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ABSTRACT: Polar plots are the representations of anisotropic surface
properties such as surface energies and growth rates of crystalline materials.
The steady-state morphologies of growing crystals are usually obtained
from Wulff constructions on the polar plots of growth rates, whereas the
morphologies of dissolving crystals are known to have no steady states.
Here we show that the dissolving crystal can attain steady-state
morphologies under certain conditions. The Wulff construction on the
polar plots of dissolution time (or slowness) can be used to identify such
steady-state morphologies. It is shown that the dissolving crystal can attain
faceted morphology composed of fast dissolving faces. The evolution of
dissolving crystals toward faceted morphology involves disappearance of
slow-dissolving faces, which also causes vanishing of curvatures from the
crystal surface. This article presents a method to experimentally determine
polar plots from the dynamic images of crystals obtained from hot-stage
microscopy. The method relies on the solution of the characteristics for crystal dissolution. The methodology is demonstrated to
obtain polar plots of succinic acid at different subsaturations.

1. INTRODUCTION
Crystalline materials are known to have anisotropic surface
properties due to the presence of face-specific molecular
arrangements. These molecular arrangements stem from the
crystal structure and possess symmetry that allows a group of
faces, known as family, to share identical arrangements. The
commonly observed anisotropic surface properties such as
surface energies, growth rates, dissolution rates, wettability,
cohesion, and adhesion can be expressed using polar plots. The
polar plots of anisotropic surface properties of crystalline
materials are the closed surfaces, where each point on the
surface is the property vector in the direction of the normals of
crystal faces.1 The polar plots can be expressed as

=P f n( ) (1)

where P can be any surface property and f is the scalar function
of face-specific normals n. One of the earliest applications of
polar plots of surface energies can be found in the development
of Wulf f construction2 which provides solution to the Gibbs’
formulation of equilibrium crystal morphology.3 The Wulff
construction results from Wulff’s theorem which was formally
proved by Taylor,4 showing that for any function f of surface
normals there is a convex morphology which has the least
surface integral for a fixed volume. If f(n) represents the polar
plot of surface energies, then the convex morphology is the

equilibrium crystal morphology whose faces correspond to the
location of cusps in the polar plots. As the crystals grow far
from equilibrium, their morphologies are determined by the
growth rates. According to Hartman-Perdok theory,5−7 the
polar plots of growth rates are proportional to that of surface
energies and have similar features. The surface evolution equa-
tion describes the dynamics of crystal morphology for a given
polar plot of growth rates. The characteristics of such equations
produce shocks and fans, which indicate faceted evolution of
crystal morphology toward the steady state, which can also be
predicted from the Wulff construction on the polar plot of
growth rates.8,9 The usage of polar plots are not only limited to
determining morphologies but can also be extended to de-
signing crystals of enhanced properties such as low wettability,
high dissolution rates, less cohesive, etc. The identification of
polar plots can help in predetermining properties of crystals.
The kinematic theory of crystal dissolution and growth was

initially proposed by Frank,10 who extended the approach of
Lighthill and Whitham11,12 to the flow of steps on crystal
surfaces. Frank’s analysis yielded the dissolution polar plots
from solution of kinematic wave equation which was based on
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the postulate that the flux of steps on the crystal surface is
proportional to the local density of steps. His theory was based
on microscopic details of crystal surface, which may not be
always accessible, to predict surface evolution. Alternatively, the
theory of Lacmann, Franke, and Heimann13 uses the polar plots
of dissolution rates to determine dissolution shapes, which is
the solution of surface evolution equation. They deduce that
the dissolution morphologies (i) will eventually have faces of
same family, (ii) may have curved or planar surfaces, and (iii)
can be derived by “cutting off” the corners of equilibrium mor-
phologies. These conclusions are valid for cubic crystals and
may not extend to other crystal structures. Section 2.3 shows
that the dissolution morphologies may contain more than one
family of faces which may not be derivable by “cutting off” the
corners of equilibrium morphologies. The analysis of dis-
solution shapes is particularly important in anisotropic etching
of semiconductors. Shaw14 reported the localized etching pro-
files for different geometries and orientations of crystals from
the polar plots of etch rates. Tellier and co-workers15,16 ob-
tained the analytical expressions of the dissolution slowness
surfaces, which are the polar plots of dissolution time, for cubic
crystals using the tensorial approach to the orientation-
dependent etching process. One of the common observations
by these researchers is that the dissolving crystal takes faceted
morphology which can be determined from the extrema of the
polar plots of dissolution rates and are also confirmed by the
experiments.17,18

Doherty and co-workers19−21 studied the dynamics of crystal
morphology under small subsaturations. Their algorithm con-
siders a finite number of faces that belongs to three categories
such as (i) faces already present on crystal, (ii) F-faces, and (iii)
the faces that are on vertices and edges formed by F-faces. The
third category contains the fastest dissolving faces and does not
involve the other fast dissolving faces that may contribute to the
formation of curved interfaces. This approximation is subjected
to the values of relative dissolution rates of other fast dissolving
faces with respect to the fastest ones. Furthermore, the loca-
tions of fastest faces corresponding to the maxima of the polar
plots may not lie exactly in between the adjacent F-faces. If
there are dips (local minima) in the polar plots due to the
presence of S-faces between the adjacent F-faces then there
could be more than one face between the adjacent F-faces that
can dominate the dissolution morphology. Considering the
complexity of determining maxima of the polar plots, it is
reasonable to assume that the fastest dissolving faces are equi-
angular from the adjacent F-faces. Moreover, they concluded
that “in dissolution, crystals evolve away from the unique
steady-state”.19 However, in some cases stable steady states can
be realized as shown in their own simulation results. Similar
results of computational etching profiles presented by other
authors that show the existence of steady-state morpholo-
gies.13,15

The objectives of this article are (i) to develop dynamic
equations for crystal morphology evolution during dissolution
and determine the criteria to obtain steady-state morphologies
and (ii) to develop methodology to obtain polar plots of
dissolution rates from dynamics images of crystals. Section 2
discusses the surface evolution equations for dissolving crystals,
presents the conditions for the existence of steady-state dis-
solution morphologies that could be either faceted or curved,
and develops kinetic equations for the dissolution morphology
of single crystal. Section 3 introduces our methodology to ob-
tain polar plots of dissolution rates from the characteristics of

surface evolution equations using the crystal images. Suc-
cessively, it introduces a method to treat the experimentally
obtained polar plots using crystal symmetry. Section 4 details
the experimental methods for obtaining dynamic images of
crystals using hot-stage microscopy. Section 5 implements the
methodology to experimentally determine the polar plots of
dissolution rates of succinic acid at different subsaturations and
obtains the kinetic parameters for the shape evolution model.
Section 6 provides the conclusions and future outlook.

2. MODELING OF GROWTH AND DISSOLUTION
The retreating or progressing crystal surfaces during dissolution
or growth can be described by surface evolution equations of
Jacobi-Hamilton type. One of the popular techniques to solve
such equations is the Level Set Method.22 These equations are
amenable to the solution by Method of Characteristics.8,9 The
appearances of fans and shocks in the characteristics often
result in the faceted evolution of crystal morphologies during
growth or dissolution, which may under certain conditions
attain a steady state. The subsequent sections develop necessary
equations for morphology evolution during crystal dissolution.

2.1. Surface Evolution Equation. The growth/dissolution
of crystals can be described by the progressing/receding
surface, φ(r;t) = 0, due to the normal growth/dissolution rates
that are functions of surface normals alone. The evolution of
the surface under dissolution can be described by the following
first-order partial differential equation,

φ φ∂
∂

− ·∇ =
t

t tr D n r( ; ) ( ) ( ; ) 0
(2)

where D(n) is the dissolution rate as a function of the surface
normal n = ∇φ/∥∇φ∥ and r is the position vector. The solu-
tion of eq 2 can be obtained by the Method of Characteristics.23

The solution is given by

φ φ=t tr r( , ) ( ( ))0 (3)

along the characteristics

θ
= − − ∂

∂
⎜ ⎟⎛
⎝

⎞
⎠t

D
Dr

n n T
d
d

( )
max (4)

such that

=
t
n

0
d
d (5)

where dθ is the magnitude of angular change in n and T is the
tangent vector to the crystal surface in the direction of maxi-
mum increase in D with n. Since the dissolution rates are
described along the surface normals, they can be written as
D(n) ≡ D(n)n. The function D(n) is popularly known as polar
plot of dissolution rates. The normal component of the char-
acteristics can be written as

· = −
t

Dn
r

n
d
d

( )
(6)

The characteristics r(t) will evolve along the direction of the
surface normal n such that D(n) remain invariant in time. The
characteristics for the crystal growth can be obtained by
replacing −D(n) with G(n) such that

· =d
dt

Gn
r

n( )
(7)
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The dissolution 6 and growth 7 characteristics are very well
studied in the literature and are known to produce shocks and
fans to give them faceted morphologies. The shocks are
produced when multiple characteristics intersect, and fans
appear when characteristics run parallel to each other. The
identification of shocks and fans is relatively straightforward for
planar crystals because of the absence of saddle points on the
planar polar plots which, on the other hand, may be present on
3D polar plots. In the next section, we will explore the behavior
of growth and dissolution characteristics under different
limiting conditions of surface integration, surface diffusion,
and bulk diffusion to assess the steady-state shapes of crystals.
2.2. Growth and Dissolution Morphologies: Faceted

or Curved? During crystal growth, solute molecules move
from the bulk solution to the crystal surface (bulk diffusion)
followed by their transfer along the surface to the kink sites
(surface diffusion), where they attach to the surface (surface
integration). The process of dissolution is exactly the reverse of
growth, where the molecules are transferred from the crystal
surface to the bulk solution by a series of operations involving
surface disintegration, surface diffusion, and bulk diffusion. If
the solute transfer is limited by any of the foregoing processes
such as surface integration/disintegration, surface diffusion, and
bulk diffusion then the growth/dissolution rates of crystal faces
will become dependent on their surface energies (specifically,
the attachment energies), surface diffusivities, and bulk dif-
fusivity, respectively.
2.2.1. Growth Morphologies. In the case of surface inte-

gration limited growth, the polar plot of growth rates (shown in
Figure 1a) is proportional to that of attachment energies. The
polar plots have cusps at their minima which usually cor-
respond to the F-faces (flat faces). The F-faces are the crystal
faces with more than one periodic bond chain that makes them
stable (low energy) and slow growing as compared to the other
faces. Figure 1a corresponds to the crystal of 4-fold symmetry
with four F-faces located at F1, F2, F3, and F4. The specific polar
function used in plotting Figure 1a is

= | | +−G n nn( ) sin[2 tan ( / )] 0.2y x
1

(8)

where nx and ny are the x and y components of the surface
normal n. The faces in between the F-faces are of high energies
and may correspond to either S-faces (step faces) or K-faces
(kink faces). The Wulff construction in Figure 1a will deter-
mine the steady-state morphology, which is of square shape.
Figure 1b shows the evolution of a circular crystal determined
by the growth characteristics 7 emanating from the surface. As
the crystal in this example has 4-fold symmetry, the char-
acteristics shown as dotted arrows in Figure 1b behave iden-
tically in each quadrant.

The propagating shocks
⎯→⎯
AC and

⎯→⎯
BC are the sources for the

fans (horizontal and vertical characteristics that run parallel to
each other) appearing in Figure 1b. The propagating shocks are
also the trajectories of the singular points on the crystal. The
characteristics corresponding to surface normals in between
n1 = [0 1]T and n2 = [1 0]T converges gradually to the pro-
pagating shocks which then merge at C. A characteristic will
converge to the propagating shocks if the corresponding
normal satisfies the following relationship

>

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥G

G

G
n n

n

n

n

n
( )

( )

( )
T

T

T

1

2

1
1

2 (9)

Here n1 and n2 are the face normals corresponding to the
adjacent minima of the planar polar plot. The time of inter-
section of the characteristics with the propagating shocks de-
pends on the initial shape of the crystal. The fans are located at
normal vectors which minimizes the polar plot such that

G nmin ( )
n (10)

Therefore, the growth of any arbitrary-shaped crystal, gov-
erned by the surface integration limited growth rates, will take a
faceted morphology with a discrete number of fans forming flat

Figure 1. (a) Polar plot of growth rates limited by surface integration. The minima F1, F2, F3, and F4 of the polar plot correspond to the F-faces. (b)

Evolution of a circular crystal to a square shape is governed by the characteristics shown as dotted arrows. The shocks are propagating along
⎯→⎯
AC and

⎯→⎯
BC and finally merging at C. The fans are appearing along the normals of F-faces.
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faces whose normals correspond to the cusps of the governing
polar plot. A set of characteristics 7 associated with the ith
fan can be lumped into a single ordinary differential equation
(ODE), such that

=
̃

= =
t

h
t

G i nn
r

n
d
d

d
d

( ), 1, 2, ...,i
i

i (11)

Here h̃i is the perpendicular distance of a crystal face formed by
the ith fan given as ni·r = hi and there are a total n such faces.
The symmetry of the crystal allows faces with identical atomic
arrangements, known as a family, to have same growth rates.
Therefore, eq 11 can be further lumped into ODEs cor-
responding to each family of faces.

= =
h
t

G i m
d
d

, 1, 2, ...,i
i (12)

where hi represents perpendicular distances of faces in the ith
family whose growth rates are Gi = G(ni) and m is the total
number of families. Equation 12 is sometimes referred to as
the shape evolution model, which arises from the governing sur-
face evolution equation. Equation 12 can be written in vector
notations as

=
t
h

G c
d
d

( )
(13)

where h is an m-dimensional vector (also referred to as
h-vector) of perpendicular distances and G is the vector of
corresponding growth rates which can be a function of crys-
tallization conditions c. Equation 13 dictates the dynamics of
F-faces (fans) that can lead to various morphology trans-
formations due to the appearance or disappearance of faces
governed by their relative growth rates. Singh et al.24 developed
a framework to identify the morphology domain that can
elucidate all possible morphology transformations for any
crystalline material. Furthermore, they developed dynamic
equations for evolution of single crystal morphology and
morphology distributions. Although h can never attain a steady
state, the crystal morphology which is governed by the relative
perpendicular distances can attain a steady-state when grown at
fixed growth rates. The solution of 13 for fixed growth rates G
is given as

= +t th h G( ) (0) (14)

After a sufficiently long time when ∥h(t)∥ ≫ ∥h(0)∥, the
h-vector h will orient itself asymptotically along G such that

∝h G (15)

which is the required condition for steady-state morphology.
Thus, a crystal can always attain steady-state morphology at
fixed growth rates by growing sufficiently larger.
The growth of crystals is dominated by slow-growing faces

whose vertices and edges are the regions of higher surface
energies where all other fast-growing faces are located. Since
the normal growth rates of crystal planes at vertices and edges
of crystals are much higher, they tend to suffer with diffusion
limitations. The growth in such situations for some portions of
the crystal surface is regulated by surface integration, while the
other portions evolve in diffusion controlled regime. The
diffusion limitations may arise from either (i) surface diffusion
or (ii) bulk diffusion. Since surface diffusivities are face specific,
the corresponding polar plots of growth rates will have
nonconstant curvature, whereas the polar plots limited by

bulk diffusion have constant curvature. Figure 2a shows an
example of a polar plot of growth rates where F-face are
governed by surface integration, and all other faces are limited
by surface diffusion. If the growth of the crystal is limited
entirely by surface diffusion, the corresponding polar plots can
take any smooth and closed shape. The specific polar function
used to generate the polar plot in Figure 2a is

= | | +−G n nn( ) 0.8 sin[2 tan ( / )] 0.2y x
1

(16)

The evolution of circular crystal directed by the growth
rates 16 attains a steady-state nonfaceted morphology. The
characteristics emanating vertically n = [0 1]T and horizontally
n = [1 0]T from the circle produces fans (flat surfaces), and the
characteristics corresponding to the faster growing faces diverge
radially to yield curvature.
Figure 2c shows an example of the polar plots of growth rates

of faces, whose normals make angles between 30° and 60°,
driven by bulk diffusion. The polar function used in Figure 2c is
given by

= | | +

≤ < < ≤

= | × | +

≤ ≤

−

− −

−

G n n

n n n n

n n

n( ) 0.8 sin[2 tan ( / )] 0.2

0 tan ( / ) 30, 60 tan ( / ) 90

0.8 sin[2 30] 0.2

30 tan ( / ) 60

y x

y x y x

y x

1

1 1

1
(17)

The evolution of circular crystal in Figure 2d under the
growth field 17 shows a similar behavior as in Figure 2b except
that it takes a constant curvature for the portion influenced by
the bulk diffusion. In both cases where crystal is partly governed
by surface integration and partly by diffusion, the characteristics
evolve into three groups producing (i) fans (normals satisfying
eq 10), (ii) shocks (normals satisfying eq 9), and (iii) curva-
tures (rest of the normals).
The polar plots of growth rates limited by bulk diffusion will

be a circle in two dimensions (shown in Figure 3a) and a
sphere in three dimensions. The dynamics of the crystal shape
in Figure 3b for the isotropic growth rates in Figure 3a shows
radially emerging characteristics with no occurrences of shocks
and fans. Therefore, a crystal growing under bulk diffusion
limitation will eventually take a spherical shape.

2.2.2. Dissolution Morphologies. The process of dissolution
of crystal is exactly the reverse of growth. The dynamics of
crystal morphology during dissolution is determined by either
the surface evolution eq 2 or the associated characteristics 6.
The dissolving crystal can take either faceted or nonfaceted
morphology based on the shape of polar plots which is
governed by different controlling mechanisms such as surface
disintegration, surface diffusion, and bulk diffusion. As opposed
to the growth morphologies which are dominated by low
energy faces, the dissolution morphologies are governed by
high energy faces. The steady-state dissolution morphology can
be determined from Wulff construction of the Slowness Surface
of dissolution rates. The slowness surface τ(n) is defined as the
inverse of the polar function of dissolution rates, such that

τ =
D

n
n

( )
1
( ) (18)

Unlike crystal growth where steady-state morphologies can
always be attained under fixed growth rates, the dissolution

Crystal Growth & Design Article

dx.doi.org/10.1021/cg500939t | Cryst. Growth Des. 2014, 14, 5647−56615650



morphologies can attain steady state only under certain circum-
stances to be discussed in Section 2.3. The effect of different
governing mechanisms such as surface disintegration, surface
diffusion, and bulk diffusion on the dynamics of dissolution
morphologies will be discussed next in terms of characteristics
forming fans, shocks, and curvatures. The functional forms for
the polar plots of dissolution rates in the subsequent analysis
are chosen similar to those used for the growth rates in 8, 16,
and 17, for comparison between growth and dissolution
morphologies under similar conditions.
The dissolution of crystals controlled by surface disintegra-

tion is dependent on the detachment energies of solute
molecules which is same as the attachment energies. The
corresponding polar function of dissolution rates is given as

= | | +−D n nn( ) sin[2 tan ( / )] 0.2y x
1

(19)

Figure 4a shows the slowness surface 18 for the polar
function 19 of dissolution rates. The minima of the slowness
surface (equivalently, the maxima of the polar plot) indicated as
K1, K2, K3, and K4 correspond to the faces of highest dissolution
rates. These faces are also the highest energy faces and may
belong to K-faces. The Wulff construction in Figure 4a
suggests steady-state morphology of diamond shape. Figure
4b shows the evolution of circular crystal to a diamond
shape. The characteristics are progressing inwardly from
the initial surface and diverging away from the 45° line.

Consequently, the shocks produced along
⎯→⎯
AC and

⎯→⎯
BC will

create vertices on the crystal surface. The trajectories of
shocks depend on the initial shape of the crystal whose
location on the steady-state morphology can be determined
from the positions of fans.

Figure 2. Polar plot of growth rates when the growth of F-faces are governed by surface integration and rest of the other faces are limited by (a)
surface diffusion or (c) bulk diffusion. The evolution of circular crystals shown in (b) and (d) are dictated by the growth rates in (a) and (c),
respectively. Panels (b) and (d) show the characteristics (dotted arrows) producing fans, shocks, and curvatures.
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The mechanism of the appearance of fans during dissolution
is different than that of growth where fans appear from the
propagating shocks. The characteristics emanating from a small
patch on the initial surface nearthe 45° line in Figure 4b are less
diverging and appear to be parallel. As the crystal dissolves,
its surface becomes dominated by less diverging and almost
parallel characteristics. The appearance of fans is therefore
due to a decrease in crystal size and existence of a finite num-
ber of maxima in the polar plots of dissolution rates. The
fans for dissolution morphologies are located at the surface
normals that maximize the polar plots of dissolution rates,
such that

D nmax ( )
n (20)

Usually there are only a finite number of normal vectors that
will maximize the polar plot of dissolution rates. However, in
some cases there could be infinite solutions to the maximization
problem 20 which will be discussed subsequently. The
characteristics producing shocks are those whose associated
normals satisfy following condition

<

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥D

D

D
n n

n

n

n

n
( )

( )

( )
T

T

T

1

2

1
1

2 (21)

Figure 4. (a) Slowness surface for the polar plot of dissolution rates in Figure 1a. The minima of the slowness surface indicated as K1, K2, K3, and K4 are the
K-faces of highest dissolution rates. (b) Dissolution of circular crystal to diamond shape governed by the slowness surface in (a). Characteristics shown as

dotted arrows are diverging away from the 45° line and producing shocks along
⎯→⎯
AC and

⎯→⎯
BC . Fans appear along the minima of the slowness surface.

Figure 3. (a) Isotropic polar plot of growth rates when bulk diffusion is a controlling mechanism. (b) Invariant evolution of circular crystal where
characteristics (dotted arrows) are neither creating shocks nor fans.
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where n1 and n2 are the normal vectors adjacent to normal
vectors satisfying eq 20. The normal vectors satisfying eq 21
will eventually intersect at the propagating shocks, which will
reduce the curvature of the crystal surface and make it faceted.
Therefore, the crystal dissolving via surface disintegration will
take a shape composed of a finite number of highest energy
faces. The evolution of such faceted morphology can be con-
veniently described as

= −
t
h

D c
d
d

( )
(22)

Here h and D are m-dimensional vectors of perpendicular
distances of flat faces and their dissolution rates, respectively.
Equation 22 can be obtained in a similar fashion as shown for
growth in eqs 11−13. The vector of dissolution rates has
components Di = D(ni) evaluated for the normal vector

corresponding to the ith family of faces. The faceted evolution
can lead to appearance of disappearance of faces which can be
identified by constructing morphology domain. At fixed crys-
tallization conditions, the solution of eq 22 can be obtained as

= −t th h D( ) (0) (23)

It can be shown by defining relative perpendicular distances
that the dissolution morphology cannot attain steady state; in
other words, h cannot be aligned to D. However, under certain
conditions the morphology may attain a steady state, which will
be discussed in the next section.
Rates of the fastest dissolving faces are susceptible to

diffusion limitations such that some parts of the crystal surface
are controlled by diffusion and the rest by surface disin-
tegration. Figure 5a shows the slowness surface for the polar
function of dissolution rates

Figure 5. Slowness surface for dissolution rates when the dissolution of F-faces are governed by surface disintegration and rest other faces are limited
by (a) surface diffusion or (c) bulk diffusion. The evolution of circular crystals shown in (b) and (d) are dictated by corresponding dissolution rates
in (a) and (c), respectively. Panels (b) and (d) show the characteristics (dotted arrows) producing fans, shocks, and curvatures.
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= | | +−D n nn( ) 0.8 sin[2 tan ( / )] 0.2y x
1

(24)

which are partially governed by surface diffusion. The polar plot
of dissolution rates expressed by eq 24 is shown in Figure 2a.
As the surface diffusivity is different for different faces, the
curvature of slowness surface in Figure 5a varies with the
surface normal which results in a finite number of maxima.
Therefore, the Wulff construction on such slowness surface
would yield faceted steady-state morphology. Figure 5b shows
the evolution, governed by the dissolution rates in eq 24, of
circular crystal to the diamond shape. The dynamical behavior
of characteristics are similar to those in Figure 4b, the fans
appear along [1 1]T, −[ 1 1]T, − −[ 1 1]T and −[1 1]T

directions and the shocks move toward [1 0]T, [0 1]T,
−[ 1 0]T and −[0 1]T directions. The fans become more
prominent as the crystal dissolves to a smaller size. Although
the growth rates in eq 16 and dissolution rates in eq 24 share a
similar form, the corresponding steady-state shape is curved
(nonfaceted) for growth and faceted for dissolution.
The fast dissolving faces can also be limited by bulk diffusion

resulting in identical dissolution rates. Figure 5c shows the
slowness surface for the polar function of dissolutions rates

= | | +

≤ < < ≤

= | × | +

≤ ≤

−

− −

−

D n n

n n n n

n n

n( ) 0.8 sin[2 tan ( / )] 0.2

0 tan ( / ) 30, 60 tan ( / ) 90

0.8 sin[2 30] 0.2

30 tan ( / ) 60

y x

y x y x

y x

1

1 1

1
(25)

which are partially governed by bulk diffusion. The
corresponding polar plot for eq 25 is shown in Figure 2c. As
the bulk diffusivity is independent of crystal faces, the
corresponding portion of the slowness surface will exhibit an
infinite number of maxima and will have a constant curvature.
The Wulff construction in Figure 5c will yield partially faceted
steady-state morphology with curvatures of constant radius.

Figure 5d shows the evolution of circular crystal to such a
steady state. The shocks appear at the same locations as in
Figures 4b and 5b. However, the fans are appearing along 30°
and 60° lines whose locations are different than in Figures 4b
and 5b. The characteristics corresponding to the normal vectors
between 30° and 60° converges radially to produce a curvature
of constant radius.
The polar plots of dissolution rates are smooth functions if

the dissolution of entire crystal is controlled by diffusion. The
polar plot and hence the slowness surface (shown in Figure 6a)
are exactly circular if the dissolution is governed by bulk
diffusion. Consequently, the dissolving crystal in Figure 6b
attains circular steady-state morphology.

2.3. Conditions for Steady-State Dissolution Morphol-
ogy. The Wulff construction on the slowness surface would
yield steady-state dissolution morphology. However, such
steady states can be only attained under certain circumstances.
Figures 4b and 5b show the transformation of circular
morphology (with all faces present) to a faceted morphology
(with a few faces) in the absence of bulk diffusion limitations.
In presence of bulk diffusion, the crystal can eventually develop
curvatures of constant radius as shown in Figures 5d and 6b.
These morphologies might undergo further transformations to
achieve the steady state. Such transformations can be described
by the evolution of shape determining variables such as
perpendicular distances and radii of curvatures. Doherty and
co-workers showed that the dissolution of faceted morpholo-
gies always move away from the corresponding steady state.
Such evolution is described by the ODE 22 for perpendicular
distances of each family of faces that are likely to appear.
Depending on the relative dissolution rates, it is possible that
some families of faces may disappear during evolution. If the ith
family is disappearing on an already existing jth family on a
crystal then the perpendicular distance hi of the ith family
becomes proportional to the perpendicular distance hj of the jth
family

α=h hi ij j (26)

Figure 6. (a) Isotropic slowness surface for dissolution rates when bulk diffusion is a controlling mechanism. (b) Invariant evolution of circular
crystal where characteristics (dotted arrows) are neither creating shocks nor fans.
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where αij is the proportionality constant. The dissolution rates
of disappeared faces will also become dependent on the exist-
ing faces. Therefore, the dissolution rate of the ith family is
related as

α=D Di ij j (27)

Now consider a scenario when (m − 1) families of faces will
gradually disappear and the crystal is left with only one family
(say, the first family) of faces, such that

α= hh 1 (28)

where α = α α[1 ... ]m21 1
T. Similarly the vector of dissolution

rates can be expressed as

α= DD 1 (29)

At fixed dissolution rates, the evolution of crystal mor-
phology is given by eq 22 before attaining steady state. As all
the families of faces disappear (except family 1), the dissolution
rates become dependent and gradually take the form of eq 29.
The morphology evolution is then described by h1(t). Since α
is independent of time, the vector of perpendicular distances
will become parallel to the vector of dissolution rates when
there is only one independent family of faces present on the
crystal,

∝th D( ) (30)

As the relative perpendicular distances are proportional to
relative dissolution rates, the crystal attains steady-state
morphology. It is also possible that the crystal might completely
disappear before attaining steady state.
The steady-state morphology determined from the Wulff

construction on the slowness surface can have more than
one family of faces. Their relative perpendicular distances will
naturally move away from the steady state if they are not pro-
portional to the corresponding relative dissolution rates.
Therefore, the steady-state morphology with multiple families
of faces can be attained if their relative perpendicular distances
in the initial morphology are proportional to their relative
dissolution rates.
2.4. Efficient Model for the Evolution of Nonfaceted

or Smooth Morphologies. In the previous sections, we
noticed that a crystal can undergo various transformations
based on the governing mechanism to arrive at steady-state
morphology. Although dissolution is described by a single
surface evolution equation, its use is inconvenient for obtaining
population trajectories. Therefore, the purpose of this section is
to derive kinetic equations for shape-defining variables such as
perpendicular distances and curvatures that can be used for
efficient description of the population of crystals. Such models
can be very useful to predict the evolution of crystal
morphology distributions during cycles of growth and
dissolution.
The Frenet equations for the planar curve can be used to

derive kinetic equations for the change in curvature due to
crystal growth or dissolution. From the Frenet equations, the
curvature κ can be expressed as

κ = − ·
s
n

T
d
d (31)

where s is the arc length whose differential element is ds =
∥dr∥. The rate of change in curvature can be obtained as

κ κ= = − ·
⎡
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2
(32)

which can be further expressed in matrix notation as

κ = ∇ ∇
t

s
t

T nT T
d
d

[ ( )]
d
d

T
(33)

The rate of change of arc length can be obtained from the
characteristics as

θ
= · = + ⎜ ⎟
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where v(n) is equal to G(n) for growth and −D(n) for
dissolution. Substituting eq 34 into 33 will remove the
dependence of curvature on the arc length,

κ ζ φ
θ

= + ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥t

v
v

n
d
d

( ) ( )
d
d

2
2 1/2

(35)

where ζ(φ) = TT[∇(∇n T)]T is a scalar function involving up
to third order derivatives of φ. The symmetry of crystals is
usually reflected on the developed curvature which allows many
characteristics to have identical curvature. The evolution of
convex crystals with flat faces and curved interfaces can be
completely described by eqs 13, 22, and 35.
The periodic operations of growth and dissolution are often

used to manipulate crystal morphology. In doing so, the crystals
can switch from the faceted growth morphology to the faceted
dissolution morphology through a series of transformations
involving the appearances of curved interfaces. For example,
Figure 7 shows the dissolution of steady-state growth

morphology (in Figure 1b) to steady-state dissolution
morphology. The underlying polar plot of dissolution rates
has the same shape as in Figure 1a. Notice that the initial
morphology in Figure 7 is composed of slowest-dissolving faces

Figure 7. Dissolution of steady-state growth morphology (shown in
Figure 1b) governed by the dissolution rates in eq 19.
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which gradually disappear as the crystal recruits more fast-
dissolving faces. Thus, the cyclic operation of growth and
dissolution can help in manipulating not only morphology but
also surface properties.
The initial morphology in Figure 7 has 4-fold symmetry and

therefore requires only one perpendicular distance to determine
the dynamics of the flat faces. Dissolution of the crystal results
in the appearance of infinitely many faces forming a curved
interface of constant curvature. Figure 8 shows the evolution of
perpendicular distance, curvature, and the center of curvature
for dissolving crystal in Figure 7.
The perpendicular distance follows a linear trajectory until

the F-faces completely disappear, and then its evolution is
dictated by the vertices formed by the faster dissolving faces.
The evolution of the curvature from infinity to zero is a result
of transition of the vertices (on initial morphology) to the flat
faces (on final morphology). The center of curvature moves
along the 45° line whose distance from the origin decreases
with increase in time. Here the curvatures and their centers are
determined by fitting an arc of a circle to the curved portion of
the crystal. Initially, the evolution of dissolution morphology
requires three internal coordinates such as perpendicular
distance, curvature, and center of the curvature. After the dis-
appearance of flat faces, the morphology can be described by
only two internal coordinates such as curvature and its center.
The evolution of morphology distributions can be described by
population balance equations25−27 with internal coordinates
such as perpendicular distances (h), curvatures (κ), and corres-
ponding centers of curvatures (r).

κ
κ

κ

κ

∂
∂

− ∂
∂

− ∂
∂

− ∂
∂

=

n h r t
t h

D h n K n

r
R r n

c c

c

( , , ; )
( , ) ( , )

( , , ) 0
(36)

The above equation describes the evolution of a population
of nonfaceted crystals in subsaturated environment, where D is
dissolution rate of faces with perpendicular distance h, K is the
rate of change of curvature κ, and R is the rate of change of the
center of curvature r. These rate kernels can be derived from
the polar plots as follows. First, obtain the shape evolution of
dissolving crystal using polar plots, as shown in Figure 7. Then,
determine the time trajectories of curvature and its center by
fitting circular arcs. And finally, cross plotting the derived rates
D(t) against h(t); K(t) against κ(t); and R(t) against κ(t) will
give the required kernels. Figure 9 shows the rate kernels
derived from shape evolution in Figure 7.
It may be difficult to obtain a numerical solution to the

population balance eq 36 due to following reasons. A corner or
edge of a crystal has an infinite curvature, which decreases with
dissolution and approaches a very small value for a flat surface.
In this process of corner transforming to a flat face, the cur-
vature has spanned the entire positive real axis which is im-
possible to track numerically. An approximation can be made to
define a maximum value of curvature. For example, a crystal of
unit size whose corner has a curvature of 100 (equivalently, the
radius of curvature is 100 times smaller than the dimension of
crystal) will still look like a corner on a relative scale. In other
words, morphologies of crystals with sharp corners or corners

Figure 8. Evolution of (a) perpendicular distances of F-faces, (b) curvatures at the corners, and (c) the center of curvatures in Figure 7.
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with a curvature value of 100 are almost identical. Similarly, the
center of curvatures starting from the corner of crystal can span
the entire negative real axis as it progresses toward a flat face. As
the curvature in Figure 8b decreases to a value of 1, the curved
corner surface in Figure 7 becomes more flat. Here the center
of curvature at a distance of −0.5 from origin yields an almost
flat surface. Such analysis can provide bounds on the values of
curvature and its center to obtain a numerical solution. The
analysis presented here uses a set of perpendicular distance,
curvature, and its center to describe dissolution of a crystal with
one family of faces. A real crystal with multiple families of faces
will require multiple sets of internal coordinates.

3. IDENTIFICATION OF POLAR PLOTS

Section 2 discusses the dynamics of crystal morphology due to
the associated polar plots of growth rates and dissolution rates
for different governing mechanisms. The polar plots are the
function of crystal structure and the environmental conditions.
The fate of crystal morphology is determined by the polar plots.
Therefore, it is crucial to predetermine polar plots to predict
morphological properties of crystalline materials for different
applications. The subsequent section will present a method-
ology to compute polar plots from the dynamic information on
crystal morphology.
3.1. Solution of the Characteristics. The characteristics

for the evolution of surface φ(r;t) = 0 along the normal vector
n is given as

· =d
dt

vn
r

n( )
(37)

where v(n) is equal to G(n) for growth and −D(n) for
dissolution. The objective here is to calculate v(n) from the
dynamic data on φ(r;t) = 0. The in situ experiments, as
discussed in Sections 4 and 5, on crystal growth or dissolution
using hot-stage microscopy can provide the dynamic data on
surface evolution. The transient images of crystals provide
information on φ(r;t) = 0 for discrete values of r and t.
Therefore, it is reasonable to discretize eq 37 to calculate the
polar function, such as

= ·
−
−

= =θ
+

+
v

t t

t t
i N j Nn n

r r
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, 1, 2, ..., ; 1, 2, ...,i j i i

i j i j

j j
T,

1

1

(38)

where vi,j is the speed of the position vector ri along the surface
normal ni at time tj. Here the time derivative is evaluated at tj
using forward-difference scheme which is accurate to the order
of Δt. Other schemes of higher order accuracy to discretize first
order derivatives can also be used in 38. Since the surface
normal does not change along the characteristics, the position
vectors ri(tj) on φ(r;tj) = 0 and ri(tj+1) on φ(r;tj+1) = 0 must be
chosen such that

φ φ∇ = ∇ + +t t t tr r( ( ); ) ( ( ); )i j j i j j1 1 (39)

Experimentally determined velocities of faces at fixed
operating conditions can show variation with time, which can
be considered as random,28 and hence they can averaged as,

∑= = θ
=

v
N

v i Nn n( )
1

( ), 1, 2, ...,i i
T j

N

i j i
1

,

T

(40)

Figure 9. Rate of change of (a) perpendicular distance (D), (b) curvature (K), and (c) the center of curvature (R).
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The growing or dissolving crystals will drive the solution
toward the saturation limit, which will reduce their face-specific
velocities. To compensate for the effect of changing super-
saturation or subsaturation on the measured face-specific veloc-
ities, eq 40 can be written as the weighted sum. Appendix I
shows the formulation to obtain such a weighted sum.
The measured polar plots may also lack crystal symmetry due

to spatial inhomogeneity in experimental conditions. The polar
plots must retain the symmetry of crystal, so that

= = =v v vR n R n R n( ) ( ) .... ( )i i i i i S i1 2 (41)

where R1, R2, ..., Rs are the rotation matrices identified from the
crystal symmetry such that R1ni, R2ni, ..., RSni belong to the
same family. The crystal symmetry can be enforced to the polar
plots in the following way

∑=
=

v
S

vn R n( )
1

( )i i
j

S

i j i
1 (42)

3.2. Numerical Procedure: Moving Tangent Method.
One of the reliable experimental techniques to measure dy-
namical changes in crystal morphologies is microscopic
imaging. The quality and number of time lapse images deter-
mine the quality of the measured polar plots. In the following,
we have discussed a numerical procedure based on the moving
tangent method to determine polar plots from dynamic images
of 2D crystals.
Step 1: The standard image processing and segmentation

algorithms can yield the contour of the 2D crystal for each
time-lapsed image. The resolution of the images can be used to
determine the position coordinates of each pixel in the contour.
Step 2: NT is equal to the number of time-lapse images. The

upper limit on Nθ is determined from the number of pixels
forming the smallest contour. Such a selection will ensure that
the number of normal vectors does not exceed the number of
pixels. Moreover, the selection of Nθ must comply with the crys-
tal symmetry such that all Rjni belong to the set {n1, n2, ..., nNθ

}.
For example, if the crystal has 4-fold symmetry then Nθ must be
an integer multiple of four.
Step 3: The number of pixels can exceed Nθ for larger

contours. Therefore, we need to identify only those pixels
which best describe the surface normals {n1, n2, ..., nNθ

}. We
define a compact notation ri,j ≡ ri(tj) which represents position
vector of a pixel with surface normal ni on the jth contour. The
labeled pixels ri,j are the points where planes with normal ni
touches φ(ri;tj) = 0, such that they have maximum
perpendicular distances from the origin.

n rmax( )i
T

i j
r

,
i j, (43)

Graphically, the points {ri,1, ri,2, ..., ri,NT
} can be obtained by

moving the tangent plane with normal vector ni over all other
contours.
Step 4: Use eqs 38, 40, and 42 to determine the polar plot

vi(ni).

4. MATERIALS AND METHODS
The experiments on the dissolution of single crystal of succinic acid
were done in a crystallization cup using hot-stage optical microscopy.
A saturated solution of succinic acid (Sigma-Aldrich, > 99% purity) in
water was prepared at 40 °C, and the solution was slowly cooled down
to 28 °C, which yielded nicely shaped crystals. A single crystal of

succinic acid was carefully transferred to the (1 cm × 1 cm) cry-
stallization cup containing saturated solution of succinic acid at 28 °C.
After the crystal settled down, the saturated solution was filled up
to the brim of the crystallization cup, which was then covered with
glass slip and sealed with grease. Alternatively, crystals can be grown
inside the crystallization cup by cooling down the saturated solution.
Figure 10 shows the crystallization cup assembly. The size of the
crystal shown is much larger than what is used in the study.

The crystallization cup assembly was transferred to the hot-stage
setup (Linkam, LTS350) on the optical microscope (Nikon, Elipse
LV100POL). The complete setup for conducting in situ dissolution is
shown in Figure 11. With the knowledge of the solubility of succinic

acid in water, a known amount of subsaturation can be created by
quickly raising the temperature and maintaining it to a specific value
using the temperature controller of the hot-stage. The experiments
were conducted at constant temperatures such as 31, 33, 38, 43, and
48 °C. The dissolution of succinic acid crystal was recorded by taking
time-lapsed images.

5. RESULTS AND DISCUSSION
The micrographs were processed in a similar way as shown by
Singh et al.29 to identify contours of crystals. Figure 12 demon-
strates the sequential processes involved in obtaining contour
from the micrograph.

Figure 10. Crystallization cup assembly containing succinic acid crystal
in saturated solution. The crystallization cup is covered with coverslip
and made leak proof by sealing with high vacuum grease.

Figure 11. Hot-stage optical microscope with crystallization cup.
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The sequence of time-lapsed images can be processed to
obtain contours of crystals. The moving tangent method was
used to obtain polar plots of dissolution rates. Figure 13 shows
the measured polar plots for different subsaturations and a fixed
temperature of 28 °C. The size of crystal does not change much
in the first few seconds of dissolution, which ensures constant
subsaturation. However, the degree of subsaturation will
decrease as the crystal dissolves. Therefore, the time-lapsed
images recorded in the beginning of dissolution experiments
are used to obtain the polar plots. These polar plots are aligned
such that north and south directions correspond to {010} faces.
The size of the polar plots increases with the degree of
subsaturation. The minima of the polar plots correspond to the
F-faces of succinic acid such as {010} and {110}. Clearly, the
polar plots are irregular and lack symmetry of succinic acid
crystal. Such irregularities can be due to diffusional inho-
mogeneity in the crystallization cup causing nonuniform

subsaturations around the crystal. One of the ways to remove
such noise from the as-measured polar plots is by enforcing
crystal symmetry. The morphologies predicted from the as-
measured and symmetry-applied polar plots will be different.
Also, the random behavior of polar plots will prevent crystals
from attaining steady states.
The succinic acid crystal has 2-fold symmetry and a mirror

plane along the (010) direction. The symmetry can be applied
according to eq 42 to obtain symmetric polar plots. Figure 14
shows the polar plot of dissolution rates (at ΔC = 0.0746 kg/kg)
before and after applying symmetry. The symmetry-applied polar
plot shows distinct minima and maxima corresponding to the
slowest and fastest dissolving faces.

6. CONCLUSIONS
This article revisits the existing surface evolution theory for
crystal growth and dissolution to provide more insights into the
development of steady-state morphologies. The appearances of
fans and shocks on a circular crystal due to growth/dissolution
were studied for different limiting mechanisms such as surface
integration/disintegration, surface diffusion, and bulk diffusion.
The steady-state morphologies obtained from the Wulff
construction are usually faceted for diffusion-free growth,
which is due to the presence of cusps in the polar plots. The
independent growth characteristics emanating from the circular
crystal tend to intersect to produce propagating shocks. Al-
though the trajectories of shocks depend on the initial
morphology, their final locations are dependent only on the
fans participating in the steady-state morphology. The fans on
growth morphologies appear due to bifurcation (in case of 2D
crystals) or multifurcation (in the case of 3D crystals) of pro-
pagating shocks. The characteristics satisfying conditions 9 and
10 will contribute to shocks and fans, respectively, and the rest
will produce curved interfaces. The surface integration limited
growth of crystals often leads to fully faceted morpho-
logy, whose characteristics can be lumped according to eq 13
to describe shape evolution using perpendicular distances. The
faceted morphologies can also undergo various transformations
based on relative growth rates, which can be determined by
construction morphology domain. As the vertices and edges of
a faceted morphology can grow much faster than the cor-
responding flat faces, they can be influenced by diffusion
limitations. Under such conditions, the steady-state growth
morphologies can have more rounded corners and edges with
either constant or varying curvature based on the governing
mechanism being bulk diffusion limited or surface diffusion
limited, respectively. One of the distinguishing features of
growth morphologies is that they can always attain the steady
state at fixed growth rates.
The possible steady-state dissolution morphology can be

determined from the Wulff construction on the corresponding
slowness surface given in eq 18. Unlike growth morphologies,
the dissolution morphologies may not always attain steady
state. Since the slowness surface is the inverse of the polar
function of dissolution rates, the steady-state morphology is
composed of fastest-dissolving faces. The mechanism of the
appearances of fans and shocks in dissolution morphologies
are completely different than that of growth morphologies. The
fans appear along the surface normal corresponding to the
maxima of the polar plots of dissolution rates, which is due to
the flattening of curvature on the initial morphology. The
curvature reduces because the characteristics diverge away from
the location of the maxima and gravitate toward the location of

Figure 12. Image processing and segmentation to obtain contour of
succinic acid crystal.

Figure 13. Measured polar plots of dissolution rates of succinic acid at
different subsaturations.
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minima, where they intersect to form propagating shocks. The
trajectories of shocks are dependent on the initial morphology,
whereas their locations on steady-state morphology only
depend on the relative positions of fans. The steady mor-
phologies for growth or dissolution can be completely smooth
if the growth or dissolution of entire crystal is governed by
diffusion limitations. The steady-state dissolution morphology
can be attained if (1) the constituting faces belong to same
family or (2) relative perpendicular distances of the constituting
faces on the initial morphology are proportional to the
corresponding relative dissolution rates.
The alternating operations of growth and dissolution offer great

prospects to control crystal morphologies and related properties.
The curved interfaces on crystal morphologies are inevitable when
switching between growth and dissolution. We have shown an
efficient way for accounting the evolution of curved interfaces by
deriving kinetic equations for the corresponding curvatures. The
evolution of a convex crystal can be completely described by the
kinetic equations for perpendicular distances, curvatures, and their
centers, thus providing an efficient framework to describe
morphology distributions using population balance equations.
This article also presents a moving tangent method to

experimentally measure polar plots of dissolution rates using
time-lapse images obtained from hot-stage microscopy. The
methodology involves (1) image processing of time-lapse
images to obtain contours of crystals, (2) selecting appropriate
Nθ and NT, (3) assigning labels to the pixels on each contour
using moving tangent method, and (4) computing polar plots
of dissolution rates and applying crystal symmetry. The meth-
odology was implemented to measure polar plots of dissolution
rates of succinic acid at different subsaturations and fixed tem-
perature. The polar plots expand in size with an increase in the
degree of subsaturation. The measured polar plots show six
distinct minima corresponding to the F-faces of succinic acid
crystal. The irregularity in the measured polar plots can be due
to inhomogeneous subsaturations in the crystallizer. Prior infor-
mation on the source of inhomogeneity in the crystallizer along
with the crystal symmetry can be used to obtain smooth polar
plots. The morphology predicted from the smoothened polar
plots will depend on the underlying assumptions of the
smoothening operation. In this case, crystal symmetry alone
provides an excellent basis for the smoothing operation. The

current methodology also can be extended to obtain polar
plots of growth rates using hot-stage microscopy. A three-
dimensional measurement of polar plots will require either an
instrument with in-depth resolution (such as confocal or X-ray
microscopes)29 or an advanced technique to deconvolute the
3D shape from a 2D image.30 This work has presented a
methodology for rapid measurement of polar plots when the
time-lapse images of crystals are available.

■ APPENDIX I: INVERSE-PROBLEM FORMULATION
TO MEASURE FACE-SPECIFIC VELOCITIES

The discretized form 38 of the characteristics 37 can be
rewritten in a matrix form as

= ̇ = θi Nv R n , 1, 2, ...,i i i (44)

where vi is a column vector of speeds of ith face at NT time
intervals and Ṙi is a matrix with row vectors representing
change in position vector in jth time interval. The residual of
eq 44 can be written as

δ λ= − ̇ − ̇ +v R n v R n v A Av[ ] [ ]i i i i
T

i i i i
T T

i (45)

where λ is a Tikhonov regularization parameter and A is a
diagonal matrix accounting for the experimental errors. Mini-
mization of the residual yields

λ= + ̇−v I A R n[ ]i i i
1

(46)

The average value of the components of vi would give the
required equation,
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Equation 40 must be replaced with 47 when experimental
errors are quantifiable.
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■ LIST OF SYMBOLS

c vector of crystallization conditions
D absolute dissolution rate of crystal face along vector

n [m s−1]
D m-dimensional vector of dissolution rates corre-

sponding to m crystal faces [m s−1]
f scalar function of face-specific normals n
G absolute growth rate of crystal face along vector n

[m s−1]
G m-dimensional vector of growth rates corresponding

to m crystal faces [m s−1]
hi perpendicular distance of faces in ith family [m]
h̃i perpendicular distance of ith face [m]
h m-dimensional vector of perpendicular distances of

faces belonging to m families [m]
K rate of change of curvature [m−1 s−1]
m total number of families of faces [−]
n(h,κ,r;t) number density in crystal state space [m−4]
n surface normal vector [−]
NT total number of time-lapsed images [−]
Nθ total number of normal vectors [−]
P arbitrary surface property
r three-dimensional position vector [m]
R rate of change of the center of curvature [m s−1]
R rotation matrices [−]
s arc length on a crystal surface [m]
S total number of symmetry operations [−]
t crystallization time [s]
T surface tangent vector [−]
v speed of crystal face along normal n [m s−1]
αij geometric dependence corresponding to appearance

or disappearance of the ith family on the jth family [−]
κ curvature of crystal surface along tangent T [m−1]
φ crystal surface [−]
φ0 initial crystal surface [−]
τ slowness or inverse of face-specific dissolution rates

[s m−1]
θ angle between two surface normals [−]
ζ scalar function of crystal surface φ [m−2]
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