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ABSTRACT: A stochastic model for structural relaxation in glassy materials is
developed, where the rate of relaxation in a mesoscopic domain depends upon the state
in that meso-domain. Because the meso-domains have nanometer dimensions,
fluctuations are included. The model predicts the volume relaxation for arbitrary
thermal histories at ambient pressure in the glass transition region, where the local rate
of relaxation is given by a single relaxation time that depends on the local density and
temperature. Using a single set of parameters, the stochastic model accurately predicts the entire Kovacs poly(vinyl acetate)
volume relaxation data set. The meso-domain size was determined to be 2.8 nm, consistent with NMR and other measurements.
This model indicates that the origin of the wide relaxation spectra observed experimentally is a single Debye process that
experiences significant fluctuations in its state. The stochastic model also naturally predicts the small amount of
thermorheological complexity that is observed experimentally near Tg.

I. INTRODUCTION

One of the most important features of amorphous materials is
the liquid-to-glass transition, where a material in a liquid-like
state solidifies into a rigid amorphous solid. The formation of
the glassy state is observed for a wide range of materials
including polymers,1 small organic molecules,2 a variety of
inorganic materials,3 and even metals,4 where almost every
material will solidify into the glassy state if the quench rate is
sufficiently fast. The liquid-to-glass transition is often
characterized by the glass transition temperature, Tg; however,
a single temperature cannot even begin to capture the complex,
nonlinear dynamics that occur when the glass is formed. This
nonlinear relaxation has been observed for a variety of material
properties including density, enthalpy, dielectric, and mechan-
ical behavior. Notwithstanding the ubiquitous nature of the
glassy state with respect to both the classes of materials and
ranges of physical properties that exhibit glassy behavior, a
fundamental understanding of the liquid-to-glass transition
remains one of the outstanding problems in materials science.5

In a classic series of papers,6,7 Kovacs measured the volume
relaxation following a series of single- and two-step temperature
jumps for poly(vinyl acetate) (PVAc) in the glass transition
region. This is unquestionably the most complete set of volume
relaxation measurements for any amorphous material that
clearly demonstrates the complexity of the nonlinear relaxation
behavior, including non-Debye relaxation, nonlinearity of the
initial volume change with respect to the magnitude of the
temperature jump, asymmetry in the approach to equilibrium
by up vs down temperature jumps of equal magnitude, complex
memory behavior for two-step thermal histories, and an
expansion gap in the rate of approach to equilibrium for
different thermal histories. Although there were small
quantitative differences, Kovacs observed similar nonlinear
volume relaxation for two different samples of PVAc as well as

glucose; moreover, more limited volume relaxation studies on
PVAc,8,9 polystyrene,10−12 epoxy,13 and polycarbonate14

confirm these basic features of the nonlinear volume relaxation,
although there is some disagreement over the presence of the
expansion gap.15 In our opinion, the second Kovacs data set7

for PVAc provides the gold standard for nonlinear volume
relaxation exhibited by amorphous materials, and any accept-
able theory of relaxation in the liquid-to-glass transition must at
a minimum be able to describe this data set.
Numerous structural relaxation models have been proposed

to describe time-dependent relaxation behavior in the liquid-to-
glass transition region. Although the various models have
differences, all these models employ the basic assumption that
the rate of volume (or enthalpy) relaxation is proportional to
the deviation from equilibrium, where the relaxation time
depends upon both the temperature and some parametrization
of the nonequilibrium state (i.e., structure) in the glass. Current
models for volume relaxation can be divided into three general
classes. The f irst class of models, which include the various
versions of the KAHR model,16−19 employ a distribution of
relaxation times, where all relaxation times are affected equally
by temperature and some nonequilibrium state variable (i.e.,
the models are thermorheologically simple). The different
models assume different functional forms for the distribution of
relaxation times and the dependence of the relaxation times on
temperature and the nonequilibrium state variable. The second
class of models assumes a population of relaxation processes
that each can relax at a different rate, which include
contributions by Robertson20 and Vleeshouwers and
Nies.21,22 An appealing feature of these models is that the

Received: March 4, 2012
Revised: July 24, 2012
Published: August 31, 2012

Article

pubs.acs.org/Macromolecules

© 2012 American Chemical Society 7237 dx.doi.org/10.1021/ma300441a | Macromolecules 2012, 45, 7237−7259

D
ow

nl
oa

de
d 

vi
a 

PU
R

D
U

E
 U

N
IV

 o
n 

Ja
nu

ar
y 

23
, 2

02
1 

at
 2

1:
17

:0
7 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

pubs.acs.org/Macromolecules


relaxation times distribution arises physically from density, or
alternatively free volume, fluctuations. In the first two classes of
models the rate of relaxation depends upon the instantaneous
temperature and state of the material; in contrast, the third class
of models assumes that relaxation rate is a functional of the
thermal and state history and includes contributions by Lustig
et al.23 and Caruthers et al.24 Models in the third class are
thermorheologically simple.
The structural relaxation models listed in the previous

paragraph can describe certain features of the experimentally
observed volumetric response. However, the predictions from
only a limited number of these models have been quantitatively
compared to the Kovacs data set;16−21 moreover, these
quantitative comparisons have only been for a fraction of the
Kovacs data set. It is not possible in this paper to discuss the
predictive capabilities of all the structural relaxation models.
However, as a representative example, the predictions for a
particular member of the KAHR class of structural relaxation
models for the full Kovacs data set are shown in Figure 1, where
the KAHR model is formulated as follows: the specific volume
departure from its equilibrium (at a given temperature) value

δ =
−V V T
V T

( )
( )

0

0 (1)

is split into fractions {δi} satisfying δ = ∑δi. When the
temperature is changing at a rate of q, evolution of each fraction
is described as

δ δ
δ τ

α= − − Δ
t a T

g q
d
d ( , )

i i

i
i

,0 (2)

where the relaxation time distribution is assumed to be of the
KWW form25 and parametrized via a Prony series. Once the
values of the KWW parameters β and τ0 are chosen, the
spectrum of the relaxation times (i.e., {τi,0, gi} set) is fixed (i.e.
thermorheological simplicity). The form of the log a shift
function is assumed to be given by16

δ θ θ δ
α

= − − − −
Δ

a T T T xlog ( , ) ( ) (1 )T Tg (3)

The parameter Δα = αl − αg = 4.37 × 10−4 K−1(i.e., the
difference between liquid and glass coefficients of thermal
expansion) was determined from the time-independent

Figure 1. KAHR model prediction of the Kovacs data set. Volume response following: (A) Temperature down-jumps from 40 °C to (in the
descending order) 25, 27.5, 30, 32.5, 35, 37.5 °C. (B) Temperature up-jumps to 40 °C from 37.5, 35, 32.5, 30 °C. (C) Temperature down-jumps to
30 °C from 40, 37.5, 35, 32.5 °C. (D) Asymmetry experiment: after temperature down-jump from 40 to 35 °C (upper curve) and after temperature
up-jump from 30 to 35 °C (lower curve). (E) Annealing experiment: after temperature down-jump from 40 to 25 °C, annealing for (in the
descending order) 0.3, 4, 28, 160, and 1500 h, and temperature up-jump from 25 to 40 °C. (F) Memory experiment: after temperature down-jump
from 40 to 10 °C, annealing for 160 h, and temperature up-jump to 30 °C; after temperature down-jump from 40 to 15 °C, annealing for 140 h, and
temperature up-jump to 30 °C; after temperature down-jump from 40 to 25 °C, annealing for 90 h, and temperature up-jump to 30 °C. Circles: data;
lines: predictions.
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volume−temperature data.26 The remaining model parameters
were determined by optimization with respect to the Kovacs7

data set comprised of 23 distinct thermal histories, where the
optimum parameters are τ0 = 5.79 × 104 s, β = 0.44, x = 0.215,
and θT = 0.85 K−1. The predictions shown in Figure 1 are good
for most of the data set; however, the KAHR model does have
some difficulties. Specifically, the well-known τ-effective (i.e.,
τeff = δ−1 dδ/dt) plot for up-jumps to 40 °C is shown in Figure
2B, where there is a significant disagreement between the
prediction of the model and the experimentally measured
expansion gap. A thorough investigation by Ng and Aklonis27

showed that KAHR type models are incapable of reproducing
the expansion gap, even at the expense of the rest of the Kovacs
data set. The inability of KAHR models to describe the
expansion gap led some researchers to questioning the validity
of the Kovacs data.28 However, McKenna et al.15 in a statistical
analysis of the original Kovacs data have shown that the
expansion gap data are valid with the implication that there is a
deficiency in the KAHR model.
A second difficulty in the KAHR class of models is a marked

discrepancy between the data and theory for the short
annealing time experiments shown in Figure 2A. This difficulty
is particularly troublesome, since these should be relatively easy
experiments to predict because the amount of relaxation is
small. Similar to the expansion gap, the short annealing time
predictions of KHAR cannot be improved even by sacrificing
the fit to the rest of the data. In summary, the KAHR model, or
its close relatives, can describe a number of the features of the
Kovacs data set well but is unable to predict other important
features of the data. Since a model for structural relaxation
should be able to describe the entire Kovacs data, something is
missing in the KAHR model for structural relaxationa fact
that is appreciated by most practitioners in this field.
Robertson et al.20 have proposed a structural relaxation

model, where the source of the relaxation times distribution is
density fluctuations; however, the predictions of this model
when compared to the entire Kovacs data are less than
satisfactory. In particular, neither the original Robertson et al.20

nor a modification by Vleeshouwers and Nies21 can describe a
set of simple down-jump experiments (see Figure 2 in ref 21).
Since the discrepancies in the down-jump predictions are so
large, there is no hope of reproducing multiple temperature
step experiments. Subsequently, Robertson et al.29 attempted to
alleviate this problems by the introduction of two different

expressions for the log a functionone above and one below a
critical temperaturebut even these two log a functions could
not produce a fit to the entire Kovacs data set. In the Robertson
et al.20 model log a was assumed to depend upon the fractional
free volume via the Doolittle equation,30 where the fractional
free volume was determined from the Simha−Somcynsky
equation of state.20 Alternatively, Vleeshouwers and Nies21

used the Holey−Huggins model instead of the Simha−
Somcynsky model. There are, however, other alternatives to
the Doolittle/Simha−Somcynsky or Doolittle/Holey−Huggins
log a models.
In this report we will explore the volume based log a models

used in conjunction with a stochastic volume relaxation model.
The stochastic model can be cast into a master equation form
that is similar to that employed by Robertson et al.20 We will
show that by employing a log a with the appropriate volume−
temperature dependence in conjunction with a rigorous
implementation of the stochastic model nearly all features of
the Kovacs data set can be accurately described with only a
single relaxation time. This is a significant simplification
compared to the spectrum of relaxation times used in the
traditional viscoelastic models of structural relaxation. However,
this simple stochastic model is unable to predict the pressure
dependence of Tg, where this difficulty will be addressed in a
future publication that incorporates fluctuations in both the
volume and configurational entropy.
The remainder of this paper is organized as follows: in

section II, the stochastic model will be developed in three
equivalent forms: stochastic differential equation (SDE),
Fokker−Planck equation (FPE), and master equation (ME).
Also the form of the temperature and volume dependence of
log a will be developed. In section III we will describe how the
model parameters were determined by optimization to the
Kovacs PVAc volume relaxation data and compare the
predictions of the model to the data. Finally, we will critically
discuss the capabilities, implications, and needed improvements
of the stochastic model. Since the primary audience of this
paper is researchers interested in polymeric and other glass-
forming materials, the paper will focus on the physical
formulation of the model, its predictions, and the physical
implications of those predictions. The formulation involves a
nonlinear SDE and the associated nonlinear FPE and ME
mathematical methods that are typically unfamiliar to most
polymer glass researchers; consequently, the detailed mathe-

Figure 2. KAHR model difficulties in predicting: (A) Volume response after the “short anneal”: temperature down-jump from 40 to 25 °C, annealing
for 0.3 h (upper curve) or 4 h (lower curve), and temperature up-jump from 25 to 40 °C. (B) “Expansion gap”: τ-effective response after the
temperature up-jump from (1) 30, (2) 32.5, (3) 35, and (4) 37.5 °C to 40 °C. Circles: data; lines: predictions.
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matics used in the theoretical development have to the extent
possible been relegated to the Appendices in order to minimize
disturbance to the flow of the physical ideas.

II. THEORY
Motivation for Development of the Stochastic Model.

We postulate that a model for structural relaxation that employs
only macroscopic parameters will be an incomplete description
of the glass transition region, since it does not acknowledge the
inherently heterogeneous nature of the glassy state. Consid-
erable experimental evidence clearly indicates that motional
heterogeneity does exist in glass forming materials in the
vicinity of the glass transition (e.g., see the reviews by Sillescu,31

Ediger,32 and Berthier33 and the extensive references therein).
Specifically, in the glassy state and glass transition region,
chemically homogeneous molecular glass-formers and segments
of the same chemical structure in polymers reorient at vastly
different rates, depending upon their physical location in space;
thus, the molecular dynamics near Tg is heterogeneous for time
scales much longer than the average motional correlation time.
This large distribution of motional dynamics has been
experimentally observed using multidimensional NMR in
several different glass-forming polymeric materials including
PVAc,34−36 polystyrene,37 and polycarbonate.38 The existence
of motional heterogeneity is also supported by anomalous light
scattering of inorganic glass formers like B2O3

39 and heavy
metal fluoride glasses.40−42 By assuming that these hetero-
geneities give rise to the distribution of relaxation times,
Moynihan and Schroeder41 estimated the size of the density
heterogeneities for B2O3, glycerol, and PVAc between 2.3 and
4.6 nm at their respective glass transition temperatures. Further
evidence for the presence of dynamic heterogeneities is
furnished by the dielectric hole burning43 and the solvation
dynamics44 experiments. In addition to this direct experimental
evidence, there are a number of other arguments that support
the idea of dynamic heterogeneity. First, the nonexponential
relaxation has usually been interpreted as arising from a
distribution of correlation times, where various researchers have
postulated that the amorphous material consists of spatially
separated regions of relatively high and low mobility that
maintain their identity for times longer than the largest
correlation time (see review32 by Ediger). Of course, a non-
single-exponential relaxation response is not by itself a unique
indication of spatial heterogeneity, since a spatially homoge-
neous, non-Debye process is also a possibility. Second, the
breakdown of Stokes−Einstein−Debye relationship in the
vicinity of glass transition can be explained via dynamic
heterogeneities.45,46 Third, using the AFM technique, Russell et
al.47,48 observed nanoscale dielectric fluctuations in PVAc near
glass transition. Finally, the heterogeneous nature of the glassy
state has been observed in molecular dynamic simulations.49−51

An inescapable conclusion of acknowledging spatial hetero-
geneity is that an appropriate description of structural
relaxation should be sought on the level of the mesoscopic
domains rather than the macroscopic sample as a whole. The
development of a model that explicitly acknowledges mobility
heterogeneity is the objective of this communication. A model
of spatially distributed and interacting domains should be
formulated in terms of a continuous spatial description of the
relevant field variables; however, a full field description is
intractable by current field theoretical methods. Thus, in order
to avoid a full spatial description, we postulate that the glass
forming material can be spatially coarse grained into domains of

characteristic length L each with a different mobility. We will
also assume (i) all information about the state of a domain is
adequately represented by spatially uniform domain properties
(i.e., all gradients are neglected) and (ii) the interaction
between domains is approximated via a mean field. A key
model assumption will be how the variable that controls the
mobility in a representative domain depends upon the
combination of local and mean field values of that variable.
Robertson20 proposed that in a free volume model of the local
shift factor, log a, was not a function of just the local specific
volume, v, but rather was the same Dolittle function of the
quantity

+ −
z

v
z

z
V

1 1
(4)

where V is the macroscopic (i.e., average) specific volume and z
is an interaction parameter. Clearly, z = 1 corresponds to the
case of noninteracting domains, and z = ∞ corresponds to the
macroscopic limit. Compared to the traditional models, the
mesoscopic description introduces two new parameters: L,
which is a characteristic size of the domain (i.e., the length scale
of spatial coarse-graining of the system), and z, which describes
the cooperativity between the meso-domains. The size of a
domain controls the magnitude of the fluctuations of
thermodynamic properties and, as will be shown, parametrizes
the width of the associated relaxation response. The parameter
z can be considered a coordination number of the local
domains that must tile space.

Formulation of the Defining Stochastic Differential
Equation (SDE). We will first focus on the dynamic behavior
of an individual domain. In this paper it will be assumed that
volume is the only variable that affects the dynamic response,
where the temperature and pressure are externally controlled
parameters. There are other alternatives for the mobility
relationship, including configurational entropy,52 configuration
internal energy,24 and stress.53 If configurational entropy
controls mobility, a description of the dynamics will require
the simultaneous description of volume and configurational
entropy, which we will develop in a subsequent paper. In the
present paper we will describe the response using the simple
assumption of just one fluctuating variable: the specific volume.
The description of a fluctuating system can be obtained in
terms of either (i) a stochastic differential equation (SDE)
which describes the time evolution of a single realization of the
dynamic system, (ii) a Fokker−Planck equation (FPE) which
describes the temporal evolution of the probability distribution
of the dynamic variable, or (iii) a master equation (ME) which
describes the evolution of a discretized probability density.
These three descriptions are formally equivalent but provide
different perspectives of the relaxation process. The SDE
formulation is the most physically transparent and provides a
description of what occurs in a specific meso-domain. The FPE
provides the most appropriate description of the average
response, and the ME often is the most efficient method for
numerical solution. We will exploit the features of all three
methods, starting with the SDE formulation of the physical
problem.
The key postulate in the stochastic model of the glassy

response is that the local (i.e., mesoscopic) relaxation time is
explicitly related to the local state variable. It seems natural to
start with a traditional relaxation equation used for a
macroscopic system and then generalize the macroscopic
description to take into account the fluctuations that cannot be
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neglected on the mesoscopic level. The simplest model for
volume relaxation is given by6

τ
α β= −

−
+ −V

t
V V

a V T
V

T
t

V
P
t

d
d ( , )

d
d

d
d

e

0
g g

(5)

where a(V,T) is the shift function, τ0 is the relaxation time in a
reference state, αg is the glassy coefficient of thermal expansion,
and βg is the glassy compressibility. This single relaxation time
equation assumes that the rate of approach to equilibrium is
proportional to the deviation from equilibrium, where the
“constant” of proportionality is a function of the current state of
the system (i.e., temperature and volume in the current paper).
The key idea is to replace the standard relaxation equation by
an SDE that accounts for mesoscopic fluctuations. A possible
way of building the defining SDE would be replacing the
macroscopic specific volume V with the local specific volume v
and augmenting the macroscopic relaxation equation with a
noise term; consequently, the isothermal−isobaric form of eq 5
including fluctuations is

τ
= −

−
+v

v V
a v T

t N v T Wd
( , )

d ( , ) de

0 (6)

Equation 6 describes evolution of local volume v and includes a
“drift” term coinciding with the deterministic equation given in
eq 5 and a “noise” term assumed to be a Wiener process W(t)
of magnitude N(v,T). The magnitude of the noise is not
arbitrary, but rather it is dictated by the requirement that the
stationary volume distribution be consistent with equilibrium
thermodynamics. The distribution of the specific volume
resulting from the solution of the SDE must, in the limit of
large times, approach the Gaussian function required by
equilibrium thermodynamics, specifically

π σ σ
σ β= −

−
=

⎡
⎣⎢

⎤
⎦⎥p v

v V
L

V k T( )
1

2
exp

( )
2

1s( )

e

e
2

e
2 e

2
3 e

2
B e

(7)

p(s)(v) is the stationary probability distribution of v, and Ve(T)
is the equilibrium volume. σe(T) is the width of the
distribution, which is a function of the domain size L, the
isothermal compressibility β(T), and the Boltzmann constant
kB.
Although eq 6 is the straightforward generalization of the

isothermal−isobaric form of eq 5, the form of eq 6 is such that
the required stationarity can only be achieved if a(v,T) is a
constantan uninteresting case, since volume dependence of
a(v,T) is the dominant nonlinearity. The problem is that when
the a(v,T) shift factor is a function of v, the drift term in eq 6 is
so asymmetric that no form of the noise term N(v,T) can
compensate so that a stationary distribution as required by eq 7
will occur. In Appendix A we show that in order to satisfy
stationarity, eq 6 has to be replaced by a more general SDE of
the form

σ= +v A v T t B v T Wd ( , ) d ( , ) de (8)

where the drift term A(v,T) is not the simple relaxation term
−(v − Ve)/a(v,T)τ0. There are two choices for the functions
A(v,T) and B(v,T) that satisfy stationarity (see Appendix A):
Case I:

σ= − −A
R
v

v V R
d
d

( )e
2

e (9a)

=B R22 (9b)

Case II:

σ= − −A
R
v

v V R
d
d

( )e
2

e
e

(10a)

∫ ∫= + ′ −
′

′
−∞ −∞

⎡
⎣⎢

⎤
⎦⎥B R

p
R
v

p v
R
v

p v2
2 d

d
d

d
d

d
s

v
s

v
s2

( )
e

( ) ( )

(10b)

where R = 1/a(v,T)τ0 is the instantaneous relaxation rate and
⟨ ⟩e denotes averaging with the stationary (i.e., equilibrium)
distribution p(s)(v) given in eq 7. Depending on the functional
form of a(v,T), the difference in the time-dependent behavior
predicted by these two cases can be significant. We are not
aware of any physical reason that would indicate a priori
whether case I or case II is the appropriate stochastic
generalization; however, as will be discussed below, we were
unable to find a set of parameters that result in a reasonable fit
to the Kovacs data set for case II. Thus, eqs 8 and 9 are the
appropriate stochastic generalization of the standard determin-
istic relaxation equation given in eq 5.

Formulation of the Fokker−Planck Equation (FPE)
and Master Equation (ME). The SDE formulation given by
eqs 8 and 9 is a complete statement of the proposed model,
where a particular realization of eqs 8 and 9 describes an
instance of the evolution of a given mesoscopic domain in the
sample. The macroscopic response is determined by averaging
over an ensemble of individual realizations. However, the
solution of the SDE is computationally intense, since a
vanishingly small time step is required when a domain
experiences a large positive volume fluctuation that causes the
relaxation rate to be very fast; thus, numerically averaging the
SDEs for the full Kovacs data set is computationally inefficient.
The FPE is a deterministic equation for the evolution of the
probability, avoiding the need for the ensemble average. The
FPE corresponding to the SDE defined in eq 8 is given by54

σ∂
∂

= − ∂
∂

+ ∂
∂t

p
v

Ap
v

B p( )
2

( )e
2 2

2
2

(11)

where p = p(v,t) is the normalized, nonequilibrium probability
density of the specific volume v. Whereas the SDE was an
ordinary differential equation in time, the FPE is a partial
differential equation in time and specific volume; thus, the FPE
is more difficult to solve, but there is no need for computing the
ensemble average. For mathematical convenience the variable v
is considered on an infinite domain (i.e., v ∈ [−∞, ∞]), where
the p(v,t) must vanish when v is significantly different from the
macroscopic average specific volume V and must be zero for
any v less than the hard core specific volume. The probability
density at t = 0 is the initial condition for the FPE.
If the volume space is discretized into n states (i.e., v = {vi}),

the local volume distribution {pi} can be equivalently described
by a birth−death master equation (ME) of the form54

∂
∂

= + − + =−
+

− +
−

+
+ −

t
p k p k p k k p i n( ) 1, ...,i i i i i i i i1 1 1 1

(12)

with the reflecting boundary conditions

= = = =− +
+k k p p0, 0, 0, 0n n1 0 1 (13)
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where ki
+ is the transition rate from the i to the i + 1 state and

ki
− is the transition rate from the i to the i − 1 state. The
reflecting boundary conditions force the probability distribution
to remain confined within the volume discretization interval
from i = 1 to n. The FPE given in eq 11 and the ME given in eq
12 are equivalent, when the upward and downward rates are54

σ σ
= − + = +− +k

A v
h

B v
h

k
A v

h
B v

h
( )
2

( )
2

( )
2

( )
2i

i i
i

i ie
2 2

2
e

2 2

2

(14)

where h is the step between two consecutive values of discrete
variable vi. It can be shown that the solution of eq 12
approaches that of the original FPE as the size of the
discretization h goes to zero. The discretized stationary
distribution pi

(s) satisfies the detailed balance relations

=−
+

−
−k p k pi i

s
i i

s
1 1

( ) ( )
(15)

It is interesting that the transformation to the ME form seems
to suggest that the case I is more natural as is discussed in
Appendix B.
The FPE and ME provide formally equivalent descriptions to

the SDE. The FPE was necessary to determine the functional
forms of A(v,T) and B(v,T). The ME formulation is
computationally more efficient. Finally, the SDE is the
physically most transparent formulation of the problem and,
thus, provides a picture of the behavior of a single mesoscopic
domain (see Discussion) and a better starting point for
generalization of the model; however, determination of the
macroscopic response is computationally expensive using the
SDE formulation.
Mesoscopic Model of the a(v,T) Shift Function. So far

the derivation of the stochastic model has been independent of
the form of the log a(v,T) shift function, but now the exact
functional form must be specified. The form of the mesoscopic
log a(v,T) is more important in the mesoscopic model
developed in this communication than in macroscopic volume
relaxation models, because a mesoscopic domain samples much
larger region in the temperature−volume space than the
macroscopic system. Direct experimental measurements of the
mesoscopic log a(v,T) function are not available. Thus, we will
not attempt to divine the “true” expression for log a(v,T);
rather, we will postulate a simple form for mesoscopic log
a(v,T) with an adjustable parameter and then determine if
using this simple form for log a(v,T) the stochastic model can
predict the volume relaxation for the Kovacs data set.
A key concept is the difference between the macroscopic log

a and the mesoscopic log a. Macroscopic log a in the glass
depends upon the thermal/deformation path used to create the
glass and thus is a functional24 of the temperature/deformation
history. However, it has been shown16,55 that for a limited range
of conditions one can describe certain macroscopic responses
with a log a that is a function of volume and temperature, even
though in general a functional description is needed. The
mesoscopic log a is fundamentally different, where locally large
volume fluctuations will erase any knowledge of the macro-
scopic volume history (see the local volume response vs the
macroscopic volume response shown in Figure 10 in the
Results section). Thus, the mesoscopic log a(v,T) function is
most appropriate vs a log a functional of the volume and
temperature histories that is needed for a macroscopic
descriptionthe question is to determine the temperature
and volume dependence of the mesoscopic log a(v,T).

Although for nonlinear, stochastic equations there is no
assurance that the ensemble average of a quantity will have
the same functional form as the related term in the SDE, we
will assume that macroscopic forms proposed for log a(v,T) can
provide guidance for determining the mesoscopic log a(v,T)
needed in the current stochastic model for volume relaxation.
One postulate for the macroscopic equilibrium log a is the

pressure modified WLF equation (see review by Tschogel et
al.56 and references therein)

γ= − +
+ −

= +a c c
c

c T T P
T P T Plog

( )
( )1 1

2

2 g
g g

(16)

where Tg is the glass transition at P = 0 and the parameter γ =
dTg/dP is the slope of the glass formation line. If it is assumed
that the PVT surface is a plane, the log a(V,T) expression for an
equilibrium material is given by

= − +
+ − + −γ
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where βl is the isothermal liquid compressibility, V(T,P=0) ≡
V0(T) = Vg[1 + αl(T − Tg)], αl is the liquid thermal expansion
coefficient, and Vg is the specific volume at Tg. It is informative
to look at the isomobility lines in VT-space which for the log a
model given in eq 17 are given by

β
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d
d alog

g l
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(18)

In the nonequilibrium glassy state at P = 1 atm, it is typically
assumed that the essential features of the mobility will be
captured if log a is made a function of the current
nonequilibrium volume. The standard approach is to substitute
the temperature in an equilibrium expression for log a by the
fictive temperature, Tf, which depends on volume according
to55

α α
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−
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V V T
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0
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If the equilibrium log a expression is assumed to be Arrhenian,
then replacement of T with xT + (1 − x)Tf results in the
Narayanaswamy log a model,57 which has been used extensively
in conjunction with the KAHR formalism.16 On the other hand,
if the equilibrium behavior is described by the WLF function,
the substitution of the fictive temperature results in the
expression

= − +
+ − +

α α
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The isomobility lines for the log a(V,T) model given in eq 20
are

α=V
T

V
d
d alog

g g
(21)

The mesoscopic log a(v,T) needs to describe both the
behavior in the equilibrium state, where eq 17 is most
appropriate, as well as in the glassy state, where eq 20 is most
appropriate. Perhaps in macroscopic volume relaxation models
one can use a different log a expression when in the equilibrium
vs the glassy state; however, in a mesoscopic model where the
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material is undergoing large fluctuations, the log a(v,T)
function must be able to capture the mobility in both the
equilibrium and glassy states. This may not be possible to
achieve with a log a model that only depends upon temperature
and volume, but these are the only variables that are available in
the current framework. The log a(V,T) models given in eqs 17
and 20 were developed as descriptions of the macroscopic
mobility, with the caveat that eq 17 is used for an equilibrium
material and eq 20 is an empirical expression that has been used
to describe mobility for a glassy material at 1 atm. However, a
mesoscopic log a(V,T) model needs to have features of both
expressions, since the local material will fluctuate between the
glassy and liquid state. In order to interpolate between eqs 17
and 20, the slope s = [dV/dT]log a will be a model parameter,
and the expression for log a(V,T) is

= − +
+ − +

α
−

−

a V T c c
c

c T T
log ( , )

V V T
V s

1 1
2

2 g
( )0

g l (22)

The parameter s will be determined from optimization over the
Kovacs data set. Changing s causes the isomobility lines to
rotate about the (T = Tg, V = Vg) point. For PVAc, eq 20 is
recovered when s = Vgαg = 2.345 × 10−4 g/(cm3 K) and eq 17
is recovered when s = Vg(αl − βl/γ) = −16.2 × 10−4 g/(cm3 K).
An alternative derivation of eq 22 would be to replace T in the
WLF equation with xT + (1 − x)Tf where the parameter x is
related to the slope s as s = Vg(αg − xαl)/(1 − x).
The isomobility lines for the two log a(v,T) expressionseq

22 with the value of s optimized to fit Kovacs data and eq 17
are shown in Figure 3. log a is the same for both models along
the P = 1 atm line for an equilibrium material; however, away
from equilibrium the two log a(v,T) are quite different. The
isomobility lines for the fictive temperature-based log a model
have a slope that is similar to the slope of the glassy specific
volume; however, this model is qualitatively unable to describe
the formation pressure dependence of Tg. In contrast, the log a
model given in eq 17 is constructed so that Tg(P) is captured,
but this log a model has not been successfully in describing
volume relaxation data for KAHR and similar types of
macroscopic volume relaxation models.
Finally, an expression for the local log a is obtained from eq

22 by replacing the macroscopic volume with the combination
of the local and average volume given in eq 4, giving rise to

= − +
+ − +

α

+ −

−

−a v T c c
c

c T T
log ( , )

v V V T

V s

1 1
2

2 g
( )

z
z

z
1 1

0

g l

(23)

This is the simplest form for log a(v,T) that preserves the WLF
equation along the atmospheric pressure line and results in
linear isomobility lines in VT-space. We acknowledge that other
forms of log a could also be used and if an alternative
expression for log a(v,T) becomes available, the incorporation
into the stochastic formalism is straightforward.

Solution of the Master Equation. The solution of the ME
with the log a(v,T) function given by eq 23 is obtained using
standard eigenvector methods as detailed in Appendix C.
Because of the wide range of relaxation times in the glass, a
perturbation solution was used for evaluation of the eigenvalues
and eigenvectors as detailed in the Supporting Information. Of
particular concern is the level of discretization needed for v =
{vi}. Numerical studies described in Appendix C show that if n
> 150, the discrete solution of the ME is equivalent to the
continuous FPE for the thermal histories contained in the
Kovacs data set. The solution procedure for an arbitrary
temperature history is the following:
1. Every temperature ramp is divided into intervals of the size

ΔT such that the time required for the temperature to change
by ΔT is Δt = ΔT/|q| seconds, where q is the externally
controlled cooling/heating rate.
2. The continuous change in temperature is approximated for

a given interval, say from T to T − ΔT, as a two-stage process:
temperature instantly reaches its final value and then remains
constant for the rest of the time period of Δt.
3. The instantaneous change in temperature is accompanied

by the instantaneous change in the specific volume, which
constitutes the elastic part of the response. The magnitude of
the elastic change is given by ΔV = αgVgΔT. Since no relaxation
can occur during the instantaneous temperature jump, the
entire distribution of local specific volumes shifts uniformly by
ΔV; i.e., there is no change in the shape of the distribution.
4. Isothermal relaxation toward the new equilibrium

distribution at T − ΔT (i.e., p(s)(T − ΔT)) proceeds for Δt
seconds.
The solution algorithm for the isothermal response based on

the ME formulation is described in Appendix C. A pressure
history can be treated in an analogous fashion.

Figure 3. Isomobility lines (i.e., log a = const in V−T space. Heavy solid line: experimental V vs T at 1 atm for PVAc;26 dotted line: glass formation
line26 (Vg(P), Tg(P)); numbers indicate the log a values; filled circles: points along the equilibrium line V = Ve(T,P = 1 atm). (A) log a from fictive
temperature model in eq 20: light solid lines; log a from eq 22 with s optimized to fit the Kovacs data (see Table 1): blue lines; (B) equilibrium state
log a from eq 17: blue lines.
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The above procedure introduces an error that increases with
the size of the discretization step ΔT, especially at higher
temperatures. Since changes in temperature always occur over a
finite time, the domains with higher mobility (i.e., those
domains with the higher value of current volume) may be able
to keep up with the pace of cooling/heating whereas the
domains of lower mobility may not, thus violating the
assumption that the volume distribution shifts uniformly during
the temperature jump. For example, using the PVAc parameters
determined from fitting the Kovacs data set (see next section),
in the equilibrium state at 40 °C the relaxation time for a
domain with the specific volume exceeding the average by 3σe is
∼0.4 s; in contrast, the relaxation time for a domain with the
specific volume that is smaller than the average by 3σe is ∼6 ×
103 s. For temperatures of 40 °C or less, making the
temperature step ΔT less than 0.25 °C causes no further
changes in the volume relaxation results, where the results
between ΔT = 0.25 °C and ΔT = 1.0 °C differ by less than 1%.
The value of ΔT = 0.25 °C is used to obtain all the results
reported in this paper.

III. RESULTS
Predictions of the Stochastic Model for the Kovacs

Data Set. Determination of Model Parameters. The material
parameters for the stochastic model are given in Table 1. The

WLF parameters c1 and c2 are set by fitting the log a vs
temperature data for an equilibrium material at 1 atm. A variety
of isobaric data are available for PVAc, including dielectric
relaxation,58−63 mechanical relaxation,61,64−71 and the
DSC.61,72,73 The various data were shifted such that log a =
0 at a unified reference temperature of Tg = 31 °C and are
shown in Figure 4, where the WLF constants are c1 = 16.8, c2 =
42.56 °C.
These WLF parameters only slightly differ from the ones

reported by Ferry74 and used by Robertson et al.,20 where c1′ =
17.06, c2′ = 42.8 °C (these were determined by shifting the

reported values of c1 and c2 to 31 °C). Later Robertson et al.29

and Vleeshouwers and Nies21 used a significantly different
parameter set of c1″ = 14.88, c2″ = 24.74 °C determined by
Plazek75 from torsional creep recovery. The ratio 2.303 c1/c2
equals the θT parameter of the linearized KAHR model, where
Greener et al.16 reported θT = 0.85 K−1 for the Kovacs PVAc
data and the Plazek data set gives rise to 2.303 c1″/c2″ = 1.385
K−1. Our objective is not to resolve these differences, but to
show that the WLF parameters used here agree with the
majority of the literature data as shown in Figure 4.
The remaining four parameters in the stochastic model are

(i) the slope s of the isomobility lines, (ii) the domain size L,
(iii) the cooperativity z, and (iv) the reference time τ0. For
numerical solution the FPE, i.e., eqs 11 and 23, have been put
into dimensionless form (see Supporting Information for
details), where the coefficient of the dimensionless volume v/σe
is σe/z plus a weak contribution from σe alone (i.e., as a
coefficient in front of V/σe). Since σe is a function of L via eq 7,
the parameters z and L are strongly correlated. If the effects of
the tails of the distribution are small, the {z, L} set is effectively
a single model parameter. The predictions for any thermal
history from the Kovacs data set change by less than 10% for z
= 3 to z = 15 provided the values of L are adjusted to keep σe/z
constant. The stochastic model has four adjustable parameters:
s, τ0, and {z, L}, the latter two being strongly correlated
which will be determined from optimization to the Kovacs
volume relaxation data.
The solution of the stochastic model requires the detailed

thermal history. However, the only information for the Kovacs
experiments was that thermal equilibration was completed
within less than 36 s.7 Consequently, we have assumed that all
the temperature changes occurred at a constant rate of |q| =1
°C/s. Because the details of the thermal history become
increasingly important at higher temperatures, Kovacs thermal
histories where temperature at any point exceeded 40 °C have
been excluded from the optimization set. The case I alternative
of stochastic model was optimized over all thermal histories in
the Kovacs data set7 (except for data above 40 °C) using the
fminsearch function in MatLab that employs a simplex
algorithm. The objective function for optimization was
constructed as follows: Sum of squared differences between
experimental values and predictions was calculated for each
curve in Figure 5. Then for each curve the result was divided by
the number of data points in it to prevent the objective function
from being dominated by the experiments with the largest
number of points. Finally, in order to more effectively fit curves
that exhibit only small deviations from equilibrium, the
contributions from the curves for which for all points |δ| <
1.5 × 10−3 were multiplied by 5 (this includes, for example,
memory experiments).

Stochastic Model Predictions of the Kovacs Data Set.
The results for best fit of the case I stochastic model are shown
in Figure 5 with the optimized parameter values given in Table
1. The stochastic model does an excellent job of fitting the
whole Kovacs data set. Comparing the Stochastic and KAHR
models, the stochastic model does a better job of fitting the (i)
up-jump data in Figures 1B/5B, (ii) the 25 °C annealing data in
Figures 1E/5E, and the (iii) memory experiment in Figures 1F/
5F. The KAHR model does a slightly better job of describing
(i) the down-jump data from 40 °C in Figures 1A/5A and (ii)
down-jump data from 30 °C in Figures 1C/5C. The memory
experiment in Figures 1D/5D was described with nearly equal
precision by both models. Based upon overall quality of fit,

Table 1. Parameters of the Stochastic Model

Tg c1 c2 τ0 z L s

31 °C 16.8 42.56 °C 7.18 h 6.9 2.84 nm 1.22 × 10−4

g/(cm3 K)

Figure 4. PVAc shift factor at atmospheric pressure from relaxation
data (see text for references): circles, mechanical; crosses, dielectric;
triangles, enthalpy. Solid line: WLF fit.
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there is little difference between the two models; however,
there are significant differences in the details of the predictions
which will be subsequently discussed.
We have been unable to find a set of parameters resulting in

even a qualitative fit to Kovacs data for the case II stochastic
model described by eqs 10a,b. We currently have no physical
reason as to why the case II form of the FPE is inappropriate.
Subsequent discussion of predictions of the stochastic model
will only be for the case I form of the model.
The values of parameters obtained as a result of optimization

of the stochastic model are physically reasonable. The value of
2.84 nm for the size of the domain L is within the range
estimated via NMR35,36 and light scattering41,42 studies
discussed in the Introduction. It is amazing that by fitting
macroscopic volume relaxation data, the experimentally

determined size of the dynamic heterogeneity is recovered. It
is also reassuring that the cooperativity parameter z = 6.9 from
the overall fit of the stochastic model to the Kovacs data is
consistent with the coordination number for a simple cubic
lattice. Finally, the value of the slope of isomobility lines is close
to the one for KAHR models, i.e., 1.43 × 10−4 g/(cm3 K).
The predictions of the stochastic model were examined when

the parameter L was made a linear function of temperature and
specific volume, but this form of the stochastic model does not
improve the quality of fit to the Kovacs data set in spite of the
fact that there are two additional fitting parameters. This clearly
indicates that one cannot assign the physical meaning to the
domain size L in the stochastic model as a cooperativity length
in the Adam−Gibbs30 sense, because if this were the case one
would have expected significant temperature dependence.

Figure 5. Stochastic model prediction of the Kovacs data set. Volume response following: (A) Temperature down-jumps from 40 °C to (in the
descending order) 25, 27.5, 30, 32.5, 35, 37.5 °C. (B) Temperature up-jumps to 40 °C from 37.5, 35, 32.5, 30 °C. (C) Temperature down-jumps to
30 °C from 40, 37.5, 35, 32.5 °C. Circles: data; lines: predictions. (D) Asymmetry experiment: after temperature down-jump from 40 to 35 °C
(upper curve) and after temperature-up jump from 30 to 35 °C (lower curve). (E) Annealing experiment: after temperature down-jump from 40 to
25 °C, annealing for (in the descending order) 0.3, 4, 28,160, 1500 h and temperature up-jump from 25 to 40 °C. (F) Memory experiment: after
temperature down-jump from 40 to 10 °C, annealing for 160 h, and temperature up-jump to 30 °C; after temperature down-jump from 40 to 15 °C,
annealing for 140 h, and temperature up-jump to 30 °C; after temperature down-jump from 40 to 25 °C, annealing for 90 h, and temperature up-
jump to 30 °C. Circles: data; lines: predictions.
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Making the parameter s a weak function of temperature and
volume, which results in curved isomobility lines in volume−
temperature space, also does not improve quality of the fit to
the Kovacs data set. It is significant that the key predictions of
the stochastic model are due to the basic structure of the model
and are not changed by the additional material parameters.
The key assumption of the traditional multimodal relaxation

models such as KAHR is that the shape of the relaxation
spectrum is constant, i.e., the material is thermorheologically
simple. For the stochastic model developed in this paper there
is no requirement of thermorheological simplicity, since there is
only a single relaxation time. However, at any instant ta the
ensemble of domains will have an effective distribution of
relaxation times which can be determined from the ME
formulation of the stochastic model. From eq C.10 the
normalized volume relaxation function for times t greater
than ta can be represented as a sum of exponential terms
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where ∑k=2
n gk(ta) = 1. We identify {gk(ta)} as the instantaneous

“spectrum” for the stochastic model with the relaxation times
{τk = −1/λk, k ≥ 2}. Although λk's are not uniformly spaced, for
the cases reported below with a large number of eigenvalues the
spectrum in eq 25 provides an excellent representation of the
instantaneous material response. In contrast to the multimodal
KAHR model where the coefficients gk are constant throughout
the relaxation process, the gk(ta) coefficients in the stochastic
model change with ta, i.e., the spectrum changes its shape−
thermorheological complexity. The {τk, gk(ta)} spectrum
determined via eq 25 can be thought of as the distribution an
ensemble of domains would exhibit, where each domain is
assigned a relaxation time a(vi)τ0 and then the distribution
along the time axis is determinedthis is different from the
distribution of volumes because of the strongly nonlinear
relationship between the local volume and the relaxation time.
If the current volume distribution does not deviate substantially
from the equilibrium distribution, then the spectrum computed
via eq 25 is reasonable; however, if the initial distribution is
vastly different from the equilibrium distribution, then some of

the gk(ta) may turn out to be negative, indicating the limitations
of “spectral” representation in eq 25.The instantaneous spectra
computed using eqs 24 and 25 for the down-jumps from 40 °C
to 30 and 27.5 °C are shown in Figure 6. For both down-jumps,
the stochastic model predicts that the instantaneous relaxation
spectrum shifts to longer times and narrows as the volume
relaxation proceeds.
The shift to longer times is consistent with the traditional

picture of physical aging, where the average relaxation time
increases as the material densifies. The narrowing of the spectra
indicates that those domains with the shortest relaxation time,
i.e., the largest volume, age more rapidly than the meso-
domains with longer relaxation times, thereby narrowing the
spectrum. This simple explanation is not completely consistent
with the SDE perspective of the stochastic model, since it
implies that the identity of a fast relaxing site remains fast
whereas in reality a single meso-domain can sample various
mobility states. Nevertheless, in terms of the ensemble, those
domains that are instantaneously in a high mobility state will on
the average move more rapidly toward equilibrium than the low
mobility domains, although the identity of just which domains
are fast and which are slow changes during the course of the
relaxation. The stochastic model provides a simple mechanism
for the origin of thermorheological complexity.
However, the Kovacs down-jump curves shown in Figure 1A

(with the exception of the smallest jump to 37.5 °C) have
roughly the same slope and will superimpose when shifted
along the time axes, giving the appearance that the response is
thermorheologically simple. In contrast, the stochastic model
predicts that the instantaneous relaxation times spectrum
evolves during the course of the relaxation. How can the
stochastic model that is inherently thermorheologically
complex predict relaxation that appears to be thermorheolog-
ically simple? As shown in Figures 6B,C the shape of the
effective spectra is essentially identical for the 30 and 27.5 °C
down-jumps at the same δ. Since the instantaneous relaxation
response depends upon the instantaneous spectrum, the
macroscopic volumetric relaxation will be the same for both
down-jumps, resulting in the appearance of thermorheological
simplicity even though the underlying phenomenon is
thermorheologically complex. The width of the instantaneous
spectrum is quite narrowof order 2 logarithmic decades; in
contrast, the volume relaxation response of a single isotherm as
measured by Kovacs6 extends over four logarithmic decades,
and if the isotherms are time−temperature shifted, the
relaxation response occurs over at least 8 logarithmic decades.
Thus, the shape of the volume relaxation predicted by the

Figure 6. Stochastic model prediction of the thermorheological complexity in volume contraction experiment. (A) Kovacs data for volume response
after down-jumps from 40 °C to indicated temperature; evolution of the spectrum after the down-jump to (B) 27.5 °C and (C) 30 °C. Numbers
indicate snapshots of the spectrum taken at 3: δ = 3 × 10−3; 2: δ = 2 × 10−3; 1: δ = 1 × 10−3.
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stochastic model is primarily due to the movement of the
spectra with time rather than excitation of different relaxation
modes with vastly different time scales. This is a significantly
different picture of structural relaxation than that implied by the
multimodal KAHR model.
Short-Time Annealing Experiments. As discussed in the

Introduction, KAHR-type models have difficulty in predicting
the short annealing time experiments as shown in Figures 1E
and 2A. This difficulty is surprising, because the thermal history
is so simple, consisting of first quenching a sample from
approximately Tg + 10 °C to Tg − 5 °C, annealing for a very
short period of time, and finally rapidly reheating back to the
original temperature. Nothing in this thermal history involves
processes which could be difficult to model such as very long
times when the physical aging is significant or a cooling to a
temperature far below Tg where the validity of the extrapolation
of the equilibrium log a data could be questioned.
However, the multimodal type models significantly under-

estimate the residual volume deviation after a short anneal
thermal history as shown in Figure 2A, where even dramatic
changes in the KAHR parameter values are unable to rectify the
problem.
The stochastic model produces a qualitative improvement in

the predictions shown in Figure 7A. In Figure 7B, the
instantaneous relaxation spectra during the short anneal
experiment are shown. The instantaneous spectrum immedi-
ately after the temperature jump back to 40 °C is shifted toward
longer times and is noticeably narrower as compared to the
spectrum at 40 °C just prior to the quench. The reason for the
spectral narrowing is as follows: (1) When the down-jump
occurs, the spectrum 1 immediately shifts to longer times. (2)
The spectrum continues to shift to longer times as the material
relaxes at 25 °C where the meso-domains with high mobility
relax the most, thereby narrowing the spectrum. (3)
Immediately after the up-jump back to 40 °C, spectrum 2
has the same narrower shape as just prior to the temperature
up-jump. (4) With time spectrum 2 moves toward spectrum 1
that was present prior to the down-jump. The volumetric
response predicted in Figure 7A is controlled by the
instantaneous spectrum, which changes as spectrum 2 evolves
to spectrum 1.

The relaxation times spectrum for the KAHR model is also
shown in Figure 7B, where the KAHR model spectrum is much
broader, with considerably more contributions from the short
relaxation times. Now consider the evolution of the {δi} set in
the KAHR model: (1) Initially all δi = 0, since the material is at
equilibrium. (2) After the down-jump the distribution is δi =
−giΔαΔT, where {gi} are given by the KWW function; the shift
to lower times is primarily governed by the temperature
dependence of the log a function. (3) Since the annealing time
at the lower temperature is very short, only the very fast
relaxation processes can decay toward δi = 0, and since the
overall spectrum is shifted to longer times, even the faster
relaxation process will not relax very much. (4) On the up-jump
back to the original temperature the δi’s associated with the
slow relaxation processes (which were unable to relax) go to
zero; however, the fast processes that have relaxed will exhibit
small negative values. (5) The relaxation is very quick, since
only the fast processes are nonzero, giving rise to the response
predicted in Figure 7A. It is impossible to have the relaxations
processes in the multimodal KAHR model that are fast enough
to relax after the down-jump but still are slow enough after the
up-jump to describe the short annealing experiments of Kovacs.
The inability to predict the short time anneal experiments is a
serious deficiency of the multimodal models, where the change
in the shape of the effective spectra in the stochastic model is
necessary to fit the data.

Memory Experiment. The stochastic and the KAHR models
both predict the memory effect, but the origin is fundamentally
different as shown schematically in Figure 8. First consider the
stochastic model: (A) The instantaneous volume PDF for a
material at equilibrium at the initial temperature above Tg,
which is identical to the equilibrium PDF. (B) On the initial
down-jump the equilibrium PDF shifts to smaller specific
volumes, i.e., longer relaxation times, and the instantaneous
PDF also shifts elastically to smaller specific volumes but keeps
the same shape as PDF A. (C) The instantaneous PDF narrows
as the faster relaxation processes with larger specific volume
approach the equilibrium distribution more quickly, while the
slower processes do not exhibit much of a change. (D)
Immediately after the up-jump the narrow, instantaneous PDF
C is shifted toward larger specific volumes, but the shape
remains the same. The temperature of the up-jump has been

Figure 7. Prediction of the Kovacs “short anneal” experiment, i.e., volume response after temperature down-jump from 40 to 25 °C, annealing for 0.3
h, and temperature up-jump from 25 to 40 °C. (A) circles: data; solid line: Stochastic model prediction; blue line: KAHR model prediction. (B)
Relaxation spectrum by the stochastic model: 1, at the beginning of the down-jump; 2, at the end of the up-jump. Blue line: relaxation spectrum
employed by the KAHR model (optimized to fit the entire Kovacs data set).
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chosen so that the equilibrium PDF has the same average as the
average of the instantaneous PDF. (E) The instantaneous PDF
now becomes asymmetric, where (i) the fast relaxation
processes at large volumes approach equilibrium first while
the (ii) the slower relaxation processes at smaller specific
volumes do not initially change. (F) Given sufficient time, the
slower relaxation processes at smaller specific volumes
eventually relax and the equilibrium distribution is recovered.
The volume increase and subsequent decrease result from the
increase in average volume shown in the PDF evolution from
(D) to (E) followed by the decrease in the average volume in
the PDF evolution from (E) to (F). Thus, the stochastic model
predicts that the specific volume response in the memory
experiment is due to the evolution of the shape of the volume
distribution and the corresponding spectrum of the relaxation
times.
The memory effect for the KAHR model is also illustrated in

Figure 8, where the origin of the memory response is quite
different. Specifically: (A) At equilibrium the value of the
individual order parameters δi are zero. (B) After the first
temperature jump in the memory experiment thermal history,
the order parameters have the values δi = −giΔαΔT, and the
temperature dependence of log a shifts the whole spectrum
toward longer relaxation times. (C) The {δi} distribution
begins to evolve, where the δi's associated with the faster
relaxation processes relax first. (D) The up-jump to the second
temperature causes the δi's associated with the faster relaxation
processes that had already relaxed to become negative because
of the instantaneous shift δi = −giΔαΔT′ and ΔT′ is positive.
In contrast, for the slower processes where the δi's did not relax,
there is a reduction in the magnitude of the δi's. Since the
specific volume immediately after the up-jump is equal to the
equilibrium volume, the area under the positive δi's minus the
area above the negative ones must equal zero. (E) The fast
processes rapidly relax to δi = 0; consequently, the sum of the
remaining δi's will be positive, resulting in an increase in the
specific volume. (F) With sufficient time all of the {δi} order
parameters relax to zero, and consequently the specific volume
now decreases to equilibrium. The evolution of the δi's
spectrum from (D) to (E) to (F) is the origin of experimentally
measured specific volume in the memory experiment in the
KAHR model.

Figure 8. Schematic of the difference between the KAHR model and
the stochastic model developed in this paper for the Kovacs memory
experiment. The thermal history (a) and the evolution of the specific
volume (b) for the memory experiment. The evolution of the δi
spectrum for the KAHR model and the local volume probability
density function (PDF) for the stochastic model are shown in (c). Red
dashed line is equilibrium PDF, and blue solid line is the PDF
predicted by the stochastic model. See text for explanation. For
simplicity, the small changes in the width of the equilibrium PDF with
temperature in (c) are not shown.

Figure 9. Prediction of the “expansion gap” effect, i.e., volume response after an up-jump from indicated temperature to 40 °C. (A) τ-effective
behavior as volume (described by the deviation δ) relaxes toward equilibrium; circles: data; light solid line: KAHR model prediction; dash-dotted
line: stochastic model prediction using the parameter set optimized over the entire Kovacs data set; solid line: stochastic model prediction using the
parameter set optimized to fit specifically this τ-effective data (L = 9.7 nm, z = 1.7). (B) Relaxation spectrum resulting from the stochastic model (L
= 9.7 nm, z = 1.7) calculated at δ = −2 × 10−4 for the temperature up-jump from (1) 37.5, (2) 35, and (3) 32.5 °C.
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The origin of the memory effect as predicted by the KAHR
model is quite different from that predicted by the stochastic
model. In the KAHR model all relaxation times are affected
equally by the macroscopic specific volume, where the
individual δi's are the order parameters that sum to the
macroscopic δ. Carefully examining Figures 8D,E for the
KAHR model, the δi's that are negative relax first and those that
are positive relax last. This highlights the fact that the δi's are
just formal parameters devoid of clear physical meaning;
otherwise, were they truly components of the total specific
volume, one would think that a process with a positive δi, and
hence a large effective volume, would relax first. In contrast, the
origin of the memory effect in the stochastic model is more
physically appealing, since it predicts that regions of larger
specific volume relax more rapidly than regions of smaller
specific volume. In our opinion, the predictions of the memory
experiment by the multimodal class of models such as KAHR is
fortuitous, where more complex multistep temperature jumps
would potentially show qualitative disagreement.
Predictions of τeff. The τeff plot in the Kovacs data set is

particularly difficult to predict, where even if a fit appears
reasonable in “normal” coordinates, i.e., δ versus log t, it can
still deviate dramatically in the τeff plot because the latter
magnifies the region close to δ = 0 (see discussion in McKenna
et al.15). It is well-known that the KAHR-type models are
incapable of predicting the so-called expansion gap27 as is
shown in Figure 9A for the model already described in
association with Figure 1.
As shown in Figure 9A, the stochastic model also cannot

describe the expansion gap using the optimized parameter set
given in Table 1. However, if only the data in the τeff plot are
included in the parameter optimization, then the stochastic
model can describe the significant difference in τeff at very small
δ, which is the key feature of the expansion gap. The {L, z} pair
needed for the improved predictions shown in Figure 9A is (9.7
nm, 1.7), which is significantly different from the (2.8 nm, 6.9)
parameter set used previously. Although this new choice of
parameter values worsens the quality of the fit for the other
thermal histories, the stochastic model has a structure that at
least in principle is able to capture the expansion gap. We
believe that this is the first time that the expansion gap has been
successfully predicted by any model.
The reason that the stochastic model is able to qualitatively

predict the expansion gap is as follows: For the expansion gap
effect to occur some feature in the model must still strongly
depend on thermal history even when the average volume is

near equilibrium value. In Figure 9B, we have focused on the
evolution of the stochastic model’s effective relaxation spectrum
gk(ta) from eqs 24 and 25 at the final stages of the relaxation,
i.e., at the δ equal −2 × 10−4. The stochastic model predicts
that the location and shape of the spectrum exhibit a strong
dependence on thermal history, even though the temperature
and specific volume are nearly the same. This again illustrates
that the evolution of the shape of the spectrum, which is an
inherent feature of the stochastic model, is what controls the
experimentally observed specific volume response. In contrast,
for multimodal relaxation models the shape of the spectrum
remains constant and the latest stages of relaxation are
governed simply by the order parameter with the longest
relaxation time regardless of thermal history; hence, all τeff
curves rapidly converge into a response corresponding to this
longest relaxation time. In summary, the structure of the
stochastic model offers the possibility that eventually it may be
possible to fit the Kovacs data set including the expansion gap,
but this will require improvement in the stochastic model.

Fluctuations in a Single Mesoscopic Domain. The fit to
the Kovacs data set was done using the ME form of the
stochastic model, which is equivalent to an ensemble average of
the SDE form of the model. The predictions of selected
realizations of the SDE form of the stochastic model (i.e., eq 8)
with the same model parameters used to fit the Kovacs data are
shown in Figure 10 for a simple up-jump from 30 to 40 °C. An
individual meso-domain experiences extremely large fluctua-
tions in volume, i.e., δ changes of ±4 × 10−3 which are larger
than the overall macroscopic δ changes of 4 × 10−3.
Examining a single realization, it is difficult to discern the

type of volume relaxation occurring macroscopically. Even
though individual realizations do not exhibit discernible trends,
the ensemble average of a number of independent realizations
does exhibit the anticipated macroscopic relaxation response as
shown in Figure 10B where an ensemble of 1000 or more
realizations is needed to begin to recover the macroscopic
response. The ensemble averages shown in Figure 10B clearly
demonstrate that the SDE form of the stochastic model, and
the FPE/ME forms are consistent. The individual realizations
shown in Figure 10A provide a better picture of the local glassy
state than the average picture that is given by the Kovacs
experimental data. Since the local mobility, i.e., log a(v,T), is a
strongly nonlinear function of the specific volume as defined in
eq 23, the relaxation time associated with density fluctuations in
Figure 10A experiences mobility fluctuations over 6 orders of
magnitude. Thus, the stochastic model as formulated here

Figure 10. Stochastic model prediction of the Kovacs up-jump from 30 to 40 °C experiment. Circles: data. (A) Examples of two realizations: solid
lines, where one realization (blue) started from the macroscopic equilibrium volume and the second realization (red) started a specific volume
greater than the macroscopic volume. (B) Average over 300 realizations: dotted line; average over 3000 realizations: thick solid line.
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exhibits mobility fluctuations consistent with the qualitative
picture of dynamic heterogeneity of glassy materials emerging
from the experiments.
The material time76,77 t* is a useful way to consider the time

scale for relaxation for a process undergoing a complex
thermal/deformation history

∫ ξ
ξ

* =t
a
d
( )

t

0 (26)

A number of nonlinear constitutive equations for polymer
glasses have been built using t* (see Caruthers et al.24 for
details), where the a(t) shift factor depends upon macroscopic
quantities such as the specific volume, stress, configurational
entropy, and configurational energy. The material time t* can
also be used for an individual meso-domain, but the local
mobility as defined in eq 26 should be employed where the
local specific volume is determined from a realization of the
SDE. Consequently, the “local material time” t* is also
stochastic, where the macroscopic material time is the ensemble
average over many SDE realizations.
The evolutions of t* are shown in Figure 11 for a material

that is macroscopically at equilibrium for two temperatures:
one near the glass transition (T = 35 °C) and another well in
the liquid state (T = 65 °C). As expected, the same amount of
relaxation at the lower temperature takes roughly 107 times
longer than at the higher temperature. More significantly, the
evolution of the material time is qualitatively different at these
two temperatures. For a representative meso-domain well
above Tg, t* changes at nearly a constant rate (i.e., Figure 11B),
where the slope corresponds to the average shift factor ⟨a(v,T)⟩
even though there are significant fluctuations in the specific
volume (i.e., Figure 11D). In contrast, at the lower temperature
a given domain generally exhibits periods of time with little or
no relaxation that is randomly punctuated with a sudden burst

in the relaxation (i.e., Figure 11A) associated with large positive
fluctuations in the specific volume (i.e., Figure 11C).
Note that it may appear that average value of volume

fluctuations shown in Figure 11C is not at zero, but negative;
however, this is an erroneous impression due to the
discreteness of the time points. Specifically, when the domain
makes an excursion into the region of large positive values, it
bounces back within such a short time that the whole event is
undetected on the time scale used for plotting. Although not
seen in the Figure 11C,D, these large positive values of volume
provide an important contribution when the average is
evaluated ensuring that its value is where it is supposed to be
i.e. exactly at zero.
The response in Figure 11A indicates that the stochastic

model predicts that when the material is below Tg a given
domain will remain frozen for a long period of time and then
undergo a rapid change in mobility after which it will return to
its frozen state. If one performs an ensemble average of the low
temperature t* vs t realizations, a straight line emerges with the
appropriate slope of ⟨a(v,T)⟩, although the response of an
individual domain is anything but linear. In summary, the
stochastic model predicts that in the liquid state every meso-
domain experiences nearly the same volume/mobility history,
which is approximately the same as the macroscopic response.
In contrast, the response of a meso-domain in the glassy state is
basically quiescent with randomly spaced events of very rapid
relaxation, where the responses for different domains are quite
different and bear no resemblance to the smooth, linear
response exhibited macroscopically as determined via an
ensemble average.

IV. DISCUSSION

Features of the Stochastic Model for Volume
Relaxation in the Glass Transition Region. A stochastic

Figure 11. Stochastic model prediction of (A, B) the evolution of the material time t* in a single domain in equilibrated state at temperatures
indicated, where the corresponding volume behavior is shown respectively in (C, D).
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model for structural relaxation in glasses has been developed
that acknowledges the fluctuations associated with the dynamic
heterogeneity in polymeric glasses. Three key model
assumptions are (i) potentially complex spatial coupling
between neighboring meso-domains is simplified using a
mean field approximation, (ii) the local dynamics of the
meso-domain are inherently a single Debye process, and (iii)
the local dynamics are assumed to be a function of the local
density with a form that is consistent with the macroscopic
mobility vs temperature data. This picture that the mobility
character of a given region of space changes with time is
consistent with data from multidimensional NMR experi-
ments.34,36

A major feature of the stochastic model is that it only
employs a single relaxation time; however, the model predicts
that the macroscopic volume relaxation will occur over many
logarithmic decades of time consistent with experimental
observations. A consequence of the small size of the meso-
domains (i.e., 2−3 nm) is that the specific volume fluctuations
are large; thus, an individual meso-domain samples a wide
range of mobility states because the log a(v,T) shift factor is a
highly sensitive and nonlinear function of specific volume.
Because there is no spectrum of relaxation times, the stochastic
model does not assume (i) the shape of the spectrum or (ii)
that the shape of the spectrum remains constant as the
macroscopic temperature and/or specific volume is changed.
The stochastic model predicts that the apparent relaxation
spectrum as computed from instantaneous distribution of
specific volumes will change its shape, i.e., narrow or broaden,
during the course of a relaxation experiment. The appearance of
thermorheological complexity in polymeric glasses has been
observed by Plazek,75,78 where the stochastic model provides a
rational explanation for the origin of the thermorheological
complexity.
An important caveat is that the form of the relaxation

equation given in eqs 8 and 9 implies that at the meso-domain
level the relaxation process is inherently a Debye process with a
single-exponential relaxation time. At the same time there are
experimental observations79 suggesting that the elementary
glassy dynamics is inherently nonexponential. Although
mathematically involved, it is possible to replace eq 9 with a
more complex form that would result in a stretched exponential
response at the mesoscopic level. However, such an extension is
well beyond the goal of this communication, which is to
determine if Kovacs volume relaxation data can be described
with the simplest model that assumes (i) dynamic hetero-
geneity and (ii) the local relaxation being a simple Debye
process.
There is nothing in the stochastic model that is specific to

PVAc; thus, the underlying material response for all glass
formers is predicted to be thermorheologically complex.
However, time−temperature superposition with the implication
of thermorheological simplicity is observed in a wide variety of
relaxation experiments for a large number of low molecular
weight and polymeric glass-formers, although some very careful
measurements in the glass transition region question the
assumption of thermorheological simplicity.75,78 The resolution
of why a material that is thermorheologically complex exhibits
apparent thermorheological simplicity is as follows: although
the shape of the spectrum changes during the course of the
relaxation, for large deviations from equilibrium the dominant
influence on all relaxation times is the average value of the
mesoscopic density (or any other structural variable that

controls the relaxation), rendering insignificant any dependence
on higher moments of the structural variable distribution.
However, as the average deviation approaches zero, the fine
structure of the structural variable distribution (and, hence, the
relaxation time spectrum) becomes important and the
appearance of thermorheological simplicity is lost. The shape
of the distribution is sensitive to thermal history, where a
system might arrive at the same average volume, but with
dramatically different distributions of the relaxation times. For
example, the final approach to equilibrium for the Kovacs
down-jumps (Figures 1A and 5A) the isotherms do not
superimpose for δ less than 1 × 10−3. This implies that to
observe thermorheological complexity more clearly one has to
focus on the region of small deviations from equilibrium, where
the accuracy of measurements rapidly deteriorates. For very
accurate measurements such as those by Plazek75,78,80 on the
shear creep compliance in the glass transition region for
polystyrene, PVAc, and other materials, the violation of
thermorheological simplicity was clearly observed.

Comparison of Stochastic Model with the Multi-
Modal KAHR Model. The stochastic model was fit to the
whole Kovacs data set for volume relaxation of PVAc7, where
the overall fit to the whole data set was very good. The overall
fit of the multimodal KAHR18 was also quite good for most of
the data; however, the KAHR model is unable to predict two
features of the Kovacs PVAc data: (i) short time annealing
experiments and (ii) the τeff data (see Figure 2). The KAHR
model is unable to describe these experiments even if it is
optimized to just that part of the Kovacs data set. The
stochastic model naturally predicts the short annealing time
response (see Figure 7), where the change in the shape of the
effective spectrum is what enables the stochastic model to
describe the data. The stochastic model was also able to
describe the Kovacs τeff data, although this required a different
set of model parameters than that used for predicting the rest of
the Kovacs PVAc data set. The key feature of the stochastic
model that enables prediction of τeff is that the tails of the
distribution can evolve in different ways even though the
experimentally measured specific volume is constant, and the
tails of the distribution can have a significant effect on the
ensemble average of the mobility (i.e., τeff). Since a different set
of model parameters were required to fit the τeff data, the
stochastic model in its current form is not complete.
Nevertheless, the structure of the stochastic model shows
promise, since for the first time there is a prediction with a
mechanistic explanation of the origins of longstanding
challenge of modeling Kovacs’ τeff data.
Even when the stochastic model and the multimodal models

like KAHR both predict the experimental data there are
significant differences when one examines the inner details of
the predictions. As an example consider the memory
experiment, where both models do a reasonable job of
describing the Kovacs memory data. The stochastic model
predicts the increase and subsequent decrease in the specific
volume during a memory experiment as a consequence of (i) a
narrowing of the mesoscopic specific volume distribution that
has occurred during aging at lower temperature followed by (ii)
a broadening of the specific volume distribution at the final
temperature (see Figure 8). These predictions are consistent
with the idea that domains with larger specific volume and
hence larger mobility will relax first. In the memory experiment
the KAHR model predicts that the processes with negative δi’s
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relax first followed by processes with positive δi’s, which
emphasizes that the δi’s are just formal parameters.
The stochastic model has four parameters, of which two are

strongly correlated, that were optimized from the Kovacs data:
s, τ0, and the {L, z} set. The KAHR-like model has three
optimized material parameters: the KWW parameter β, the
Narayanaswamy parameter x, and τ0. The KAHR parameter θT
= 2.303 c1/c2 is fixed by the equilibrium log a vs temperature
data, which considering the quality of data as shown in Figure 4
would seem to be a basic requirement of any structural
relaxation model. We note that in the original KAHR model18

the relaxation spectrum was not assumed to be a KWW
function, but rather a box distribution of relaxation times,
although the basic formulation does not require any specific
shape of the distribution. We have performed simulations with
both the KWW and box spectra, where both spectral shapes
result in very similar predictions. It might be possible to
improve some features of the KAHR model by adjusting the
shape of the relaxation spectrum; however, this would increase
the level of parametrization. However, the ability to describe
the short time annealing and τeff data cannot be resolved by
changing the shape of the spectrumit requires that the
spectral shape change during the experiment. In summary, both
the KAHR and stochastic model have effectively the same
number of model parameters; thus, the improvement in data
fitting by the stochastic model is not due to additional model
parameters. More important than the number of parameters is
the fact that the stochastic model avoids the need to determine
the shape of spectrum.
The KAHR class of models typically assumes a linearized

form of log a using θT. We have also fit the Kovacs volume
relaxation data using the nonlinear form of log a given by eq 20
with the KWW form for the relaxation spectra in the
multimodal model; however, there were the same shortcomings
for the short time annealing and the τeff experiments. We have
also used a linearized version of eq 23 for log a in the stochastic
model; specifically

α
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In contrast to the linearized KAHR model, the predictions of
the stochastic model using the linearized version of log a are
much worse. This result is not surprising, since the average
volume changes explored in the Kovacs experiments are
relatively small; in contrast, the mesoscopic volume in the
stochastic model fluctuates over a much wider range, where the
linearized log a expression is apparently inadequate. Thus, the
differences between the predictive capabilities of the stochastic
vs multimodal model are not due to the linearization of log a
used in the multimodal model. However, the fact that the
nonlinear form of log a is significant in the stochastic model
raises the question if a nonlinear expression other than eq 23
were employed could it further improve the fit to the Kovacs
data set.
Comparison to Robertson et al. Fluctuation Model.

The stochastic model developed in this paper is closely related
to the model of Robertson, Simha, and Curro (RSC).20 RSC
employed a ME formulation, where the rate of relaxation of the
discretized volume distribution is controlled by the current
value of the local fractional free volume, f, in the Simha−
Somcynsky (SS) equation-of-state that is determined using the

instantaneous T and v. In the model development in this
communication, the point of departure was the SDE, which we
believe more clearly exposes the underlying physics of the
process and also more clearly enables the future development
of improved models that include fluctuations, where the ME
form was just used as a computationally efficient algorithm for
solving the associated FPE. Irrespective of one’s perspective on
whether the SDE, FPE, or ME is the most intuitive point of
departure, the three formulations are mathematically equiv-
alent, assuming the level of discretization in the ME
formulation is sufficient. A key question is: why did the RSC
fail to produce fits to the Kovacs data set of the quality
presented in this paper if the structure of the RSC and
stochastic model are similar?
Using the equilibrium relationship fe(T) = fg + α̃(T − Tg)

with the WLF equation, RSC developed the following equation

α
α

= − +
̃

̃ + −
a c c

c
c f T V f

log
( , )1 1

2

2 g (28)

where fe(T) was replaced with f(V,T) determined from the SS
equation of state and fg is the fractional free volume in the
reference state of T = Tg and P = 1 atm. In a series of papers
Vlesshouwers and Nies (VN)21,22 used the fraction f(v,T)
obtained via the Holey Huggins (HH) equation of state, but
employed the rest of the RSC framework. Although the RSC
model and the more recent VN variation are structurally similar
to the stochastic model developed in this paper, their ability to
quantitatively describe the whole Kovacs data set is
disappointing. As an example, the RSC and VN models cannot
describe the simple down-jumps from 40 °C to various
temperatures (in their original paper RSC attempted to
alleviate the problem by making τ0 temperature dependent).
In order to address this deficiency, in later publications29 RSC
made additional assumptions employing different log a
functions below and above certain temperature, but the results
were only marginally improved.
The difference in the descriptive power of the current

stochastic model and the RSC model is due to the form of log
a. Equation 28 does not contain any adjustable parameters,
since c1 and c2 are determined by the log a vs temperature data
above Tg and the parameters contained in the SS or HH
equation-of-state used to specify f(v,T) are determined from the
PVT behavior of the polymer. Although the temperature
dependence of log a along the P = 1 atm line for an equilibrium
material is the same for the stochastic model and the RSC or
VN models, the volume dependence is different, and since
volume fluctuations are quite large, the effect of the different
assumptions concerning the v-dependence of log a is
significant.
The ratio of the relaxation time used in the stochastic model

(using the parameter values from Table 1) and the relaxation
time of the RSC model is shown in Figure 12 as a function of
the specific volume deviation δ. Since the RSC results were in
terms of the fractional free volume, we have recalculated all the
expressions in terms of the specific volume using the SS
equation of state with the parameters employed in the RSC
paper. Results for two temperatures T = 40 °C and T = 25 °C
are presented. The values of the logarithm of the ratio of the
relaxation times near zero indicate the regions where the two
models display similar behavior and, hence, where the RSC
model should be expected to describe the Kovacs data well
similarly to the stochastic model. The agreement between
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models is better at higher temperature in the region of the
negative δ's; thus, it is not surprising that up-jumps to 40 °C is
the type of thermal history best described by the RSC model.
However, for down-jumps to 25 °C (large positive δ's) the RSC
relaxation time is much too fast and the prediction is the
poorest. An important observation resulting from Figure 12 is
that the RSC predictions cannot be improved through an
adjustment of τ0, which would correspond to a vertical shift of
the curves in the figure. Indeed, the prediction of the down-
jump experiments can be improved considerably using such
procedure, but at the expense of the prediction of the up-jumps
owing to the curvature of the dependencies in Figure 12.
The dramatic change in the dependence of relaxation times

observed for the RSC model for large negative δ's is probably
due to using of the SS equation of state to determine free
volume and hence mobility.
There are a number of other implicit assumptions made in

the RSC model and VN variation which we address in detail in
the Supporting Information that are also detrimental to the
quality of the fit to the Kovacs data, but they are secondary in
effect as compared to the above-mentioned deficiency of the
log a function. The basic structure of the model developed by
RSC has the capability of describing the Kovacs data set;
however, the v-dependence of log a is tied to a particular
equation-of-state that results in a wrong volume dependence of
the mobility.
Formulation of the Stochastic Model. As is clearly

shown by the SDE form of the stochastic model, the current
modeling effort is a first step toward introducing fluctuations
into continuum mechanics. This is a major departure from the
traditional continuum mechanics, where all temporal and
spatial fluctuations are averaged. Traditional continuum
mechanics has a solid thermodynamic foundation.81,82 Also,
the theory of fluctuations emerges from the theoretically sound,
full phase space description of discrete molecules. However, the
proposed approach falls in between traditional continuum
mechanics and statistical mechanics. Care must be taken to
ensure that there is no violation of the basic principles of
continuum physic including the Second Law. The first step
toward this will require the development of a full tensorial
description that allow for imposition of the requirements of
conservations of mass, momentum, and the Second Law. There
are additional assumptions as well. It was assumed that the
fluctuations are Gaussian even for large departures from
equilibrium, although there is no reason that the tails of the
distribution have to behave in a Gaussian manner. The form of

B(v,T) given in eq 9b was determined in order to satisfy
stationarity at equilibrium, where the same form of B(v,T) was
also used for nonequilbrium states. Is this assumption valid?
The objective of this paper is not to address these significant
concerns, but to indicate that there appears to be significant
value in considering the addition of fluctuationsvalue that
can justify the investment of effort to address the questions
above.
A significant caveat needs to be mentioned. The stochastic

model developed in this paper has assumed that the mobility is
controlled by mesoscopic density fluctuations; consequently,
the magnitude of these fluctuations is solely determined by the
requirement that the model describe the volume relaxation
data. However, there are other attractive candidates for the
mobility relationship including configurational entropy,52

configurational internal energy,24 stress,83 etc. Moreover, the
model has assumed that the mesoscopic deformation is purely
isotropic, where mesoscopic fluctuations are most certainly
anisotropic. If the assumptions of either the form of the
mobility relationship (e.g., eq 23) or isotropic mesoscopic
deformation are not valid, then these errors have been
subsumed into the parameters that control the magnitude of
the density fluctuations. Thus, one must be careful at this early
stage of model development not to place too much emphasis
on volume fluctuations, since they may be a surrogate for a
more fundamental quantity that controls the local mobility. The
key issue is that fluctuations must be included in modeling the
glassy state.
The stochastic model has employed a mean field

approximation, where a single domain of size L is imbedded
in a continuum that has the ensemble average properties. This
approach completely ignores correlations between neighboring
domains. The ability of the stochastic model to accurately
predict the extensive Kovacs data set with only three model
parameters indicates that this mean-field approximation is not
unreasonable at least for the small isotropic macroscopic
volume changes under consideration. For large anisotropic
deformations the mean-field approximation will need to be
carefully examined.
Implicit in the stochastic model is the requirement that only

the local volume v controls the rate of relaxation in the FPE.
However, in order to fit the data the rate expression in eq 23,
also included the ensemble average volume given by

∫= ′ ′ ′
−∞

∞
V t v v p v t( ) d ( , )

(29)

Is this modification of the FPE appropriate? This is a valid
concern since the derivation of the stochastic model was based
on the relaxation rate depending on just the stochastic variable
and not also on an ensemble average of this variable. We give
no formal proof (see ref 84); however, the numerical
simulations of the SDE using the combination of v and V
clearly show that the form of the drift term A and the diffusive
term B given in eqs 9 with the rate calculated via eq 23 does
result in the stationary distribution given in eq 7.

Connection of Stochastic Model to Other Experi-
ments and Simulations. The stochastic model qualitatively
describes the time development of the width of the distribution
of volume fluctuations after step changes in temperature
observed in some inorganic glass formers by light scattering.39

The model predicts the experimentally observed maximum
(minimum) in the variance of the fluctuations of the specific
volume ⟨δv2⟩ following up-jumps (down-jumps) in temper-

Figure 12. Comparison between the expressions for the relaxation
time (as a function of temperature and volume) in the present
communication (τ) and in the paper by Roberson et al. (τRSC).
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ature. This behavior is a natural consequence of the
broadening/narrowing of the probability density function of
the local volume, where the high volume portion of the volume
distribution relaxes toward its equilibrium faster than the low
volume portion. Thus, for up-jumps in temperature there is an
initial broadening of the volume distribution as the larger
volumes of the distribution increase faster than the lower
volumes. In contrast, for down-jumps there is an initial
narrowing of the distribution as the larger volumes of the
distribution decrease faster than the smaller volumes.
The SDE form of the stochastic model predicts large volume

fluctuations for a realization of a single domain during a given
thermal history. This presence of large fluctuations in the
molecular properties of a glass such as local shear modulus85

are well-known in molecular simulations, where recent work86

showed that the fluctuations in the molecular stress, etc., seem
to become relevant for the macroscopic mechanical behavior
when averaged over a local domains of sizes that begin to
approach the 2−3 nm, i.e., the size predicted by the stochastic
model and measured by NMR.36 At this time we are not
making any direct comparison with the magnitude of
fluctuations predicted by the stochastic model and molecular
dynamics simulations, and as discussed above, specific volume
may not be the appropriate quantity to compare with molecular
simulations. However, the stochastic model provides a potential
framework to gain further insight from molecular simulations;
specifically, current simulations either use very large systems or
ensemble average their predictions in order to reduce
fluctuations so they can be compared with experimental data.
In contrast, the stochastic model uses fluctuations and makes
very clear predictions about how the distribution of a
fluctuating variable evolves during a macroscopic experiment.
Although well beyond the scope of this paper, the stochastic
model (and its future extensions) can potentially provide a
continuum framework that takes better advantage of the
extensive fluctuation information that is contained in molecular
dynamic simulations of the glass.
Limitations of the Current Stochastic Model. The

current formulation of the stochastic model has a number of
clear limitations. In this paper the model was used to predict
the Kovacs data set7 which was all at 1 atm pressure; however,
the model makes predictions at other pressures. The effect of
pressure is controlled by the log a(V,T) surface shown in
Figure 3. To first order Tg occurs when log a equals zero; thus,
Tg(P) is controlled by the slope s of the isomobility lines in V−
T space, where s is one of the parameters determined by
optimization of the 1 atm Kovacs data. If the optimized s
resulted in the log a contours shown in Figure 3B, then the
pressure dependence of Tg would have been predicted;
however, the optimized s results in the contours shown in
Figure 3A, which gives a qualitatively incorrect Tg(P). The
Tg(P) discrepancy cannot be fixed by any change to the current
stochastic model that assumes that mobility is controlled by the
local specific volume. This conclusion forces the consideration
of a generalization of the current model to use an alternative
mobility variable such as configurational entropy, which will be
the subject of a future communication where multiple
fluctuating variables (e.g., volume and entropy) must now be
considered. Notwithstanding the inability of the current version
of the stochastic model to predict Tg(P), the current model has
provided considerable value, since (i) the structure of the
approach to include fluctuations is best exposed in its simplest

form and (ii) it can describe the extensive Kovacs data set using
a single relaxation timenot an inconsiderable task.
A second limitation of the model is that it currently applies

only to isotropic deformations. Moreover, even in deformations
that are macroscopically isotropic the local domain can
experience anisotropic fluctuations. It will be necessary to
develop a full tensorial approach that includes fluctuations in
order to determine if including fluctuations can provide insight
and improved predictions for the complex nonlinear relaxation
behavior that is observed for glassy polymers. The isotropic
model developed in this paper provides the point of departure
for future development of a full tensorial description.

V. SUMMARY
A single relaxation time model that includes fluctuations has
been developed to describe the volumetric relaxation response
of a glassy material, where the rate of local relaxation is
controlled by the local state variable which for this model is the
local specific volume. The incorporation of fluctuations in the
stochastic model directly acknowledges dynamic heterogeneity
that is well established experimentally for glass forming
materials. Three different, but mathematically equivalent,
forms of the stochastic model have been developed: (i) the
stochastic differential equation (SDE) that provide a realization
of the evolution of the specific volume including fluctuations in
a local mesoscopic region, (ii) the Fokker−Planck equation
(FPE) that describes the evolution of the probability density of
the local specific volume, and (iii) a master equation (ME) that
is a discretized version of the FPE that is useful for numerical
solutions. The stochastic model developed in this paper has
four model parameters (two of which are strongly correlated)
which were optimized for the extensive poly(vinyl acetate)
volume relaxation data of Kovacs.7 The single relaxation time
stochastic model does an excellent job of fitting the entire data
set. Since the stochastic model only has a single relaxation time,
there is no need to postulate/determine the shape of the
relaxation spectrum as required by the traditional multiple
order parameter models. The stochastic model results in an
inherently thermorheologically complex material, although for
appropriate thermal histories it predicts relaxation responses
that can be operationally shifted along the log time axis to effect
superposition. However, for relaxation phenomena that are
close to equilibrium, the stochastic model predicts a
thermorheologically complex relaxation response in agreement
with experimental observations. This is the first model that
naturally predicts thermorheological complexity.
The stochastic model does a better job than the existing

multirelaxation time models in predicting the whole Kovacs
data set. The stochastic model can describe the τeff expansion
gap, although it requires a significantly different set of model
parameters than the parameters needed to describe the rest of
the Kovacs data set, indicating that some features of the
stochastic model may be needed to resolve the τ-effective
paradox. Also, the stochastic model does not predict the
pressure dependence of Tg. These failures suggest that some
essential physics is still missing. There are two obvious places in
the formulation of the stochastic model, which might have
caused aforementioned problems: (i) the assumption that
volume is the critical variable controlling mobility in the glass
transition region, where there are other plausible candidates
including configurational entropy and configurational internal
energy, and (ii) the assumption that the local domain can only
deform isotropically, when the only requirement is that the
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ensemble average of the local responses be isotropic.
Notwithstanding, the difficulties with respect to τeff and
Tg(P), the current version of the stochastic model does an
excellent job of predicting the rich, nonlinear set of Kovacs
PVAc volume relaxation using effectively three material
parameters and without needing a relaxation time spectrum.
The stochastic model clearly demonstrates the value of
incorporating fluctuations in models for glassy polymers and
exposes the mathematical structure of this class of model.

■ APPENDIX A. DERIVATION OF THE SDE
In this Appendix the deterministic relaxation equation will be
generalized to include fluctuations, where the volume relaxation
equation (i.e., eq 5) is a relevant example. For mathematical
simplicity the relaxation rate, R(v), is employed rather than 1/
a(v,T)τ0, and the temperature dependence is omitted. Hence,
the problem is formulated as follows: given a deterministic
nonlinear ODE of the form

= − −
t

v R v v V
d
d

( )( )e (A.1)

construct a stochastic generalization of eq A.1 with a stationary
solution p(s)(v) that is consistent with the equilibrium
thermodynamics one given by eq 7. The stationary distribution
given in eq 7 is Gaussian, and we will assume this is the
functional form in the subsequent treatment; however, the
Gaussian assumption is not critical to the analysis. In addition,
the stochastic generalization of eq A.1 must limit to the
deterministic ODE given in eq A.1 in the case of vanishing
fluctuations. An important issue will be to determine the
uniqueness of the stochastic generalization of the deterministic
relaxation equation.
The problem defined in the previous paragraph is different

than the one traditionally considered in statistical mechanics.
The traditional objective is to determine the stationary
distribution for a system with a given systematic generalized
force (i.e., the right-hand side in eq A.1), when the fluctuations
are described via a diffusive-like term with a constant diffusion
coefficient D. In the standard approach,54 the probability
distribution p(v,t) of v is governed by the Fokker−Planck
Equation (FPE)

∂
∂

= ∂
∂

− + ∂
∂t

p v t
v

R v v V p D
v

p( , ) [ ( )( ) ]e

2

2 (A.2)

Provided a normalizable stationary solution to the above
equation exists, it is given by

∫= − ̃ ̃ ̃ −
−∞{ }p v N

D
v R v v V( ) exp

1
d ( )( )s

v
( )

e (A.3)

where N is the normalization constant such that the integral of
p(s)(v) over v is unity. The stationary distribution in eq A.3 is
completely specified by D and the functional form of R(v). The
stationary distribution is Gaussian only when R(v) is a constant.
In the case when R(v) is not a constant (e.g., when R(v) rapidly
decreases when v approaches the hard core volume), a FPE
with a constant diffusion coefficient might not even have a
stationary solution. The FPE given in eq A.2 is inappropriate
for the current situation where R(v) is a strong function of v
and the stationary distribution is still required to be Gaussian
(i.e., eq 7).
In order to incorporate the strong dependence in R(v), one

must start from a general form of FPE given in eq 11 without

any a priori assumption about the functional form of the
diffusive term B2(v). For a stationary distribution the time
derivative in eq 11 is zero. After integrating and rearranging
terms, the defining equation for the stationary distribution
p(s)(v) is given by

σ
=

⎛
⎝⎜

⎞
⎠⎟A v p v

v
B v p v( ) ( )

d
d 2

( ) ( )s s( ) e
2

2 ( )

(A.4)

where the constant of integration was set to zero in order to
satisfy the boundary conditions that the distribution density
and its derivative vanish when v goes to ± ∞. Integrating eq
A.4 over the entire domain and employing the boundary
conditions once again, we conclude that the A(v) term in the
generalized FPE eq 11 must always satisfy the condition

∫ ̃ ̃ ̃ =
−∞

∞
v A v p vd ( ) ( ) 0s( )

(A.5)

Provided the necessary integrals exist, the generalized
diffusion coefficient σe

2B2(v) can be expressed in terms of
A(v) and the stationary distribution as

∫σ = ̃ ̃ ̃
−∞

B v
p v

v A v p v( )
2
( )

d ( ) ( )
s

v
s

e
2 2

( )
( )

(A.6)

Now if the rate function R(v) in the original deterministic
equation is such that

∫ ̃ ̃ ̃ − ̃ =
−∞

∞
v R v v V p vd ( )( ) ( ) 0s

e
( )

(A.7)

then one simply sets A(v) equal to −R(v)(v − Ve) and the
condition (A.5) is satisfied.
A complication arises in the case of a rate function for which

eq A.7 does not hold, for example when R(v) is not symmetric
with respect to v = Ve. In this case we postulate that a new term,
which was not present in the original deterministic equation,
must be added to the drift part of the stochastic equation A(v)
to ensure that the condition of eq A.5 is fulfilled. Having a
purely stochastic nature, this term should vanish in the limit of
σe → 0. In the rest of this Appendix we present an argument on
how to construct such a term. It should be emphasized,
however, that this is by no means a formal derivation.
As follows from the previous discussion, an additional term

must cancel out the contribution from the original −R(v)(v −
Ve) term when integrated with the stationary distribution
p(s)(v). One possibility is to simply subtract the value of the
integral from the original term, which gives rise to the following
expression (corresponding to case II in the main text)

∫= − − + ̃ ̃ ̃ − ̃
−∞

∞
A R v v V v R v v V p v( )( ) d ( )( ) ( )s(II)

e e
( )

(A.8)

The condition (A.5) is obviously satisfied. The correct
deterministic limit is also assured since the integral in eq A.8
vanishes as the stationary distribution p(s)(v) becomes delta
function δ(v − Ve) at σe → 0. Integrating by parts and noticing
that

∫= ̃ ̃
̃

̃
−∞

∞R
v

v
R v

v
p v

d
d

d
d ( )

d
( )s

e

( )

(A.9)

Equation A.8 can be converted into the form shown in the main
text as eq 10a. Using eq A.6, the magnitude of the fluctuations
B2(v) given in eq 10b is obtained.
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However, the solution given in eq A.8 is not unique, since it
is possible to construct an infinite number of expressions whose
integrals with the p(s)(v) satisfy eq A.5. An example of such an
expression would be

σ
σ̃ = − − +

−
−

⎡
⎣⎢

⎤
⎦⎥A R v v V R v

v V
v

R v( )( )
1
3

( )
( ) d

d
( )e

e
3

e
2 e

4
3

3

(A.10)

The recipe for obtaining this and similar formulas is to integrate
by parts the products of the stationary distribution and the
derivatives of the rate function R(v) of the form

σ +p v
v

R v( )
d

d
( )s n

n

n
( )

e
1

(A.11)

However, an inspection shows that all the expressions of this
type, except one, contain negative powers of σe (e.g., first term
in square brackets in eq A.10) and, thus, do not possess the
correct deterministic limit. The only expression with the correct
deterministic limit as σe → 0 is (see eq 9a)

σ= − − +A R v v V
v

R v( )( )
d

d
( )(I)

e e
2

(A.12)

The magnitude of the fluctuations is determined via integration
of A(I) as defined in eq A.6, resulting in the simple expression
given in the main text as eq 9b.
Thus, both sets of the drift and diffusive terms denoted as

case I and case II in the main text satisfy the stationarity
conditions imposed by eq A.5 and have correct macroscopic
limit. However, the dynamic behaviors described by case I
versus case II can be dramatically different, especially for highly
asymmetric rate function R(v) as illustrated by inability of the
case II based equations to predict Kovacs data.
It is worth noting that the multiple forms of the generalized

FPE only appear in the nonlinear case when the rate is a
function of the relaxing variable. When R(v) equals a constant,
both the integral in eq A.8 and the derivative in eq A.12 are
zero. However, this is only true for a one-dimensional system,
i.e., one stochastic variable. In case of higher dimensions even a
linear deterministic system has an infinite number of stochastic
generalizations, each leading to the same stationary distribution.
The analysis of a multidimensional system will be described in a
subsequent paper.

■ APPENDIX B. CONNECTION BETWEEN
FOKKER−PLANCK AND MASTER EQUATION
FORMULATIONS OF THE STOCHASTIC MODEL

The Fokker−Planck equation (FPE) given in eq 11 can be cast
into a discrete master equation (ME) form that is more
convenient for numerical solution, and the development of the
ME form is the objective of this Appendix. The discretized
probability distribution {pi} evolves according to a birth−death
master equation of the form given by eq 12. The FPE is
equivalent to birth−death ME as the discretization step h goes
to zero if the downward and upward rates are defined according
to eqs 14 (see ref 50 for formal proof). The detailed balance eq
15 puts constraints on the rates {ki

+} and {ki
−} by requiring that

stationary distributions have a prescribed form similarly to how
in the continuous case eq A.4 puts constraints on the form of
the drift term and the diffusive term. Substitution of eq 14 into
eq 12 results in the following equation:

σ
+ = −− − − −p A p A

h
p B p B( )i

s
i i

s
i i

s
i i

s
i

( )
1
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1

e
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( ) 2
1

( )
1

2
(B.1)

In the limit of h → 0 the discrete eq B.1 becomes eq A.4.
Summation over index i from 1 to n in eq B.1 and use of eq 13
leads to

∑ =
=

p A 0
i

n

i
s

i
1

( )

(B.2)

Equation B.2 is a discrete analogue of eq A.5 and represents a
condition on the admissible sets of {Ai}. For a given set of {Ai}
satisfying eq B.2 the corresponding {Bi

2} are calculated
according to

∑σ = +
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p B h p A hp A2i
s

i
j
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j
s

j i
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i
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e
2 2

1

1
( ) ( )

(B.3)

That eq B.3 gives a correct solution can be verified by
substitution into eq B.1, where eq B.3 is a discrete analogue of
eq A.6.
As in the continuous case the condition (B.2) does not

determine the set {Ai} uniquely. For instance, a set of n
quantities defined according to

∑= −
=

A F p Fi i
j

n

j
s

j
1

( )

(B.4)

where {Fi} are arbitrary, will always satisfy eq B.2. Now if a set
{Fi} can be found that results in non-negative upward and
downward rates {ki

+} and {ki
−}, then such a set constitute an

admissible ME formulation with the required stationary
solution. Use of eqs 14, B.3, and B.4 gives rise to the equations
(i = 2, ..., n)
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with ⟨F⟩e = ∑k=1
n pk

(s)Fk. Consistent with the continuous case
(case II) as well as the deterministic limit, one choice for {Fi} is
Fi = −R(vi)(vi − Ve). Numerical evaluation shows that in this
case the rates defined in eqs B.5 are non-negative as required by
the definition of {ki

+} and {ki
−}, although we have been unable

to obtain a formal proof. The ME formulation resulting from
this choice of functions {Fi}, although being mathematically
correct, suffers from the disadvantage that the rates are given by
complicated expressions B.5 and are difficult to assign an
intuitive meaning.
A different class of functions {Ai} satisfying eq B.2 is defined

as

σ
= −+

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟A

h
R v

p

p
R v( ) ( )i i
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e
2

1
1

( )

( )
(B.6)

The condition of eq B.2 will hold for any non-negative set of
{R(vi)} with the only requirement that R(v1) = 0. Substituting
eq B.6 into eq B.3, one finds
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Finally, using eqs 14, B.6, and B.7
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Unlike the expressions given in eqs B.5, the formulas (B.8) have
a clear physical meaning where R(vi) plays the role of a local
rate of relaxation for a system in the ith state. If one started with
an ME formulation without ever considering a corresponding
FPE, eqs B.8 would have been a very natural way of defining
downward and upward rates {ki

+} and {ki
−} via R(vi). Equations

B.8 (without the σe
2 factors) were postulated in the Robertson

et al.20 paper. In order to make the connection between the
continuous case given in eqs 9 (case I) and the discrete form
given in eqs B.8 more apparent, it is instructive to examine the
limit of h→ 0. Taking advantage of the expansion pi+1

(s) ≈ pi
(s)((1

− (vi − Ve)/(σe
2)h), one establishes that eqs B.8 are the

discrete analogue of case I of the continuous FPE model.

■ APPENDIX C. METHOD FOR SOLVING THE
MASTER EQUATION

The solution of the ME is obtained using standard eigenvector
methods. Using a similar approach to that employed by
Robertson et al.,20 the ME (eq 11) for the discretized
probability density vector p(t) = {pi(t)} is expressed in matrix
form as

= ·
t

t tp K p
d
d

( ) ( )
(C.1)

where the nonzero matrix elements of K are

= =
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K is generally nonsymmetric; however, a similarity trans-
formation can be applied to create a symmetric matrix Z

= · ·−Z D K D1 (C.3)

where D is a diagonal matrix with the elements Di,i = Di with
the requirement that

= = =− − − − − −Z K D D K D D Z/ /i i i i i i i i i i i i, 1 , 1 1 1, 1 1, (C.4)

and hence
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2
1, , 1 1 (C.5)

Invoking the detailed balance equation given in eq 15, it is
convenient to define the matrix elements of D as

=D pi i
s( )

(C.6)

Thus, the final expression for the matrix elements of Z in terms
of the equilibrium distribution {pi

(s)} of the specific volume and
the transition rates reads

= − + =
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The ME given in eq C.1 now becomes

· = · ·− −

t
t tD p Z D p

d
d

[ ( )] [ ( )]1 1
(C.8)

with the solution

Λ= · · · · ·− −t tp D Q Q D p( ) exp[ ] (0)1 1
(C.9)

where Q is the matrix formed from the normalized (column)
eigenvectors of Z, and Λ is the diagonal matrix of the
eigenvalues of Z. Returning to indexical notation

∑ ∑= λ

= =

p t p Q Q
p

p( ) e
1

(0)i
k

n

i
s

ik
t

j

n

jk

j
s j

1

( )

1
( )

k

(C.10)

The largest eigenvalue λ1, which corresponds to the stationary
state, is always zero, and the rest of the eigenvalues are negative.
The components of the eigenvector associated with the
stationary solution are given by

= =Q p i n1, ...,i i
s

1
( )

(C.11)

The remaining eigenvalues/vectors for the matrix Z can be
determined numerically using standard87 techniques. However,
when the ratio of smallest to largest values of the transition
rates k1

+/kn
− is less than the machine precision, the numerical

solution based upon standard algorithms becomes impossible.
A perturbation solution has been developed for these cases as
described in the Supporting Information.
The ME requires specification of the level of discretization of

the naturally continuous volume distribution. The choice of the
discretization step h, and therefore the rank n of the Z and Q
matrices, is dictated by the desired accuracy in approximating
the continuous volume distribution. In addition, the require-
ment that the transition rates in eqs 14 always be positive puts
some constraints on h; specifically

σ σ
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| |

⎛
⎝⎜

⎞
⎠⎟h

B v
A v
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e
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1

1

e
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The requirement on h defined by eq C.12 will become a
problem for sufficiently small volumes (i.e., for the smallest
volume v1 accessible to the system) when the diffusive term
σe

2B2(v,T) vanishes faster than the drift term A(v,T). The
requirements imposed by eq C.12 become more severe as the
temperature is lowered because R(v,T) is a steeper function of v
at lower T. Of course, h could always be decreased, but then the
size of the Z and Q matrices becomes computationally
infeasible.

Solution Procedure
The solution procedure for the isothermal response of the
stochastic model following a small temperature step is as
follows:
1. The range of specific volumes available to a meso-domain

is discretized, resulting in the {vi} set, taking care to satisfy the
constraints given in eq C.12.
2. The downward and upward transition rates {ki

−}, {ki
+} are

calculated via eqs 14, where the formulas for A(vi) and B2(vi)
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are given by eqs 9 for case I and by eqs 10 for case II. The log
a(vi,T) function is given in eq 23.
3. The Z matrix is calculated via C.7, and its eigenvectors/

values are obtained.
4. The specific volume distribution function {pi(t)} is

calculated from the solution of the ME using eq C.10.
5. Using the distribution function, any average quantity of

interest (e.g., the macroscopic specific volume) is calculated.
Our use of the mean-field approximation requires a

clarification as to how the solution algorithm is organized,
since the current relaxation rate for a given domain depends
both on the current local volume and the current average
volume. In fact, the average specific volume V(t) is evaluated
after every time step and then used in calculation of the
transition rates in the ME for the next step via eq 23.
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