric, where LD=0 is considered the perfect
edit distance [3], [14] and LD=1 a complete error. One
approach by Wan et al. was based in the extension of
invariant feature transform (SIFT) to spatio-temporal interest
points. In that work the training examples were clustered
with the K-Nearest Neighbors algorithm to learn a visual
codebook. Performance was reported by an LD=0.18 [15].

Histogram Oriented Gradients (HOG) have being used
to describe image based representation of gestures. DTW
was implemented as the classification method obtaining
LD=0.17 [16]. Another method relied on extended motion
History Image as the gesture descriptor. The features were
classified using Maximum Correlation Coefficient leading to
an LD=0.26 [17]. In that work dual modality inputs from
RGB and depth data were used from Kinect sensor.

Fanello et al. relied on descriptors based on 3D Histograms
of Scene Flow (3DHOF) and Global Histograms of Oriented
Gradient (GHOG) to capture high level patterns from the ges-
tures. Classification was performed using a Support Vector
Machine (SVM) using sliding window with LD=0.25 [18].

C. Adaptive learning in gesture recognition
Adaptive shot learning involves switching from 1-shot to

N-shot learning paradigms as more data becomes available.

An example of this is given by a robot that was trained
using a single observation in a fixed environment, and
sudden is relocated to a new place and needs to immediately
interact with its users. As new real data becomes available,
the robot adopts these new observations to re-train itself,
to better recognize future instances of the gestures. Thus,
gradually moving from a 1- shot learning paradigm to 2-
shot, and eventually N-shot. It is expected that as real-
data becomes available, performance would improve. This
concept is relatively new, and few examples exist in the
literature. Hasanuzzaman et al., [19] update the training set
of a robot interacting with different humans, to account
for changes in lighting and faces using multi-clustering
approaches to incorporate new visual features to the ones
already available. Pfister et. al [19] one-shot algorithm was
used to detect sections of a given gesture class within a
video reservoir. Video sections were then used as training
samples for a new classifier, with higher performance. This
approach included adaptation to human pose and hand shape
that enabled generalization to videos of different size and
resolutions; with different people and gestures performed at
different prosody and speed.

This paper will demonstrate our one-shot learning ap-
proach through a variety of experiments and also present
preliminary results on adaptive shot learning to gesture
recognition.

III. METHODOLOGY

In this section implementation details are provided. First,
we describe the gesture data set used and present the
framework for one-shot learning from one example of each
gesture class. We do this by extracting a set of salient
points within the gesture trajectory and finding a compact
representation of each gesture class. This representation is
then used to augment the number of examples of each gesture
class artificially, maintaining intrinsic characteristics of the
gestures within that class. Then the selection of classification
algorithms and the training/testing methodology is presented.
The used performance metrics are described, and finally an
extension to adaptive learning approach is presented with
preliminary results.

A. Implementation details

The data used to test the approach presented consists of the
Microsoft Research Cambridge-12 Kinect gesture data set.
It includes 6,244 instances of 12 different gestures related
to gaming commands and media player interaction. Gesture
observations for the one-shot learning problem presented
in this paper relies on a reduction of Microsoft Research
MSRC-12 dataset, that includes a lexicon of 8 gesture
classes. This reduction was due to the nature of some of the
gestures, like taking a bow or kicking, that are gestures not
related to motions of the upper limbs. The data set comprises
tracking information of 20 joints collected using Kinect pose
estimation pipeline from 30 people performing the gestures.
The subset of gestures in the lexicon, was selected to include
only gestures involving upper-limbs motion (Fig. 1).
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Fig. 1. Gesture lexicon from MSRC-12

B. Formal definition of the One-Shot Learning problem
Let L describe a set or lexicon formed by N gesture

classes, Gi where L = {G1,G2, ...,Gi, ...,GN}.Each ges-
ture class is formed by the set of gestures instances gik
∈ Gi , where k = 1, ...,Mi. Where Mi is the number of
observations of gesture class i. Gesture observations are a
concatenated trajectory of 3D points with h as the total
number of sample points within an observation.

gik = {(x1, y2, z1), ..., (xh, yh, zh)} (1)

The N-shot classification paradigm involves gathering
multiple observations of each gesture class to obtain ade-
quate classifying solutions. Instead, in the case of one-shot
learning, we rely on one observation as the basis to generate
several others. Thus, gik exists only for k = 1. We resort
to create additional instances which could be used to later
train and test a variety of classification algorithms. The new
artificial instances result in an increase in dataset size from
k = 1 to k = Mi. This parameter Mi is the desired number
of instances of that class required for training. Equation (2)
is applied to a single observation gi1, and is used to extract a
set of inflection points labeled as xiq , where q = 1, ..., l and
l < h.

G̃i =
{
xi
q = (xq, yq, zq) : xi

q ∈ gik, q = 1, ..., l, l < h
}

G̃i ∈ G̃L, i = 1, . . . , N
(2)

The set of inflection points, is a compact representation
obtained using the function M (3) that maps the gesture

dimension h to a reduced dimension l by extracting the
salient points of a given gesture instance. These set of
inflection points, G̃i (3), will serve as the basis to create
artificial gesture instances, ĝik, ∈ Rh for each Gi. Then,
artificial gesture examples for G̃i are generated through the
function A (4), which maps from dimension l to gesture
dimension h (Fig. 2). Function A is described further in [4].

G̃i =M(gik), k = 1, i = 1, . . . , N ;

gik ∈ R3×h; G̃i ∈ R3×l; l < h
(3)

ĝik = A(G̃i), k = 1, . . . ,Mi; i = 1, . . . , N (4)

Fig. 2. Changes in gesture dimensionality through functions M and A

The function Ψ (5) maps gesture instances to each gesture
class using the artificial examples.

Ψ : ĝik → Gi (5)

For future instances gu the problem of one-shot learning
gesture recognition is defined in (6) as:

Max Z =W{Ψ(gu),Gi}
s.t. i ≤ N ; i ∈ Z+; Gi = Ψ(gi1); Ψ(gu) ∈ L

(6)

Where, gu are the unseen instances of an unknown class
and W is the selected metric function, for instance accuracy
or F-Score.

The motivation behind this form of gesture encoding
is to replicate the way that humans perceive gestures in
order to later decode them to generate human-like arm/hand
trajectories.

The main form of encoding relies on keeping only the
inflections points within a trajectory together with a variance
associated to that point. It can be argued that encoding using
the inflections points may not be the most effective form of
compact representation of a gesture. Yet, in a preliminary
experiment, it was found a relationship between the timing
of mu oscillations and kinematic inflection points, such that
inflection points were followed by interruptions in mu sup-
pression approximately 300 ms later. This lag is consistent
with the notion that inflection points may be utilized as place
holders involved in conscious gesture categorization. The fact
that positive correlations have been observed between abrupt
changes in motion and spikes in electroencephalographic
(EEG) signals associated with the motor cortex supports the
hypothesis of a link between inflection points in motion and
cognitive processes [5]. Therefore, these points can be used
to capture large variability within each gesture while keeping
the main traits of the gesture class.
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C. Classification algorithms

Four different classification algorithms were trained using
200 artificial observations per gesture class. The perfor-
mances were evaluated using 100 testing gesture examples
from the public dataset mentioned earlier. The algorithms
selected were DTW, CRF, HMM and SVM, renowned for
their use in state-of-the-art gesture recognition approaches.
In the case of HMM and SVM, a one-vs-all scheme was
used, while CRF and DTW provide a metric of likelihood
to the predicted result after training is completed.

The DTW classification algorithm was implemented using
the Gesture Recognition Toolkit (GRT) [20], which is a C++
machine learning library specifically designed for real-time
gesture recognition.

Each HMM is comprised by five states in a left-to-right
configuration and trained using the Baum-Welch algorithm,
which has been previously shown to generate promising
results in hand gesture recognition [21].

For the SVM, each classifier in the one-vs-all scheme was
trained using the Radial Basis Function (RBF) kernel. The
library available in MATLAB was used to implement SVM.

In the case of CRF, the training examples were encoded
using the BIO scheme to determine the beginning (B), inside
(I), and outside (O) of a gesture. The CRF++ toolkit was used
to train and test this classification algorithm [22].

D. Performance metrics

The recognition accuracy metric, Acc%, is used to evaluate
the percentage of correct classification over total number of
observations. It is defined in (7) as the ratio of the number
of true estimations, Etrue, to the total number of testing
examples, Esamples. Accordingly, recognition accuracy is
equivalent to the sum of diagonal elements of a confusion
matrix divided by the sum of all elements of matrix.

Acc% =
Etrue

Esamples
× 100% (7)

Results of overall accuracy are calculated as the average
of gesture accuracy per class.

A second metric is applied to measure the level of coher-
ence between the performance of the classifiers and human
observers. Both the classifiers and the human assess gestures
performed artificially by a robot. High coherence found
between human and machine classification indicates that the
method used to generate artificial examples encompasses
variability that humans understand as being part of the same
gesture class.

The second proposed metric, coherency γ(·) indicates
the resemblance between classifiers and human observers’
recognition of gestures. The goal with this metric is to
evaluate how well the method presented can mimic human
production, perception and recognition. Coherency (8) is
defined as the intersection between the sets of agreement
indices (AIx) for both humans (MH) and machines (MM).
The intersection is measured when both machine and humans
either identify correctly a gesture or misidentify it regardless
of the class where the agents classified them.

γ =
AIxmachine ∩AIxhuman

‖AIxhuman‖
× 100% (8)

The AIx is measured as the median of a set of Boolean
values of gesture recognition, which indicate whether the
gesture was being correctly classified (1) or not (0). The
value ‖AIxhuman‖ indicates the count of elements in each
set, which is identical for humans and machines.

E. Progression of One-Shot framework to Adaptive Learning

The developed methodology for artificial generation of
gesture examples is applied to achieve adaptive learning.
Assuming the number of samples per class Mi is kept
constant throughout the process of adaptive learning, the
proportion between original samples gikO

∈ R3×h and
artificially generated examples ĝikA

∈ R3×h changes. α%
is the percentage of artificial data that needs to be generated
for each real observation. The number of samples for real and
artificial observations is given by, kO and kA, respectively.
These parameters are related through (9):

Mi = kO + kA, α =
(Mi − kO)

kOMi

1 ≤ kO ≤Mi

(9)

For example, for Mi = 200 and assuming the one-shot
learning case, we have kO = 1, kA = 199. Then α% =
99.5% of the data needs to be generated from the single
observation. If instead kO = 2 then kA = 198, but only
49.5% of the data needs to be generated for each. As the
value of kO grows, the number of artificial examples created
from each original example decreases. This notion is shown
in Fig. 3. When kO = Mi, (N-shot learning) there is no need
to generate artificial examples at all.

Fig. 3. Visual representation of the proportion of original and artificial
examples in the training set

Conversely, with fewer number of observations available,
the true observations have higher representation in the artifi-
cially generated data set. This could result in two opposing
scenarios: either increasing the performance of the trained
classifier by providing variability associated to the gesture
class, or worsen the performance of the trained classifier if
the example was an outlier within the gesture class.
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IV. RESULTS

A. Recognition accuracy

In order to test recognition accuracy, a testing set com-
prised of 100 examples per class was used. The average
recognition per gesture class, as well as Acc% are shown
in table I. All the results are comparable, with highest
recognition for the SVM and lowest for CRF. It is considered
a positive result to have comparable accuracies for different
classifiers, since the method developed for one-shot learning
is agnostic of the classification method used.

TABLE I
RECOGNITION ACCURACY (%) FOR TRAINED CLASSIFIERS

Gesture HMM SVM CRF DTW
Start 92 92 85 93

Next 95 96 89 95

Goggles 93 93 87 90

WindUp 89 91 86 90

Shoot 89 91 91 91

Throw 91 92 92 90

ChangeWeapon 89 91 86 90

Tempo 88 89 93 92

Overall 90.9 91.9 89.1 91.4

B. Coherency

To test the coherency of the gestures generated using our
approach, ten participants were recruited. Each was asked to
watch a video of a person performing one labeled example
of each gesture class in the selected subset of the MSRC-
12 dataset. Next, each participant observed the Rethink
Robotics’ Baxter robot performs a total of 16 artificially
generated gesture instances, two of each gesture class, in
random order. They were then asked to assign a label to
each gesture instance performed by Baxter.

The same artificial trajectories were performed by Bax-
ter and detected using a Kinect. Using blob segmentation
and tracking the trajectories of Baxter’s end-effectors were
determined and used as testing examples for the trained
classifiers. These classifiers, in turn, predicted the labels of
all the artificial gesture instances mentioned previously.

Table II shows the recognition accuracies found for
each interaction combination: robot-human (MH) and robot-
classifiers (MM). The last two columns represent the overall
recognition for MM and MH respectively.

Using the recognition results from the previous two sce-
narios, the metric of coherency was calculated using (8).
The AIx among users and machines were calculated for each
gesture type and instance. The recognition coherence found
across the 20 lexicon sets tested was γ = 93.8%. Given that
100% is perfect coherency, the obtained value indicates a
very good coherency between humans and machines.

TABLE II
RECOGNITION ACCURACY (%) FOR DIFFERENT INTERACTION

COMBINATIONS: ROBOT-HUMAN (MH) AND ROBOT-MACHINE (MM)

Gesture
Robot-Machine (MM) Robot-

Human
(MH)HMM SVM CRF DTW ALL

Start 90 90 90 85 88.8 90

Next 95 95 90 95 93.8 100

Goggles 90 90 90 90 90 90

WindUp 85 85 80 90 87.5 100

Shoot 90 90 85 90 88.8 70

Throw 95 95 90 95 93.8 95

ChangeWeapon 85 90 85 90 85 100

Tempo 85 90 85 85 86.3 100

OVERALL 89.4 90.6 86.9 90.0 89.2 92.5

C. One-Shot to Adaptive Learning

The developed methodology for adaptive learning is
implemented using two different classification algorithms:
DTW and HMM. Ten different values of original samples are
assessed and their overall accuracy reported. The Number of
artificial samples used for training was 200.

Fig. 4 is the graphical representation of the overall accu-
racy as a function of the number of original examples used to
generate artificial examples to augment the training data set.
A reference value for the one-shot learning was included
based on the recognition accuracy of each classification
algorithm.

Fig. 4. Accuracy Recognition for adaptive learning framework as number
of original examples varies

As the number of real observations grow, there is an
increasing trend for the recognition accuracy in both clas-
sifiers used. Interestingly, when only two real samples were
provided, the recognition accuracies were below the one-shot

788788788788788



baseline. A possible explanation is that the observation used
was an outlier among the typical observations of that class.
This occurrence is found in the results of both classifiers,
though the HMM result for k = 2 was influenced less
lowering the baseline performance. Using an outlier that was
not well recognized, will lead to augmenting the dataset of
observations with hard to classify gesture instances. Nev-
ertheless, as more observations are added, the recognition
accuracy picks-up again and reaches 95.89% for DTW and
95.22% for HMM.

V. CONCLUSION

This paper presents the methodology and metrics as-
sociated with a framework to achieve one-shot gesture
recognition. This framework is based on the extraction of
salient points in gesture trajectories which are used as a
compact representation of each gesture class. Using this
compact representation, an augmented data set of realistic
artificial samples is generated and used to train classifiers.
Four classifiers commonly used in state-of-the-art for gesture
recognition were used to evaluate the effect of classifier on
the overall performance. Recognition accuracy was measured
for each classifier using a subset of the publicly available
data set of Microsoft Research MSRC-12. The recognition
accuracy of all classifiers showed comparable results with
an average recognition of 90%. A different metric was
used to measure the artificially generated examples in terms
of recognition coherence between humans and machines.
For this, a robotic platform was used to perform a set of
these artificial examples. The resulting coherence was 93.8%,
indicating a high level of agreement in recognition when the
recognizing agent in the interaction is changed.

Results regarding adaptive learning implementation were
shown in terms of recognition accuracy as a function of
the number of original examples included in the artificial
generation process. Two classification algorithms were used:
DTW and HMM. Recognition accuracy was computed when
only one observation was provided to generate the artificial
data sets, then two observations and so on until reaching
10 observations. It was observed that, as expected, the
performance grows with a stronger representation of real-
data within the mixed dataset.
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