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Diauxic growth of Escherichia coli is driven by a host of internal, complex regulatory
actions. In this classic scenario of cellular control, the cell employs a rational algorithm to
modulate its metabolism in a competitive fashion. Cybernetic models of metabolism, whose
development now spans three decades, were first formulated to describe regulation of cells
in complex, multi-substrate environments. They modeled this scenario using the hypothesis
that the formation of the enzymatic machinery is regulated to maximize a return on invest-
ment. While this assumption is made on the basis of logical arguments rooted in evolution-
ary principles, little effort has been taken to validate if enzymes are truly synthesized in the
same fashion that is predicted by cybernetic variables. This work revisits the original cyber-
netic models describing diauxic growth and compares their predictions of enzyme synthesis
control with time series gene expression data in microarray and qRT-PCR formats. Three
separate studies are made for two different strains of E. coli. The first is for the growth of
E. coli BW25113 on a mixture of glucose and acetate, whose gene expression changes are
metered by microarray. Another is also for the sequential consumption of glucose and ace-
tate but involves strain MG1655 and employs qRT-PCR. The final is for E. coli MG1655 on
glucose and lactose. By demonstrating how cybernetic variables for induced enzyme synthe-
sis mimic the behavior of transcriptional data, a strong argument for using cybernetic mod-
els is made. VC 2018 American Institute of Chemical Engineers Biotechnol. Prog., 000:000–
000, 2018
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Introduction

Cybernetic models, which describe the dynamic regulation

of metabolism as a goal-directed process, have been devel-

oped over the past three decades to describe a host of com-

plex microbial growth scenarios. The first scenario

cybernetic models sought to describe was that of diauxic

growth of microorganisms.1 These models assume that

microorganisms are optimal control systems that actively

modulate their metabolism through the cybernetic variables

for enzyme synthesis ui and activity vi. These models further

assume that microorganisms possess limited internal resour-

ces that they use in an optimal manner to achieve their

goals. Using matching and proportional laws to describe

enzyme synthesis and activity, respectively, these first cyber-

netic models were able to predict the distinct growth and lag

phases of the diauxie using parameters taken from growth

data on individual substrates based on the notion that cells

modulate their metabolisms to optimize growth rates.

From this initial formulation, cybernetic models have been

extended to describe much more complex aspects of metabo-

lism via incremental improvements over the years. Cyber-

netic models have been useful in not only describing

complex substrate uptake patterns,2 but have also yielded

successful predictions of intracellular fluxes,3 gene-knockout

behaviors,4 and a multiplicity of steady states in chemostats.5

While cybernetic modeling’s ability to predict complex cel-

lular phenomena helps to realize the utility of this approach,

no effort has taken place to verify the extent to which the

cybernetic control mechanisms mimic cellular regulation.

More specifically, the cybernetic variables for enzyme syn-

thesis and activity, ui and vi, have not been directly com-

pared with biological data that is representative of the

internal regulation of metabolism in cells.

Experimental advances in the past decade have resulted in

the collection of large amounts of cellular data which pro-

vide insights into regulation in cells.6,7 Various techniques

such as microarrays and RT-PCR are used to monitor the
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expression of mRNA from a large number of genes in cells
under a variety of experimental conditions. These techniques
have been used to characterize the gene expression changes
that occur when Escherichia coli switches from growing on
one substrate to growing on another.

To briefly explain the changes that occur, when E. coli
switches from growing on glucose to growing on acetate, a

number of regulatory mechanisms are activated that monitor

the cell’s nutritional status and the propensity for internal

acidification.8 These mechanisms then coordinate a host of

actions on the gene expression level to induce the uptake of

acetate predominantly through the ACS pathway, where it is

converted to other growth precursors via increased flux

through the TCA cycle.9 Glycolysis ceases and carbon is

channeled in a completely reversed direction via gluconeo-
genesis. Similarly, when E. coli switches from consuming

glucose to consuming lactose, a more limited number of

events occur. As glucose is depleted, cAMP levels are ele-

vated and crp-dependent factors promote the expression of

the lac operon which has already been derepressed by the

presence of external lactose.10 The lac operon is then tran-

scribed and translated into enzymes relevant to the metabo-

lism of lactose.

The present work focuses on comparing the predictions

for cybernetic control variable for enzyme synthesis ui with

data for enzyme synthesis available in the form of mRNA

measurements and measured using microarrays and RT-PCR.
While cybernetic variables for enzyme synthesis do not

directly describe mRNA concentrations, they describe the

same process that mRNA synthesis drives. Although gene

expression data do not perfectly correlate with the amounts

of proteins in cells,11 there are a number of models that have

successfully recruited gene expression data for more accurate

prediction of metabolic changes. These models include E-

Flux,12 tFBA,13 and E-Fmin.14

The comparison made in this study seeks to investigate

the similarity between the dynamics of mRNA creation and

degradation, and the behavior of cybernetic variables for

enzyme synthesis. Such a study involves a more detailed

inspection of the prediction of regulated metabolism than
evaluation of cybernetic models by comparing measurements

of selected extracellular variables as in prior publications.

Thus, this effort must be regarded as a more comprehensive

assessment of cybernetic goals in explication of the observed

dynamic variations in the activity of component pathways in

metabolism. It is a verification of regulatory trends as the

accuracy of proteomic data is not generally viewed to be suf-

ficient for direct quantitative comparison with predicted
enzyme levels. This difficulty arises from the significant dif-

ferences in chemical complexity between proteins and

mRNA. In this same vein, the cybernetic variable for

enzyme activity, vi, was not investigated because measure-

ment of the dynamics of activity modulation in enzymes,

stemming from conformational changes and phosphorylation,

is not easily measured.

We have chosen for this consideration the early cybernetic

models, which have been more recently denoted as LCM

(lumped cybernetic models) by Song and Ramkrishna15 that

are based on grossly lumped pathways as against the hybrid

cybernetic models (HCM) or lumped hybrid cybernetic mod-

els (L-HCM) that have a higher likelihood of relating to
gene expression profiles because of being based on numerous

elementary flux modes. Consequently, this investigation will

also examine whether the pathway lumping in LCM obscures

the regulatory features associated with metabolic reactions

not explicitly incorporated in the model.

Toward this end, three separate studies wherein microor-

ganisms grow on two substitutable substrate pairs are made.

The first study is for the growth of E. coli BW25113 on a

mixture of glucose and acetate whose gene expression

changes are monitored using microarray. The second study is

for the growth of E. coli MG1655 on glucose and acetate

whose expression changes are monitored using RT-PCR. The

final study is for the growth of E. coli MG1655 on glucose

and lactose where gene expression changes are monitored

using microarrays. By demonstrating that the cybernetic vari-

ables for induced enzyme synthesis mimic transcriptional

data, we show that the cybernetic models capture not only

the dynamic trends in the concentrations of extracellular sub-

strates and products but accurately reflect changes in the reg-

ulatory phenomena that drive microorganisms.

Materials and Methods

To describe the diauxic growth phenomena that occur in

the two previously described scenarios, models of similar

structure were built. These models will project the cybernetic

control of each lumped pathway’s enzyme synthesis and are

developed using prior formulations of cybernetic models.1,16

Most simply, a cybernetic model of metabolism is a set of

coupled, first-order ODEs that describes the time-dependent

rates of change in the concentrations of cells, metabolites,

and enzymes. For each substrate, Si, there is a lumped

enzyme set Ei that is employed to digest each substrate and

a yield describing the total amount of biomass, B, produced

from each substrate according to the reaction:

B1Si�!Ei ð11YiÞB1 . . .

In diauxic growth, once the cell consumes the entirety of the

preferred substrate, the production of lumped enzyme for the

secondary substrate commences. In the cybernetic formula-

tion, the rate at which each substrate is converted into bio-

mass is governed by the concentration of the amount of

pathway specific enzyme, ei, present in the system. Also

influencing this rate of reaction are the enzyme specific

growth rate li, substrate concentration, si, and the total con-

centration of cells c. This rate is formulated as

ri5
lieisic

Ki1si

where Ki is the substrate specific Michaelis–Menten con-

stant. The formation of biomass is determined by the sum-

mation of the activity controlled biomass formation reactions

and is written:

dc

dt
5
X

i
rivi

Each substrate’s depletion is given by the negative substrate

specific biomass formation rate normalized by the substrate’s

yield:

dsi

dt
5

21

Yi
rivi

Finally, the production of the lumped enzymes is as follows:
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dei

dt
5a1ui

kE;isi

K0i1si
2

d

dt
ln c1b

� �
ei

The above equation includes a number of terms for the phe-

nomena related to changes in enzyme concentration. The first

is for the constitutive enzyme synthesis, a.16 The second is

for induced enzyme synthesis which is controlled by the

cybernetic variable, ui. The rate of enzyme formation is con-

strained by a rate constant for induced enzyme synthesis,

kE;i, and is a function of the substrate level and a Michaelis–

Menten constant, K0i. Last, the enzyme quantity is reduced

both by dilution due to growth and from enzymatic degrada-

tion b. Note that this enzyme control variable ui appearing

above will be the model variable that is compared to gene

expression data.

Cybernetic Control Formulation

In the above model formulation, two control variables are

presented. Control variable ui specifies the regulation of

enzyme synthesis for different pathways and vi specifies the

activity adjustment of the lumped pathways. To efficiently

allocate cellular resources, single cells must make decisions

regarding the regulation of competing metabolic pathways.

From this model’s perspective on diauxic growth, there are

two competing metabolic options for which the cell can

invest resources in to grow. At any given time, there is an

unregulated growth rate for each substrate given by ri which

is a function of the amount of lumped enzyme present. This

enzyme quantity, in turn, changes as a function of the instan-

taneous rate through the ui control variable’s effects. This

control variable compares the different metabolic options

and invests resources proportionally to a metabolic path-

way’s return on investment growth and is written as the fol-

lowing matching law:

ui5
riX

j
rj

In this simple cybernetic model, return on investment for a

lumped metabolic pathway is equal to its instantaneous rate

of growth. This means that cells prioritize their limited

capacity for enzyme synthesis for a pathway that has a

higher payoff in terms of growth rate. This variable is nor-

malized by the sum of returns on investment which repre-

sents the total pool of resources available to convert sugars

into biomass. The set ui control variables sum to 1. In this

control variable, it is evident that there will be a higher

investment of resources into the lumped enzyme for a path-

way if there is a higher the return on investment or rate of

growth. The models developed for this study make use of

growth rate maximization as an objective function. Other

objective functions such as carbon rate uptake maximization

were not considered.

In addition to the efficient allocation of resources, path-

ways are also regulated by mechanisms that adjust their

enzymatic activity. To model this, pathways that have lower

rates of growth than the maximal pathway are turned down

via the proportional law which is

vi5
ri

max jðrjÞ

This is justified in part by the fact that some metabolic path-

ways may require fluxes to route through different parts of

the metabolic network in opposite directions. For example,

in the case of glycolytic and gluconeogenic substrates, glu-

cose and acetate, pathways for one or the other should be

turned down to reduce futile cycling. Therefore, the propor-

tional cybernetic variables turn down pathways that do not

represent the highest return on investment and fully express

the pathway that does.

Estimation of Parameters

To develop two of the models in this work, sets of data

including both batch growth data and time series microarray

data taken during the switching of substrates were used. One

data set is from Ref. 17 describing the growth of E. coli
BW25113 on a mixture of glucose and acetate. The other set

from Ref. 18 elucidates the changes in gene expression for

E. coli MG1655 growing on a mixture of glucose and lac-

tose. For both of these data sets, a growth curve and initial

substrate data are available. Given that microarray data is

inherently noisy, the findings for the glucose–acetate growth

scenario were verified with RT-PCR data. An additional

model was developed to describe the E. coli MG1655 strain

using data from Ref. 19. RT-PCR data were not available in

the literature to further validate the result from the glucose–

lactose diauxic growth scenario.

Models were first parameterized for the microarray data.

From the growth curves in the glucose–lactose condition, the

parameters lmax
i and Yi were estimated from the knowledge

of the initial substrate levels, biomass concentrations, and

slopes of the growth curves. Michaelis–Menten parameters

were at first taken from Ref. 1. Michaelis–Menten constants,

yields, and growth rates for the glucose–acetate data were

determined using available single substrate data. Once these

initial values were collected for both models, a genetic algo-

rithm was used to refine the initial parameter values using a

normalized least squares error function for the model’s fit of

the biomass data. The parameter values are listed in Table 1.

Note that the Michaelis–Menten parameters Ki and K0i take

on the same value for both ri and the induced enzyme for-

mation terms for the same lumped metabolic pathway. For

example, Ki and K0i have the same value of 0.05 for the glu-

cose growth pathway describing the glucose–lactose diauxie

of E. coli MG1655.

The RT-PCR model was built in a similar fashion. The

main departure in its formulation from the other models is

the inclusion of an acetate production term. In this scenario,

glucose is the only substrate initially. While consuming glu-

cose, acetate is produced via overflow metabolism to adjust

the intracellular redox ratio,20 which is then consumed after

glucose is exhausted. Note that acetate production is absent

Table 1. Parameter Values for Diauxic Models of E. coli

Strain
MG1655 BW25113

Parameter (units) Glucose Lactose Glucose Acetate

Si0 (g/L) 0.5 1.5 1.5 0.9
lmax ;i (h21) 0.642 0.618 0.442 0.426
Yi (gDW/g) 0.400 0.440 0.339 0.129
Ki=K0 i (g/L) 0.005 0.50 0.0088 0.3317
ai 1.67e-3 1.67e-3 1.67e-3 1.67e-3
kE;i 1e-3 1e-3 1e-3 1e-3
bi 0.05 0.05 0.05 0.05

Strains MG1655 and BW25113 growing on multiple substrate
sources.
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from the microarray models as the dynamic changes in sub-
strates and products are not given in the datasets and model-
ing this phenomena would require extraneous assumptions.
For more details on the parameterization and development of
this particular model, refer to Supporting Information 1.

Comparison of Dynamic Gene Expression Data and

Model Variables

The general goal in the comparison between the ui control
variables and dynamic gene expression is the demonstration
of qualitative similarity. These two entities cannot be com-
pared in an absolute sense because they represent different
phenomena. One represents an abstraction of control while
the other represents the physical manifestation of cellular
control. The matching law variables are constrained between
values of 0 and 1 while gene expression levels vary over a
greater range depending on how they are normalized. More-
over, given the nature of microarray, it would not be useful
to make absolute comparisons as it is often referred to as a
“semi-quantitative” method. Therefore, it is pertinent to nor-
malize both the control variables and gene expression in a
fashion that complements qualitative comparison. The
method elected to do this is a standard normalization proce-
dure where a data series is scaled by its standard deviation
and centered around zero by subtracting the series’ mean.21

For some series, C5fc1; . . . cng of either gene data or model
variables, the normalization is

c0i5
ci2lðCÞ

rðCÞ

of which lðCÞ is the mean of the data series and rðCÞ is the
standard deviation of the series. The mean of a data series l
ðCÞ is not to be confused with the enzyme specific growth
rate for a given pathway li. This normalization method
aligns the data in such a way to make the comparison of the
dynamic trends in the data more clear. To quantify similarity
between the model variables and experimental data, the use
of correlational statistics such as Pearson’s correlation coeffi-
cient is still appropriate as this statistic is scale invariant.

The microarray and RT-PCR data were already provided
as gene expression normalized sets in their original sour-
ces.17–19 These data sets were not processed in any addi-
tional way. The significance of the observed expression
changes are reported as fold changes in Table 2. The major-
ity of fold changes observed in the data represented statisti-
cally significant changes in gene expression.

Results

Model capture of biomass formation

The models developed were able to accurately describe
the growth of biomass. Both systems modeled capture the
initial growth phase on glucose and the second growth phase
on either lactose or acetate. They also correctly represent the
timing of the lag phase as the batch culture transitions from
the preferred substrate to the secondary one. The predictions
of the glucose acetate models can be seen in Figure 1. Glu-
cose–lactose substrate behavior is shown in Supporting Infor-
mation, Figure S1.

From these model descriptions of the data, it can be
gauged how the values of the control variables for each path-
way change dynamically. As the glucose level depletes, the

ui variable for the glucose pathway decreases from one
towards zero. This transition is made during the lag phase of
the diauxic growth. At the same time, the ui variable for the
lactose or acetate pathways increases from a value close to

Table 2. Fold Changes of Transcripts Compared to Cybernetic

Variables

Gene Fold Change Gene Fold Change

Glucose–Acetate Microarray

sdhA 21.677041 gnd 0.06591739
aceB 18.663797 aceF 0.07638358
fumC 15.381546 aceE 0.09660509
gltA 8.5310011 pfkA 0.11428783
sucA 7.5857758 ackA 0.24717241
sucB 7.4473197 pykF 0.25351286
yggF 2.2855988
Glucose–Acetate qRT-PCR

glgS 33.38495 ptsG 0.02199841
yfiA 19.902748 ppc 0.02351672
acs 8.548292 cspA 0.02529762
frd 5.5425171 infA 0.06812921
pck 4.6030265 zwf 0.10020879
ihfA 2.1322044 pykF 0.12090034

cya 0.13806907
edd 0.14985653
maeA 0.16879325
pfkA 0.20364643
sdhD 0.27429994
sucA 0.30113072
mdh 0.38912586
lacZ 0.40956123
crp 0.52603482

Glucose–Lactose Microarray

lacA 3459.3938 crr 0.10839269
lacY 215.77444 ptsG 0.12445146
lacZ 87.297137

Figure 1. Predictions of external metabolite concentration data
for the three diauxic systems.

(a) shows the biomass level for E. coli BW25113’s diauxic
growth on glucose and acetate. (b) exhibits E. coli MG1655’s
growth on glucose and acetate where RT-PCR data are avail-
able. The left axis shows biomass, c, in gDW and is depicted
with a blue line. Substrate concentrations, si, are in g/L and are
tracked on the right axis with the time profile of glucose in
green and acetate in red. (c) shows diauxic growth of E. coli
MG 1655 on glucose and acetate.
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zero toward one. It is at this critical point that the compari-
sons between the control variable and gene expression will
be made. All time scales refer to the time scales used in the
original works from which this data was taken.

Study of glucose–acetate diauxie

Escherichia coli growing in a mixture of glucose and ace-
tate can employ either glycolytic and gluconeogenic pathways
to synthesize biomass and grow. In this mixture, the culture
first consumes glucose and switches to acetate upon which it
has a lower growth rate. When the culture shifts from the con-
sumption of glucose to acetate, glycolysis is unneeded and
gluconeogenic reactions must channel carbon to synthesize
essential biomass precursors. A host of other changes happen
in the central carbon metabolic pathways. Intuitively, acetate
excretion goes down and uptake increases. Fluxes through the
glyoxylate pathway and TCA cycle increase.22 Also, the
fluxes through the pentose phosphate pathway are significantly
higher during growth on glucose compared to acetate.

These changes in the various metabolic pathways are
observable on the gene expression level. The cybernetic vari-
able profiles have been compared accordingly with the dynam-
ics of these various central carbon metabolic pathway gene
expression profiles. Genes associated with pathways whose

fluxes are upregulated have been compared with the acetate ui

cybernetic variable and genes associated with pathways whose

fluxes go down have been compared with the glucose variable.

An excerpt of this comparison is depicted in Figure 2. Compar-

ing the changes in gene expression with the cybernetic varia-

bles for genes related to different metabolic modules

demonstrates that cybernetic variables can be used to predict

the general trends in gene expression for their respective path-

ways. Explicitly, the genes go from a sustained high state to a

sustained low state. Before making the comparison, it must be

noted that microarray data are inherently noisy. Because of

this, many genes from these pathways were filtered out as their

true behavior was hard to distinguish from the scatter in the

data. The gene transcript measurements with significant fold

changes were retained. These are listed in Table 2. For a com-

plete picture of the behavior for these pathways, refer to Sup-

porting Information, Figures S2–S8. It is evident in these

figures that there is a significant amount of noise for some tran-

scripts with the error bars, encompassing a range wider than

the observed change in level.

Starting with excretion of acetate via the reaction of ace-

tate kinase (ackA), the cybernetic variable for the glucose

pathway was compared with the dynamic transcription data.

It is evident that both show a downward shift from a higher

Figure 2. Gene expression profile comparison with cybernetic variables for subsets of central carbon metabolism for strain MG1655’s
growth on glucose and acetate.

Gene profiles are plotted in red with error bars and ui profiles are plotted in black. Subfigures with their respective pathways are labeled: (a) gluco-
neogenesis, (b) pentose phosphate pathway, (c) acetate excretion (d) glyoxylate pathway, (e) glycolysis, and (f) TCA cycle.

Biotechnol. Prog., 2018, Vol. 00, No. 00 5Biotechnol. Prog., 2018, Vol. 34, No. 4862



state to a lower one. The gene expression levels for acetate

uptake via acetyl-CoA synthetase (acs) were also surveyed;

however, an abundance of noise in the data made compari-

son difficult. Acs is compared with less noisy data using the

RT-PCR data in the next section.

Next, the cybernetic variables for glycolysis and gluconeo-

genesis were compared with their respective model variables.

Reactions for gluconeogenesis were first compared to the

acetate control variable. Most transcriptomic data for the

gluconeogenic pathway were also noisy with the exception

of fructose-1,6-bisphosphatase (yggF), which is somewhat

less noisy. This transcript profile matches the cybernetic var-

iable’s increase. However, after reaching its highest value,

the trend does not stay at an elevated state and goes down to

a value roughly between the initial low state and the maxi-

mum level.

Transcripts of the glycolytic pathway show a decreasing

trend as predicted by the glucose pathway’s cybernetic

matching law variable. For example, mRNA levels for 6-

phosphofructokinase-1 (pfkA) go down along with the model

control variable. Also showing this behavior is pyruvate

kinase I (pykF). Genes for the pyruvate dehydrogenase com-

plex show varying behavior. Pyruvate dehydrogenase com-

plex gene aceE transcription levels go down as the control

variable does, but rebound after 2 h to a middle value. aceF
shows significant fluctuations up and down and deviates sig-

nificantly from the behavior predicted by the glucose path-

way’s cybernetic variable.

Finally, the TCA cycle and glyoxylate pathway were com-

pared to the acetate control variable’s behavior. Of the TCA

cycle transcript data that did not have significant noise, all

the genes show trends close to the model prediction. Succi-

nate dehydrogenase (sdhA) and fumarase (fumC) show

increasing levels very similar to the selected control variable.

Citrate synthase (gltA), and 2-oxoglutarate dehydrogenase

(sucA and sucB) also show general increases in expression

over time. However, these expression level increases are

delayed to varying degrees compared to the acetate path-

way’s ui variable. They are also characterized by an initial

decrease in the first 15–30 min of the data series.

The glyoxylate pathway also shows increased expression

along with the model prediction. Isocitrate dehydrogenase

gene expression, a key enzyme involved controlling flux into

the glyoxylate pathway, shows little correlation with either

variable. However, this TCA–glyoxylate branch point is well

known for being controlled via phosphorylation.23 When glu-

cose is exhausted, the activity of isocitrate dehydrogenase

goes down to increase the flux through the glyoxylate path-

way. This change in enzyme activity is better modeled by

comparing the vi control variable for glucose activity regula-

tion with the activity changes in isocitrate dehydrogenase.

As shown in Supporting Information, Figure S9, qualitative

comparison of data24 representative of isocitrate dehydrogen-

ase’s enzyme activity and the vi control variable for glucose

reveals that both have similar behavior. Both show dramatic

decline in value after glucose is exhausted.

Verification of microarray result using RT-PCR data from
the literature

To cross-validate the findings for the glucose-acetate dia-

uxie previously modeled above, a second model was devel-

oped to describe a similar scenario of acetate production

during the consumption of glucose followed by acetate con-

sumption after glucose exhaustion. RT-PCR data were col-

lected for the transcripts with the largest changes in

expression comparing steady-state growth on glucose and

growth on acetate. For this analysis, the data have been par-

titioned into two sets. One set shows an increase in expres-

sion after glucose exhaustion corresponding to the acetate ui

variable and another represented by the glucose control vari-

able shows a decreasing trend. A depiction of this compari-

son is in Figure 3.

In this system, the data for each transcript were not ana-

lyzed according to its pathway but its general behavior over-

all. The genes corresponding to each control variable are

listed in Table 3. Looking at the Pearson correlation between

the vector of model ui values at different time points and the

vector representing each gene’s normalized expression level,

there is a strong correlation between the model prediction of

enzyme synthesis control and gene expression. Overall, these

correlations are 0.9214 and 0.7814 for the glucose and ace-

tate pathway with p values of 4.351e-044 and 1.017e-09,

respectively. Correlational statistics and p values for all tran-

scripts are listed in Supporting Information, Table sets

S1–S3.

After measuring the general correlation between the gene

expression data and the cybernetic variables, the grouping of

genes into upregulated or downregulated categories was fur-

ther analyzed. Starting with uptake reactions, RT-PCR data

for acs for acetate uptake and glucose phosphotransferase

(ptsG) for glucose uptake show appropriate grouping with

their matching law variable. The glucose variable is also

grouped appropriately with genes like pfkA and pykF from

glycolysis. As expected, glucose-6-phosphate dehydrogenase

(zwf) of the pentose phosphate pathway also shows similarity

to the glucose control variable. Genes strongly related to the

control of growth during glucose consumption, transcrip-

tional regulators crp and cya also show a strong similarity to

the glucose control variable.25

Figure 3. Gene profiles for all RT-PCR data. ui variables are
plotted in black dashed (- -) lines.

The various gene profiles are plotted with color markers (x) for
each data point. In (a) is the comparison between the acetate
model control variable and genes that match this behavior. (b)
compares the glucose matching law variable and genes showing
similar behavior.
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As for the acetate control variable, phosphoenolpyruvate

carboxykinase (pck) representing the conversion of OAA to

PEP is also upregulated similar to what is expected when the

cells retool their metabolism for growth on acetate. This is a

key entry point of carbon into gluconeogenesis. The genes of

fumarate reductase (frd) of the TCA cycle are also upregu-

lated stepwise along with the control variable for the acetate

pathway. Other genes upregulated with this control variable

are predicted glycogen synthase protein (glgS), transcrip-

tional regulator, ihfA, and yfiA related to biofilm formation,26

DNA regulation,27 and translation inhibition.28

There were also some unexpected relationships between

the glucose variable and various components of the central

carbon metabolic pathways. TCA cycle transcripts for sucA
and succinate dehydrogenase (sdhD) showed a downshift.

Also indicating a downshift was malate dehydrogenase

(maeA) of gluconeogenesis, which converts members of the

TCA cycle to gluconeogenic products. This is further ana-

lyzed in the discussion.

Study of glucose–lactose diauxie

To verify the relationships of the enzyme synthesis cyber-

netic variables to gene expression in other diauxic growth

systems, a glucose–lactose growth scenario for E. coli
MG1655 was also studied. After glucose has been exhausted,

genes associated with the consumption of lactose located of

the lac operon are upregulated to facilitate growth on the

new substrate. From the comparison of cybernetic ui varia-

bles with the expression data in Figure 4, it is clear that the

lactose cybernetic variables and the regulation of genes

related to the lactose pathway have a relationship. Both indi-

cate an increase from a low to high value.

Given that lactose is a disaccharide composed of glucose

and galactose, there is much overlap between the metabolic

pathways for growth on lactose and growth on glucose. The

main element not involved in lactose metabolism; the PTS

glucose transporter complex consisting of ptsG and crr was

surveyed.29 The behavior of this gene shows some decrease

as glucose is exhausted shortly before the glucose control

variable goes down. However, afterward it rebounds upward

and shows much fluctuation up and down with decreases in

expression being related to decreases in growth rate indi-

cated on the biomass curve.

Discussion

After making comparisons between the cybernetic variable

for induced enzyme synthesis ui and gene expression data

for three separate growth scenarios, it is evident that the two

entities are related. Overall, the similarities between gene

expression dynamics and the predicted control are qualita-

tively similar and occur on the same time scale. The shifts

in enzyme resource allocation predicted by the model occur

within the same time period that shifts in gene expression

data occur. Moreover, when looking at correlational statistics

between the least noisy data set, the RT-PCR scenario, and

the cybernetic control values, a strong statistical correlation

is established. For the glucose variable showing a stepdown

behavior, the Pearson correlation between the model and

each gene related to that pathway is 0.9214 with a p value

of 4.351e-044. For the acetate pathway, it is 0.7814 with a p
value of 1.017e-09. These significant correlations indicate

that there is a strong similarity between the dynamic

Table 3. Genes Grouped by Behavior After Glucose Exhaustion

Acetate Group (Up) Glucose Group (Down)

acs
frd
glgS
ihfA
pck
yfiA

crp
cspA
cya
edd
infA
lacZ
maeA
mdh

pfkA
ppc
ptsG
pykF
sdhD
sucA
zwf

Figure 4. Glucose–lactose matching law variables with gene expression profiles for relevant genes.

(a–c) in the top row show the expression profiles of lac operon genes lacZ, lacY, and lacA along with the lactose pathway’s ui variables. The bottom row
shows the profiles for genes relevant to glucose metabolism which are the phosphotransferase glucose transporter complex of (d) ptsG and (e), regulator crr.
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behavior of the gene expression and the model’s prediction

of enzyme synthesis regulation.

It should be explicitly stated that the prediction of these

cybernetic variable behaviors by the model is not made

using any information from the gene expression level. The
only input into the model’s development and parameteriza-

tion comes from time series data describing biomass and

substrate levels. The ability to match gene expression is only
made from the assumption that enzymes for substrate path-

ways are regulated in such a way to optimize the rate of for-

mation of biomass. The fact that this assumption endows the
model with an ability to generate predictions of control that

mimic the behavior of gene expression in these scenarios

helps to validate the idea that modeling E. coli cells from a
goal oriented perspective is useful.

Modeling E. coli’s growth using a cybernetic approach
differs substantially from other modeling methods. Instead of

exhaustively enumerating the minutiae of metabolic regula-

tory mechanisms as is done in a host of other, kinetically
driven modeling frameworks for this scenario,30,31 cybernetic

models instead model the sum of these regulatory actions as

cohesive, integrated machinery that attains some optimal

behavior. By comparing the dynamics of E. coli’s enzyme
production machinery with the cybernetic model’s prediction

of enzyme synthesis regulation, the wealth information

related to gene expression regulation is compressed down
into a succinct description related to the organism’s goal.

Unlike FBA which also makes assumptions regarding opti-

mal yields,32 cybernetic models also retain consideration of
the dynamic nature of optimality. Cells cannot be entirely

prescient and, instead, react spontaneously to their changing

environments.

The objective function of growth rate maximization even

applies to scenarios such as glucose–acetate growth, where it
has been observed that little to no anabolism occurs when E.
coli consumes acetate.33 Even if growth on acetate is infini-

tesimally small, the order of substrate consumption is still

preserved by the growth rate maximization objective because
the growth rate on glucose is still higher. Other objective

functions, such as carbon uptake rate maximization, would

still predict the same sequence of substrate consumption as
well. Given that the order of substrate consumption does not

change the cybernetic variables themselves should be

roughly equivalent in either case. The predicted trends in
gene expression still remain valid despite the fact that the

growth rate on acetate approaches zero.

The present work only has surveyed the ability of

lumped cybernetic models to predict changes in gene

expression. More advanced cybernetic frameworks such as
the hybrid cybernetic model (HCM)34 and the lumped

hybrid cybernetic model (L-HCM)35 may be able to gener-

ate more detailed and accurate predictions of gene expres-

sion in these scenarios. This stems from the fact that these
models may incorporate multiple pathways in the form of

elementary modes to describe the consumption of a single

substrate. The regulation of numerous metabolic pathways
could provide a higher resolution prediction of gene expres-

sion. The development of such descriptions, however,

would mandate more detailed information at the level of
substrates to isolate the exact state of specific elementary

modes. Without such information, these models would be

undetermined and describing the control of any reaction
would be impossible.

While more coarse-grained, the correlation between the

trends of the present LCMs and gene expression is a vindica-

tion of the simplicity of this approach. Overall, the merit in

LCM approximations lies in their simplicity and potential

use in bioreactor modeling for the purposes of optimization

and control. Other approaches that make use of metabolic

network data, such as dynamic flux balance analysis,36 are

unable to capture the dynamics of the studied diauxic

switch.

Despite an overall success of the forgoing comparison of

cybernetic models and gene expression changes, some dis-

crepancies when comparing these different systems did arise.

For example, the glucose–acetate microarray data for

BW25113 indicated increases in expression for most all of

the TCA cycle genes including frd, sucA, sdhA, and mdh. In

the RT-PCR data for the MG1655, the transcripts for TCA

cycle genes have varying behaviors. Fumarate reductase

(frd) shows an increase similar to the BW25113 strain data.

However, sucA, sdhD, and mdh show declining expression.

For these, it should be noted that the time periods over

which the two data sets are taken varies. The MG1655 data

are taken over only one hour after glucose exhaustion. On

the other hand, the data analyzed in this scenario for the

BW25113 strain go for 3 h longer than the MG1655 data.

Both data sets do indicate an initial decrease. The data taken

over a longer time period demonstrate that these genes ulti-

mately reach higher levels of expression as indicated by

fluxes taken at steady states for these growth scenarios. The

similarity of these gene expression profiles to the ui control

variables is still notable. Depending on the time-frame

selected for this comparison, there may be a varying but rel-

atively small number of genes that change groupings among

the different pathways. Considering the expression data from

a broader angle, there still is a significant agreement between

the control variables’ behavior and gene expression dynam-

ics for a majority of the genes surveyed.

The glucose–lactose system showed good agreement

between the lactose pathway’s cybernetic variable and the

gene expression for genes dedicated to lactose metabolism.

However, the glucose variable did not show a strong rela-

tionship with gene expression for genes related strictly to

glucose metabolism. This is, in part, due to the fact that glu-

cose and lactose metabolic pathways have significant over-

lap. Particularly, the entire pathway for glucose consumption

is also used for lactose. Isolating particular chemical reac-

tions for glucose’s nonoverlapping metabolic reactions is a

difficult task. The main component in the glucose pathway

that is not in the lactose pathway is the transporter ptsG. The

expression of ptsG does not behave the same way the glu-

cose ui variable behaves. It is expressed not only when glu-

cose is present in culture, but also when lactose is being

consumed. At first glance, the expression of this transporter

appears to be linked more closely with growth rate and not

glucose presence. When looking for explanatory information

from the literature, however, ptsG expression is regulated by

a number of intracellular transcriptional factors including

mlc, crp-cAMP, and Fis37–39 and such conclusions require

more consideration to develop. To model this situation more

accurately, a model that dedicates a larger portion of cellular

resources toward nongrowth functions such as the production

of ptsG could be used. Other formulations of cybernetic

models have considered the idea of fractional resource

investment into preadapted pathways based on other
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regulatory mechanisms which may be another factor related

to gene expression for the glucose pathway.40

By means of this study, it is apparent that a significant

number of transcripts demonstrate a strong relationship with

the model’s projection of their dynamic behavior. This is

especially true of genes related to the uptake of various sub-

strates including ptsG and acs in the glucose–acetate sce-

nario and for the lac operon of the glucose–lactose scenario.

While not all genes conform to the trends established by the

ui cybernetic variables, future development of models that

incorporate more information regarding the structures of

metabolic networks may better predict regulatory behavior.

The foregoing work helps to verify the assumption that cells

dynamically regulate different metabolic pathways towards

optimality. The assumed, cybernetic mechanism of enzyme

synthesis control correlates strongly with how actual biologi-

cal systems modulate enzyme synthesis. This indicates that

cybernetic models have the potential to predict general

trends in gene expression dynamics in other systems using

information at the metabolite level and an assumption of the

organism’s goal for metabolic regulation.
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