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Abstract— Previous work in the area of gesture production,
has made the assumption that machines can replicate human-
like gestures by connecting a bounded set of salient points in the
motion trajectory. Those inflection points were hypothesized to
also display cognitive saliency. The purpose of this paper is to
validate that claim using electroencephalography (EEG). That
is, this paper attempts to find neural signatures of gestures (also
referred as placeholders) in human cognition, which facilitate
the understanding, learning and repetition of gestures. Further,
it is discussed whether there is a direct mapping between
the placeholders and kinematic salient points in the gesture
trajectories. These are expressed as relationships between
inflection points in the gestures trajectories with oscillatory mu
rhythms (8-12 Hz) in the EEG. This is achieved by correlating
fluctuations in mu power during gesture observation with
salient motion points found for each gesture. Peaks in the
EEG signal at central electrodes (motor cortex; C3/Cz/C4)
and occipital electrodes (visual cortex; O3/Oz/O4) were used
to isolate the salient events within each gesture. We found that
a linear model predicting mu peaks from motion inflections
fits the data well. Increases in EEG power were detected
380 and 500ms after inflection points at occipital and central
electrodes, respectively. These results suggest that coordinated
activity in visual and motor cortices is sensitive to motion
trajectories during gesture observation, and it is consistent with
the proposal that inflection points operate as placeholders in
gesture recognition.

I. INTRODUCTION

Gesturing is a form of engaging the body into expressions

with varied objectives, among which are: conveying a mes-

sage, completing an action, or as a reflection of a bodily state.

There has been abundant research relating gestures to speech

on the neurological level [1], [2], as well as the importance

and benefits of gestures in learning [3]–[6].

However, this line of research has not crossed over to

fields such as gesture recognition. The state of the art

in gesture recognition heavily relies on data mining and

visual characteristics [7], [8], yet the cognitive processes

related with gesture production and perception have not been

considered as a prominent source of features for gesture

recognition.

By observing how humans learn to gesture and what

determines the forms of gestures produced, we can learn how
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to generate human-like gestures by machines. Furthermore,

if there are cognitive signatures related to gestures observed,

those signatures may be used to compress a gesture in our

memory while keeping the intrinsic characteristics of the

gesture. When a gesture is recalled, these key-points asso-

ciated with the cognitive signatures are used to uncompress

these gesture into physical expression. In addition, multiple

instances of the same gesture will share key common motion

components among all instances, regardless of the variability

associated with human performance. The purpose of this

research is to find a relationship between the salient points in

gesture motion with oscillations in the mu frequency band,

brain activity associated with the motor cortex.

Relative to a pre-stimulus baseline, mu activity is sup-

pressed when individuals perform gestures themselves and

when they observe others perform gestures [9], [10], a phe-

nomenon known as event-related desynchronization. Criti-

cally, this mu phenomenon is continuous throughout stimulus

duration when the gestures are meaningless but follows a

more dynamic time course when the gestures are social or

communicative in nature [11]. Fluctuations in mu activity

while observing communicative gestures is not related to the

total amount of movement per se; rather, it is thought to

relate to the processing of gesture meaning. Building on this

finding, we tested whether the timing of mu oscillations dur-

ing gesture observation would follow a unique time course

for each gesture; those peaks in mu activity could be used to

infer the time that most salient gesture characteristics occur.

We hypothesized that these characteristics would correspond

to inflection points in the kinematic trace of the gesture

manifestation.

The potential impact of this finding is that we could use

these inflection points to represent placeholders to produce

human-like instances of gestures non-discriminable by the

human psyche.

The contributions of this paper are: (a) quantify the unique

time courses of oscillatory mu activity elicited by a range

of communicative gestures; (b) establish a link between

the timing of mu oscillations and the occurrence of salient

points in gesture motion trajectories; and (c) demonstrate

that inflection points in gesture motion elicit corresponding

peaks in mu activity, suggesting that they may operate as

placeholders in gesture recognition.

The remaining sections of this work cover a background

on the importance of gestures as utterance and the neuro-
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logical aspects of action understanding. This is followed by

the materials and methods section, where the experiment

design is described. The results section presents the main

findings, complemented by a discussion section. Finally, the

conclusions and recommendations are presented.

II. BACKGROUND

A. Gesture Utterance

While different gesture representations have been de-

veloped and are well established in the machine learning

community, there is still a lack of research that includes the

cognitive/behavioral aspects and the computational aspects in

a coherent schema that can be applied to gesture recognition.

Reviewed studies show analysis on gestures from different

frameworks: Novack et al. [12] analyzed gestures from a

movement perspective regarding surrounding objects and the

impact on recognizing motions as gestures or not. Gibet et
al. [13] analyzed gestures from a motor control perspective

finding some commonalities in gesture execution related

to invariance in velocity profiles and minimum jerk. This

supports the idea that gestures are executed through smooth

trajectories.

Regarding gesture perception, Peigneux et al. [14] con-

ducted a study using brain imagery to detect the areas of the

brain involved in the imitation of familiar and novel gestures,

with the aim to build a cognitive model for apraxia (inability

to perform particular purposive actions, as a result of brain

damage). Their findings suggest that a single memory store

may be used for gestural representation either in perception

or production.

Brain functionality related to both gestures and spoken

language appears to be highly overlapped. This conveys

the importance of gestures in both adult speech and infants

language development [15]. Kok and Cienki [16] highlight

the similarities in the cognitive process relating speech

with gestures, aligning some of the properties of cognitive

grammar to gesture production. A study based on preschool

children [17] compared the effects of including physical

activity and gesturing when learning a foreign language. The

use of task-relevant gestures had a positive effect on learning,

showing consistent results with previous research relating

gestures with lasting memories [18].

B. Action Understanding and the Brain

Understanding the actions of others is critical to assess

goals and intentions. This fundamental recognition is es-

sential for survival, as well as social interactions and func-

tioning. In terms of survival, and animals ability to identify

movements of potential mates, prey, and predators are essen-

tial for predicting future movements where the consequences

of such movement may prove disastrous. Similarly, humans

require such fine-tuned perception in order to function at

a much higher level. Specifically, empathy, communication,

social skills, and overall coordination can all be traced back

to the importance of motor representations [19].

Mirror neurons in the premotor and parietal cortex of

monkeys have been shown to become activated when the

monkey performs a particular action, and when it observes

others behaving in similar ways [20]. The mirror neuron

system (MNS) appears to be activated by all actions, both

simple and complex, and also during the execution as well

as observation of an action [19].

There have also been claims that MNS activation is closely

connected to electro-physiological mu suppression [21]. Mu

suppression can be measured non-invasively by electrodes

on the scalp. As stated previously, mu suppression has been

argued to play a role in contexts involving social interaction

as well as passive action observation. However, when ges-

ticulations are meaningful, representations of this semantic

meaning should also be mapped to the visual stimuli in order

to determine if there is a match between meaning and the

representation of an action.

III. MATERIALS AND METHODS

The data used in this work was gathered and analyzed in

two distinct fronts represented in Fig. 1: one is related to the

motions by the person performing the gestures, where the

trajectories of the hands are tracked, and used to determine

the occurrence of inflection points; the second is related to

the neural signatures acquired from the person observing the

performed gestures. These neural signatures are analyzed to

find the occurrence of signal peaks in the EEG channels

related with the motor and visual cortex.

Motion information was extracted from each gesture in

one lexicon from the ChaLearn dataset. For each gesture,

time stamps for inflection point occurrences were compiled.

Inflection points were determined taking the first derivative

of the motion trajectory for each of the gesturers hands, and

finding the local maxima and their corresponding time stamp

in the gesture duration.

Fig. 1. Methodology Overview.

A. Participants

The data presented was collected from four adult volun-

teers, as part of a larger ongoing project (Age: M=20.5,

SD=3.0, Range=18-24; Gender: 1 female, 3 male).
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B. Gesture Task

Participants passively viewed 20 videos taken from the

2013 ChaLearn stimulus set [22]. Each video was approx-

imately 3 seconds in length and showed a single actor

performing a gesture. Videos were presented in black and

white and only the silhouette of the actor was visible, thereby

making the physical motion of the gesture the most salient

aspect of the video. Participants viewed each gesture a total

of six times, with an inter-stimulus interval of 2 seconds;

gesture order was randomized across participants.

C. EEG and Analysis

The continuous EEG was recorded using an ActiCap and

the ActiCHamp amplifier system (Brain Products). The EEG

signal was digitized at 24-bit resolution and a sampling rate

of 500 Hz. Recordings were taken from 32 scalp electrodes

based on the 10/20 system, with a ground electrode at

Fpz. BrainVision Analyzer (Brain Products) was used for

offline analysis. Data were referenced to the average mastoid

electrode and bandpass filtered from 0.1-100 Hz. The signal

was segmented from -1000 to 5000ms relative to video onset,

and ocular correction was performed using a regression

algorithm. Artifacts were rejected within individual channels

using a semiautomated procedure. Oscillations in the mu

frequency band were evaluated using a continuous wavelet

transformation. Complex Morlet wavelets were applied, with

a frequency range of 1-20 Hz, frequency steps of 0.5 Hz,

and Morlet parameter of c=5. Segments were baseline cor-

rected relative to the -500 to -100ms window and averaged

separately for each gesture video. We focused our analysis

on the wavelet layer peaking at 10 Hz. We extracted this

wavelet at a cluster of central electrodes (i.e., directly above

the motor cortex; C3/Cz/C4), where mu activity is known

to be maximal. For comparison, we also considered an oc-

cipital cluster (O3/Oz/O4). We expected that these occipital

electrodes would capture visual cortical activation associated

with stimulus processing but not mu activity per se [11].

D. Statistical Analysis

For this analysis, the three channels associated with the

motor cortex responses (C3/Cz/C4) were averaged over

and will be further referred to as C Channels; analogous

to the channels associated with visual cortical activation

(O3/Oz/O4) further referred to as the O Channels. Inflection

points extracted from one ChaLearns lexicon, are the peaks

found in the first derivative for the motion trajectory of the

gesturers hands for each gesture class.

Time stamps of inflection points from motion data and

peak information from EEG data were plotted (time vs. time).

Three different trend lines were fitted and their corresponding

R2 values were extracted to determine correlation between

the variables.

A linear regression model was fitted for three different

scenarios:

• The dependent variable was the time response for the

C Channels, when the independent variables considered

are the motion data and the gesture class, including the

interaction between them. This determines a relation-

ship between responses in the motor cortex when there

are salient points in gesture motion.

• The dependent variable was the time response for the

O Channels, when the independent variables considered

are the motion data and the gesture class, including the

interaction between them. This determines a relation-

ship between responses in the visual cortex when there

are salient points in gesture motion.

• The dependent variable was the time response for the C

Channels, when the independent variable considered is

the O Channels. This determines a relationship between

activation in the motor cortex when there are activations

in the visual cortex.

Statistical significance of the linear regression coefficients

was determined in each case using F-test and p-values for

each independent variable.

IV. RESULTS

A. EEG Response

First, the average EEG response was collapsed across all

gesture stimuli in order to test for commonalities in mu activ-

ity. At occipital electrodes, there was a decrease EEG power

at 10 Hz, which corresponds to alpha activity and represents

visual cortex activation associated with stimulus viewing. As

expected, this average response at occipital electrodes was

sustained from 400-3000ms, indicating continuous visual

activity throughout stimulus duration and that participants

attended to the gestures videos.

A different pattern emerged at central electrodes, where

mu activity occurs: there was evidence of mu suppression

from 180-1000ms and peaking at 400ms (highlighted by the

gray box in Fig. 2, top). This indicates that, regardless of the

unique kinematic characteristics of each gesture, there was

automatic suppression of mu activity within the first second

of gesture viewing. This is consistent with a previous EEG

study showing that both communicative and meaningless

gestures elicited common mu suppression during the first

second of viewing, a general response within the motor

cortex that is distinct from the visual cortical response

apparent at occipital electrodes [11].

Next, we considered the latencies of the first positive-

going peak of mu activity for each gesture (i.e., the first

positive local maximum occurring after stimulus onset).

Insofar as each gesture video elicits a decrease in mu power

within the first 400ms of stimulus viewing, these positive-

going peaks represent the first evidence of dynamic mu

oscillatory activity associated with gesture interpretation. Of

the 20 gestures used, 14 (70%) elicited a peak in mu activity

within 1000ms of the inflection point for that video; for the

remaining 4 gestures, the mu peak either occurred before

the inflection point (3) or more than 1000ms afterward

(1), indicating that it was likely not associated with the

inflection point per se. Of these 14 gestures, the time interval

from the inflection in the gesture video to the peak in mu

activity was 272ms (SD=163ms, Range=14-632ms). This
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Fig. 2. Top: EEG power, averaged across all gesture stimuli (x-axis=time,
y-axis=frequency; blue=decrease in power, red=increase). Bottom: Time
course of mu activity (10 Hz wavelet) for two representative gestures, each
of which had four inflection points, shown in the embedded video frames.
Arrows show the timing of each inflection point, and the corresponding mu
peaks are labeled in red. Note that positive power is plotted down in the
two mu graphs.

pattern indicates correspondence between the timing of mu

oscillations and initial gesture inflection points.

Of the 20 gesture stimuli, 16 contained a second iden-

tifiable inflection point. Of these, 9 (56%) also elicited a

second peak in mu activity; the remaining 7 gestures either

elicited a peak before the second inflection point (6) or did

not elicit a second mu peak (1). Of these 9 gestures that had

a second inflection point and a subsequent second peak in

mu activity, the pattern was similar to that of the first peak,

with an average inflection-peak interval of 339ms (SD=228,

Range=8-654ms).

Of particular interest were two gesture stimuli that each

had four identifiable inflection points and also elicited four

mu peaks. The time courses of mu activity, as well as the

relative positioning of the inflection points and the mu peaks

for each gesture, are presented in Figure 2 (bottom). For both

of these gestures, there was a relatively consistent inflection-

peak lag, with all for peaks occurring within 300ms of

each inflection point (Gesture #7: M=163ms, Gesture #12:

M=244ms). Thus, for gestures with relatively rich kine-

matic characteristics (i.e., multiple inflection points occurring

within 3s), there appears to be close correspondence with

the timing of these inflection points and the timing of

fluctuations in mu activity. These preliminary results are

consistent with the proposition that inflection points function

as placeholders within gesture expression, and that these

placeholders modulate activity within the motor cortex that

is associated with gesture processing and interpretation.

B. Statistical Analysis

Collected timestamps in both motion trajectory and EEG

channels were used to determine a correlation between the

variables, namely inflection points occurrence and peaks in

mu activity. A time vs. time plot was generated to find

the linear relationship between responses in three different

combinations: motor cortex responses in terms of inflection

point occurrence (C vs. IP, Fig. 3), visual cortical activation

in terms of inflection point occurrence (O vs. IP, Fig. 4), and

motor cortex responses in terms of visual cortical activation

(C vs. O, Fig. 5). These plots were generated without

regarding gesture class and focusing on the time responses

in the lexicon set.

Fig. 3. Time points of motor cortex responses in terms of inflection points
(C vs. IP). Fitted linear trendline with R2 = 0.925

For the first combination, C Channels vs. inflection points,

the fitted linear equation, with coefficient of determination

R2 = 0.925, shows an independent term associated to the

lag between occurrence of an inflection point and a peak

in the motor cortex response of 498ms. For the second

combination, O channels vs. inflection points, the fitted linear

equation with R2 = 0.933, shows an independent term of

382ms. This once again represents the lag between the occur-

rences in the two signals. The last combination, motor cortex

responses in terms of visual cortical activation, resulted in a

fitted line with R2 = 0.912, the lowest coefficient among all

combinations. In all combinations, positive correlation was

found among the variables.
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Fig. 4. Time points of visual cortical activation in terms of inflection points
(O vs. IP). Fitted linear trendline with R2 = 0.933

Fig. 5. Time points of motor cortex responses in terms of visual cortical
activation (C vs. O). Fitted linear trendline with R2 = 0.912

In all cases, the adjusted slope value was close to 1,

indicating a close to one-to-one correspondence among re-

sponses.

A second analysis was conducted on the data, this time us-

ing the information of each gesture class. A linear regression

model was fitted for two of the previous combinations, using

an additional independent variable which represented gesture

class and its interaction with time responses of inflection

point occurrence.

The model used for the first combination is shown in (1).

The fitted model showed an F-statistic of 357 with p < 0.001.

CCh ∼ 1 +GClass ∗MIP (1)

None of the coefficients associated with gesture class showed

statistical significance, while the coefficients for the intercept

(estimated 187.4) and the time occurrences for inflection

points from the motion data did (p<0.0001).

Similar results were found for the second fitted model

shown in (2), with an F-statistic of 410 with p<0.001. In

this case the intercept estimation was 165.8 (p<0.0001).

OCh ∼ 1 +GClass ∗MIP (2)

V. DISCUSSION

Consistent with previous research, gesture observation was

associated with mu suppression during gesture observation.

Whereas previous studies have focused on static measures of

mu suppression (i.e., average reduction in EEG power from

during the full stimulus presentation), here we focused on the

time course of oscillatory mu activity and whether the timing

of peaks in mu power would correspond to the occurrence

of salient gesture characteristics. We found a strong linear

relationship between the timing of inflection points in the

gesture motions and mu peaks within the EEG signal, with

an average lag of approximately 500ms. In other words, we

found close correspondence with the time course of gesture

motion and the time course of mu oscillations. This result

is consistent with the notion that inflection points operate as

placeholders involved in gesture recognition.

Notably, we detected a similar pattern of oscillatory activ-

ity at occipital electrodes. Mu activity, thought to represent

activation of the motor cortex during both action execution

and action observation, is maximal at central electrodes (i.e.,

those that are directly above the motor cortex [9]. On the

other hand, EEG activity in this same frequency band, 8-12

Hz, at occipital electrodes is known as alpha and is thought to

represent activation of the visual cortex. In a previous study,

observation of communicative versus meaningless gestures

modulated central mu activity but not occipital alpha activity

[11]. That study only considered average EEG power in 1s

intervals, however, whereas in the current study we used

the temporal precision of wavelets to detect peaks within

the EEG waveform. We found a close coupling between

the timing of peaks at central and occipital electrodes, and

both were related to the timing of inflections in the motion

trajectories. One possibility is that this represents coordinated

activation of visual and motor cortices involved in gesture

processing. The earlier timing of occipital peaks (380 vs.

500ms) suggests that visual cortical activity may have been

driving motor cortical activity, although this needs to be

verified in future research.

The current findings are qualified by several limitations.

Insofar as these pilot data were collected to assess the

feasibility of using EEG to detect placeholders in gesture

recognition, the sample size was small; these findings require

replication in a larger sample. We also only considered

communicative gestures. In the future, it would be valuable

to contrast communicative versus meaningless gestures in

order to test whether visual-motor EEG oscillations are

specific to gesture recognition (i.e., communicative gestures)

or generalize to all instances of biological motion, regardless

of communicative intent.

The current findings demonstrate that oscillations in EEG

mu rhythms are sensitive to the occurrence of inflection

points during gesture processing. This is consistent with the

possibility that these inflection points are salient character-

istics involved in gesture recognition, comprehension, and

repetition.
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VI. CONCLUSION

The purpose of this paper is to validate the claim that

gesture production contains a bounded set of salient points

within the motion trajectory by finding a relationship be-

tween these salient points in motion trajectory with the

neural signatures of gestures using EEG. This was achieved

by correlating fluctuations in mu power during gesture ob-

servation with salient motion points found for each ges-

ture. Peaks in the EEG signal at central electrodes (motor

cortex; C3/Cz/C4) and occipital electrodes (visual cortex;

O3/Oz/O4) were used to isolate the salient events within

each gesture. The quantified time courses for mu activity os-

cillation were detected 380 and 500ms after inflection points

at occipital and central electrodes, respectively. These results

suggest that coordinated activity in visual and motor cortices

is sensitive to motion trajectories during gesture observation,

and it is consistent with the proposal that inflection points

operate as placeholders in gesture recognition.

The potential of this work is that it provides evidence that

inflection points are placeholders for key points in the gesture

trajectory, which encode the gestures in human cognition.

Therefore, these points can be used to capture large vari-

ability within each gesture while keeping the main traits of

the gesture class. The limitations of these work include the

lexicon size and the sample size of participants for gathered

data. Further studies with other type of gestures and larger

lexicons should be conducted. Future work should include

understanding how these placeholders appear in different

level of abstractions in gestures. For example, the study

focused on trajectories of the hands, but does not consider

the motion of the fingers or the hand or body configuration.

We believe that similar inflections points are likely to exist

in the spatial-temporal kinematic traces of gestures in the

other abstraction levels as well, but this remains to be tested

in future work.
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