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a b s t r a c t

Crystallization is one of the most commonly used and relatively well explored techniques in industries. Yet
there are beleaguering issues towards fundamental understanding of this process. One of the curious
observations is the appearance of unavoidable dispersions in nucleation and growth rates of crystalline
materials grown under homogenous bulk conditions. These dispersions can contribute significantly towards
polydispersity in crystalline products. The classical models such as Gibbs critical nucleation theory and
Burton–Cabrera–Frank growth models primarily relate nucleation and growth to supersaturation. Therefore,
the dispersions in nucleation and growth rates can be related to the local fluctuations in supersaturation.
These local fluctuations are driven by the Brownian motion of solute molecules which affects the local
concentration and temperature and hence supersaturation. This article presents a stochastic model to
describe fluctuations in supersaturation and thereby dispersions in crystalline materials. The stochastic
model is derived from the framework of density and temperature fluctuations. The resulting dispersions in
size and shape of nuclei are obtained by multi-dimensional maximization of Gibbs free energy in
morphology domain of potassium acid phthalate. The model predictions are validated with the experimental
measurements of growth rate dispersions in potassium acid phthalate crystals. The proposed framework
provides the first ab initio predictions for the observed dispersions in crystallization processes.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The advanced techniques to predict (Singh and Ramkrishna,
2013; Singh et al., 2013) and measure (Singh et al., 2012) crystal
morphologies and face-specific growth rates have contributed
significantly to the understanding of crystallization. The under-
lying processes of crystallization such as nucleation and growth
are known to affect sizes and morphologies of crystals. The

solution crystallization is primarily driven by the supersaturation
which is often quantified as the solute concentration relative to its
saturation limit. The existing theories of crystal nucleation and
growth provide a deterministic relationship of the size and
morphology of crystals with the supersaturation (Myerson,
2002). Therefore it is quite natural to expect that under fixed
crystallization conditions, including supersaturation, crystals will
nucleate of mono-dispersed sizes and morphologies that will grow
identically, which are often contrary to the experimental observa-
tions. Such evolution of a population of crystals is usually
described by hyperbolic population balance equations with Dirac
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delta type forcing function or boundary condition. Clearly, the
solutions of such population balance equations at fixed operating
conditions should follow a uniform distribution. Randolph and
White (1977) showed that the spreading of size distribution is due
to random fluctuations in growth rates. The synthesis of nanopar-
ticles in micellar solutions is a good example of batch crystal-
lization where breakage and aggregation are negligible, and the
only processes governing their sizes and morphologies are nuclea-
tion and growth (Taleb et al., 1997). Non-uniform size and
morphology distributions in crystalline materials growing under
fixed conditions are commonly observed and so far they have been
dealt with empirically in the literature (Randolph and Larson,
1971). This article presents an ab initio approach to explain such
dispersions in nucleation and growth rates occurring in crystal-
lization, based on the fundamentals of Brownian dynamics.

Growth rate dispersion is defined as the variations in growth
rates under fixed thermodynamic and hydrodynamic conditions,
including supersaturation. Crystalline materials can show wide
range of dispersion in growth rates based on the environmental
conditions. Experimental values of growth rate dispersion for different
crystalline materials can be found in review articles (Garside, 1985;
Ulrich, 1989). The growth of crystals or their faces is due to transfer of
solute molecules from bulk to the kink sites on the crystal faces. The
growth rates are therefore dependent on the mechanism of kink site
formation and the supersaturation of solute molecules, both of which
can be stochastic. The densities of kink sites and their evolution are
functions of temperature and supersaturation. In general, the growth
rates functions (Winn and Doherty, 2000) can be expressed as

_Hi ¼ gðϕkink
i ; TÞf ðSÞ ð1Þ

where _Hi is a growth rate of ith face,ϕkink
i the free energy of kink, T is

the temperature and S is supersaturation defined as ratio of solute
concentration to the saturation concentration. Eq. (1) indicates that
the growth rates are functions of thermodynamic properties that
determine ϕkink

i and the dynamic conditions such as temperature
and supersaturation. The dynamic conditions are the manifestation
of Brownian motion of molecules which on a smaller length scale
tend to fluctuate. That means, even if the bulk temperature and
supersaturation of the crystallizer are fixed they are bound to
fluctuate locally due to Brownian motion. Such fluctuations tend to
dissipate with increase in length scale. The growth rates are the
realization of the progression of kink sites whose length scales are
small enough to observe significantly larger fluctuations. The calcula-
tions of growth rate dispersion are predicated on the assumption
that Eq. (1) may be applied on a time scale in which temperature and
supersaturation fluctuate.

Nucleation is another local phenomenon that is primarily
driven by supersaturation. The Gibbs critical nucleation theory
relates the equilibrium size and shape of crystal nuclei with
supersaturation and temperature (Myerson, 2002). Furthermore,
the rate of nucleation derived from the Arrhenius law also shows
the direct dependence on supersaturation and temperature. In this
case, the Brownian motion induced fluctuations in supersaturation
and temperature will yield distributions in size and shape of nuclei
and the nucleation rates. Calculations of growth rate dispersion,
nuclei size and shape distributions and nucleation rate distribu-
tion resulting from local fluctuations are shown for potassium acid
phthalate crystals.

This article is organized as follows. In Section 2, we present a
broad outline of the theory which features its salient implements
deferring mathematical details of their development to suitably
organized Appendices. Section 3 predicts the nuclei morphology
distribution from the distribution of supersaturation using Gibbs
critical nucleation theory. Section 4 uses the experimentally mea-
sured face-specific growth rate functions of Potassium Acid

Phthalate to predict the growth rate dispersion. Section 5 imple-
ments the identified growth rate dispersion and nucleation kernels
to population balance equations. Section 6 gives the summary of
work with the scope for future extension.

2. Theory

As articulated earlier, our goal is to develop a theory by which
experimentally observed dispersion in nucleation and growth
rates can be predicted. The theory is built on attributing this
observed dispersion to the fluctuations in number density of
solute molecules and temperature due to Brownian motion. We
start from the usual premise that the supersaturation drives
nucleation and growth in crystallization. Supersaturation, defined
as the concentration of solute relative to the saturation concentra-
tion, can be expressed in many ways. One of the ways to describe
supersaturation S is

S¼ c
csat ½T�

ð2Þ

where c is the molar concentration and csat is the saturation
concentration which is a function of temperature T . Predicting the
effects of other environmental factors such as co-solvents, additives,
pressure, electromagnetic field and sonication on fluctuations in
saturation concentration requires more sophisticated theory which
is outside the scope of this article. The temperature-dependent
saturation concentration is the most common scenario in solution-
based crystallization and thus relating supersaturation to number
density of solute molecules and temperature.

The total number n of solute molecules in an infinitesimal
volume v tends to fluctuate about the bulk concentration due to
Brownian motion. The fluctuations in the number density c of
solute govern the fluctuations in mean-square-speed of molecules
and hence temperature in the infinitesimal volume. Therefore, the
fluctuations in the supersaturation in a small volume v can be
written as

SðtÞ ¼ nðtÞ
vcsat ½TðtÞ�

ð3Þ

The magnitude of fluctuations is inversely proportional to the
control volume v. Identification of characteristic length scales of
nucleation and growth are therefore important for accurate pre-
dictions of dispersion. For example, the critical length scale of
nucleation can be obtained from Gibbs critical nucleation theory
and that of growth is governed by the underlying mechanisms
such as spiral growth, 2D nucleation and surface roughening. The
critical length scales will set the control volume to predict
fluctuations in number nðtÞ and temperature TðtÞ whose theories
will be discussed in Sections 2.1 and 2.2, respectively.

2.1. Density fluctuations

The framework of density fluctuations due to Brownian motion
of solute molecules in an infinitesimal volume is developed from
the dynamic exchange of molecules between the system and
surrounding. Such exchange of molecules in a system of infinite-
simal volume v inside a very large volume V containing N solute
molecules yields an equilibrium distribution. Appendix A shows
that the equilibrium distribution of the number n of solute
molecules, uniformly spreads under Brownian motion, follows
Poisson distribution.

PnðnÞ ¼
nne�n

n!
ð4Þ

whose mean and variance are equal to the average number of
molecules n in the volume v. (Chandrasekhar, 1943) This
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equilibrium distribution is valid for the homogeneous system
below the critical point for phase separation. Moreover, it is
independent of the type of molecules and the governing force
field. However, the dynamics of number density is dependent on
the underlying Langevin equation. The rate of change in number of
molecules in a small volume v can be determined from the
transition probability Zðm; tjn;0Þ that m molecules will be found
after time t in a volume v with initially n molecules in it.
Smoluchowski (1916) defined the transition probability assuming
that (i) molecules move independently without influencing each
other and (ii) all positions inside the volume have equal a priori
probability. Transition probability for m molecules can be obtained
from the exit probability of single molecule as follows.

The position of a non-interacting molecule in space at any time
is given by diffusion equation, whose solution is a Gaussian
distribution with variance 2Dt. We define the probability after-
effect Pt as the probability that a molecule somewhere inside v will
have emerged from it during time t. Since the position of molecule
anywhere inside v is equally likely, the probability after-effect can
be obtained by integrating the associated probability density
(Gaussian distribution) with respect to the initial and final posi-
tions of molecule inside volume v. The expression for probability
after-effect is derived in Appendix B and is given as

PtðtÞ ¼ 1�erf ½KðtÞ�þ2KðtÞffiffiffi
π

p exp½�KðtÞ2�

where; KðtÞ ¼ 3v
4πðDtÞ3=2

 !1=3

ð5Þ

where KðtÞ is a dimensionless number representing the ratio of the
radius of a sphere of volume v to the mean distance traveled by a
molecule in time t. The probability of finding a molecule inside the
control volume increases with the dimensionless number K . For a
fixed control volume, the probability after-effect is only a function
of time whose behavior becomes more sluggish with increase in
the volume. In deriving expression (5) we only considered the
effects of Brownian forces; however other effects such as those
due to inter-molecular forces can also be accounted for as
discussed in Appendix B.

Example 1. Fig. 1 shows the probability after-effect for a Potas-
sium Acid Phthalate (KAP) molecule whose diffusivity in water at

300 K is D¼ 6:35� 10�10 m2 s�1. As discussed above, it can be
seen that the probability after-effect increases slowly with time for
a larger control volume. This is because a molecule takes longer to
cross larger volumes. Therefore, the number of molecules in a
larger control volume does not change much with time and hence
the solution properties tend to remain invariant.

The transition probability Zðm; tjn;0Þ of adding k¼m�n mole-
cules in a volume v in time t can be determined by considering the
exchange of molecules with the surrounding. There could be
multiple ways for a system to observe a net change in the number
of molecules, all of which must be accounted for in determining
the transition probability. The derivation of transition probabilities
is discussed in Appendix C, which involves identification of
(i) probability Anði; tÞ of i molecules leaving the system containing
n molecules and (ii) probability Eði; tÞ of i molecules entering into
the system. If the probability of a molecule leaving the system is
given by the probability after-effect then the probability Anði; tÞ
that i out of n molecules will be leaving the system in time t
should follow a Binomial distribution. At equilibrium, the prob-
ability of entrance must be equal to the probability of emergence
of molecules. Therefore the probability Eði; tÞ of i molecules
entering into the system in time t is equal to the expected value
of the emergence probability Anði; tÞ and is given by a Poisson
distribution with mean and standard deviation of nPt .

One of the ways of adding k molecules is when i molecules are
leaving and iþk molecules are entering into the system. The
probability of adding k molecules in this way is given by Anði; tÞ
Eðiþk; tÞ, which will yield the required transition probability
Zðnþk; tjn;0Þ when summed over all possible i0s. Similarly, the
transition probability Zðn�k; tjn;0Þ of k molecules leaving the
system during time t can be obtained.

The probability Pnðn; tÞ of finding n molecules in a volume v at
given time t is described by a Master equation,

∂Pnðn; tÞ
∂t

¼ ∑
1

k ¼ 0
½λðk;n�kÞPnðn�k; tÞ�λðk;nÞPnðn; tÞ� ð6Þ

where the transition rates λðk;nÞ is the probability of adding k
molecules in unit time to the system containing n molecules and
therefore it can be considered as the time derivative of the respective
transition probabilities Zðnþk; tjn;0Þ. Expression for transition rates
are also derived in Appendix C.

The solution of the Master equation (6) can be obtained by either
taking a finite range of k or considering k and n as continuous
variables. If we consider k and n as continuous variables then the
Kramers–Moyal expansion (Gardiner, 1985) of Eq. (6) about infini-
tesimal k would give the Fokker–Planck equation for the probability
density f nðn; tÞ, as follows:

∂f nðn; tÞ
∂t

¼ � ∂
∂n

½α1ðn; tÞf nðn; tÞ�þ
1
2

∂2

∂n2½α2ðn; tÞf nðn; tÞ� ð7Þ

where α1 and α2 are first and second moments of the transition
rates,

α1ðn; tÞ ¼
Z 1

�1
kλðk;nÞ dk

α2ðn; tÞ ¼
Z 1

�1
k2λðk;nÞ dk ð8Þ

The Ito equation (a stochastic differential equation) associated
with the Fokker–Planck equation would give the fluctuations in
the number n of molecules in a volume v, which can be written as

dnðtÞ ¼ α1ðn; tÞ dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðn; tÞ

p
dWðtÞ ð9Þ

here WðtÞ is a Wiener process whose time derivative is a white
noise. Alternatively, the solution of Eq. (7) can be obtained through
solving Eq. (9) sufficient number of times.

Fig. 1. Variations in the probability after-effect of KAP molecules in Water at 300 K
with increasing local volume.
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Example 2. Consider an infinitesimal volume v¼ 22:89 nm3 in
2.176 M aqueous solution of KAP containing on an average n¼ 30
molecules of KAP. Fig. 2 shows the local fluctuations in the number
density or concentration of KAP molecules at temperature
T ¼ 300K . A set of trajectories at any time t gives a probability
density f nðn; tÞ of number of molecules in volume v. These
trajectories obtained as solutions of Eq. (9) attain a steady-state
distribution (shown in Fig. 3) in a very short time interval.
As discussed earlier, this steady-state distribution is always a
Poisson distribution for any type of molecule.

2.2. Temperature fluctuations

The local temperature in aqueous solution also undergoes
fluctuations due to Brownian motion. The temperature of solution
can be obtained by equating its thermal energy with the mean

kinetic energy of molecules.

3κT ¼ 1
2
mv2 ð10Þ

where κ is the Boltzmann constant, T is absolute temperature, m is
the mass of solute molecule and v is the speed of molecules. The
speed of molecules in arbitrary potential field for constant num-
ber, volume and energy (NVE) system follows Maxwell–Boltzmann
distribution. For a constant number, volume and temperature
(NVT) system, the Langevin equation for the solute molecules will
govern their speed, such that

dv1 ¼ � β
m
v1 dt�

1
m
∇rΦðr1; r2; :::; rNÞ dtþ

β
ffiffiffiffi
D

p

m
dWðtÞ ð11Þ

where Φ is the total potential acting on one molecule, v1 is the
velocity of molecule of mass m located at r1, β is the friction factor
and D is the molecular diffusivity. As the molecules are uniformly
distributed, integrating Eq. (11) with respect to r1; r2; :::; rN would
give the equation for velocity of molecules

dv¼ � β
m
v dtþ 1

m
F dtþβ

ffiffiffiffi
D

p

m
dWðtÞ ð12Þ

under a mean force field,

F ¼ � 1

VN

Z
r1

Z
r2
:::

Z
rN
∇Φðr1; r2; :::; rNÞ dr1 dr2:::drN ð13Þ

Since the molecule is arbitrary chosen, there is no subscript to the
velocity in Eq. (12). The Fokker–Planck equation describing the
probability density for molecular velocity can be written as

∂
∂t
f vðv; tÞ�

β
m
∇v U ½vf vðv; tÞ�þ

1
m
F U∇vf vðv; tÞ�

β2D
2m2∇

2
vf vðv; tÞ ¼ 0

ð14Þ
The solution to this can be obtained by Fourier transform and the
Method of Characteristics:

f vðv; tÞ ¼
2

1�e�βt=m

� �3=2

�exp � m
Dβ

v�ð1=βÞFð1�e�βt=mÞ� �
U v�ð1=βÞFð1�e�βt=mÞ� �

1�e�2βt=m

 !

ð15Þ
The distribution of speed in the NVT system can be obtained from
Eq. (15) as

f vðv; tÞ ¼ Cv4πv2
2

1�e�2βt=m

� �3=2

exp � m
Dβ

v�ð1=βÞF ð1�e�βt=mÞ� �2
1�e�2βt=m

 !

ð16Þ
where Cv is the normalization factor. The mean square speed of
the N molecules will govern the bulk temperature, whereas the
local temperature in an infinitesimal volume v is controlled by the
number of molecules nðtÞ in it. The mean square speed v2 of nðtÞ
molecules is then a random process. If we know the cumulative
probability Fvðv; tÞ of the speed of molecules at steady-state then
total of nðtÞ random numbers, denoted as ξi in the range ½0;1�,
would determine the speed of ith molecule, satisfying the equa-
tion

Fvðvi; tÞ ¼ ξi; iA ½1;2; :::;nðtÞ� ð17Þ
Temperature fluctuations can now be determined from Eq. (10),

TðtÞ ¼ m
6k

v21þv22þ :::þv2nðtÞ
nðtÞ

" #
ð18Þ

Alternatively, the speed of molecules vi can also be determined by
numerically solving Eq. (11), which can take a much longer time
than solving Eq. (17). The Ito equation describing temperature

Fig. 2. Dynamics of number of KAP molecules in the small volume v¼ 22:89nm3 of
22.89 M aqueous solution. The multiple trajectories of the number also describe the
temporal evolution of number distribution.

Fig. 3. Steady-state distribution of the number of KAP molecules.
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fluctuations can be derived as

dTðtÞ ¼ 1
nðtÞ

m
3k

∑
n tð Þ

i ¼ 1
½viðtÞ dvi��TðtÞ dn

" #
ð19Þ

where the Langevin equation for the speed vi ¼ jvij can be
obtained from Eq. (12). The Ito equation for temperature is thus
a linear combination of the Ito equations for number and speed of
molecules, which can be lumped as

dTðtÞ ¼ γ1ðT ;n; v; tÞ dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðT ;n; v; tÞ

p
dWðtÞ ð20Þ

Example 3. The local temperature (in Eq. (18)) is governed by the
instantaneous number of molecules and their speed. Fig. 4 shows
the fluctuations in the local temperature inside small volume
v¼ 22:89 nm3 of KAP solution. The steady-state distribution of
temperature is shown in Fig. 5.

2.3. Supersaturation fluctuations

The local supersaturation in some volume v can be described by
Eq. (3), whose derivative would give Ito equation for supersaturation
as a function of Ito equations for number and temperature.

Using Eqs. (3), (9) and (20) and neglecting the terms of order
higher than dt, we can write

dSðtÞ ¼ α1

vcsatðtÞ
�SðtÞc

′
satðtÞ
csatðtÞ

γ1�S tð Þ c″satðtÞ
2csatðtÞ

� c′satðtÞ
csatðtÞ

� �2
 !

γ2

" #
dt

þ
ffiffiffiffiffiffi
α2

p
vcsatðtÞ

�SðtÞc
′
satðtÞ
csatðtÞ

ffiffiffiffiffi
γ2

p� �
dWðtÞ ð21Þ

Fig. 4. Fluctuations in the local temperature of KAP solution.

Fig. 5. Steady-state distribution of temperature of KAP solution.

Fig. 6. Local fluctuations in supersaturation of KAP solution.

Fig. 7. Steady-state distribution of supersaturation of KAP solution.
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Taking the expected value of drift and diffusion terms would yield
Ito's equation for supersaturation

dSðtÞ ¼ η1ðS; tÞ dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ðS; tÞ

q
dWðtÞ ð22Þ

Derivation of Eq. (21) using Ito's formula and identification of drift
and diffusion terms of supersaturation are discussed in Appendix D.
Fluctuations in supersaturation can be computed either directly by
solving Eq. (22) or indirectly using the solutions of Eqs. (9) and (20).
The corresponding Fokker–Planck equation for the probability
density f SðS; tÞ can be written as

∂f SðS; tÞ
∂t

þ ∂
∂S
η1f SðS; tÞ ¼

1
2

∂2

∂S2
η2f SðS; tÞ ð23Þ

Clearly the bulk supersaturation Sðc; csatðTÞÞ, referred to in the
literature as the ratio of the bulk concentration and saturation
concentration, is different than the actual mean supersaturation
Sðc; csatÞ of the bulk solution.

Sðc; csatÞaSðc; csatðTÞÞ ð24Þ

Example 4. The calculation of the local supersaturation requires
the solubility of KAP. Classically, the solubility is related toFig. 8. Distributions of local concentration and saturation concentration of KAP.

Fig. 9. Variations in the distributions of supersaturation with increasing bulk temperature and bulk supersaturation. The abscissa and ordinate in each plot are
supersaturation and percentage probability.
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temperature as

ln csatðtÞ ¼ �ΔHdiss

RT
þΔSdiss

R
ð25Þ

where R is the gas constant,ΔHdiss is the dissolution enthalpy and
ΔSdiss is the dissolution entropy. The dissolution enthalpy and
entropy for the aqueous solution of KAP are ΔHdiss ¼ 18524 J=mol
and ΔSdiss ¼ 57:154 J=mol K (Akhtar and Podder, 2011). The local
fluctuations in supersaturation of 2.176 M KAP solution at 300 K
are shown in Fig. 6. The steady state distribution of supersatura-
tion in Fig. 7 shows sharp peak at smaller values and a hump
followed by a tail at larger values. This typical shape of the
supersaturation distribution is due to the governing distributions
of c and csatðTÞ, which are shown in Fig. 8.

As csat depends exponentially on T �1, its distribution is also of
exponential form and contributes significantly to the first peak of the
supersaturation distribution. Likewise, the hump in the supersatura-
tion distribution is due to the relative position of the distribution
of c. Therefore, the variance (or spread) of the supersaturation
distribution is not only due to the variances in the distributions of
c and csatðtÞ but also their relative positions. Increasing the bulk
concentration at fixed temperature moves the distribution of c
further away from the mean of csatðtÞ which increases the mean
and the variance of the supersaturation. However, increasing the bulk
temperature decreases the relative distance between the means of c
and csatðtÞ which results in longer tail portion of the supersaturation
distribution. The variation in supersaturation distribution with bulk
temperature T and bulk supersaturation Sb ¼ Sðc; csatðTÞÞ is shown in
Fig. 9. Each column in Fig. 9 represents the variations in super-
saturation distributions with increasing bulk temperature at fixed
bulk supersaturation. Table 1 shows, according to Eq. (24), that the
mean supersaturation in each column are significantly different than
the corresponding bulk supersaturation. The mean supersaturation
can be as high as 55% more than the bulk supersaturation.

3. Nuclei morphology distribution of potassium acid
phthalate crystals

Growing crystals are convex polyhedra bounded by finite
number of low-energy faces. The morphology of a crystal with n̂
number of low energy faces can be represented by a polyhedron,
such that

Nrr ~h ð26Þ

where N is a matrix formed by stacking, in a single column, the
unit normals of crystal faces as row vectors, r represents position
vectors in ℜ3 and ~h is a vector of perpendicular distances of faces
from the center of the crystal. Therefore, ~h is in the non-negative
orthant of n̂-dimensional real space ℜn̂

þ0.
The symmetry of crystals allows the classification of faces

based on kinetic and geometric similarity. A crystal with m̂ groups
of kinetically and geometrically similar faces can be represented
by m̂ distinct perpendicular distances forming a vector hAℜm̂

þ0
such that at any time ~h can be reconstructed from h. Therefore, the
dynamics of crystal morphology can be uniquely determined from
h (h-vector) (Singh and Ramkrishna, 2013; Singh et al., 2013).

The low-energy faces, the F-faces, can be identified from
Hartman–Perdok theory. The F-faces will be considered in the
construction of the shape of crystal nucleus as all other faces of
higher surface energies will most likely not appear or disappear
quickly. The equilibrium shape of a crystal of a fixed volume can be
calculated by minimizing its surface energy. Cleary, the minimiza-
tion problem would yield lesser value to the areas of faces with
larger surface energies. Therefore it is reasonable to consider only
F-faces in the computation of the equilibrium shapes of nuclei.

The Gibbs free energy change ΔG per molecule during the
formation of a faceted nucleus can be written as

ΔGðhÞ ¼ ∑
n̂

i ¼ 1
AiðhÞsi�VcðhÞ

κT lnðSÞ
Vm

ð27Þ

where Ai is the area of the ith face, si is the specific surface energy,
Vc is the crystal volume and Vm is the molecular volume. The
surface energy of an F-face can be approximated by the attach-
ment energy of a crystal face. The surface energy of a crystal in
vacuum is given as

siffi
nLEatt;idi

2vL
i¼ 1;2; :::; n̂ ð28Þ

where nL is the number of molecules in a unit cell of volume v, di is
the interplanar spacing of ith lattice plane and Eatt;i is the
attachment energy per molecule of ith lattice plane.

The maximization of the free energy in the morphology
domains (fundamental property of crystals defined in Singh et al.
(2013)) would require its gradient to be zero. This implies

∇h½ΔGðhÞ� ¼ ∑
n̂

i ¼ 1
si∇hAiðhÞ�

κT lnðSÞ
Vm

∇hVcðhÞ ¼ 0 ð29Þ

The solution to the above set of non-linear equations would give
the h-vector of a critical nucleus for specific bulk supersaturation
and temperature. As nucleation is a local phenomenon it is
susceptible to the fluctuations in the local supersaturation. The
set of non-linear equations in (29), represented as Jðh; S; tÞ ¼ 0, can
be used to relate the fluctuations in h with the fluctuations in S.

d
dt
Jðh; S; TÞ ¼∇J

dh
dt

þ ∂J
∂S

dS
dt

þ ∂J
∂T

dT
dt

¼ 0 ð30Þ

which after rearranging gives,

dh
dt

¼ �∇J�1 ∂J
∂S

dS
dt

þ ∂J
∂T

dT
dt

� �
ð31Þ

The Ito equation for the h-vector can be obtained using Eqs. (20)
and (22), as follows:

dh¼ �∇J�1½JSη1þJTγ1�dt�∇J�1½JS
ffiffiffiffiffi
η2

p þ JT
ffiffiffiffiffi
γ2

p �dWðtÞ ð32Þ

where JS and JT are the partial derivatives of Jwith respect to S and
T , respectively. Taking expectation of drift and diffusion terms
with respect to S; T ;nandv would yield fluctuations in h, such that

dh¼ω1ðh; tÞ dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ðh; tÞ

p
dWðtÞ ð33Þ

Table 1
Variations in mean and variance of supersaturationwith bulk temperature and bulk
supersaturation.

T (K) Sb

1.1 1.2 1.3 1.4

300 S¼ 1:3198
VðSÞ ¼ 0:7813

S¼ 1:4432
VðSÞ ¼ 0:9322

S¼ 1:5615
VðSÞ ¼ 1:0946

S¼ 1:6827
VðSÞ ¼ 1:2714

310 S¼ 1:4762
VðSÞ ¼ 1:1891

S¼ 1:6083
VðSÞ ¼ 1:4151

S¼ 1:7517
VðSÞ ¼ 1:6783

S¼ 1:8861
VðSÞ ¼ 1:9349

320 S¼ 1:6019
VðSÞ ¼ 1:6810

S¼ 1:7549
VðSÞ ¼ 2:0255

S¼ 1:8968
VðSÞ ¼ 2:3631

S¼ 2:0478
VðSÞ ¼ 2:7371

330 S¼ 1:7147
VðSÞ ¼ 2:2313

S¼ 1:8523
VðSÞ ¼ 2:6411

S¼ 2:0155
VðSÞ ¼ 3:0951

S¼ 2:1725
VðSÞ ¼ 3:6048
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The associated Fokker–Planck equation would give the morphol-
ogy distribution of crystal nuclei.

∂f hðh; tÞ
∂t

þ∇Uω1f hðh; tÞ ¼
1
2
∇∇ :

ffiffiffiffiffiffiffiω2
p ffiffiffiffiffiffiffi

ωT
2

q
f hðh; tÞ ð34Þ

The rate of nucleation is often expressed using the Arrhenius
equation

_BðhÞ ¼ K1 exp �ΔGðhðSÞÞ
κT

� �
ð35Þ

where K1 is the pre-exponential factor. Eq. (35) can be used to
obtain fluctuations in nucleation rate due to supersaturation as

d _B¼ ζ1ð _B;h; tÞ dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2ð _B;h; tÞ

q
dWðtÞ ð36Þ

and the Fokker–Planck equation for the probability density gov-
erned by Eqs. (33) and (36) can be used to obtain the nucleation
kernel Ψ ðh; tÞ that will provide initial conditions to the population
balance equations.

Ψ ðh; tÞ ¼
Z 1

0

_Bf _B;hð _B;h; tÞ d _B ð37Þ

Example 5. Potassium hydrogen phthalate (KAP) crystals are the
molecular ionic solids that are used as buffering agents, standards

for Total Organic Carbon testing, monochromators and analyzers
in X-Ray diffractometers and many other applications. KAP crystal-
lizes in the orthorhombic system with three families of relatively
low-energy faces such as f010g, f110g and f111g that are more
likely to appear during growth. These three families of faces 010f g,
110f g and f111g are quantified by their characteristic perpendicu-
lar distances h1;h2 and h3, respectively. The surface energies of
f010g, f110g and f111g faces are 0:0760 J=m2, 0:7934 J=m2 and
1:1986 J=m2, respectively (Hottenhuis et al., 1988). The multi-
dimensional maximization of Gibbs free energy yields crystals of
bi-pyramidal shape (see Fig. 10) formed by f111g faces. The KAP
nucleating at bulk supersaturation Sb ¼ 3:8513 and bulk tempera-
ture T ¼ 300 K would be bi-pyramidal shape with size distribution
shown in Fig. 11. The mean size of the nuclei is h3 ¼ 121:75 nm,
which is relatively larger as the contribution of solvent in reducing
the surface energies are not considered. The tail region in Fig. 11
will vanish if we consider the metastable zone width in which
nucleation does not occur. The corresponding distribution of
nucleation rates is given in Fig. 12.

4. Growth rate dispersion in potassium acid phthalate crystals

The growth rate dispersion in crystals are observed as a result
of two stochastic processes, firstly the random patterning of kink
sites on crystal faces and secondly the fluctuations in super-
saturation and temperature. The growth rates of f010g, f110g and
f111g faces of KAP in the presence of 0.03 mol% ethylene glycol are
experimentally measured by Kuznetsov et al. (1998) and given as

_H1ðμm=sÞ ¼ 0:9078S�0:9136
_H2ðμm=sÞ ¼ 1:1920S�1:1850
_H3ðμm=sÞ ¼ 2:0620S�2:0400 ð38Þ
where _H1; _H2 and _H3 are the growth rates of f010g, f110g and f111g
faces of KAP at T ¼ 300 K. The growth rate dispersion due to the
fluctuations in the supersaturation can be calculated using
Eqs. (22) and (38). The nucleation and growth are phenomena of
two different length scales viz. nanometers and micrometers,
respectively. As the fluctuations due to Brownian motion decreases

Fig. 10. Equilibrium morphology of KAP crystal nuclei with f111g faces.

Fig. 11. Size distribution of bi-pyramidal shaped nuclei of KAP crystals.

Fig. 12. Distribution of nucleation rates of KAP crystals at bulk supersaturation and
temperature of 3.8513 and 300 K, respectively.
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monotonically with the volume, the growth rates experience lesser
dispersions as compared to nucleation. Fig. 13 shows the compar-
ison between model predictions and experimental measurements
(Kuznetsov et al., 1998) of dispersions in the face-specific growth
rates at different values of bulk supersaturations. Experimental data
(Kuznetsov et al., 1998) shows increase in standard deviation of
growth rates at low supersaturation and decrease at higher super-
saturation. The model captures this behavior and shows qualitative
agreement with the experimental values. However, the model over-
predicts some values for 010f g faces and under predicts for 110f g,
which may be due to the competing effects of other stochastic
processes such as formation of kink networks and attachment of
molecules to kink sites. Nonetheless, the framework of supersatura-
tion fluctuations appears to explain the trend in the observed
dispersion in growth rates.

5. Application to population balances

Growth rate dispersion is commonly observed in industrial
crystallizers and traditionally modeled with a population balance
equation involving an effective diffusive flux. Population balance
equation for faceted crystals with dispersion and nucleation terms
can be written as

∂nhðh; tÞ
∂t

þ∇U _Hnh�∇∇ :
ffiffiffiffiffiffiffi
D _H

q ffiffiffiffiffiffiffi
DT

_H

q
nh ¼Ψ ðh; tÞ ð39Þ

where n _H is a number density in h space, D _H is a diagonal matrix of
effective diffusion coefficients corresponding to random fluctua-
tions in growth rates and Ψ ðh; tÞ represents change in number
density due to nucleation. The effective diffusion coefficient can be
estimated from the Ito equation for the growth rates. Assuming
the growth rates are dependent on supersaturation, their Ito
equation can be obtained using Eq. (22)

d _Hi ¼ _H
′
iη1þ

1
2
_H
″
iη2

� �
dtþ _H

′
i
ffiffiffiffiffi
η2

p
dWðtÞ ð40Þ

where _H′i and _H″i are first and second order derivatives of growth
rates with respect to supersaturation, respectively. The diffusion

coefficients can be obtained (Ramkrishna, 2000) as

D _Hi
¼ ð _H′

iÞ2η2
2

ð41Þ

The nucleation kernel (37) predicts the size, shape and nucleation
rate distribution of crystal nuclei due to supersaturation fluctua-
tions in cooling crystallizers. Here we have derived two important
phenomenological quantities such as growth rate dispersion (41)
and nucleation kernel (37) from the theory of supersaturation
fluctuations, which can be used in predicting crystal size and
shape distributions in cooling crystallizers.

6. Conclusions

Dispersions in nucleation and growth are often observed
during crystallization and so far they have been dealt with
empirically in the literature. This article presents a development
of this phenomenon by ascribing it to the local fluctuations in
supersaturation. The local fluctuations in supersaturation are
driven by the Brownian motion of molecules affecting local
number density and temperature. As the primary driving force
for the process of adding solute molecules through nucleation and
growth is the local supersaturation, their rates tend to fluctuate
and yields dispersions under uniform bulk conditions. The fluctua-
tions in nucleation and growth rates are strong functions of local
volume which must be chosen appropriately based on the char-
acteristic lengths scales of underlying processes.

The framework presented here consists of a sequential deter-
mination of number, temperature and supersaturation fluctua-
tions. Computationally, one can solve Eqs. (9) and (20) to obtain
local number nðtÞ and temperature TðtÞ profiles and use them to
calculate SðtÞ from Eq. (3). The fluctuations in local number density
(or concentration) are driven by the probability after-effect which
becomes sluggish with increase in local volume and cause dam-
pening of the fluctuations. The stationary distribution of local
number density attains a Poisson distribution and is independent
of inter-molecular potentials. The local temperature is a function
of mean-square speed of the molecules in the local volume which is
governed by the instantaneous local number density. The exponen-
tial dependence of saturation concentration with the inverse of
temperature, given by Van't Hoff equation, yields the stationary
exponential distribution of saturation concentration. The resulting
fluctuations in supersaturation follow bimodal distribution where
each mode is the signature from the governing distributions of local
concentration and saturation concentration. The non-linearity of
supersaturation function can create a significant difference between
bulk and mean supersaturation. The analysis shows that the mean
supersaturation can be as high as 55% more than the bulk super-
saturation at fixed conditions. The variance in the supersaturation
depends on the variances of the governing distributions and the
relative distances between the means of c and csat . Hence, the
variance in supersaturation increases with increase in bulk tem-
perature and bulk concentration. Clearly, the dispersion in crystal-
line materials can be minimized by operating crystallizers at lower
temperatures.

Nucleation and growth of a crystal population in the presence
of fluctuating supersaturation would require a parabolic popula-
tion balance equation as it would contain diffusion terms for
growth. This is in contrast to the more usually occurring hyper-
bolic first order partial differential equation when crystal growth is
viewed as deterministic. The identification of such population
balance equations requires diffusivity and nucleation kernel to be
determined from the supersaturation fluctuations. The nuclei mor-
phology distribution of KAP crystals was determined by multi-
dimensional maximization of Gibbs free energy. The equilibrium

Fig. 13. Comparison between experimental measurements and model predictions
of standard deviations in growth rates of KAP. The circle, square and diamond
markers corresponds to f010g, f110g and f111g faces. The color of markers from
light gray to black corresponds to the supersaturation values of 1.01, 1.02, 1.03, 1.04
and 1.05.
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morphologies takes bi-pyramidal shape whose sizes qualitatively
follow steep exponential distribution. The nucleation kernel derived
from Arrhenius law and nuclei morphology distribution can provide
the necessary boundary condition for the population balance
equation. As direct observation of nuclei morphology distribution
is beyond the scope of experimental techniques, the possible way to
verify nucleation kernels is through inverse problem as discussed by
Mahoney et al. (2002).

The diffusion terms in population balance equations can be
determined from the diffusivity in growth rates, for example see
Chapter 2 of Ramkrishna (Ramkrishna, 2000). The growth rate
dispersion for f010g, f110g and f111g faces of KAP were estimated
using the similar framework of supersaturation fluctuations at the
length scale of a few micrometers. The model predictions of
growth rate dispersion in Fig. 13 show qualitative agreement with
experimental measurements. The deviations in model predictions
from experimental measurements are maybe due to other com-
peting stochastic effects involved in crystal growth.

The methodology presented here gives a fresh perspective on
the dispersion in crystallization processes based on the local
fluctuations in supersaturation. However, there could be other
stochastic effects such as process of self-assembly of molecules to
form nuclei, formation of kink sites on crystal surfaces and
attachment of solute molecules to those kink sites that can
contribute to the overall dispersion. Comparison of the estimates
based on supersaturation fluctuation with available data (Fig. 13),
does however show them to be reasonable, providing a direction for
minimizing dispersion such as by suitable choice of temperature.

Nomenclature

Ai area of ith face of the crystal ½m2�
Anði; tÞ probability that i molecules will be leaving during time t

from the volume v containing n molecules
[dimensionless]

_BðhÞ nucleation rate ½s�1�
c solute concentration ½mol m�3�
c average solute concentration in volume v ½mol m�3�
csat solubility or saturation concentration ½mol m�3�
Cv normalization factor for f v ½m�2 s2�
di interplanar spacing of the ith lattice plane ½m�
D diffusion coefficient ½m2 s�1�
D _H diagonal matrix of diffusion coefficients D _Hi

of growth
rates ½m2 s�1�

Eði; tÞ probability that i molecules entered into the volume v
during time t [dimensionless]

Eatt;i attachment energy per molecule of the ith slice ½J�
f nðn; tÞ probability density of number n of molecules

[dimensionless]
f vðv; tÞ probability density of speed of molecules ½m�1 s�
f vðv; tÞ probability density of velocity of molecules ½m�3 s3�
f hðh; tÞ probability density of h ½m� m̂�
f _B;hð _B;h; tÞ probability density of _B and h ½m� m̂ s�
Fvðv; tÞ cumulative probability of the speed of molecules

[dimensionless]
F mean force ½J m�1�
F mean force vector ½J m�1�
~h n̂ dimensional vector of perpendicular distances of crys-

tal faces from the center ½m�
h m̂ dimensional vector of perpendicular distances of

crystal faces from the center ½m�
_Hi growth rate of ith face ½m s�1�
J gradient of the free energy change for the formation of

crystal nucleus ½J m�1�

K ratio of radius of sphere of volume v to the mean squared
length traveled by the molecule in time t [dimensionless]

K1 pre-exponential factor for nucleation rate ½s�1�
m mass of solute molecule ½kg�
m̂ number of groups of kinetically and geometrically similar

faces [dimensionless]
n number of solute molecules in v [dimensionless]
nh number density of crystals in h space ½m� m̂�
nL number of molecules in the unit cell of the lattice

[dimensionless]
n average number of solute molecules in v [dimensionless]
n̂ number of low-energy faces of crystal [dimensionless]
N total number of solute molecules in volume V

[dimensionless]
N n̂� 3 matrix of normal vectors of crystal faces

[dimensionless]
Pn probability of finding n molecules in v in an infinite pool

[dimensionless]
Pn;N probability of finding n molecules in v in a large pool of

volume V containing N molecules [dimensionless]
Prðr2; tjr1;0Þ probability of finding molecule at r2 after time t

when it was initially at r1 [dimensionless]
Pt probability after-effect [dimensionless]
ri position vector of ith solute molecule ½m�
S supersaturation [dimensionless]
S average supersaturation in volume v [dimensionless]
Sb bulk supersaturation, defined as supersaturation at bulk

temperature and bulk concentration [dimensionless]
t time ½s�
T temperature ½K�
T average temperature in volume v ½K�
v infinitesimal volume ½m3�
v speed of solute molecules ½m s�1�
vL volume of the unit cell ½m3�
vi velocity of ith solute molecules ½m s�1�
V total volume containing N solute molecules ½m3�
Vc volume of crystal ½m3�
Vm molecular volume ½m3�
WðtÞ Wiener process ½s1=2�
WðtÞ vector of independent Wiener processes ½s1=2�
Zðm; tjn;0Þ transition probability that m molecules will be found

after time t in a volume v with initially n molecules in it
[dimensionless]

α1ðn; tÞ drift coefficient for number n of molecules ½s�1�
α2ðn; tÞ diffusion coefficient for number n of molecules ½s�1�
β friction factor ½kg s�1�
γ1 drift coefficient for local temperature T ½s�1 K�
γ2 diffusion coefficient for local temperature T ½s�1 K2�
ω1 vector of drift coefficients for h ½m s�1�
ω2 diagonal matrix of diffusion coefficients for h ½m2 s�1�
si surface free energy per unit area of the ith face ½J m�2�
η1 drift coefficient for local supersaturation S ½s�1�
η2 diffusion coefficient for local temperature S ½s�1�
ζ1 drift coefficient for nucleation rate ½s�2�
ζ2 diffusion coefficient for nucleation rate ½s�3�
κ Boltzmann constant ½J K�1�
λðk;nÞ transition rates, defined as probability of adding k

molecules per unit time to the volume v containing n
molecules ½s�1�

ϕkink
i free energy of kink sites ½J mol�1�

Φ potential energy between solute molecules ½J�
Ψ ðh; tÞ nucleation kernel ½m� m̂ s�1�
ξi normal random number in the range [0, 1]

[dimensionless]
ΔG free energy change per molecule for the formation of a

faceted nucleus ½J�
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ΔHdiss dissolution enthalpy ½J mol�1�
ΔSdiss dissolution entropy ½J mol�1 K�1�
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Appendix A. Distribution of number of molecules in a control
volume

Consider a small volume v inside a very large volume V contain-
ing N solute molecules. As the solute molecules are uniformly
distributed under Brownian motion, the probability of finding a
molecule inside v is v=V and outside v is 1�v=V . Therefore, the
probability Pn;NðnÞ that some n molecules will be found inside v is a
Binomial Distribution such that

Pn;NðnÞ ¼
N!

n!ðN�nÞ!
v
V

	 
n
1� v

V

	 
N�n
ð42Þ

If the average number of molecules inside v be n, then

n¼Nðv=VÞ ð43Þ
can be used in Eq. (42) to replace v=V with n=N, such that

Pn;NðnÞ ¼
N!

n!ðN�nÞ!
n
N

� �n

1� n
N

� �N�n

¼ nn

n!
1� 1

N

� �
1� 2

N

� �
::: 1�n�1

N

� �
1� n

N

� �N�n

ð44Þ

As the solution volume V and the number of solute molecules N in it
are usually larger than n and v, a limiting case would arrive if N and
V both tend to infinity in such a way that n remains constant.

PnðnÞ ¼ lim
N-1

f NðnÞ

¼ nn

n!
lim
N-1

1� n
N

� �N�n

ð45Þ

which leads to a Poisson distribution,

PnðnÞ ¼
nne�n

n!
ð46Þ

Therefore the distribution of the number of molecules in a small
volume v follows the Poisson distributionwith the mean and variance
equal to the average number of molecules n (Chandrasekhar, 1943).
For large values of n the distribution of number converges to Gaussian
distribution, given as

PðnÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2πn

p exp �ðn�nÞ2
2n

" #
ð47Þ

Appendix B. Probability after-effect

Non-interacting molecules

From the diffusion equation we can obtain probability that a
molecule will be at r2 at time t when it was at r1 at t ¼ 0 which is
given as

Prðr2; tjr1;0Þ ¼
1

ð4πDtÞ3=2
exp �jr1�r2j2

4Dt

� �
ð48Þ

where D is the molecular diffusion coefficient. The probability
after-effect can be readily obtained by integrating Eq. (48) with

respect to r1 in v and r2 in V�v, as follows:

PtðtÞ ¼
1
v

Z
r1 Av

Z
r2 AV �v

Prðr2; tjr1;0Þ dr1 dr2

¼ 1
ð4πDtÞ3=2v

Z
r1 Av

Z
r2 AV �v

exp �jr1�r2j2
4Dt

� �
dr1 dr2 ð49Þ

Since the probabilities of finding molecule at r2 in v and V�v are
mutually exclusive and exhaustive events, we can re-write Eq. (49) as

1�PtðtÞ ¼ 1
ð4πDtÞ3=2v

Z
r1 Av

Z
r2 Av

exp �jr1�r2j2
4Dt

� �
dr1 dr2 ð50Þ

Using the transformation x¼ r1�r2 and y¼ r1þr2 whose Jacobian
has determinant jJðr1; r2Þj ¼ 1

1�PtðtÞ ¼
1

ð4πDtÞ3=2v

Z
x

Z
y
exp �jxj2

4Dt

� �
Jðr1; r2Þ
�� �� dx dy

Normalizing and simplifying further would give,

PtðtÞ ¼ 1�erf ½KðtÞ�þ2KðtÞffiffiffiffi
π

p exp½�KðtÞ2�

where; KðtÞ ¼ 3v
4πðDtÞ3=2

 !1=3

ð51Þ

Interacting molecules

The Langevin equation for the velocity of a molecule under
potential field is given by Eq. (11). The movement of molecules in
viscous medium, which usually is the case with the supersaturated
solution, is essentially governed by the diffusion. Under such
conditions, the velocity distribution relaxes faster than the posi-
tion distribution to attain steady-state. At steady-state condition,
Eq. (11) on substituting v1dt ¼ r1 becomes

dr1 ¼ �1
β
∇Φðr1; r2; :::; rNÞ dtþ

ffiffiffiffi
D

p
dWðtÞ ð52Þ

since all other particles at r2; r3; :::; rN are uniformly distributed we
can approximate the force acting on a particle r1 by a mean-field
force Fðr1Þ, such that

Fðr1Þ ¼ � 1

VN�1

Z
r2

Z
r3
:::

Z
rN
∇Φðr1; r2; :::; rNÞ dr2 dr3:::drN ð53Þ

Integrating Eq. (52) with respect to r2; r3; :::; rN would give

dr1 ¼
1
β
Fðr1Þ dtþ

ffiffiffiffi
D

p
dWðtÞ ð54Þ

The associated Fokker–Planck equation for the Probability After-
effect under mean potential field is given as

∂
∂t
Prðr1; tÞþ

1
β
∇UFðr1ÞPrðr1; tÞ�

D
2
∇2Prðr1; tÞ ¼ 0 ð55Þ

Appendix C. Transition probability

The probability Anði; tÞ that i molecules will be leaving during
time t from the volume v containing n molecules can be expressed
using probability after-effect as

Anði; tÞ ¼
n!

i!ðn� iÞ!PtðtÞi½1�PtðtÞ�n� i ð56Þ

Under equilibrium the a priori probabilities of entrance and
emergence of molecules must be equal. The probability Eði; tÞ that
i molecules entered into the volume v during time t can be written
as the expectation of Anði; tÞ, such that

Eði; tÞ ¼ Anði; tÞ ¼ ∑
1

n ¼ 1
PnðnÞAnði; tÞ ð57Þ
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Substituting Eqs. (4) and (56) above and simplifying would give
Poisson distribution of mean and standard deviation nPt ,

Eði; tÞ ¼ ðnPtÞie�nPt

i!
ð58Þ

Now the transition probability Zðnþk; tjn;0Þ that the k mole-
cules will be added into the system during time t can be written as

Zðnþk; tjn;0Þ ¼ ∑
n

i ¼ 0
Anði; tÞEðiþk; tÞ ð59Þ

Similarly, the transition probability of k molecules leaving the
system during time t can be written as

Zðn�k; tjn;0Þ ¼ ∑
n

i ¼ k
Anði; tÞEði�k; tÞ ð60Þ

The transition rates are given as the time derivatives of respective
transition probabilities such that,

λðk;n�kÞdt ¼ Zðn; dtjn�k;0Þ ¼ ∂Zðn; tjn�k;0Þ
∂t

dt

λðk;nÞdt ¼ Zðnþk; dtjn;0Þ ¼ ∂Zðnþk; tjn;0Þ
∂t

dt

which, using Eq. (59), yields

λðk;nÞ ¼ ∂PtðtÞ
∂t

∑
n

i ¼ 0
½Anði; tÞEðiþk; tÞ� �n� n� i

1�PtðtÞ
þ2iþk

PtðtÞ

� �� 
ð61Þ

Appendix D. Ito's formula for supersaturation

According to Ito's lemma, a twice differentiable scalar function
of a random variable is itself a random variable. Ito's formula
relates drift-diffusion processes of a random variable with that of
the associated scalar function (Gardiner, 1985). Supersaturation is
a scalar function of two random variables nðtÞ and TðtÞ. According
to Ito's formula,

dSðtÞ ¼ ∂S
∂n

dnþ ∂S
∂T

dTþ1
2
∂2S
∂T2 dT

2 ð62Þ

From Eq. (3),

dSðtÞ ¼ 1
vcsatðTÞ

dnðtÞ�SðtÞc
′
satðTÞ
csatðTÞ

dTðtÞ

�SðtÞ
2

c″satðTÞ
csatðTÞ

�2
c′satðTÞ
csatðTÞ

� �2
 !

dTðtÞ2 ð63Þ

On substituting Eqs. (9) and (20), we get Ito's equation for Super-
saturation

dSðtÞ ¼ α1

vcsatðTÞ
�SðtÞc

′
satðTÞ
csatðTÞ

γ1�SðtÞ c″satðTÞ
2csatðTÞ

� c′satðTÞ
csatðTÞ

� �2
 !

γ2

" #
dt

þ
ffiffiffiffiffiffi
α2

p
vcsatðTÞ

�SðtÞc
′
satðTÞ
csatðTÞ

ffiffiffiffiffi
γ2

p� �
dWðtÞ ð64Þ

Therefore the expected value of drift and diffusion terms of
supersaturation is given as
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