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ABSTRACT
The equilibrium conformation of a polymer molecule in an external field is often used in field theories to calculate macroscopic polymer
properties of melts and solutions. We use a mathematical method called a Brownian bridge to exactly sample continuous polymer chains to
end in a given state. We show that one can systematically develop such processes to sample specific polymer topologies, to confine polymers
in a given geometry for its entire path, to efficiently generate high-probability conformations by excluding small Boltzmann weights, or to
simulate rare events in a rugged energy landscape. This formalism can improve the polymer sampling efficiency significantly compared to
traditional methods (e.g., Monte Carlo or Rosenbluth).

Published under license by AIP Publishing. https://doi.org/10.1063/5.0010368., s

I. INTRODUCTION
The simulation of a single polymer conformation in an exter-

nal field is not only an excellent example of a molecular process but
also has tremendous applications in materials science and biology,
such as DNA separation by sedimentation or electrophoresis.1 This
problem is also fundamental in describing concentrated melts and
solutions, where field theories can represent the many-body inter-
actions as an effective (and sometimes fluctuating) field acting on a
single polymer chain.2,3 For example, field theories are often used to
describe phase transitions in polymer solutions, blends, composites,
and gels induced by mechanical, electromagnetic, or temperature
perturbations.2,4–7 To describe the statistical properties of a system
in thermodynamic equilibrium, one calculates the partition function
as follows:

Q = ∫ e−βU{X}δP{X}, (1)

where X is the polymer conformation, β = 1/kT is the inverse
temperature, U{X} is the potential energy, and P{X} is the proba-
bility measure of the conformation in the absence of the external
field.

The calculation of a partition function is nontrivial in many
situations when one wants to sample (i) polymer chains of a
given topology, (ii) polymer chains in a complicated energy land-
scape, i.e., a landscape with metastable states separated by large

free-energy barriers,8 or (iii) rare conformational states in phase
space. In these situations, people often resort to biased sampling
techniques in order to efficiently generate conformations of inter-
est. Classical approaches are Rosenbluth methods9 (Rosenbulth–
Rosenbluth, PERM, etc.) for self-avoiding polymers and impor-
tance/weighted sampling methods,10,11 the latter of which represents
that a large class of sampling algorithms are based on the Markov
Chain Monte Carlo method10 and umbrella sampling.12 Suppose
we let p(x) be a probability density for a random variable X and
we aim to compute an expectation μf = Ep[f (X)]. Importance sam-
pling suggests a new probability measure χ(x) such that one has
μf = Eχ[w(X)f (X)], where w(x) = p(x)

χ(x) . However, a good choice of
χ(x) is often challenging and involves some intuition.11

In this paper, we will discuss an exact sampling technique, a
concept known as a Brownian bridge. A bridge is a stochastic process
with its start point and end point specified.13 For polymer confor-
mations, this idea can be used to sample polymer chains with its end
topology known, or its final energy known.14 The latter statement
can be used to sample rare events (i.e., high energy conformation
or low Boltzmann weights) or most probable configurations (low
energy conformations or high Boltzmann weights). In this work, we
generate bridges for polymers in an arbitrary external field and show
that this can be done through the solution of a backward Fokker–
Planck equation. We will show how one can systematically generate
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bridges to sample specific polymer topologies, most probable config-
urations, and rare events. We will further show how we can extend
this methodology to condition stochastic processes to lie in a region
of phase space for its entire trajectory, not just its end points. The
efficiency of our techniques will be compared to brute force and
Metropolis Monte Carlo calculations. We note that the ideas dis-
cussed here have broad applicability in any process described by
a Markov chain, and thus envision applications in physical chem-
istry beyond polymer physics, such as chemical kinetics and phase
transitions.

II. MODEL
At large enough length scales and time scales, a polymer chain

can be treated as a continuous filament that fluctuates randomly
in solvent. In other words, the conformations can be treated using
the language of random walks, i.e., stochastic differential equations
(SDEs). A stochastic differential equation is a continuous random
process with drift and diffusion,

dX = A(X, s)ds + M(X, s) ⋅ dB(s), (2)

where X(s) represents the polymer conformation at arc-length
s (0 < s < L). A is the drift, M is a diffusion matrix, and dB is a
Weiner process. There are many different models to describe poly-
mer conformations depending on the level of detail needed.15,16 For
example, a flexible Gaussian chain in the absence of a field has
X(s) = R(s), A = 0, and M =

√
2ℓpI, where R(s) is the position

of the polymer chain, I is the identity matrix, and ℓp is the persis-
tence length of the polymer. For a worm-like chain, one tracks the
position and tangent along the polymer backbone (i.e., X = {R, u}).
Here, A = [u, −u/ℓp] and M = [0, 0; 0, ℓ−1/2

p (I −uu)]. We will choose
to keep the SDE as general as possible and refer to specific mod-
els when studying examples later in the manuscript. In the presence
of an external field U(X), there is an additional process one can
use to describe the accumulated Boltzmann weight along the chain,
dW = −βWUds. Note that this process resembles the Rosenbluth
type method but neglecting self-avoidance, and we call this pro-
cess as the brute force (naive sampling) approach. To calculate the
partition function, one samples the augmented stochastic process
Ω(s) = {X(s), W(s)} and takes an ensemble average of the total
Boltzmann weight: Q = ⟨WL⟩, where WL = W(L).

To derive a bridge for the chain conformation and accumulated
Boltzmann weight Ω(s) = {X(s), W(s)}, we will use Bayes’s theorem

to determine the probability distribution with the start point and end
point specified,

Br = P{Ω(s)∣Ωo, ΩL} =
P{ΩL∣Ωo, Ω(s)} ∗ P{Ω(s)∣Ωo}

P{Ωo∣ΩL}
, (3)

where Ωo = Ω(0) and ΩL = Ω(L). Note that q = P{ΩL∣Ωo, Ω(s)}
is the hitting probability [i.e., probability of reaching the end point
ΩL given an intermediate point Ω(s)], while p = P{Ω(s)∣Ωo} is
the forward probability distribution [i.e., probability of reaching an
intermediate point Ω(s) given the start point Ωo].

The forward probability, p(x, w, s), satisfies a Fokker–Planck
equation,

∂p
∂s

+
∂

∂x
⋅ (Ap) −

∂(wβU(x)p)
∂w

=
1
2

∂2

∂x∂x
: (M ⋅MTp), (4)

with an initial condition p(x, w, 0) = δ(x − xo)δ(w − 1), where δ is
the Dirac delta function. Note that the random variables are denoted
as the capital letters (W, X), while the corresponding specific values
take on the lower case letters (w, x).

The hitting probability q(x, w, s) satisfies the backward Fokker–
Planck equation,

∂q
∂s

+ A ⋅
∂q
∂x
− βU(x)

∂q
∂(ln w)

= −
M ⋅MT

2
:

∂2q
∂x ∂x

, (5)

Noting that the Brownian bridge satisfies Br ∝ q ∗ p, it
is straightforward to show using Eqs. (4) and (5) that Br satis-
fies the same partial differential equation (PDE) as the forward
probability density function in Eq. (4), but with an additional
drift in terms of hitting probability q: udrift = M ⋅MT

⋅ ∂
∂X (ln q) (see

Appendix A). Therefore, the stochastic differential equation that
samples the bridge is

dXBr
= dX + (M ⋅MT

) ⋅
∂

∂X
(ln q)ds. (6)

The additional drift term with ln(q) resembles an entropic force
associated with a canonical ensemble,17 which is needed to bias
the chain end in a proper configuration [see q at different s in
Figs. 1(a) and 1(b)]. Therefore, the algorithm for sampling polymer
conformations using a Brownian bridge is as follows:

FIG. 1. (a) Example of a Gaussian, 1D
polymer X (s) (0 < s < L, monomer length
ds) in a double-well potential U(X)
= ((X2

− 12X + 18)/9)2. The Brow-
nian bridge directs the polymer toward
the end region {X, W } ∈ Ω, where W is
the Boltzmann weight. (b) Example of 13
Brownian bridge trajectories from part (a)
starting at different positions and guided
by the entropic force ∇X ln(q) to region
XL = 5, W L > 10−8. Two instances of hit-
ting probabilities q(X, W ) are presented
at s = 0.2 and s = 0.8.
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1. Solve the hitting probability q from Eq. (5) by integrating back-
ward from s = L to s = 0 with a specified end condition ΩL—i.e.,
q(s = L) = 1 if {X(L), W(L)} ∈ΩL and q(s = L) = 0 if {X(L), W(L)}
∉ΩL;

2. Once the hitting probability q is known, calculate the entropic
force for any general potential U: i.e., F = ∂

∂X ln(q);
3. Sample the bridge using Eq. (6), which is guaranteed to condi-

tion the chains to end in a specified configuration;
4. Gather unbiased statistics in this modified ensemble.

III. RESULTS AND DISCUSSIONS
The first example we examine is a Gaussian polymer ring,

where the start point and end point are the same at Xo = XL. The
entropic force to achieve this process is∇X ln(q) = −(X −Xo)/(L − s).
Figure 2 shows the generated probability density function (PDF) of
an intermediate position on the chain using the Brownian bridge.
These results are consistent with the predicted probability of a 3D
polymer ring,18

PDF(s, ρ) =
2

s(L − s)
ρ2

√
2πs(L − s)

exp(−
3ρ2

2s(L − s)
), (7)

where ρ = |X − Xo|.
Furthermore, we can control the winding number (WN) of

the 2D polymer ring, which is frequently observed in cell biology:
the DNA helix enables transcription by winding/unwinding histone
complexes.19 Given the hitting probability q(θ(s), r(s)) = p(rL, θL|r(s),
θ(s)) for a planar diffusion process,20 we condition the WN for a
2D polymer ring, where rL and θL are the end conditions for radius
and polar angle (see Appendix B for SDEs in polar coordinates).
Figures 3(a) and 3(b) show configurations of 2D rings wrapping
around the center point for different winding numbers. Although
not shown, one can also choose to control only the final angle
θL by using the hitting probability f (θL∣θ(s)) = ∫∞0 p(θL, rL∣r(s),
θ(s)) ⋅ rLdrL.

We will now consider a Gaussian chain in a quadratic poten-
tial [U(x) = x2] and use a Brownian bridge to generate polymer

FIG. 2. The probability density function between two points on a 3D polymer ring
(L = 1). Symbols = Brownian bridge simulation (ds = 0.001, sample size: n = 105)
and solid lines = analytical PDF [Eq. (7)].

FIG. 3. Control of the winding number for a 2D polymer ring (L = 1, ds = 0.001):
(a) trajectories of the polar angle of a polymer as a function of the polymer contour
length s; (b) trajectories of the radial distance of the polymer as a function of the
polymer contour length for different winding numbers: (b-1) θL/2π = 1, (b-2) θL/2π
= 2, and (b-3) θL/2π = 4. Note that, for all polymer rings, the radial distance starts
and ends at r = R (R = 1).

configurations efficiently, where both ends of the chain are fixed (X0
and XL) or only one end is fixed (X0). When two ends of a poly-
mer are fixed, the end condition of the hitting probability becomes
q(x, w, L) = δ(x − xL). In this case, the analytical formula of the hit-
ting probability is known, q(x, w, s) = 1

√

2π(L−s)
exp(− (x−xL)

2

2(L−s) ). We
should also note that when both ends of a polymer are clamped,
there is an analytical formula for the associated partition function
of a 1D polymer,

Q = E[exp(−∫
L

o
βU(X(s))ds)∣Xo, XL]

=
√

C1 exp(−
X2

o + X2
L

2L
(C2 − 1) +

XoXL

L
(C1 − 1)), (8)

FIG. 4. Comparison of partition function Q from analytical results to Brownian
bridge simulations for a 1D Gaussian polymer in a quadratic potential [U(x) = x2]:
(a) both end points of the polymer are fixed (Xo = 0, L = 1, ds = 0.001, sample size:
n = 104); (b) one end point is fixed (L = 1, ds = 0.01, sample size: n = 103) with a
specified Boltzmann weight threshold W L > ε for the Brownian bridge simulations.
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FIG. 5. (a) Average squared radius of gyration ⟨R2
g⟩ as a function of initial polymer position Xo for a Gaussian chain in a quadratic potential. BB = Brownian bridge (BB) and

NS = naive sampling (NS). The end condition for the bridge is (XL ∈ [−2, 2], W L ∈ [10−10, 1]). (b) ⟨R2
g⟩ as a function of sample size n for sampling schemes BB and NS. The

initial position is Xo = 4. (c) 1D histogram of total Boltzmann weight W L and R2
g ⋅WL for X0 = 4. [(d)–(f)]: 2D histogram of {R2

g ⋅WL} and {W L} for X0 = 4: (d) naive sampling

with a sample size of n = 102; (e) naive sampling with n = 104; (f) Brownian bridge with n = 102.

where C1 =

√

2βL

sinh(
√

2βL)
and C2 =

√

2βL

tanh(
√

2βL)
. Figure 4(a) shows that

the partition function Q decreases with large XL. Simulations from
the bridge process are consistent with the analytical result, Eq. (8),
which demonstrates that the bridge indeed samples the probability
distribution properly.

In the next example, we start the 1D chain at Xo and let
the other end be free, which is shown in Fig. 4(b). The corre-
sponding partition function is again explicit, Q = 1

√

cosh (
√

2βL)

× exp(−X2
o

√

2β
2 tanh

√
2βL). We solve the hitting probability q(x,

w, s) from the backward Fokker–Planck equation to constrain the
total Boltzmann weight WL of the chain (see Appendix C for the
numerical method). Here, we demonstrate how well a bridge cap-
tures the polymer’s free energy when we condition the chains to lie in
regions of high total Boltzmann weight. By omitting highly improba-
ble configurations (small Boltzmann weight), we expect the partition
function to be essentially the theoretical value while having a more
efficient simulation process. We solve the backward Fokker–Planck
equation with the following boundary conditions,

q→ 0 when ∣x∣→∞, (9)

q→ 0 when ln(w)→ −∞, (10)

∂q
∂ ln(w)

= 0 when ln(w) = 0. (11)

The end condition satisfies q(x, w, s = L) = H(w − ε), where H(z)
is the Heaviside step function [i.e., H(z) = 1 if z > 0; H(z) = 0 if
z < 0]. We choose to condition the final Boltzmann weight to be
WL > ε (ε≪ 1). In Fig. 4(b), we design the end condition by varying
ε such that the bridge process does an excellent job capturing the
partition function for the given range of Xo.

To examine the polymer properties in an external field, any
macroscopic quantity F (e.g., radius of gyration) can be estimated
by

⟨F⟩ =
1
Q ∫{X,W}∈Ω

WLF({X})δP =
⟨WLF({X})⟩

Q
. (12)

Instead of sampling the entire phase space, we could sample the
polymer conformations in high probability of phase space, Ωε ≡ [{X,
W} ∈Ω: WL > ε] such that

⟨F⟩ ≈
∑k F(k)W(k)

L

∑k W(k)
L

. (13)

Here, we investigate the radius of gyration (R2
g ) for a 1D polymer

in a quadratic field where only one end is constrained. Figure 5(a)
shows that both naive sampling (without entropic force) and Brow-
nian bridge could provide an equivalent ensemble of ⟨R2

g⟩ except
that the naive sampling has to conduct an excessive number of sim-
ulations. Figure 5(b) shows that when a polymer is far away from
the minimum of the potential (Xo = 4), the rate of convergence
for ⟨R2

g⟩ using the Brownian bridge is significantly faster than naive

J. Chem. Phys. 153, 034901 (2020); doi: 10.1063/5.0010368 153, 034901-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. Comparison of the Brownian bridge to Monte Carlo and naive sampling methods: Gaussian 1D polymer in rugged potential. (a) Schematic of rugged potential
U(x) = 2(sin(x) + cos(2x) + sin(4x)) + 6.5. (b) Distribution of polymer end location XL and final Boltzmann weight ln(W L) for the rare event sampling using various sampling
approaches: Brownian bridge (BB), Monte Carlo (MC), and Naive Sampling (NS). The dashed square indicates the designated region for the Brownian bridge. (c) 1D
histogram of polymer position XL and Boltzmann weight W L for methods NS (n = 103), MC (n = 50), and BB (n = 50). (d) Polymer trajectories (n = 50, Xo = 0) using the
Brownian bridge where the black box at s = 1 indicates the end conditions [5 < XL < 6, −8 < ln(W ) < −5]. (e) Hitting probabilities q(X, ln(W )) at s = 0 and s = L, with L = 1.

sampling. From Figs. 5(d) and 5(e), the inefficiency in naive sam-
pling arises because this approach has to swipe all regions of phase
space. Therefore, one has to resort to a high number of simula-
tions to estimate macroscopic observables. On the other hand, the
Brownian bridge enables efficient sampling by only targeting the
highly probable regions. Based on Eq. (12), parameters of {R2

g ⋅WL}

and {WL} are critical. One can hit the highly probable regions
[Fig. 5(c)] in terms of both parameters using the Brownian bridge
[Figs. 5(d)–5(f)] and thus reduce the required number of samples
significantly.

The Brownian bridge also has its convenience for rare event
sampling. The traditional biased sampling uses a custom probabil-
ity distribution to enhance the acceptance probabilities in a hardly

visited region. Here, we examine a 1D Gaussian polymer under a
rugged potential [Fig. 6(a)], which is expressed as a specified Fourier
series. In naive sampling, a sampling size of n = 103 would not reach
the phase space 5 < XL < 6 and −8 < ln(WL) < −5 when the start
point is Xo = 0. These events are incredibly rare, occurring less than
0.001% of the time. The Metropolis Monte Carlo method uses the
Boltzmann probability distribution to further enhance the accep-
tance [66% and n = 50, see Figs. 6(b) and 6(c)]. On the other hand,
in Fig. 6(d), the Brownian bridge guarantees the rare event is always
visited [see the end condition of q at s = 1 in Fig. 6(e)].

Finally, we note that the Brownian bridge formalism can be
used to constrain a stochastic process to lie in a given region in
phase space during its entire path, not just its end points. This idea
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FIG. 7. Example of Brownian excursion (n = 10): (a) with Brownian bridge and (b)
without Brownian bridge. The excursion constrains 2D Gaussian polymers in the
domain {X, Y } ⊂ [0, 1] × [0, 1] for the entire path 0 < s < 1 (domain shown as red).

is known as a Brownian excursion and is derived in Appendix D.
Essentially, if one uses the backward Fokker–Planck equation to cal-
culate a hitting probability q(x, w, s), but uses a vanishing Dirichlet
boundary condition q = 0 on the boundary in which one constrains
the polymer path, one can confine the polymer to be in a region with
the correct conditional statistics. In Fig. 7, we show an example of
using a Brownian excursion to confine a 2D polymer in a box for its
entire path.

We conclude this section by discussing the advantages and
disadvantages of the Brownian bridge method. As a statistically
mechanically exact sampling method, it can sample a polymer chain
for a given topology. To estimate a partition function for an ensem-
ble, the Brownian bridge can improve the sampling speed by con-
trolling the end point in the phase space [e.g., space (x) and Boltz-
mann weight w], which can be advantageous compared to other
approaches based on the trial and error approaches (e.g., umbrella
sampling,12 metadynamics,21 and transition path methods22). How-
ever, in order to better estimate the hitting probability q, one needs
to solve a backward Fokker–Planck equation, which can be com-
putationally demanding for high dimensional systems. Overcoming
this issue will be a subject pursued in future studies.

IV. CONCLUSIONS
In this work, we have established a general framework for con-

trolling stochastic processes using a Brownian bridge, where we in
particular use this technique to control polymer conformations. The
exact sampling from a Brownian bridge allows one to design (a)
polymer topologies, (b) most probable configurations (for estima-
tion of macroscopic properties), and (c) rare events by specifying the
end condition. The methodology is further extended to condition
a polymer to lie in a particular region of phase space for its entire
path. We note that this general framework can be applied to any
dynamical process described by a Markov chain and thus envision
it having broad applicability in physical chemistry, such as chemi-
cal reactions,23 phase transitions, quantum mechanics,24 and signal
processing.25
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APPENDIX A: DERIVATION OF BROWNIAN BRIDGE
Since the Brownian bridge satisfies Br∝ q ∗ p, we have Br(x, w,

s) = C ∗ p ∗ q, where C is a constant. We express ∂Br/∂s as

∂Br
∂s
= C(

∂p
∂s

q +
∂q
∂s

p). (A1)

Using Eqs. (4) and (5), we write Eq. (A1) as

∂Br
∂s
= C ∗ q∗(−

∂

∂x
⋅ (Ap)+

∂(wβU(x)p)
∂w

+
1
2

∂2

∂x∂x
: (M ⋅MTp))

+ C ∗ p ∗ (−A ⋅
∂q
∂x

+ βU(x)
∂q

∂(ln w)
−
M ⋅MT

2
:

∂2q
∂x ∂x

)

= −
∂

∂x
⋅ (Ap ∗ C ∗ q) +

∂(wβU(x)p ∗ C ∗ q)
∂w

+
1
2

∂2

∂x∂x
: (M ⋅MTp∗C ∗ q)−

∂

∂x
(M ⋅MT

⋅
1
q
∂q
∂x

q∗C ∗ p)

= −
∂

∂x
⋅ (ABr) +

∂(wβU(x)Br)
∂w

+
1
2

∂2

∂x∂x
: (M ⋅MTBr)

−
∂

∂x
(M ⋅MT

⋅
∂ ln(q)
∂x

Br). (A2)

By reorganizing Eq. (A2), we have

∂Br
∂s

+
∂

∂x
⋅ [(A + M ⋅MT

⋅
∂ ln(q)
∂x

)Br] −
∂(wβU(x)Br)

∂w

=
1
2

∂2

∂x∂x
: (M ⋅MTBr). (A3)

By comparing to Eq. (4), the Brownian bridge Br satisfies the
same partial differential equation as the forward probability den-
sity function with an additional drift in terms of hitting probability
q: M ⋅MT

⋅ ∂
∂x (ln q).

APPENDIX B: WINDING NUMBER: STOCHASTIC
SIMULATION OF 2D FLEXIBLE POLYMER IN POLAR
COORDINATE
1. Itô formula for random walk

Let (B1, B2) be the two-dimensional Wiener process in Carte-
sian coordinates,

dx1 =MdB1, dx2 =MdB2, (B1)

where M is the diffusion coefficient. The relationships between polar
and Cartesian coordinates are given below:

f1 : r =
√

x2
1 + x2

2, (B2)

f2 : θ = arctan(
x2

x1
). (B3)

Therefore, the associated stochastic differential equations (SDEs) in
the polar coordinate are
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dr =
∂f1

∂x1
dx1 +

∂f1

∂x2
dx2 +

1
2
∂2f1

∂x2
1

dx1dx1 +
1
2
∂2f1

∂x2
2

dx2dx2 + O(ds3/2
),

(B4)

dθ =
∂f2

∂x1
dx1 +

∂f2

∂x2
dx2 +

1
2
∂2f2

∂x2
1

dx1dx1 +
1
2
∂2f2

∂x2
2

dx2dx2 + O(ds3/2
).

(B5)
By neglecting higher order terms, we reach the SDE in the polar
coordinate,

dr =
M2

2r
+ M cos θdB1 + M sin θdB2, (B6)

dθ = −
sin θ

r
MdB1 +

cos θ
r

MdB2. (B7)

2. Brownian bridge: hitting probability
For a 2D Brownian motion, the joint probability of θ and r

is20,26

p(r, θ, t; ρ,α) =
1
πt

exp(−
r2 + ρ2

2t
)∫

∞

o
cos(ν(θ − α))Iν(

ρr
t
)dν,

(B8)
which is the solution of the corresponding Fokker–Planck equation,

∂p
∂t
=

1
2
(
∂2p
∂r2 +

1
r
∂p
∂r

+
1
r2

∂2p
∂θ2 ), (B9)

p∣t=0 = δ(θ − α, r − ρ). (B10)

Note that Iν is the modified Bessel function of the first kind. In
this case, the hitting probability q of the backward Fokker–Planck
equation should be

q(r, θ, s; rL, θL)∝
1

π(L − s)
exp(−

r2 + r2
L

2(L − s)
)

× ∫

∞

o
cos(ν(θ − θL))Iν(

rLr
L − s

)dν, (B11)

where q(rL, θL, L) = 1. By letting ro = rL and specifying θL, we can
design a polymer ring with a given winding number, WN = θL/2π.

Figure 8 shows the hitting probability function for two different
moments: (a) s = 0.2 and (b) s = 0.7. Note that the corresponding
modeling parameters are the same as Fig. 3 of the manuscript. When
|θ/(2π)|≫ 1,

d ln(q)
dr

< 0, (B12)

which explains the reason why the radial distance r most likely
first decreases during the polymer growth shown in Fig. 3(b) of the
manuscript.

Once the hitting probability is known, the stochastic differential
equations associated with the Brownian bridge are

drBr
= dr + M2 ∂ ln(q)

∂r
ds, (B13)

FIG. 8. Control of winding numbers for a 2D polymer ring (L = 1, ds = 0.001).
The logarithmic hitting probability ln q is plotted as a function of r and θ/(2π) at (a)
s = 0.2 and (b) s = 0.7.

dθBr
= dθ +

M2

r
∂ ln(q)
∂θ

ds. (B14)

One can also choose to only control the winding number θL by
using the following hitting probability function,20

qθ(θ, s, r; θL) = ∫

∞

0
q(r, θ, s; rL, θL)rLdrL =

re
ρ2

4(L−s)

2
√

2π(L − s)

× ∫

∞

0
cos(ν(θ − θL))[I ν−1

2
(

r2

4(L − s)
)

+ I ν+1
2
(

r2

4(L − s)
)]dν. (B15)

APPENDIX C: NUMERICAL SIMULATION
OF BACKWARD FOKKER–PLANCK EQUATION:
PROPER GENERALIZED DECOMPOSITION

We choose the method of proper generalized decomposi-
tion (PGD) to solve the multidimensional backward Fokker–Planck
equation: for the conventional finite difference method, the demand
of memory is tremendous (nN , n is the number of discretizations in
each dimension, and N is the dimensions); however, for PGD, it is
N ⋅ n2. We refer both Refs. 27 and 28 for the general framework of
PGD. In the following, we demonstrate the procedure of using PGD
to solve the backward Fokker–Planck equation.

Here, we write the backward Fokker–Planck equation as

∂q
∂s
−U(xk)

∂q
∂ξ
= −

1
2
∂2q
∂x2

k
, k = 1, 2, . . . , N, (C1)

where N indicates the dimensions of the space and ξ = ln(w). The
above equation characterizes the probability q for a random walk in
an external field U. For convenience, let s = L − t, and we solve the
following equation forward in t,

∂q
∂t

+ U(xk)
∂q
∂ξ
=

1
2
∂2q
∂x2

k
. (C2)

Based on the definition of PGD,27 the hitting probability is
regarded as

q(ξ, x1, x2, . . . , xN ; t) =
m

∑
j=1

Gj(ξ)
N

∏
k=1

Fkj(xk), (C3)
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where m is the number of convergent series. For the t-derivative
term, we use the backward Euler scheme,

q(i+1)
− q(i)

Δt
+ U(xk)

∂q(i+1)

∂ξ
=

1
2
∂2q(i+1)

∂x2
k

, (C4)

where Δt = Δs is the length of the polymer segment. In the initial
value problems, q(i) is always known, and we may regard it as the
source function [f = q(i)/Δt, also u = q(i+1)] and write Eq. (C4) as

u
Δt

+ U(xk)
∂u
∂ξ
−

1
2
∂2u
∂x2

k
= f . (C5)

For any ith step in terms of t, we solve for u from Eq. (C5).

1. Weak formulation
To solve Eq. (C5), we utilize the weak formulation from the

finite element approach, which is formulated as

∫
Ω

v(
u
Δt

+ U(xk)
∂u
∂ξ
−

1
2
∂2u
∂x2

k
)dΩ = ∫

Ω
f vdΩ, (C6)

where the domain is Ω = {ξ, xk}. It would be straightforward to show
that

1
Δt ∫Ω

vudΩ + ∫
Ω

U(xk)v
∂u
∂ξ

dΩ +
1
2 ∫Ω

∂v
∂xk

∂u
∂xk

dΩ = ∫
Ω

f vdΩ.

(C7)
Due to the convective character of Eq. (C7), one can add an artificial
diffusion to allow larger Δt, and the modified equation is expressed
as28

1
Δt ∫Ω

vudΩ + ∫
Ω

U(xk)v
∂u
∂ξ

dΩ + ∫
Ω

βU(xk)h
2

∂v
∂xk

∂u
∂xk

dΩ

+
1
2 ∫Ω

∂v
∂xk

∂u
∂xk

dΩ = ∫
Ω

f vdΩ, (C8)

where β = coth(Pe) − 1/Pe, and h is the size of the discretization. The
Peclet number is defined as Pe = U ⋅ h. In our simulations, we choose
Pe = 0.1.

2. Numerical procedure
To solve Eq. (C7), we choose to proceed with 1D problem

(N = 1). Our numerical procedure can be extended to the multidi-
mensional problem. For the 1D problem, the approximation of u is
now defined at iteration n,

u(n)(ξ, x) =
n

∑
j=1

Fj(x)Gj(ξ), (C9)

and the enrichment step consists of looking for the function [R(ξ),
S(x)] such that

u(n+1)
(ξ, x) = u(n)(ξ, x) + R(x)S(ξ). (C10)

Functions (Fn+1, Gn+1) are obtained by normalizing the function
(R, S). The iteration procedure stops when the solution converges
to a small (R, S). In the following, we elaborate the steps of solving
(R, S) using an enrichment procedure. We refer Ref. 27 for the
detailed enrichment procedure.

APPENDIX D: BROWNIAN EXCURSION
An excursion is a process that is constrained to lie in a given

region Ωs at all times and have its start and end points conditioned
to lie in regions Ωo and ΩL that are subsets of Ωs. Note that if
ΩL = Ωs, then there is no additional constraint on the end point.

Let us look at a random walk with drift A and diffusion M,

dX = Ads + M ⋅ dB. (D1)

The forward probability p(x, s) for the random walk satisfies a
Fokker–Planck equation,

∂p
∂s

+
∂

∂x
⋅ (Ap) =

1
2

∂2

∂x∂x
: (M ⋅MTp), (D2)

where the initial conditions and boundary conditions are the follow-
ing if the process is to start in region Ωo and lie in region Ωs for all
time,

p(x, 0) = 𝟙{x ∈ Ωo}, p(x ∈ ∂Ωs, s) = 0. (D3)
Note: in the above equation, the notation ∂Ωs represents the bound-
ary of region Ωs.

The hitting probability q(x, s) for this random walk satisfies a
backward Fokker–Planck equation,

∂q
∂s

+ A ⋅
∂q
∂x
= −

M ⋅MT

2
:

∂2q
∂x ∂x

, (D4)

with the boundary condition q(x ∈ ∂Ωs, s) = 0 and the end condition
q(x, L) = 𝟙{x ∈ ΩL}.

Similar to the derivation in the manuscript, the Bridge process
BrEx for excursion that conditions both start and end points is

BrEx
(x, s)∝ p ⋅ q. (D5)

Thus, the process satisfies

∂BrEx

∂s
+

∂

∂x
((A + M ⋅M

∂ ln(q)
∂x

)BrEx
) =

1
2

∂2

∂x∂x
: (M ⋅MTBrEx

),

(D6)
where the boundary condition is BrEx(x ∈ ∂Ωs, s) = 0.

The only difference between the partial differential equation
(PDE), Eq. (D6), and the Brownian bridge PDE is the inclusion of
the boundary condition BrEx(x ∈ ∂Ωs, s) = 0. However, the addi-
tional drift term ∂X(ln q) allows the process to automatically satisfy
this boundary condition, since ∂X(ln q) will have an infinite mag-
nitude as we approach the boundary ∂Ωs and point normal to the
boundary (see Fig. 9). Thus, an unconstrained process that has the
additional drift M ⋅M ∂ ln(q)

∂x will satisfy the PDE [Eq. (D6)], which
allows us to write a modified stochastic differential equation (SDE)
for the Brownian excursion as

dXBrEx

= dX + (M ⋅MT
) ⋅

∂

∂X
(ln q)ds. (D7)

1. Brownian excursion for 2D polymer
For a 2D flexible polymer A = 0, the corresponding Fokker–

Planck equation is

∂q
∂t
=

1
2
(
∂2q
∂x2

1
+
∂2q
∂x2

2
), (D8)
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FIG. 9. The entropic force (a) ∂ ln q
∂x and

(b) ∂ ln q
∂y for a Gaussian chain confined

to a rectangular box Ωs = x, y ∈ [0, 1]
× [0, 1]. Plots are at s = 0.5 with L = 1.

where t = L − s and M = δ. The excursion is defined as q(x ∈ ∂Ωs, s)
= 0 and Ωs = {x, y} ⊂ [0, 1] × [0, 1]. Using the separation of variables,
we have the solution for q,

q(x, y, t) =
∞

∑
n,m=1

Bnm sin((2n − 1)πx) sin((2m − 1)πy)

× e−
1
2 (((2n−1)π)2+((2m−1)π)2

)t . (D9)

Here, we impose the initial condition as constant uniform probabil-
ity q(x ∈Ωs, t = 0) = 1. Then, the corresponding coefficient is

Bnm =
1

(2n − 1)(2m − 1)
. (D10)

In Fig. 7(a), the Brownian bridge can exactly control the excur-
sion. In addition, the corresponding entropic force is shown in
Fig. 9.
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