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a b s t r a c t

A model-based analysis is conducted to investigate metabolism of Shewanella oneidensis MR-1 strain in

aerobic batch culture, which exhibits an intriguing growth pattern by sequentially consuming substrate

(i.e., lactate) and by-products (i.e., pyruvate and acetate). A general protocol is presented for developing

a detailed network-based dynamic model for S. oneidensis based on the Lumped Hybrid Cybernetic

Model (L-HCM) framework. The L-HCM, although developed from only limited data, is shown to

accurately reproduce exacting dynamic metabolic shifts, and provide reasonable estimates of energy

requirement for growth. Flux distributions in S. oneidensis predicted by the L-HCM compare very

favorably with 13C-metabolic flux analysis results reported in the literature. Predictive accuracy is

enhanced by incorporating measurements of only a few intracellular fluxes, in addition to extracellular

metabolites. The L-HCM developed here for S. oneidensis is consequently a promising tool for the

analysis of intracellular flux distribution and metabolic engineering.

& 2012 Elsevier Inc. All rights reserved.
1. Introduction

Shewanella oneidensis MR-1 is a facultative anaerobe that can be
found in aquatic and sediment ecosystems. This strain preferentially
grows on three-carbon sources (such as lactate) instead of six-carbon
sugars. There has been particular attention to S. oneidensis because of
its ability to respire with solid electron acceptors including Mn and
Fe oxides. This feature makes S. oneidensis MR-1 an attractive tool for
bioremediation, microbial fuel cell applications and biofuel produc-
tion (Fredrickson et al., 2008; Hau and Gralnick, 2007).

The biotechnological potential of S. oneidensis MR-1 can
greatly benefit from metabolic modeling and simulations which
not only promote fundamental understanding, but also point to
new rational strategies for performance improvements (Bailey,
1998). To do so, the model must provide reliable descriptions of
key system properties. Two major components of metabolism are
the network of metabolic pathways and their dynamic regulation.
No models of S. oneidensis that incorporate both of the foregoing
components have been reported.

Modeling studies of S. oneidensis have been conducted on
metal reduction kinetics but these lack a connection to internal
metabolism (Bonneville et al., 2006; Lall and Mitchell, 2007;
ll rights reserved.

amkrishna),
Viamajala et al., 2003). Tang et al. (2007) developed a kinetic
model for aerobic growth of S. oneidensis on lactate in batch
culture. This lumped model neglected the internal structure of the
metabolic network but focused on simulations of external meta-
bolites, and described chromate reduction simply with link to
biomass concentration only. Pinchuk et al. (2010) has conducted
constraint-based analysis of S. oneidensis growth on numerous
carbon sources using a genome-scale network model and dis-
cussed various metabolic traits under steady state conditions.

Our interest here is to develop a detailed network-based dynamic

model. In this regard, the Lumped Hybrid Cybernetic Model (L-HCM)
developed by Song and Ramkrishna (2010, 2011) provides an
appropriate framework. L-HCMs have the following attributes:
(i) they use cybernetic laws to account for dynamic cellular regula-
tion (Kompala et al., 1986; Young and Ramkrishna, 2007), (ii) fairly
large-scale networks can be handled using metabolic pathway
analysis, and (iii) model identification can be made from limited
data as the number of adjustable parameters is minimal due to the
concept of pathway lumping. In short, L-HCM is a dynamic modeling
framework which has a balanced consideration of both structural and
functional components of metabolic systems (i.e., metabolic network
and dynamic regulation) but avoids over-parameterization. In their
recent papers, Song and Ramkrishna have demonstrated the L-HCM’s
capability of predicting complex dynamic response of Escherichia coli

(as well as yeast) not only to environmental changes (Song and
Ramkrishna, 2010; 2011), but also to genetic perturbations (Song and
Ramkrishna, 2012). We use L-HCM to investigate S. oneidensis MR-1
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Nomenclature

Abbreviations

EM elementary mode
FBA flux balance analysis
GAR growth rate-dependent ATP requirement
HCM hybrid cybernetic model
L-EM lumped elementary mode
L-HCM lumped hybrid cybernetic model

Symbols

a coefficient of yield term appearing in the structural
return-on-investment (ROI)

b coefficient of flux term appearing in the
structural ROI

c concentration of biomass (g/L)
e enzyme level
K Michaelis–Menten constant (mM)
k uptake rate constant (mmol/gDW/h)
kLa volumetric gas transfer coefficient (1/h)
L(JA) the set of indices of ATP-producing EMs of the

Jth family
L(JB) the set of indices of biomass-producing EMs of the

Jth family
neta parameter controlling the sensitivity of L-EM to

structural ROI
nF number of EM families
nr number of reactions
nx number of extracellular metabolites
p return-on-investment
r individual flux
r vector of individual fluxes
rF flux through EM family
rF vector of fluxes through EM families
rM flux through individual EM
Sx stoichiometric coefficient matrix for extracellular

metabolites
t time (h)

u cybernetic variable controlling synthesis of enzyme
v cybernetic variable controlling activity of enzyme
x concentration of extracellular metabolites (mM)
xn

O dissolved oxygen solubility limit (mM)
YA ATP yield
YB biomass yield
zF L-EM
zA ATP-producing L-EM
zB biomass-producing L-EM
ZF L-EM matrix

Greek letters

a constitutive synthesis rate of enzyme (1/h)
b degradation rate of enzyme (1/h)
e correction term to structural ROI
Z efficiency of EMs
m specific growth rate (1/h)
r correlation coefficient

Subscripts

A ATP or acetate
B biomass
E enzyme
F family of EMs
j index for individual EMs
J index for EM families
L lactate
M individual EM
O oxygen
P pyruvate

Superscripts

kin kinetic
max maximum
rel relative
st stoichometric
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aerobic growth by respiration of lactate. A complex (triauxic) growth
pattern of S. oneidensis in batch culture, presumably driven by
intricate regulatory circuits, poses a serious challenge to modeling.

In this article, we first developed a general protocol for con-
structing an L-HCM from batch data exhibiting sequential con-
sumption of different alternative carbon sources. Second, we
demonstrated the power of L-HCM in predicting intracellular flux
distribution and their dynamic shift with time. Model performance
is evaluated by comparing with constraint-based approaches, as
well as with experimental data of our own and those available in
the literature. Third, we discuss model’s ability to estimate the
energy requirement for cellular growth as a critical input para-
meter. Through this work, it is shown that modeling cellular
regulation with cybernetic control laws provides an efficient route
to describing the complex dynamic behavior of S. oneidensis

particularly when considering large-scale metabolic networks.
2. Modeling framework

L-HCM is a dynamic metabolic modeling framework built on
concepts including the cybernetic control laws, metabolic pathway
analysis and pathway lumping. The mathematical essence is
provided in the Appendix A, and the concepts are presented here.
For the full description of L-HCM, the original papers of Song and
Ramkrishna (2010, 2011) should be referred to.

The cellular network of biochemical reactions is orchestrated by
a sophisticated regulatory machinery through controls upon both
enzyme expression and activity. Instead of considering the mechan-
istic details of complex cellular regulation (e.g., as in Hardiman et al.,
2010), the cybernetic modeling approach provides a dynamic
description of regulation based on a view that cellular reactions
are optimally driven towards maximizing a metabolic objective
(Ramkrishna and Song, 2012). It is assumed here that the metabolic
objective is the maximization of the carbon uptake flux into the cell.
This hypothesis is translated into that the whole metabolism of
microorganisms can undergo a drastic change whenever the total or
individual uptake fluxes are significantly affected by any genetic
modifications (Young et al., 2012) or environmental perturbations
(Kim et al., 2012). Based on this perspective, a rational description of
dynamic regulation is given in the form of the cybernetic control
laws, which replace mechanistic details of regulation. While earlier
formulations have focused on predicting various growth patterns on
mixed substrates with a lumped description of networks (e.g.,



H.-S. Song et al. / Metabolic Engineering 15 (2013) 25–33 27
Kompala et al., 1986; Ramakrishna et al., 1996), current develop-
ments of cybernetic models based on quasi steady state approxima-
tion are able to systematically handle expanded networks.

Under quasi steady state approximation for intracellular
metabolites, metabolic networks can be decomposed into ele-
mentary modes (EMs). In a simple sense, EMs can be viewed as
subnetworks or pathways composed of a minimal set of reactions
operating in steady state (Schuster et al., 1999; Schuster and
Hilgetag, 1994). Any physiologically feasible flux distribution in
steady state can be represented by nonnegative combinations of
EMs. The cybernetic modeling framework incorporates EMs based
on the following perspectives: (i) EMs are metabolic options for
converting inputs (i.e., substrates) into outputs (i.e., products) and
(ii) fluxes through EMs are optimally regulated towards max-
imizing a metabolic objective. These lead to the development of
Hybrid Cybernetic Model (HCM) (Kim et al., 2008; Song et al.,
2009). However, as larger metabolic networks are simulated, the
number of EMs increases exponentially and this could lead to
over-parameterization. To avoid this in HCM, EMs are reduced to
a smaller subset through Metabolic Yield Analysis as developed
by Song and Ramkrishna (2009). Thus, a systematic reduction of
EMs to their minimal set is an essential part of a standard
formulation of HCM.

The basic structure of HCM is inherited by L-HCM. The latter,
however, resolves the over-parameterization issue by a different
approach, EM lumping. In L-HCMs, EMs are lumped by taking a
weighted average of EMs in a family characterized by some
common feature, e.g., EMs consuming the same kind of sub-
strate(s). The resulting lumped pathway is termed as Lumped EM
(L-EM). L-HCM accounts for dynamic regulation over L-EMs,
instead of individual EMs. Consequently, L-HCM features a small
number of parameters which can be identified from limited
experimental data (Song and Ramkrishna, 2010). In subsequent
analysis, it becomes possible to identify significant EMs from the
lumped entities by tuning lumping parameters through compar-
ison with experimental data (Song and Ramkrishna, 2011).
3. Experiments

Shewanella oneidensis MR-1 was routinely maintained in aero-
bic tryptic soy broth at 30 1C. Controlled batches were conducted
in modified M1 medium (Pinchuk et al., 2011) supplemented with
90 mM lactate and 1.5 mM Na2SO4. Batch experiments were
performed in 6-liter Bioflo 3000 reactors (New Brunswick Scien-
tific, Edison, NJ) at 3 l working volume. Agitation and gas flow rate
Fig. 1. Schematic illustrating the pro
were maintained at 450 rpm and 4 l/min, respectively. Dissolved
O2 tension was kept at 50% of air saturation by automatically
controlling concentration of N2, air, and O2 in sparging gas. Other
conditions were maintained as described elsewhere (Pinchuk
et al., 2011). Samples (from 20 to 50 ml) were withdrawn
periodically for measurements of optical density at 600 nm, dry
weight biomass, and organic acids concentrations as described
previously (Pinchuk et al., 2010).
4. Results and discussion

4.1. Model formulation

Using the framework described in the Appendix A, we devel-
oped an L-HCM for aerobic batch growth of S. oneidensis on
lactate. L-HCM formulation generally goes through the following
stages (Fig. 1): (i) reconstruction of a metabolic network, (ii)
network decomposition into EMs, (iii) EM classification into
different families, followed by EM lumping in each family, (iv)
set-up of dynamic balance equations for metabolites of interest
within the cybernetic modeling framework, and (v) parameter
identification and model validation.

Metabolic network for the central metabolism of S. oneidensis

was based upon the E. coli network reconstructed by Stelling et al.
(2002). Biomass synthesis equation for S. oneidensis was formu-
lated from Pinchuk et al. (2010). Similarly to E. coli, S. oneidensis

MR-1 has gene sequences for the enzymes of the central carbon
metabolism including Entner–Doudoroff pathway, pentose phos-
phate pathway, pyruvate dehydrogenase complex, tricarboxylic
acid cycle, glyoxylate bypass, and anaplerotic reactions among
others (Serres and Riley, 2006). Further, both S. oneidensis and E.

coli have in common complete reaction routes for the synthesis of
amino acids, nucleotides and cofactors. The use of carbon and
energy sources in S. oneidensis is, however, more restricted than in
E. coli. That is, experimental observation shows that S. oneidensis

MR-1 does not grow on glucose. Rather, S. oneidensis prefers
three-carbon sources such as lactate and pyruvate as well as two-
carbon substrate such as acetate (Serres and Riley, 2006). The
resulting metabolic network contained 119 reactions, and 113
metabolites (16 extracellular and 97 intracellular) (Tables S1 and
S2). The network is decomposed using METATOOL v5.1 (von
Kamp and Schuster, 2006), resulting in 112,545 EMs.

A simplified network is provided in Fig. 2. While included in Table
S1 providing the full list of reactions, production of formate and
ethanol is not displayed here as they are inactive in S. oneidensis
cedures of L-HCM construction.



Fig. 2. Simplified metabolic network for the central metabolism of S. oneidensis

(see Table S2 for full names of metabolites).

Table 1
EM classification according to their main substrates: lacate (family I), pyruvate

(family II), and acetate (family III). Y denotes stoichiometric coefficients of

metabolites.

EM

family

Main

substrate

Secondary

substrate

No. of

EMs

L-EM

Ia Lactate (L) Oxygen (O) 35,647 LþYO,IO-YB,IBþYP,IPþYA,IAþ � � �

II Pyruvate

(P)

24,526 PþYO,IIO-YB,IIBþYA,IIAþ � � �

III Acetate

(A)

4312 AþYO,IIIO-YB,IIIBþ � � �

a In sorting out Family I, EMs consuming D-lactate are neglected assuming

that all lactates are of the L-form.

Table 2
Collection of model equations and parameters.

Dynamic balances for extracellular metabolites, biomass and enzymesa

Extracellular metabolites:
dxL

dt ¼�vF,Ie
rel
F,I r

kin
F,I c ðLactateÞ

dxP

dt
¼ ðYP,IvF,Ie

rel
F,I r

kin
F ,I �vF,IIe

rel
F,IIr

kin
F,IIÞc ðPyruvateÞ

dxA

dt
¼

XII

J ¼ I

YA,JvF,Je
rel
F,J r

kin
F,J �vF,IIIe

rel
F,IIIr

kin
F,III

 !
c ðAcetateÞ

dxO

dt
¼�

XIII
J ¼ I

YO,JvF,Je
rel
F,J r

kin
F,J

 !
cþkLaðxn

O�xOÞ ðOxygenÞ

Biomass:

dc
dt ¼ mc where m¼

PIII
J ¼ I

YB,JvF ,Je
rel
F,J r

kin
F,J

 !

Enzymes:
deF ,J

dt ¼ aF,JþuF,J r
kin
FE,J�ðbF,JþmÞeF,J ðJ¼ I,II,IIIÞ

Kinetics

rkin
F,J ¼ kmax

J ½rkin
F,J �c ; rkin

FE,J ¼ kE,J ½r
kin
F,J �c ðJ¼ I,II,IIIÞ

where

½rkin
F,J �c ¼

xLxO
ðKL þ xLÞðKO þ xO Þ

ðJ ¼ IÞ
xP xO

ðKP þ xP ÞðKO þ xO Þ
ðJ ¼ IIÞ

xAxO

ðKA þ xA ÞðKO þ xO Þ
ðJ¼ IIIÞ

8>><
>>:

Parameter values fixed a priori

KL ¼ KP ¼ KA ¼ 0:02 ðmMÞ, KO ¼ 0:006 ðmMÞ,
kE,J ¼ 1ðJ ¼ I,II,IIIÞ, aF,J ¼ 0:01 ðJ ¼ I,II,IIIÞ, bF,J ¼ 0:05 ðJ ¼ I,II,IIIÞ,

kLa¼ 40 ð1=hÞ, xn

O ¼ 0:238 ðmMÞ

a The meaning of symbols used in the equations is defined in Appendix A and

nomenclature section.

H.-S. Song et al. / Metabolic Engineering 15 (2013) 25–3328
under aerobic conditions (Pinchuk et al., 2010; Sawers and Watson,
1998). Suppression of these reactions is automatically reflected in the
model through the tuning of lumping parameters. That is, fluxes
through EMs producing formate or ethanol are set to be negligibly
low as a consequence of fitting to experimental data on pyruvate and
acetate.

During the initial period of aerobic batch culture, S. oneidensis

grew on lactate, producing pyruvate and acetate as by-products. In
the next phase where the preferred substrate (i.e., lactate) is depleted,
pyruvate was utilized as an alternative carbon source for further
growth with acetate produced. When pyruvate is depleted, acetate
was finally consumed. Based on these experimental observations,
EMs are classified into three different families (Table 1): aerobic
growth on (i) lactate, (ii) pyruvate, and (iii) acetate. In L-HCM, this
sequential growth of S. oneidensis is described as the outcome of
optimal modulation of three lumped pathways (identified in Table 1)
towards maximizing the carbon uptake flux into the cell.

Model equations along with parameter values are presented in
Table 2. Most of the parameters are fixed to their standard values
typically used in cybernetic modeling without seeking their
optimal values. Our justifications for this are as follows. (i) The
parameters associated with enzyme synthesis equations (such as
kE,J, aF,J, and bF,J) and Michaelis–Menten constants do not affect
model predictions of batch growth in a certain range (Baltes et al.,
1994; Song and Ramkrishna, 2011). (ii) O2 solubility limit and
volumetric mass transfer coefficient for O2 are parameters which
should be determined from thermodynamic and operating con-
ditions. (iii) Yield coefficients (denoted by YX,J where the subscript
X can be any metabolites) are given from EM lumping. Thus, we
have only three parameters to optimize from data fitting, i.e.,
maximum uptake rate constants, kmax

J ðJ¼ I,II,IIIÞ.
It is important to note that the number of parameters to be

optimized in L-HCM is significantly small. An attempt to simulate
triauxic growth on multiple carbon sources including external sub-
strates and metabolic products solely using ad hoc inhibition kinetics
would unavoidably result in a large number of parameters. Not
surprisingly, the black-box model by Tang et al. (2007) optimized
8 parameters (of 18 in total) to describe the simpler case involving
only lactate and acetate. Consequently, extensive experimental data
were needed to determine optimal values of parameters. A further
increase in parameters would have been warranted had production
and consumption of pyruvate also been included in their model.

4.2. Guidelines for data-incorporated EM lumping

The performance of L-HCM depends on the accuracy with
which L-EMs can represent actual flux distributions in a cell. An
L-EM is acquired by taking a weighted average of individual EMs
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in each family; fluxes through EMs are used as weighting factors.
We assume that EM fluxes are proportional to their stoichio-
metric efficiency, as determined by the yield of biomass or ATP
produced. This initial estimate is corrected by tuning the weight-
ing factors through the incorporation of experimental measure-
ments into EM lumping (see the Appendix A for details). While
both extracellular and intracellular metabolite data can theoreti-
cally be used, here we considered only dynamic measurements on
extracellular metabolites.

When lumping parameters are tuned, the apparent number of
parameters for optimization increases. However, no additional
data are required for the identification of lumping parameters,
other than batch culture data which are used for determining
kinetic parameters, i.e., kmax

J ðJ¼ I,II,IIIÞ. It is precisely this feature
that gives L-HCM its control on parameterization without com-
promise of its predictive capabilities.

In this system of sequential growth on multiple alternative
carbon sources, a strategy was needed for EM lumping due to
difficulty in extracting product yields from batch growth data.
Thus, we provide basic guidelines for EM lumping as follows:
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J

J¼ I II III

22.170.35 8.1970.58 4.3970.35
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(salt-stress) 10.0711.8 0.09477.9e3 0.09975.1e
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More accurate values of product yields are sought from
dynamic curve fitting using a lumped cybernetic model similar
to the one used by Jones and Kompala (1999) which can be
readily constructed at a low cost (see Supp Text A).

�
 Finally, the resulting products yields are used for tuning the

lumping parameters.

Detailed procedures of yield extraction for parameter tuning are
provided in Supp Text A by employing batch data collected under the
conditions described in Experiments section. The same method has
been used to develop models for other similar experimental systems
(Tang et al., 2009). In all cases, the effect of data incorporation into
EM lumping is shown to be significant.

4.3. Basic analysis of aerobic batch growth

Experimental data of S. oneidensis growth on lactate are
presented in Fig. 3 along with model simulations. Following the
modeling protocol established in the previous section, we extract
yield data from dynamic trajectories of extracellular metabolite
concentrations, tune lumping parameters, and finally, determine
optimal values of three maximum uptake rate constants. Among
four measured biochemical species, only lactate, pyruvate and
acetate data are used for parameter optimization while biomass
data is compared with prediction for model validation. With
adjustment of only three parameters (i.e., maximal uptake rate
constants), L-HCM provides excellent fit and prediction as mea-
sured by the coefficient of determination or R2(see Table 3). The
growth rate-dependent ATP requirement (GAR) is input to L-HCM
(Appendix A) and was set based upon Pinchuk et al. (2010).
Implication of GAR is discussed in detail in a subsequent section.

4.4. Simulation of growth under salt-stress conditions

L-HCM was also used to model S. oneidensis growth under salt-
stress using experimental data provided from Tang et al. (2009).
First, for comparison, we modeled normal growth of S. oneidensis

using the same source of data following the procedures shown in
Supp Text A. Then, the response to salt-stress was modeled by
modifying kinetic equations to include the effect of sodium
chloride in the culture medium. An underlying assumption for
this is that addition of sodium chloride to the medium results in
reduction in growth and production rates, with no prominent
effect on the product yields. The dynamic response of S. oneidensis

to salt-stress is simply simulated by refitting only three max-
imum uptake rate constants, i.e., kmax

J ðJ¼ I,II,IIIÞ.
Simulation results are consistent with experimental data as

shown in Fig. 4 and Table 3. As the salt-stress data are limited to
the first phase of growth on lactate, the uptake rate constants for
pyruvate and acetate (i.e., kmax

II and kmax
III ) may not be accurate.

Unlike the previous case shown in Fig. 3 where biomass data is
predicted (as denoted by dashed line) with a specific value of GAR
given from the literature suggestion, the GAR value in Fig. 4 was
adjusted such that the model can generate an experiment-
consistent biomass curve by fitting other data. While not providing
Coefficient of determination (R2)

Lactate Pyruvate Acetate Biomass

0.995 0.976 0.964 0.978

0.950 0.991 0.954 0.966

0.909 0.988 0.803 0.749
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a prediction of biomass (as denoted by solid line) in a true sense,
this scenario offers a way to estimate a GAR value.

4.5. Prediction of intracellular flux distribution

The L-HCM, although identified from limited analyses of
extracellular metabolites, is able to predict intracellular flux
distribution. Fig. 5 compares flux values from L-HCM and
13C-Metabolic Flux Analysis (13C-MFA) (Tang et al., 2009) for the
growth under normal and salt-stress conditions. Model predic-
tions of flux distribution are made during the balanced growth
phase, i.e., at 15 h for the normal growth, and at 20 h for the salt-
stress data. The correlations between L-HCM prediction and
13C-MFA results (denoted by r) are 0.951 (for normal condition)
and 0.952 (for salt-stress condition). No appreciable change in flux
distribution took place under normal and salt-stress conditions, not
only in L-HCM prediction (Fig. S3(a)), but also in 13C-MFA
(Fig. S3(b)). This provides additional support for model prediction.

Fig. 6 compares predictions by L-HCM and flux balance
analysis (FBA) (Orth et al., 2010) for flux distribution under
normal growth condition. The FBA estimation was made such
that the biomass yield is maximized under the following con-
straints: experimentally measured uptake fluxes of lactate, pyr-
uvate, and acetate (Tang et al., 2009), and ATP requirement for
growth (i.e., GAR value). Under these typical constraints, L-HCM
Fig. 5. Flux distribution predicted by L-HCM: (a) normal growth co
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Fig. 4. Aerobic batch data of S. oneidensis MR-1 under normal (circle) and salt-stress

conditions (square) and L-HCM simulation curves. Data from Tang et al. (2009).
shows a higher correlation with 13C-MFA fluxes than FBA, while
the latter shows progressive improvement as an increasing
number of constraints are considered (Fig. S4). Details on model
estimation of flux distribution are provided in Supp Text B.

The most striking difference between L-HCM and FBA is the
ability of the former to predict dynamic shifts in flux distribution
with time. Video S1 illustrates how L-HCM predicts dynamic
changes in flux distribution as S. oneidensis goes through the three
different growth phases.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.ymben.2012.08.004.

L-HCM prediction can be further improved by tuning weights
in L-EMs with a few intracellular measurements. Fig. 7 shows the
improvement in correlation between measurement and predic-
tion by implicating ‘‘outliers’’ in the tuning process.
4.6. Implication of GAR and its estimation

Finally, we discuss how GAR value affects L-HCM prediction and
to what extent it could be estimated using available data. As
presented in the Appendix A, GAR is an essential input to computa-
tion of L-EMs. GAR value of S. oneidensis was previously estimated
using constraint-based analysis by accounting for the energy
expenditure on unknown maintenance processes that may include
protein and mRNA turnover or repair, proton leakage, and main-
tenance of membrane integrity (Pinchuk et al., 2010). In our work,
GAR accounts for ATP requirements for polymerization reactions
ndition, (b) salt-stress condition. Data from Tang et al. (2009).
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Fig. 7. Improvement of L-HCM prediction by incorporating four outliers into EM lumping. Data from Tang et al. (2009).
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(GARp) and (growth-associated) maintenance (GARm). The former
denotes the amount of ATP needed for the synthesis of macro-
molecular biomass components from carbon sources while the
latter corresponds to GAR described by Pinchuk et al. (2010). Thus,
here the total GAR is the sum of GARp and GARm.

At first Pinchuk et al. (2010) estimated GARm to be 220 [mmol
ATP/gDW], which is significantly higher in comparison to that of
E. coli and other bacteria. Subsequently, gene knock-out experi-
ments and comparative analysis of different Shewanella species
led to the conclusion that three most energetically efficient
enzymes for Hþ pumping (i.e., Nuo, Cco and Cox) were inactive
under tested experimental conditions, and a revised estimate of
81 for GARm was calculated. As GARp is calculated to be 36 from
the network, the GARm values of 220 and 81 are converted to the
total GAR values of 256 and 117, respectively. With this correc-
tion, the latter value of energy requirement for growth in S.

oneidensis is now in the range of GAR for E. coli which has been
reported as 97 (Hempfling and Mainzer, 1975; Stephanopoulos
et al., 1998) and 118 (Shuler and Kargi, 2002).

Interestingly, L-HCM prediction of biomass is highly accurate
with the corrected value of GAR (i.e., 117), while poor with the
initial estimation (i.e., 256). In other words, reliable prediction by
L-HCM requires a physiologically meaningful value of GAR in the
current setting. This also suggests that, should information of ATP
requirement for growth be unavailable, GAR can be estimated
using L-HCM by fitting biomass data.

Two sets of normal growth data shown in Figs. 3 and 4 differ in
their metabolic features. Biomass yields (at the end of batches), and
values of pyruvate and acetate (at the peaks) normalized with
respect to initial lactate concentration are 0.023, 0.37 and 0.46 in
Fig. 3, while 0.024, 0.073 and 0.26 in Fig. 4. That is, pyruvate
production is significantly suppressed when initial concentration of
lactate is relatively low as in Fig. 4. Due to this qualitative dissim-
ilarity, data in Fig. 4 are fitted with completely different values of
parameters and GAR is estimated at 165 (for normal growth), which
is higher than the one used in Fig. 3 (i.e., 117). The same value of GAR
was used for simulating salt-stress condition in Fig. 4 for which data
are limited to growth on lactate only. Estimation of more reasonable
values of GAR requires collection of complete set of data including
gaseous components such as CO2 which is, however, missing in cases
considered in the present work.
5. Conclusion

L-HCM used to investigate the growth dynamics of S. oneidensis

on lactate in an aerobic batch culture is able to predict experimental
intracellular fluxomic data as well as their dynamic redistribution.
While prediction of significant dynamic change in flux distribution
has not been fully validated due to the lack of data, obviously, it is
beyond the scope of constraint-based approaches. Systematic
procedures are established in this paper for modeling of metabolic
systems exhibiting sequential growth on different carbon com-
pounds. This work also provides the basis for modeling S. oneidensis

under more complex environments subject to electron acceptor
and/or carbon limitations.
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Appendix:A. The L-HCM framework

Mathematical aspects of the L-HCM framework are provided
here. Material balances for extracellular metabolites are given as
follows:

1

c

dx

dt
¼ Sxr ðA1Þ

where t is time, x is the vector of nx concentrations of extra-
cellular components including biomass (c), Sx is the (nx�nr)
stoichiometric matrix, and r is the vector of nr fluxes. In L-HCM,
r is represented as nonnegative combinations of L-EMs, i.e.,

r¼ ZFrF ðA2Þ

where the vector of weights (rF) is composed of nF fluxes through
L-EMs and ZF is (nr�nF) L-EM matrix. A methodology for
formulating ZF is provided in a subsequent section. Substitution
of (A2) into Eq. (A1) leads to

1

c

dx

dt
¼ SxZFrF ðA3Þ

Normalization of each column of SxZF (with respect to the
uptake flux of the reference substrate which is always nonzero)
defines rF as the ‘‘uptake’’ fluxes through L-EMs.

Description of regulation using cybernetic control laws

The L-HCM takes an L-EM as a functional unit for describing
dynamic cellular regulation. In its view, uptake fluxes through L-
EMs are optimally regulated by adjusting enzyme level and their
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activity such that a metabolic objective (i.e., the total carbon flux
into the cell) is maximized. Thus, uptake flux through the Jth
L-EM is modeled as follows:

rF,J ¼ vF,Je
rel
F,J rkin

F,J ðA4Þ

where erel
F,J and vF,J denote the relative enzyme level and cybernetic

variable (controlling enzyme activity), respectively, and rkin
F,J is the

unregulated flux term described only by kinetics. If we take a
simple Michaelis–Menten (M–M) form,

rkin
F,J ¼ kmax

J

sJ

KJþsJ
ðA5Þ

where sJ is the concentration of the Jth substrate, and kmax
J and KJ

are the maximum uptake rate constant and M–M constant,
respectively, for the Jth family of EMs.

Relative enzyme level in Eq. (A4) is defined as

erel
F,J ¼

eF,J

emax
F,J

ðA6Þ

where eF,J is the level of enzyme catalyzing EM throughput flux
and emax

F,J is the maximal value of eF,J at steady state. Enzyme level
(eF,J) is determined by solving the following dynamic balance
equation, i.e.,

deF,J

dt
¼ aF,JþuF,Jr

kin
FE,J�ðbF,JþmÞeF,J ðA7Þ

The four terms of the right-hand side in the above denote
constitutive and inducible synthesis rates, degradation rate, and
dilution rate by growth, respectively, uF,J is the cybernetic variable
regulating the induction of enzyme synthesis, and rkin

FE,J is the
kinetic part of inducible enzyme synthesis rate. From Eq. (A7), the
expression for emax

F,J is given as follows:

emax
F,J ¼

aF,JþkE,J

ðbF,JþYF,Jr
kin,max
F,J Þ

ðA8Þ

Optimal control of enzyme level and their activity towards
maximizing the total carbon uptake flux is implemented by the
cybernetic variables uF,J and vF,J in Eqs. (A4) and (A7) as given in
the following, i.e.,

uF,J ¼
pJP

K

pK

and vF,J ¼
pJ

max
K
ðpK Þ

ðA9Þ

where pJ denotes the return-on-investment (ROI) such as the
carbon uptake rate through the Jth family. Optimality properties
of Eq. (A9) have been demonstrated by Young and Ramkrishna
(2007).

EM lumping

The essence of L-HCM lies in getting L-EMs, i.e., ZF in Eqs. (A2)
and (A3). It stars from EM classification into different families
according to their commonalities (such as substrate(s) shared
among EMs). In each family, EMs are dividing into biomass-
producing group (including both biomass and ATP-producing
modes), and ATP-only-producing group (referred to as B- and
A-groups, hereafter). EMs in each group are lumped by taking a
weighted average as follows:

zB,J ðor zA,JÞ �

P
jA LðJBÞ ðor LðJAÞÞ

zjrM,jP
jA LðJBÞ ðor LðJAÞÞ

rM,j
ðA10Þ

where zj denote the jth EM, rM,j is the uptake flux through zj, and
L(JB) and L(JA) are the set of indices of EMs belonging to the B- and
A-groups, respectively, of the Jth family. Subsequently, L-EM
for each family is obtained by combining zB,J and zA,J defined in
Eq. (A10), i.e.,

zF,J ¼wJzB,Jþð1�wJÞ zA,J , 0rwJ r1 ðA11Þ

where the parameter wJ is determined such that energy require-
ment for growth (i.e., GAR) is satisfied.

Note that L-HCM selects dominant modes according to their
actual rates instead of yields. Thus, all EMs with appreciable
fluxes contribute to formulating L-EMs. This is a striking contrast
with flux balance analysis which takes only a single optimal
pathway (among many alternatives) with the highest yield of
biomass. We discuss an idea of identifying EM fluxes in the
following section.

Estimation of individual EM fluxes

As regulation of individual EM fluxes within each family is
synchronized through the dynamic regulation of L-EM, the flux
through the jth EM (i.e., rM,j) is formulated as follows:

rM,j ¼ vF,Je
rel
F,J rst

M,j ðA12Þ

where the first two variables on the right-hand side in Eq. (A12)
account for the dynamic modulation among EM families. The
static element of rM,j (i.e., rst

M,j) is given in a typical cybernetic
modeling form as follows:

rst
M,j ¼ vM,je

rel
M,jr

kin
M,j ðA13Þ

where erel
M,j, vM,j, and rkin

M,j denote relative enzyme level, cybernetic
variable (controlling enzyme activity), and unregulated flux term
described by kinetics, respectively, for the jth EM. Under the
conditions specified in Song and Ramkrishna (2010), relative
enzyme level erel

M,j of Eq. (A13) can be approximated by the
cybernetic variable uM,j, i.e.,

rst
M,j � vM,juM,jr

kin
M,j ðA14Þ

In L-HCM, we assume that rkin
M,j in Eq. (A14) is assumed to be

proportional to the efficiency of the jth mode (which is denoted by
Zj) in B- and A-groups, i.e.,

rkin
M,j ¼ kmax

j,J Zj

sJ

KJþsJ
, kmax

j,J ¼
kmax

B,J ðfor B-groupÞ

kmax
A,J ðfor A-groupÞ

8<
: ðA15Þ

Note that the functional form of rkin
M,j above is related to rkin

M,J

given in Eq. (A5).
Cybernetic variables uM,j and vM,j in Eqs. (A13) and (A14) are

obtained from the cybernetic control laws in B- and A-groups,
separately, without having to identify the parameters kmax

B,J and
kmax

A,J , i.e.,

uM,j ¼
ZjP

k

Zk

, vM,j ¼
Zj

max
k

Zk
, kA

LðJBÞ ðfor B-groupÞ

LðJAÞ ðfor A-groupÞ

(
ðA16Þ

Substitution of Eq. (A12) together with Eqs. (A14), (A15) and
(A16) into Eq. (A10) leads to

zB,J ðor zA,JÞ ¼

P
jALðJBÞ ðor LðJAÞÞ

zjZ3
jP

jALðJBÞ ðor LðJAÞÞ

Z3
j

ðA17Þ

As a basic hypothesis, the parameter Zj is defined as being
proportional to yields of biomass (for B-group) or ATP (for
A-group) of individual EMs. As this very initial hypothesis may
be invalid in general, we introduce a correction term to Zj, i.e.,

Zj ¼
ðYB,jþejÞ

neta , jALðJBÞ

ðYA,jþejÞ
neta , jALðJAÞ

(
ðA18Þ

where YB,j and YA,j denote the yields of biomass and ATP of the jth
mode, respectively, ej is the correction to Zj, and neta is a tuning
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parameter. Through ej, we are able to adjust Zj so that the resulting
L-EM provides suitable estimations matching with measured yields
and fluxes. The correction term ej is formulated as follows:

ej ¼
X

i

aiYi,jþ
X

k

bkzk,j ðA19Þ

where Yi,j and zk,j are the yield of the ith metabolite and the kth flux,
respectively, of the jth EM. Constant coefficients ai0s and bk0s are
optimally determined from the comparison with experimental yield
and flux data of the WT strain, in the absence of which they are set to
zero as a default strategy (i.e., no modification to Zj).
Appendix B. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.ymben.2012.08.004.
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