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Abstract A new discretization method for solving population balance equations for simulta- 
neous nucleation, growth and aggregation of particles is proposed. The method combines the 
best features of our discretization technique (Kumar and Ramkrishna, 1996, Chem. Engng. Sci. 
51, 1311-1337), i.e., designing discrete equations to obtain desired properties of a size distribu- 
tion directly, applicability to an arbitrary grid to control resolution and computational 
efficiency, with the method of characteristics to offer a technique which is very general, powerful 
and overcomes the crucial problems of numerical diffusion and stability that beset the previous 
techniques in this area. The proposed technique has been tested for pure growth, simultaneous 
growth and aggregation, and simultaneous nucleation and growth for a large number of 
combinations obtained by changing functions for nucleation rate, growth rate, aggregation 
kernel and initial condition. In all cases, the size distributions obtained from the proposed 
technique and those obtained analytically are in excellent agreement. The presence of moving 
discontinuities, which is unavoidable due to the hyperbolic nature of the governing equation, is 
addressed with no additional difficulty in all of the test problems. © 1997 Elsevier Science Ltd 

Keywords: Population balance; discretization; nucleation; growth; aggregation; particles 

1. I N T R O D U C T I O N  

This paper enlists in an endeavor to felicitate Profes- 
sor Manmohan Sharma on his 60th birthday for his 
outstanding contributions to the chemical engineer- 
ing profession. Indeed, this contribution is more in 
tune with the abstract paradigm that deliberates on 
reactions of species incognito than with the vibrant 
creatures of five chemical technology which were the 
hallmark of Sharma's approach to chemical engineer- 
ing. However, a major aspect of Sharma's work has 
been connected with dispersed phase contacting in 
which population balance has emerged as a crucial 
analytical tool. Insofar as this paper purports to deal 
with efficient solutions to population balance equa- 
tions of dispersed systems, its target is a subject that 
has remained one of his fundamental interests. 

Simultaneity of nucleation, growth and aggregation 
of particles is key to characterizing processes such as 
precipitation, crystallization and aerosol formation 
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and so on. Rigorous modeling of such processes re- 
quires the framework of population balances and 
which leads to an an integro-partial-differential equa- 
tion, also known as the population balance equation 
(PBE). Often, the resulting equation cannot be solved 
analytically and therefore numerical solutions are 
needed. Model-based control strategies furthermore 
require that the numerical solutions should be obtain- 
able in time-scale commensurate with the process 
time scale. 

Among the various numerical techniques proposed 
in the past for solving PBEs (see Ramkrishna, 1985 for 
a review), a recent discretization method, which con- 
siders particles of different sizes to exist in groups and 
interact collectively with particles in other groups 
(Batterham et al., 1981; Hounslow et al., 1988: 
Kostoglou and Karabelas, 1994), has emerged as an 
accurate and a computationally efficient alternative. 
In this method, the continuous size range is divided 
into discrete but contiguous size ranges (also called 
bins) using a grid, and macroscopic balance equa- 
tions, conceptually similar to the well-known macro- 
scopic balances in transport processes, are then writ- 
ten for the populations of bins. The above procedure 
converts the integro-partial-differential equation into 
a system of first-order ordinary differential equations 
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which can be solved easily using the standard ODE 
integrators. 

Kumar and Ramkrishna (1996, Part I) have re- 
cently proposed a new discretization technique for 
solving population balance equations for breakage 
and aggregation of particles. Here, the population of 
a bin is represented through a representative volume 
called a pivot. The distinct features of this technique 
are (i) formulation of discrete equations to obtain 
directly the desired properties of the size distribution 
instead of very accurate estimates of number density 
which can be computation intensive, (ii) flexibility to 
work with an arbitrary grid which allows a grid to be 
optimized with respect to resolution and accuracy; 
and (iii) computational efficiency. The crux of the 
technique is derived from the concept of internal con- 
sistency which requires the set of discrete equations to 
yield correct expressions for at least the desired prop- 
erties (of which moments are special cases). Internal 
consistency with respect to the chosen properties is 
assured by ensuring that the same chosen properties 
of the new particles (formed due to breakage or ag- 
gregation) are exactly preserved. The technique has 
been demonstrated for pure breakage and pure ag- 
gregation, simultaneous breakage and aggregation, 
solution of discrete-continuous PBEs and prediction 
of second moment directly using a relatively coarse 
grid. For  more details, the reader is referred to Part I. 

Efforts have been made in the past to include par- 
ticle 9rowth and nucleation in the discrete version of 
PBEs. It may appear that the inclusion of growth and 
nucleation, which are much simpler processes than 
the breakage and aggregation, should be a trivial 
matter. However, a close look at the general equation, 
given below, will show that it is not quite so. 

~n(v, t) ~ [G(v)n(v, t)] - - +  
~t ?~v 

1; 
= ~ n(v - v ' , t )n(v ' , t )q(v  - v ' ,v ')dv'  

- n(v, t)  n(v ' , t )q(v ,v ' )dv '  + S(v). 
do 

(1) 

Here, n(v, t) dv is number of particles in size range v to 
v + dv at time t, G(v) is growth rate for particles of size 
v, S(v) is rate at which particles of size v are nucleated 
and q(v,v') is aggregation frequency. Equation (1) is 
a hyperbolic partial differential equation because of 
the second (convective) term on the 1.h.s. Such equa- 
tions are well known for causing enormous difficulties 
with their numerical solution. Stability and dispersion 
of numerical solutions obtained using various finite 
difference approximations are well documented 
(Lapidus and Pinder, 1982). 

Hounslow et al. (1988), Marchal et al. (1988) and 
David et al. (1991) have proposed straightforward 
extensions of discretization methods (similar to finite 
difference type formulae) to include growth and nu- 
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cleation processes. The numerical results obtained 
using these techniques are shown in the next section 
to be unsatisfactory. 

The objective of this paper is to present a new 
technique for solving PBEs for nucleation, growth 
and aggregation, all processes occurring simulta- 
neously. The technique makes use of the best features 
of the discretization technique proposed in Part I in 
combination with the method of characteristics. The 
new technique is free from problems due to stability 
and dispersion of the numerical solution that beset 
earlier extensions of discretization methods. 

The remaining paper is organized as follows. 
The next section reviews the previous work with 
focus on growth and nucleation terms. Section 3 
contains the derivation of discrete equations. Special 
cases and a peculiar problem that arises with nu- 
cleation term are dealt in various subsections. 
Section 4 provides detailed comparisons of the nu- 
merical and analytical results for various combina- 
tions of the three processes. Conclusions are provided 
in Section 5. 

2. PREVIOUS WORK 

Kostoglou and Karabelas (1994) and Kumar and 
Ramkrishna (1996) have provided critical reviews of 
the previous work on the solution of PBEs for ag- 
gregation. This section, therefore, focuses only on 
nucleation and growth processes. 

Middleton and Brock (1976) and Gelbard and Sein- 
feld (1978) have solved eq. (1) using cubic splines. 
Although, cubic splines facilitate easy evaluation of 
integral and derivative terms appearing in the equa- 
tions, the technique is computationally inefficient be- 
cause spline coefficients need to be evaluated at each 
time step. Moreover, the ability of cubic splines to 
handle sharp fronts, which arise due to growth and 
aggregation processes, has not been demonstrated. 

Recently, discretization techniques for solving 
PBEs have emerged as powerful and computation- 
ally efficient alternatives. In this approach, the con- 
tinuous size range is partitioned into various size 
ranges. If N~ is defined as the population of the ith size 
range, i.e. 

i 
v, + 1 

Ni(t) = n(v, t) dv, (2) 

the rate of change of N~ [explicit mention of time 
dependence in N/(t) is suppressed in favor of a simpler 
notation] due to aggregation is in general expressed 
a s  

dN~ i j M 
= ~ ~ cq,j, k N j N k -  N~ ~ /3,,jNj. (3) 

dt aggregation j =  1 k = 1 j =  1 

The various techniques available in the literature dif- 
fer from one another in how the time-invariant coeffi- 
cients ~,,j,k's and/~i,j's are evaluated. 

An expression for d N / d t  due to only nucleation 
and growth processes, obtained by integrating eq. (1) 
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from v~ to r'i+~ for q(v,v') = 0, is given as Their final set of equations is 

dNi = 2ao [ {  r ' ] , , ~  dNi 
= G(v,)n(v, , t)  - G(v,+~)n(vi+,, t)  dt growth (1 -4- r)v, L k r ' - l , ]  ( N i - '  

Ni+ 
d t  nuceat  on & growth 

f 
vs + 1 

+ S (v) dr. (4) 
'i 

2.1. Representation o f  nucleation 
Equation (4) shows that the inclusion of nucleation 

in discrete equations is quite straightforward. The 
most common choice for S(v) in N o , , f ( v  - Vo), where 
Vo belongs to the first bin (Hounslow et al., 1988; 
Marchal et al., 1988; David et al., 1991). The nuclea- 
tion term therefore appears only in the equation for 
the population of the first bin. Thus, 

dt n u c e a t o n  N ° ' n t ~ i ' l "  

The set of equations in eq. (4) needs estimates of 
number density at bin boundaries to provide a closed 
system of equations. 

2.2. Representaton o f  growth 
Marchal et al. (1988) have followed the simple strat- 

egy of replacing the number density at a boundary by 
the arithmetic mean of the average number densities 
on either side of it. Thus,* 

n(vi, t) = 2 \ A v i -  1 

In a later paper, the authors (David et al., 1991) have 
chosen a different expression for estimating n(vl, t): 

n ( v i ,  t )  = 
Avi -  1 Ni/Avi  + Av iN i -  1/Avi-  1 

A V i  1 + Avi 

Avi, the width of the ith bin is defined as vi+ 1 - v~. 
Hounslow et al. (1988) have extended their discret- 

ization technique for aggregation to size-independent 
particle growth [G(v) = a0] by choosing the following 
form for dNi/dt:  

o. ° 
= - - ( a N i - 1  + bNi + cNi+ x) 

d t  growth Ui 

and then estimating coefficients a, b and c by forcing eq. 
(8) to yield the correct expressions for three moments. 

4661 

1) + Ni]  

(9) 

where r = vi+ 1/vi. Equation (9) when rearranged to tit 
the form of eq. (4) yields 

dNi "1 + v i + l - v i - 1 /  dt growth = 19"0 r . . . .  

1 + r  vi+2--v/  / /  

such that 

2 ( N i - l + r N i ~  (11) 
nO) i ,  t )  = l ~ r  \ l)i + 1 - -  1)i- 1/I" 

The discretized equations for all the three techniques 
discussed here have the potential to produce negative 

(5) values of Ni's. However, only Hounslow et al. have 
mentioned it explicitly and indicated that meaningful 
results can still be obtained merely by setting negative 
Ni's to zero. The authors have proposed a different 
discretization of the growth term in the presence of 
nucleation: 

dNi N i -  I N i  
- ao a o -  ( 1 2 )  

dt V i - -  L ' i -  1 Vi+ I - -  I) i 

To compare the effectiveness of these three tech- 
niques, we have solved* eq. (4) for G(v) = 1, and 

1 
n(v,O) = N o . i - - e x p ( - -  V/Vo.i) 

(6) Vo,i 

using each technique, i.e., n(vi, t) in eq. (4) has been 
replaced by expressions in eqs (6), (7), and (11). The 
numerical and the analytical results are shown in 
Figs l(a) and (b) using linear and log scales, respec- 
tively. The figures show that the results obtained by 

(7) the technique of Marchal et al. (1988) oscillate a great 
deal in the region where the analytical number density 
is zero. The technique of David et al. (1991) shows 
damped oscillations. In the tail region, all the three 
techniques make similar overpredictions due to nu- 
merical diffusion [this term is used to indicate the 
errors that arise when the discrete or finite difference 
version of a partial differential equation actually cor- 
responds to a different original equation, one with an 

(8) added diffusion term! see Lapidus and Pinder (1982) 
for more details]. The technique of Hounslow et al. 
(1988) does not show oscillations because the negative 
values were set to zero, as recommended by them. All 
the three techniques make incorrect predictions of the 
location of the discontinuity. If the negative Ni 
are set to zero in the techniques proposed by Marchal 
et al. (1988) and David et al. (1991), the oscillations 

* Some authors have worked with crystal length as the 
internal coordinate. In the presence of aggregation, particle 
size appears to be a better choice as it simplifies the aggrega- 
tion terms. This however changes a size-independent rate of 
change of linear dimension to a size-dependent rate in terms 
of particle volume and vice versa. 

* The cases consider here for testing the numerical tech- 
niques reviewed above are the same as those considered by 
Hounslow et al. (1988) to demonstrate their technique for 
pure growth and simultaneous nucleation and growth. 
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disappear and the predictions become similar to those parts yields 
of Hounslow et al. (1988). 

We have also tested these techniques for their abil- On(v, t) 
ity to represent a nucleation process. A simple case of 0t 
simultaneous nucleation of mono-sized nuclei, size- 
independent growth rate with zero initial population 
is considered. Simulations using the techniques of 
Marchal et al. and David et al. employ the same 
equations as in the previous case; however, the tech- 
nique of Hounslow et al. requires a different set of 
equations [contained in eq. (12)]. Nucleation is repre- 
sented through an additional term in equation for 
N1 in all the three techniques. Figures 2(a) and 2(b) 
show the same numerical and the analytical results on 
a linear and a log scale, respectively. The figure shows 
that once again, the results obtained using the tech- 
niques of Marchal et al. and David et al. oscillate we obtain 
about the analytical solutions. The technique of 
Hounslow et al. makes good predictions in this re- 
gion. The numerical solutions around the location of 
the discotinuity are highly diffused for all the three 
techniques, however. This is quite natural for finite- 
difference-type approximations as they have an infi- 
nite velocity of propagation for the signal. 

In an effort to overcome these deficiencies, Muhr 
et al. (1995, 1996) chose to solve the finite-difference 
version of eq. (1) for growth and nucleation only. The 
authors used the well-known methods o f  lines which 
converts a PDE to a set of ODEs. In their first paper, 
the authors used a central difference for the growth 
term which led to negative values (pointed out in their 
second paper) irrespective of how fine the spatial grid 
was. This is hardly surprising since central difference 
in space and forward difference in time is known to be 
unconditionally unstable (Lapidus and Pinder, 1982). 
The authors sought to remedy this situation by choos- 
ing an upwind difference scheme in their second pa- 
per. However, use of an excessively fine spatial grid 
was required to reach convergence with respect to 
total numbers. It is not clear whether the size distribu- 
tions also converged. Upwind difference approxima- 
tion is known to have excessive diffusion (Lipidus and 
Pinder, 1982), and therefore, acceptable solutions can 
result only when an excessively fine grid is used. The 
same holds for the method of lines (Schiesser, 1991). It 
appears that the same factors as those responsible for 
the poor performance of the finite-difference approxi- 
mations are also responsible for the poor performance 
of approximations in eqs (6), (7) and (11). A rigorous 
analysis is needed, however. 

It is clear from this section that the existing 
methods for extending discretization methods to in- 
clude growth processes are not adequate. In the next 
section, we develop a new procedure for solving PBEs 
representing nucleation, growth and aggregation of 
particles. 

On(v, t) , , dG(v) 
- -  + G(v)- -~v  + n~v,t) 

3. FORMULATION OF DISCRETE EQUATIONS 

We start with the general population balance equa- 
tion (1) which after differentiating the growth term by 
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1; = ~ n(v -- v ' , t)n(v' , t)q(v -- v',v')dv' 

- n(v,t) n(v' , t)q(v,v')dv'  + S(v). (13) 

Substituting for the growth rate G(v), defined as 

dL ~ 
d-~ = G(v), (14) 

On(v, t) On(v, t) dv 
- -  . - [ -  _ _  

Ot Ov dt  
+ n ( v , t ) ~  = r.h.s, ofeq. (13). 

(15) 

Defining a total derivative of the number density 

dn(v,t) On(v,t) On(v,t) dv 
- -  - - -  - t  ( 1 6 )  

dt ~t 0v dt 

and substituting it in eq. (15) leads to 

dn(v, t) n(v, t) dG_~_(v) 
d----~ + av 

fo 1 n(v - v' , t)n(v' , t)q(v v',v')dv' 
2 

f: - n(v,t) n(v' , t)q(v,v')dv'  + S(v). (17) 

Equation (17) describes the variation of number of 
density of particles of size v noticed by an observer 
moving in the particle volume phase space with the 
growth velocity of the particles being observed. Thus, 
eq. (17) together with eq. (14) which describes the 
motion of the observer completely specify the system. 
The mathematical procedure of transforming eq. (1) to 
eqs (14) and (17) and solving the latter for a solution is 
called the 'method of characteristics'. It is important 
to point out here that particle volume v in eq. (17) is 
not an independent variable, but rather a function of 
time. We will now combine the method of character- 
istics with the method of discretization of Part 1 to 
obtain an efficient and accurate technique for solving 
eq. (1). 

Consider the size range of interest to be discretized 
into contiguous size ranges (bins) as shown in Fig. 3. 
Let the smallest and the largest sizes for ith size range 
be denoted by vl and vi+ 1, respectively. Since eq. (17) 
describes change in number density for an observer 
moving at particle growth velocity, we consider the 
grid boundaries to also move with the growth velocity 
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For  a special case of q(v, v') = 0 and S(v) = 0, eq. (22t 
reduces to the following: 

of the particles they represent, i.e. 

dv~ 
- -  = G(vi) (18a) 
dt 

dvi + 1 
- G(vi+l) (18b) 

dt 

The rate of change of total number  of particles in ith 
size range (both size range and populat ion contained 
in it can change with time) can now be obtained by 
integrating eq. (171 with respect to v from v~(t) to 
vi+ l(t). Thus, 

f "-,m dn(v, i"~<'" dG(v) . 

l 
~t ,  , ] [ t }  

= [r.h.s. of eq. (17)] dv (19) 
~,(t) 

Integrating the second term on the 1.h.s. by parts, we 
obtain 

f ,,,l,l dn(v, t) , 
:,~,~ - ~  uv + [n(v,t)G(v) ~)+' 

'"' '"~ ~,  , ~n(v, t ) ,  
- -  t ~ [ t U -  ~ ( I t '  

J v,(tl Ct~ 

i 
h ,  ~(t) 

= [r.h.s. of eq. (17)] dr. (20) 
J < m  

Combining the first and third terms on the 1.h.s. using 
eq. (16) and substituting for G(v), the above equation 
reduces to 

C ''''t)(~'n(t''t)~ UV+ -~n(v,dV t) i: +' 
,,] t:~lt) 

i 
t:,, Ht) 

= [r.h.s. ofeq.  (17)] dr. (21) 
dIJt) 

Using Leibnitz formula, and substituting the r.h.s, of 
eq. (17), the following equation is obtained: 

d f "  ,m n(v, t) dv 

= - dv n(v - v ' , t)n(v' , t)q(v - v' ,v)dv' 
2 ,m 

- -  dv n(v, t)n(v', t)q(v, v') dr' 
d r d O  0 

j % ~ .  i( t )  

+ S(v)dv. (22) 

dt ,],.,i,~ n(v,t)dv = O. (23) 

This simple equation indicates that in the absence of 
nucleation and aggregation, the total number  of par- 
ticles in a size range, whose boundaries move as par- 
ticles grow, does not change with time. The result, of 
course, follows from the fact that the time derivatiw~" 
in eq. (23) considers a fixed collection of particles. 
Starting from this result, which is quite intuitive for 
pure growth and did not require a derivation, Gelbard 
(1990) and Kim and Seinfeld (1990) have developed 
a moving sectional technique for pure growth of aero- 
sol particles. The technique yielded good results. 
They, however, argued that the approach was unsuit- 
able for extension to particle aggregation and con- 
sidered it to be its major weakness. The nucleation of 
new particles, which we will later see to be a still more 
difficult issue, was ignored by these authors. 

We now propose that the total populat ion of the ith 
size range be represented by a representative volume 
x~, and as before, call it the ith pivot. The complete 
number  density function can therefore be written as 

i = M 

n(v,t) = 5~ ,'V~(t)(~(t, - x~t. 
i 1 

(241 

The particle volume t: in eq. (22) changes with time 
and since x~ is like any other particle size. it also 
changes with time: 

d x  i 
- G(xi). (25) 

dt 

When particles are considered to exist only at 
pivots, aggregation of smaller particles can lead to 
formation of particles of sizes different from the 
chosen pivots. In Part I, we have proposed that such 
particles should be represented through the adjoining 
pivots in a way that preserves the desired properties of 
the original particle. Using this simple concept, it is 
claimed there that the resulting discrete equations 
become internally consistent with respect to at least 
the chosen properties the equations, when manipu- 
lated, give correct expressions for the chosen proper- 
ties for the whole size distribution. Thus, if one of the 
preserved properties is Ji-(v), the discrete equations for 
Nj(t), when multiplied by f ( x j l  and added over all 
bins. provide correct expression for 

d fo' /i(r)n(v,t)dv. 
dt 

In principle, one can preserve any even number  of 
properties, say 2v of them, by assigning a newly for- 
med particle to v pivots of volumes smaller than the 
volume of the newly formed particle and another 
v pivots of larger volumes. 
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Using these concepts, the aggregation terms on the 
r.h.s, of eq. (22) for zero growth, which are given as 

dv n(v -- v ' , t )n(v ' , t )q(v -- v',v')dv' 
i 

- n(v, t) dv n(v', t)q(v, v') dr' (26) 

were discretized by us in Part  I to obtain 

i>~j>~k 

(1 -- ½ 6j,k) rlqj, kNj(t)Nk(t) 
Xi-I ~ (X j + Xk) ~ Xt+ l 

M 

- - N i ( t )  ~ q,.kNk(t) (27) 
k=l  

where r /for  the preservation of two power-law-type 
properties, v ~ and v ~, is given by 

1 - -  I) X i+  1 
I X ~ X V l  ~i~*i+la" vy---~ - '  Xi  ~ 1) ~ X i + 1 

n = ]ii+] VCXJ-1 VvX~ - 1 P = X j  "~- X k 

(x x 7 ,-,' <. x, 
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The above expression for r/simplifies to the following 
for the preservation of number and mass: 

( x i+ l ( t ) - -  V 
ixi+a(t)  __ xi(t ), xi(t) <~ v <. xi+a(t) 

rl = ~ ~ x~_~(t) - v 
| ~ X i - l ( t )  - -  x i ( t ) ,  X i - l ( t  ) <~ V <~ x i ( t  ) 

v = xj(t) + xk(t). (31) 

The set of equations in eq. (29) with accompanying 
definitions in eqs (30) or (31) represents the final sys- 
tem of equations for solving a general problem involv- 
ing simultaneous nucleation, growth and aggregation. 
For  specific cases of interest, the above system of 
equations either reduces to simpler equations or re- 
quires special considerations for its implementation. 
These specific cases are now discussed in the following 
subsections. 

3.1. Pure growth 
For the situation of pure growth q(v, v') = S(v) = O, 

the simplified system of equations is given by 

(28) dxl 
- -  = G ( x , ) .  (32) 
dt 

and qi, j is q(xi, xj). 
The aggregation terms on the r.h.s, of eq. (22) differ 

from the terms in eq. (26) only in that v[s and x~'s for 
the former are time-dependent quantities while they 
are constant for the latter. Since, these terms consist of 
only integrations with respect to volume, the discrete 
approximation for the case of time-invariant v[s and 
x[s can be used for time-dependent v[s and x[s as well 
provided the vi's and xi's in eqs (27) and (28) are 
treated as time-dependent. 

Thus, substituting for n(v, t) from eq. (24) and mak- 
ing use of the approximation developed in Part I, the 
following set of final equations is obtained: 

dNi(t) i >~j >1 k 
- ~ (1 --½~j.k)rlq).kNj(t)Nk(t) 

dt  j,k 
x, ~(t) <~ (xj(t) + x~(t)) <~ x~+ ~(t) 

I v' + l(t) 
- N~(t) qi, kNk(t) + S(v) dv (29a) 

k = 1 dv,(t} 

and 

d x i  
- -  = G(xi). (29b) 
dt 

The coefficients q~,j in eq. (29a) are evaluated as q(x~(t), 
xj(t)) and r/, for the preservation of two properties v ¢ 
and v ~, is given as 

xi(t) <<. v <~ xi+ l(t) 

x i -  ~ (t) <~ v <~ xi(t) 

v¢x~+ ,(t) - vVx~+ l(t) 

x~(t) x~+ 1(0 - x~(t)x~+ 1(0' 

v~xT- tit) - v~x~_ l(t) 
x~(t)x[_ a(t) -- xT(t)x~_ ~(t)' 

(30) 

q = 

v = x j ( t )  + xk ( t ) .  

The set of equations for N/'s drop out because Ni's do 
not change with time for q(v, v') = S(v) = 0. The time- 
dependent vi's can be obtained from xi(t)'s using the 
definition vi = (xi_ 1 + xi)/2 for simple growth func- 
tions G(v) = ao or tr0v. Otherwise, differential equa- 
tions identical to those for x[s can be set up and 
solved for to obtain time-dependent v[s as well. 

3.2. Simultaneous growth and aggregation 
Simultaneous growth and aggregation of particles 

is characterized by eq. (29) with S(v) = 0. The numer- 
ical solutions can be obtained by solving these 
equations in their present form, but it requires the 
inequalities in eq. (29a) to be evaluated at every time 
step. This, however, is not necessary. The possible 
aggregation events that contribute to the population 
at a given pivot change only slowly. In fact, for 
G(v) = kv, they do not change at all! The results of the 
inequality tests can therefore be stored in some usable 
form and need to be updated only at some regular 
intervals. In this paper, we have chosen the latter 
strategy. It is however conceivable that the inequali- 
ties be updated automatically when xi's have changed 
by more than some acceptable level. 

Aggregation of particles results in formation of in- 
creasingly larger size of particles and is conventionally 
handled by starting with a size range large enough to 
accommodate all particle sizes that come to exist at 
the desired final time. The distribution at the final 
time, however, becomes known only after the equa- 
tions are solved and therefore this procedure involves 
some amount of trial-and-error, experience and 
a safety margin. Furthermore, it entails uncessary 
computations as the bins for large size particles 
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acquire meaningful populations only towards the end 
of the simulation and need not  be present all through. 
In spite of these shortcomings, we have followed the 
same approach as the focus of the paper is on discret- 
ization of growth and nucleation terms. More efficient 
strategies that overcome these deficiencies have been 
implemented, however, and will be discussed separ- 
ately along with other relevant issues. 

size of, nuclei 

X 1 ~X 2 

v 1 v 2 v a v. 

x I X 2 x 3 

vlv2 v a v4 v s 
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(a) 

(b) 

3.3. Presence o f  nucleation 
The method of characteristics combined with the 

discretization concepts obviates the discretization of 
the growth term to overcome the problems of diffu- 
sion and stability that impaired the earlier techniques. 
Unfortunately, nucleation of particles which was in- 
corporated quite easily in earlier techniques now 
poses a new difficulty. Nucleating particles have to 
appear as new populat ion in one of the bins and since 
the bins move with time, a situation arises when some 
or all of the nuclei become smaller than the smallest 
particle size represented in the bins, and the nuclea- 
tion term cannot  be represented accurately. This is 
also evident from eq. (29a) for i = 1. 

A simple solution to this problem lies in adding new 
bins, one at a time, with zero populat ion at the small 
size end at regular intervals. To illustrate it clearly, we 
consider a general example of simultaneous nuclea- 
tion of mono-dispersed nuclei, growth of particles and 
their aggregation. The size of the nuclei and the gen- 
eration rate are allowed to be time dependent. Thus, 

S(v, t) = I~lo,,(t)f(v - vo.,(t)). (33) 

The rate of change of nuclei size, dvo(t)/dt, is taken to 
be smaller than G(vo) so that the size of the nuclei 
becomes smaller than the smallest size represented by 
the first bin at some finite time. In this example, we, 
however, consider dvo(t)/dt = 0. Let us now assume 
that at initial time, the nuclei are born into the second 
bin, as shown in Fig. 4(a). As time progresses, the bins 
move to larger sizes while the size of the nuclei does 
not and eventually the nuclei start feeding the first bin. 
After a short while, vl(t), the lower boundary  of the 
first bin coincides with the nuclei size, and from now 
on, the nuclei cannot be fed to any of the original bins. 
We now add a new bin with the following character- 
istics: vl = v2 = xa = vo.,, N~ = 0 and renumber the 
old bins as increasing sequence of integers [Fig. 4(b)]. 
While the movement of all the bin boundaries and 
pivots is given by the equations obtained before, the 
movement of r'l and xl is handled differently. The 
lower boundary of the first bin, vl, stays with Vo(t), the 
size of the nuclei, and Xl,  the representative volume 
for the lirst bin, stays in the middle of the bin: 

dr1 dvo(t) 
- - -  (34a) 

dt dt 

d x l  1 (dvl  dv2~ 
dt - 2 \ d t  + d t J "  (34b) 

:X 1 X 2 X 3 X 4 

Vl! v 2 v 3 v. v s 

ix~x2 x3 x4 x5 

Vl v2v 3 v4 v s v6 

Fig. 4. An illustration of how nucleation of particles is in- 
corporated into a moving grid. 

The equation for N1 is the same as that for any other 
Ni. The above representation correctly accounts for 
both the mass and the number  of the nuclei for con- 
stant and linear growth rates and for linear or no 
changes in Vo(t) with time. For more complex rate 
laws, the number  of nuclei, which determine the num- 
ber of large size particles appearing later, are guaran- 
teed to be accounted correctly. The mass of nuclei, 
which is only an insignificant fraction of the total 
mass, may not be represented correctly. It is however 
not difficult to arrive at more complex procedures 
that will preserve the desired properties of the nuclei. 
It is important  to point out here that the particles 
nucleating in the first bin also are lost due to their 
aggregation with particles in all bins including the 
first one. So, if there are any interesting features that 
are present in the size range close to the nuclei size, 
they will be reflected accurately in the numerical 
results. 

The set of equations which includes the equations 
for the new bin is solved for only a small time At 
which is chosen to be the time required for the newly 
added bin to grow from zero width to a new width 
that is commensurate with the desired resolution in 
this size range [Fig. 4(c)]. If the first bin is allowed to 
grow to become too wide, the aggregation of particles 
within the same bin will not be accounted correctly. 
After time At, a new bin like the one before is added, 
bins are renumbered and the process continues on. 

Using this simple strategy, it is possible to address 
many complex situations, i.e. dissolution of some par- 
ticles while the others grow or initially all particles 
grow but at a later time, small ones start dissolving. 
The inclusion of these complexities requires only 
a moderate effort. In this paper, therefore, we will 
concentrate only on elucidating the basic technique. 

One obvious difficulty with the above procedure is 
that the width of the newly added bins, much after 
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they were first added, depends on the rate law for 
particle growth. For  linear growth rate law, 

dv 
d-7 = ~ 0 v  

the width of the newly added bins keeps on increasing 
because the boundaries of the bins grow at differential 
rates. This is a desirable feature as it automatically 
gives rise to a geometrical grid (ratio v~+l/v~ being 
ea°At). In contrast, for constant growth law, the width 
of newly added bins, as they move, does not change 
because both the boundaries of a bin move at the 
same rate. Thus, the addition of new bins results in 
a linear grid in the small size range as shown in Figs 
4(c) and (d) and when new bins have moved to larger 
sizes, constant bin width results in a very fine grid. 
Clearly, the number of equations that need to be 
solved increases very rapidly and the technique be- 
comes computation-intensive. The biggest advantage 
of discretization methods-- their  ability to produce 
size distribution with only a small number of equa- 
t i o n s - i s  therefore lost. 

The technique of Part I once again allows us to 
restore the effectiveness of discretization methods by 
converting a fine grid into a coarse grid as the bins 
move to larger sizes. The objective here is to keep the 
relative resolution of the grid point approximately the 
same over most of the size range. This is accomplished 
by using the principles already used in assigning new- 
ly formed aggregates to the adjoining pivots. In the 
present situation, some of the pivots that need to be 
eliminated to make the grid coarse are assigned to the 
adjoining pivots in a way that the desired properties 
of the population at the pivot in question are preser- 
ved. These properties are the same as those preserved 
in the aggregation process. Thus, if the population at 
ith pivot is to be assigned to (i - 1)th and (i + 1)th, 
fractions t.]i+l and ni-1 assigned to (i + 1)th and 
(i - 1)th pivots, respectively, for the preservation of v ¢ 
and v v properties are given as 

v 
X i X , - I  - -  X ~ - l X ~ _  1 

= ~ , (35a) 

~ ~ lx~÷ 1 (35b) ~] i -1  X i X i + l  - -  X i -  

X ; +  1 X/~- 1 - -  X ~ + I X ~ _  1 

4. N U M E R I C A L  R E S U L T S  

The technique developed in this paper can be used 
to simulate various combinations of nucleation, 
growth and aggregation for different choices of nu- 
cleation rate function, growth rate function, aggrega- 
tion kernel and initial conditions. However, to inspire 
one's faith in the technique, it needs to be tested for 
the cases which can be solved analytically. The follow- 
ing is the list of relevant combinations of processes for 
which the continuous PBE has been solved analyti- 
cally 

(i) Pure growth. 
(ii) Simultaneous growth and aggregation. 

(iii) Simultaneous nucleation and growth. 

Ramkrishna 

PBEs for pure aggregation and simultaneous nuclea- 
tion and aggregation have also been solved analyti- 
cally but since these cases require the technique 
developed in Part I only, they have been excluded 
from the present investigation. Unfortunately, the 
technique cannot be tested for the most relevant case 
of simultaneous nucleation, growth and aggregation 
because analytical solutions are yet not available for 
such cases. Thus, in the following, comparisons of the 
results of the present technique with those obtained 
analytically are presented for the three major classes 
discussed above for various functional forms for 
growth rate, aggregation frequency kernel, nucleation 
rate and initial condition. We also present one set of 
results when all the three processes are present to 
show that the technique can indeed be used for simu- 
lating such cases. We then drop one process to enable 
comparisons with the analytical solutions. 

The proposed technique yields numerical solutions 
in terms of Ns, N2, ... and it appears natural to 
compare results in terms of them. However, since N~'s 
depend on the size of the bin which can change from 
one simulation to other and can become highly ir- 
regular due to the particle growth, we will instead 
compare the two results in terms of average number 
density defined as 

N~ 
n i l  . . . .  rical • (36) 

~i+ I - -  US 

The average number density also depends on the 
size of the bin over which average has been car- 
ried out, but this dependence is very weak. The 
graphs thus display average number densities at 
the corresponding pivot sizes. To provide a fair 
comparison, the numerical results have been com- 
pared with the analytical average number densities 
defined as 

niJanatytic~l ~ ~'+' n(v, t)dv (37) 
Vi+ 1 - -  Vi 

and plotted at the same pivot sizes. Numerical solu- 
tions have been indicated by symbols and in some 
figures they have been connected by straight lines to 
help the reader see the whole size distribution in one 
glance. The analytical solutions are shown through 
straight lines joining the data points without explicitly 
showing the data points through symbols. The dis- 
cretized initial condition has been indicated by a solid 
line with symbols on it to show the distribution of 
pivots at initial time. Since the data points are connec- 
ted by straight lines, the presence of kinks in the 
curves is natural. 

One last point about the graphs concerns the pro- 
jection of the symbols or the kinks on the volume axis. 
As pointed out before, these correspond to the loca- 
tion of the pivots at that time. Movement of pivots, 
their crowding or dispersion with time therefore dir- 
ectly gives us detailed information about the dynam- 
ics of the growth process. 
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4.1. Pure Growth. 

4.1.1. G(v) = o'0 = 1. We first show our simulation 
results for the test case that was used in Figs l(a) and 
(b) to show the performance of the earlier techniques. 
The numerical results are obtained by first discretiz- 
ing the exponential initial distribution using geomet- 
rically distributed pivots, shown as symbols on the 
solid line in Fig. 5. The sets of equations in eq. (32) are 
solved to obtain new values of xi's which are then used 
to estimate numerical average number densities. The 
analytical average densities were obtained from the 
following analytical solution: 

n(r, t) = no(v - aot). (38) 

The figure shows that in comparison with the earlier 
techniques which did not perform well [-as shown in 
Figs l(a) and (b)], the present technique yields results 
that are in excellent agreement with the analytical 
solutions. In fact, they are hardly distinguishable from 
the analytical results. Stability and dispersion of the 
numerical solution which marred the performance of 
the earlier techniques are completely absent in the 
present technique. 

4.1.2. G(v) = aoV. Figure 6 shows results for a sim- 
ilar simulations for linear growth function [o0 = 1], 
and for the same initial condition. The analytical 
results are obtained using the following analytical 
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solution for the number density. 

n(v, t) = no(re .... ) e .... . (39) 

Once again, we see that the numerical results are in 
excellent agreement with the analytical results. 

It is interesting to note that the two forms of the, 
growth rate function simulated in Figs 5 and 6 have 
resulted in completely different distributions. The. 
constant growth rate function results in very rapid 
growth rate of small particles while the large particles 
stay nearly unchanged. This results in narrowing of 
the size distribution, a feature that is also reflected b? 
the distribution of the pivots in Fig. 5. The linear 
growth rate function is accompanied by no change in 
the distribution of the pivots on log scale. In terms of 
a linear scale, which is what is perceived in practice. 
the size distribution continues to broaden with time. 

4.2. Simultaneous growth and agyre,qation 

In this next level of complexity, a total of five 
analytical solutions are available from Ramabhadran 
et al. (1976). These cases represent various combina- 
tions of the constant and linear growth rates, constant 
and sum aggregation kernels, and exponential and 
gamma initial distributions. Specific choices of vari- 
ous functions for each case are provided in Table 1. 

We have tested our technique for all five cases. The 
numerical results are obtained for the preservation of 
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Fig. 5. A comparison of the analytical and numerical results obtained using the proposed technique for the 
case presented in Figs I(a) and (b). 
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Fig. 6. A comparison of the analytical and numerical results for linear growth I-G(v) = v] of an exponenti- 
ally distributed initial population. 

Table 1. Various combinations of growth function, aggregation kernel and initial conditions tested for 
simultaneous growth and aggregation 

Case G(v) q(v, v') no(v) 

1 1 100 No 
- - e x p ( -  V/Vo.i) 
Vo,i 

2 1 100 

3 v 10 

4 v 10 

No 
- -  (V/Vo.i)exp( - V/Vo. i) 
l)O,i 

No 
- - e x p ( -  V/Vo, i) 
VO,i 

No 
- -  (V/Vo.i)exp( - V/Vo, i) 
I)O,i 

5 v (v + v') No 
- - e x p ( -  V/Vo.i) 
Vo,i 

numbers and mass. The procedure adopted for ob- 
taining the numerical solution is the same as that in 
the previous section. Additionally, the inequalities in 
eq. (29) are updated periodically (less than 200 times 
for the largest evolution considered). A geometric grid 
was chosen to cover the size range of interest at the 
initial time. The smallest size considered in the grid 
was 1000 times smaller than the parameter Vo,~ that 

appears in initial conditions. The latter was fixed at 
1 × 10  - 2  for all simulations presented in this work. 

Simulation results for each case have been present- 
ed at two times tl and t 2. These times and the values 
of N(tl) /N(O),  M(t l ) /M(O)  and N(t2)/N(O), M(t2) /  
M(0) for each case are summarized in Table2.  
N(t)/N(O) reflects the extent of aggregation at time t as 
the growth process conserves numbers. Similarly, 
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Table 2. Extent of growth (M(t)/M(O)) and aggregation (N(t)/N(O)) of particles for results shown in Figs 5--10 

Case tl N(tl)/N(O) M(tt)/M(O) t2 N(tz)/N(O) M(t2)/M(O) 

1 1.0 2 0.285 1.505 0.1 0.385 I 2.316 
2 1.0 2 0.444 1.327 0.1 0.741 I 2.051 
3 I 0.384× 10 -1 2.718 10 0.398×10 2 2.2× 104 
4 I 0.739 × 10 -1 2.718 10 0.793 x 10 2 2.2 × 10 '~ 
5 2 0.756 7.396 3 0.426 20.1 
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Fig. 7. A comparison of the analytical and the numerical results for simultaneous growth and aggregation, 
case 1 (Table 1). See Table 2 for the extent of growth and aggregation. 

M(t ) /M(O)  reflects the extent of growth processes at 
time t as the aggregation process conserves mass. 

4.2.1. G(v) = aoq(v,v ' )  = qo. Figures 7 and 8 show 
simulation results for cases 1 and 2 (Table 1), respec- 
tively. Both figures indicate that the results are in very 
good agreement with the analytical results across sev- 
eral orders of magnitude. At very small values of the 
number density, the results are less than perfect. We 
would like to point out that for curves such as these, 
which represent a moving front, the basis of compari-  
son should be the location of the front, and not just 
a comparison of the values on the y-axis. We have 
shown in Part  I that these deviations occur due to 
sharply decreasing nature of number  density in this 
size range. If it is desired to have more accuracy in the 
tail region as well, one can either adopt  an overall fine 

grid or selectively refine the grid in this size range 
alone to cut down on the number of equations that 
need to be solved. Both of these approaches have been 
elucidated in Part I and can be used in the presence of 
particle growth as well without requiring any modifi- 
cations. 

Large differences that are present on the far left side 
of the curve for t = 0.01 in Fig. 8 and similar but less 
noticeable differences in all other simulations in Figs 7 
and 8 are because the analytical solutions in this range 
breakdown. Ramabhadran  et al. (1976) have pointed 
out that for approximately equal growth and aggrega- 
tion rates, their analytical solution for G(v) = ao and 
q(v, v') = qo are valid for only large particle sizes. For  
aggregation-dominated situation, the range of validity 
is increased, whereas for growth-dominated situation, 
the solutions break down completely. The simulations 
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Fig. 8. A comparison of the analytical and the numerical results for simultaneous growth and aggregation, 
case 2 (Table 1). See Table 2 for the extent of growth and aggregation. 

displayed in Figs 7 and 8 correspond to somewhat 
aggregation-dominated cases to allow analytical solu- 
tions to hold in a reasonably wide size range. 

As noted before, concentration of pivots in the left 
region of the curves is reflective of the features of the 
growth process. 

4.2.2. G(/)) = aov, q(/),v') = qo. Figures 9 and 10 
show evolving size distributions for cases 3 and 
4 (Table 1). The numerical results are once again in 
very good agreement with the analytical results. Loca- 
tion of the front is somewhat overpredicted, but can 
be improved easily, if needed. Numerical results for 
t = 10 represent very high degree of aggregation and 
growth (see Table 2), and yet, as the figures show that 
the numerical results are in excellent agreement across 
many orders of magnitude for both the initial condi- 
tions. 

4.2.3. G(v) = ~ro/),q(v,v') = qo(v + 9'). Results for 
case 5, linear growth rate function and the sum 
kernel for aggregation, are presented in Fig. 11. It 
shows that even with size-dependent rate functions, 
the analytical and the numerical results are in excel- 
lent agreement. 

The above test simulations clearly show that the 
proposed technique is quite robust and yields very 
good results for simultaneous growth and aggrega- 
tion. We therefore believe that in the small particle 

size range in Figs 7 and 8, where the analytical solu- 
tions break down, our numerical solution is correct. 

4.3. Simultaneous nucleation and 9rowth 
4.3.1. G(v)= ao. We start this section with the 

simulation of the case already shown in Figs 2(a) and 
(b). Here, no(v)= O, G(v)= 1 and S(v )=  N o , . f ( v -  
1 - 5), The simulation results for this case are obtained 
in exactly the same manner as described in Section 
3.3. Starting with one empty bin with 
91 = X 1  = / ) 2  = 1 x 10-5 and Nx = 0, the following 
equations are solved for time At = 1 x 10-5: 

dN~ = ~/o,, (40a) 
dt 

dr2 
- G(v2) 

dt 

d r 1  
- 0  

dt 

dx, l ( d v l  dv2~ 
d-t -2\dt + - ~ - ) "  

(40b) 

(40c) 

(40d) 

After time At, a new empty bin with the same charac- 
teristics as before is introduced and the previous bin is 
renumbcred. We now solve differential equations for 
N2, N1, v3, x2, v2, xt, v~ for next At units of time 
and the process continues on. Clearly for tnn~ = 0.01 
and At = 1-5, we will end up with solving 3 x 1000 
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equations towards the end of the simulation. As 
pointed out in Section 3.3, this is hardly necessary. 
For any three pivots located such that 
Xi+ 1/Xi 1 < /'critical, we collapse the ith pivot and as- 
sign its population to adjoining pivots, while preserv- 
ing the properties of interest which in the present case 
are number and mass. For rcritical = 1.4, the maximum 
number of pivots needed reduces to 28 from 1000. The 
number of maximum pivots can be further reduced by 
increasing reritical. If we were to simulate up to t = 0.1 
with the same At, instead of 10,000, only 38 pivots 
would be needed. 

Thus, the proposed method of converting a linear 
grid generated at the small size end to a coarse, 
approximately geometric grid as the particles grow 
bigger, is very efficient at reducing the computational 
costs. Figure 12 shows that the numerical results 
obtained using this strategy are in excellent agreement 
with the analytical results compared with those 
in Fig. 2. The approximately geometric nature of 
the grid at particle sizes away from the size of the 
nuclei is evident from the location of the symbols in 
the figure. 

Of course the implementation of this technique is 
somewhat involved, but from the view point of com- 
putational efficiency and the accuracy of the numer- 
ical solution, it is far more effective than the tech- 
niques demonstrated in Fig. 2. This is quite clear from 

this example itself and will become more clear as we 
demonstrate it for more complex situations. 

Figure 13 shows simulation results for the same 
growth rate but for an exponential distribution of the 
nuclei sizes (or external feed) IS(v)= No.,/Vo.,)exp 
(-V/Vo,,)]. We further complicate the situation by 
starting with a pre-existing population, shown as in- 
itial condition in the figure. The analytical solution for 
this case is given as 

- e x p  - , Vlow=max(vl, v -  trot).(41) 
\ O ,n /3  

The simulation strategy is identical to that followed in 
the previous simulation except that we start with the 
number of bins needed to discretize the initial distri- 
bution plus one empty bin. Bins are added continually 
at the small size end and collapsed elsewhere to main- 
tain a coarse grid. The figure shows that once again 
the numerical solutions are in excellent agreement 
with the analytical solutions. 

4.3.2. G(v)= troy. The results for this still more 
complex situation (identical to the previous one ex- 
cept for the size-dependent growth rate) are presented 
in Fig. 14. The analytical average number densities 
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are obtained from the following analytical solution for 
number density: 

n(v, t) = no(ve ~°t)exp(- trot) 

Vlow = max(v1, ve - ~°') (42) 

This situation is more complex in that the new par- 
ticles are born into old as well as new bins; both types 
move and also expand with time because the two 
boundaries of a bin move at different rates for size 
dependent growth rates. To indicate the extent of 
nucleation into the old bins, simulation results are 
also presented for the same case without nucleation. 
A comparison of the simulation results indicates that 
when nucleation was allowed, a significant amount of 
nuclei formed in old bins and were predicted very well. 
The figure also shows that the technique successfully 
keeps track of the nucleating and growing particles in 
the entire size range. 

We thus see that the present technique handles 
simultaneous nucleation and growth very well to pro- 
duce extremely accurate solutions. 

4.4. Simultaneous nucleation, growth, and aggregation 
The objective of the paper has been to develop 

a numerical technique that does not suffer from stabil- 

ity and dispersion of the numerical solution, and pro- 
duces accurate and reliable results for practically rel- 
evant case of simultaneous nucleation, growth and 
aggregation. The usefulness of such a technique will 
be best determined by testing it for such a case. Unfor- 
tunately, analytical solutions for such cases are not 
easily found. The results presented in this section are 
therefore only to show that the technique actually 
applies for the most general case. Limited compari- 
sons with the analytical results are provided after 
particle aggregation is dropped. 

Figure 15 shows simulation results for simulta- 
neous nucleation [S(v)= (No,,/Vo,,) exp(-V/Vo,,)], 
particle growth [G(v) = tro] and aggregation 
[q(v,v') = qo]. The solution technique is the same as 
that explained earlier for simultaneous growth and 
aggregation (Sections 4.1.1 and 4.2) and simultaneous 
nucleation and growth (Section 4.3.1). The results of 
the same simulation without the aggregation process 
are shown in Fig. 16. A comparison of the results in 
Figs 15 and 16 reveals that the aggregation of par- 
ticles significantly affects the distribution of particles 
present initially as well as those born at later times. In 
fact, the distribution of the nucleated particles, which 
lie on the left side of discontinuity in the size distribu- 
tions, is changed completely in the presence of ag- 
gregation. 

Figure 16 shows that in the absence of aggregation, 
the agreement between the analytical and the numerical 
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results is excellent. When the same simulations are 
carried out for pure growth and for only growth and 
aggregation, the agreement between the numerical 
and the analytical results is very similar to that shown 
by Figs 5 and 7, respectively. We, therefore, believe 
that in the light of this evidence, the quality of the 
numerical results presented in Fig. 15 should be at 
least as good as that in Fig. 7. for simultaneous 
growth and aggregation (other combinations result in 
perfect agreement). The small error that occurs with 
respect to the location of the front can be improved in 
ways suggested before in Section 4.2.1. 

5. CONCLUSIONS 

Discretization techniques for solving PBEs for pure 
aggregation have been quite successful. However, 
their finite-difference-type extensions to include 
growth processes have been rather disappointing as 
shown earlier in the paper. The reason why it is so is 
because the presence of growth term which looks 
much simpler than the formidable aggregation terms 
introduces a new level of complexity--i t  introduces 
hyperbolicity in the governing equations. Discontinu- 
ities, no matter how they are introduced, continue to 
exist at all times. A large number of finite-difference- 
type formulae (which also formed the basis of the 
direct extensions proposed by Hounslow et al., Mar- 
cha le t  al. and David et al.) have already been pro- 
posed in the past (Lapidus and Pinder, 1982) and 
efforts are still continuing in this area. The reason for 
this continuing pursuit is the unwieldiness of the 
method of characteristics in situations where the char- 
acteristics are not known a priori. 

Fortunately, for the class of problems of interest in 
precipitation or crystallization, the characteristics can 
be determined explicity (for growth rate function be- 
ing independent of the size distribution) or through an 
iterative strategy (for growth rate function being in- 
fluenced by the size distribution through supersatura- 
tion). As noted all through in the paper, the solutions 
obtained after combination method of characteristics 
with the method of discretization are of excellent 
quality. Of course, they are slightly more difficult to 
implement than their finite-difference-type counter- 
part, but the rewards are far greater and they compen- 
sate well for the additional effort. 

G(v) 
M 

M(t) 
n (v, t) 
no(v) 
N(t) 
N~ 

q(v, v') 

NOTATION 

growth rate for particles of size v 
total number of equations, or bins con- 
sidered to represent the size distribution 
total mass present at time t 
number density of particles of size v 
initial number density (i.e.) 
total number of particles at time t 
total population of ith size range, time de- 
pendent 
rate of nucleation of particles of all sizes 
aggregation frequency between particles of 
size v and v' 

S. Kumar, D. Ramkrishna 

qo constant aggregation rate, (v, v') = qo 
r defined as vi+ 1/vi 
S(v) rate of nucleation of particles of size v 
v~ size of the smallest particle in ith bin, time- 

dependent 
vi+ 1 size of the largest particle in ith bin, time- 

dependent 
Avi width of the ith size range, v~+ 1 - v~ 
v0,~ a parameter in gamma or exponential initial 

condition 
Vo,, a parameter in exponentially distributed nu- 

cleation rate 
x~ representative volume (pivot) for ith size 

range, time dependent 

Greek letters 
~i,j,k, fli,j coefficients used to represent discretized ver- 

sion of coagulation terms. See Kumar and 
Ramkrishna (1996) for details. 

6(v),6i,j Dirac-delta function 
a0 a parameter in growth rate function, 

G(v) = Oo or aoV 
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