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Various cellular and subcellular biological systems occur in the conditions where both reactions and diffusion take
place. Since the concentration of species varies spatially, application of reaction-diffusion master equation has served
as an effective method to handle these complicated systems; yet solving these equation incurs a large CPU time penalty.
Counter to the traditional technique of generating many sample paths, this article introduces a method which combines
Grima’s effective rate equation approach (Grima, J Chem Phys. 2010;133:3) with a linear operator formalism for diffu-
sion to capture averaged species behaviors. The formulation also shows correct results at various choices of compart-
ment sizes, which have been found to be an important factor that can affect accuracy of the final predictions (Erban,
Chapman, Phys Biol. 2009;6:4). It is shown that the method presented allows the computation of the mesoscopic aver-
age of reaction-diffusion systems at considerably accelerated rates (exceeding a thousand fold) over those based on
sample path averages. VC 2017 American Institute of Chemical Engineers AIChE J, 63: 5258–5266, 2017
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Introduction

It is a pleasure to participate in a special journal issue hon-

oring Roy Jackson, an eminent scholar of the chemical engi-

neering profession whose contributions most significantly

focused on elegant mathematical treatment of particulate sys-

tems noted as much for their complexity of behavior as for

their engineering importance. The source of complexity is the

interplay of particulate motion in a fluid environment together

with physicochemical processes featuring reaction and diffu-

sion. Jackson’s research laid the foundation for the mathemati-

cal treatment of such systems by contributions to formulation,

analysis and computation of system behavior.
While Jackson’s concern was with traditional settings, it is

our objective to address somewhat similar systems that are

more of contemporary interest as well as in need of fresh

approaches toward their study. Abstractly, they pertain to par-

ticulate entities that are distributed in a multidimensional

space comprising both spatial coordinates as well as thermo-

dynamic state variables such as temperature, concentrations

and so on. The particulate entities may be either material par-

ticles (e.g., catalyst pellets) or living cells in which chemical

reaction and physical transport occur together. The system

evolves not only through the dynamic behavior of the individ-

ual entities but also through change in the number of such enti-

ties. The framework required to extract system dynamics is

that of general population balances as expounded in Ramkrish-

na’s book.1 We seek the statistically averaged behavior of the

system, a frequent objective of Jackson’s endeavors connected

with his study of gas–solid dispersions.
We will first inquire into the importance of the problems of

interest to this article, and follow up by an explanation of what

is distinctive about the methodology essential to solve them.

In regard to the first, while a recently published review2 delib-

erates a diverse variety of potential applications, we will point

here to problems connected with biological signaling pro-

cesses in which cells exposed to specific signaling molecules

initiate a set of intracellular gene-regulatory reactions result-

ing in the formation of specific proteins. The reader will note

that this process represents the very basis of cellular differenti-

ation which transforms stem cells into numerous cell types

with characteristic functions. The importance of this applica-

tion should therefore be evident.
The second issue relates to difficulties associated with the

solution of the problems just outlined and how they may be

overcome. Signaling in cells often involves a small number of

molecules so that the reactions among them occur at a random

rate.3–5 In addition, they follow nonlinear kinetics so that the

average behavior does not obey macroscopic kinetics. Thus

intracellular balances are (continuous) nonlinear stochastic

differential equations whose average behavior must be found

by detailed evaluation of sample paths using Monte Carlo sim-

ulative algorithms.6,7 This process becomes forbiddingly

tedious for a sizable population of cells with further exacerba-

tion arising from often encountered stiffness of the differential

equations. The chemical master equation (CME),8 affords a

natural avenue for formulation of stochastic reaction systems

preserving the discrete nature of the numbers of reacting enti-

ties. Together with system size expansion techniques,8,9 CME

provides in fact the route to arriving at the continuous

Correspondence concerning this article should be addressed to D. Ramkrishna at
ramkrish@purdue.edu.

VC 2017 American Institute of Chemical Engineers

5258 AIChE JournalDecember 2017 Vol. 63, No. 12

http://orcid.org/0000-0001-8615-5203


stochastic differential equations referred to above. However,
CME does not inspire computational methodology toward
extracting system behavior. Consequently, researchers
have been led to use simulation methods such as stochastic
simulation algorithm (SSA)10 (or equivalently the interval of
quiescence used by Shah et al.11) suitably embellished by
“tau-leap” strategies designed to skip events that do not
make notable changes to system dynamics.12–18 In spite of the
foregoing armory of techniques, the computation of average
behavior of systems of interest to this article has been thwarted
by overwhelming demands on computational costs primarily
due to the large number of stochastic dynamical equations.

A refreshing approach toward resolving the above dilemma
appears in a paper by Grima,19 which raises the possibility of
directly obtaining average (mesoscopic) behavior by entirely

circumventing the computation of sample paths. The underly-
ing methodology is grounded in quasi-linearization leading to
a derivation of dynamical equations which represent the poten-
tial source of average behavior. A demonstration of this
approach appears in the recent publication of Smith et al.20

from Grima’s group through a biological example which

shows that the average mesoscopic behavior was dependent on
the diffusion coefficients connected with random motion.
Such behavior is characteristic of growth in biofilms, a
research area which motivates our current effort.

The objective of this article is to investigate a stochastic
reaction system, comprising n species, in a discrete number of
well-stirred cells which are connected by diffusive transport

thus coupling the behavior of all reaction cells. The reactions
are represented as

s1;jX11s2;jX21 � � �1sn;jXN�!kj

r1;jX11r2;jX21 � � �1rn;jXn;

j51; 2; . . . ;R
(1)

This scenario is a simplified version of growth in a biofilm in
which cells are embedded without accounting for growth or
distinction between extra- and intracellular variables. The
mass balance equations for each cell account for diffusive
mixing from all other cells and a stochastic reaction term in
the given cell. Taking expectation of the above equations pro-

duces the expectation of the nonlinear reaction terms to which
Grima’s19 approximation is made.

While stochastic simulation has been largely restricted to
well-mixed stochastic systems, its extension to a system where
diffusional effects compete with reaction has been somewhat
sporadic. Experiments show that diffusion can also occur at
rates comparable with those of reactions17 thus invalidating

the well-mixed assumption. In contrast to a well-mixed sto-
chastic system, studies on spatial stochastic systems have only
begun recently and a clear understanding of how to accurately
tract them is yet to emerge. Moreover, generation of sample
paths by SSA can be utilized to obtain the average number
density of species, the true solution. This true solution is

assumed to be almost the same or only slightly different from
the solution of the CME. Recent studies from Grima’s group19

showed at the mesoscopic limit, the deviation between these
two can be significant. His approach to reaction kinetics for
small volumes presents a way to handle reaction in this sys-
tem. This article introduces the concept of applying a discrete
self-adjoint linear operator whose spectral representation is

used to capture the diffusional effect.
In this article, we attempt to handle this problem in two

dimensions by applying two different methods to capture both

reactions and diffusion without generating sample paths. The

domain of interest is divided into a two-dimensional array of

small well-mixed compartments. These compartments are

assumed for convenience to be squares of equal size although

this assumption is not essential. Reactions occur within each

compartment. Concentration of species varies spatially which

allows diffusion to occur between neighboring compartments.

In the following section, we will briefly discuss the application

of the effective mesoscopic rate equations (EMREs)19 in an

effort to approximate the solutions from CME for the reaction

system. In the next section, we will provide formulation of the

linear operator and its definition, as well as how it can be

applied in order to account for the diffusion effect in the sys-

tem. The results from our current method can be then com-

pared with the results generated by solving the reaction-

diffusion master equation.21–24

Analysis

The two dimensional domain is divided into discrete

squares of length l. Along the “horizontal” and “vertical” coor-

dinate, we have
i50;61;62; . . . ;6M ð2M11Þ discrete elements.

Denote

SI � 2M;2M11; . . . ;22;21; 0; 1; 2; . . . ;Mf g

j50;61;62; . . . ;6N ð2N11Þ discrete elements. Denote

SJ � 2N;2N11; . . . ;22;21; 0; 1; 2; . . . ;Nf g

There are n variables each representing particle numbers

of reaction species in the cell located at i; jð Þ; denoted

Z
sð Þ

i;j ; s51; 2; . . . ; n. Define Z
sð Þ

i;j � X
sð Þ

li;lj=l as the ijth compo-

nent of scaled vector Z with X as the vector the actual particle

numbers in the physical domain. Collating every cell in the

domain, we may define the vector

Z sð Þ5 Z
sð Þ

i;j ; i 2 SI; j 2 SJ
n o

2 H � <2N11 �<2M11

Effective mesoscopic rate equation19

The CME in general cannot be solved analytically; how-

ever, the dynamics of the reaction system (1) can be captured

by means of the system-size expansion due to Van Kampen8

using

ni

X
5/i1X21=2Ei (2)

where /i is the macroscopic concentration of species i as

determined by the regular rate equation (RE) and Ei is a con-

tinuous random variable which represents the system-scaled

fluctuation in concentration. Grima’s analysis19 arrives at the

following equation in the average fluctuation:

dhEi
dt

5JhEi1X21=2D Cð Þ1OðX21Þ (3)

dC

dt
5JC1CJT1D1OðX21=2Þ (4)

where hEi � hE1i hE2i � � � hEni½ �T is the vector of the first

moment,
J � Sr/f /ð Þ n3nð Þmatrix, f /ð Þ � f1 /ð Þ f2 /ð Þ � � � fn /ð Þ½ �T ,

/� /1 /2 � � � /n½ �,
S � Sij � sij2rij

� �
; i51; 2; . . . ; n; j51; 2; . . . ;R

� �
is an

n3Rð Þ matrix.
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D is a column vector whose sth entry are the coefficients of

X21=2, C is a symmetric matrix with its ijth coefficient given

by Cij � hEiEji, where the angular bracket denotes the mean.

D � 1

2

Xn

k51

Xn

i;j51

@Jki

@/j

Cij2
Xn

i51

/i

@Jki

@/i

 !
ek (5)

In the above equation ek � 0 � � � 1 � � � 0½ �T is the kth

unit (column) vector in <n. The notation D Cð Þ in Eq. 3 is used

to indicate that the vector D is evaluated at C, satisfying Eq. 4,

using Eq. 5. From these equations, the average value of each

species can be calculated directly without usage of the SSA

method for sample paths.

Linear operator for the diffusion

Reactions. We assume R reactions involving the n species.

The propensity of the rth reaction occurring in the cell at

i; jð Þ is denoted as ar Zi;j

� �
. Next, we define stoichiometric

matrix bs;r; s51; 2; . . . ; n; r51; 2; . . . ;R
� �

so that the rate of

change of concentration of each species may be related to the

reaction rate vector. Thus we may write the rates of change of

concentration of the sth extracellular species in rectangular

domain at i; jð Þ as
PR
r51

bs;rar Zi;j

� �
.

Mass Balances. We have a set of stochastic processes Z
sð Þ

i;j

that must be simulated so that their average values hZ sð Þ
i;j i can

be obtained. The average concentrations must satisfy the dif-

ferential equations

dhZ sð Þ
i;j i

dt
5Dl hZ sð Þ

i21;ji1hZ
sð Þ

i11;ji1hZ
sð Þ

i;j21i1hZ
sð Þ

i;j11i24hZ sð Þ
i;j i

� �

1

	XR

r51

bs;rar Zi;j

� �

;

s51; 2; . . . ; n; i50;61;62; . . . ;6M21; j50;61;

62; . . . ;6N21

(6)

Dl is the diffusion coefficient for the lth species through the bio-

film. The last term on the right hand side is the change in con-

centration resulting from reactions. For the situation where no

variable can escape through the boundaries of the biofilm, we

may write the equations for the boundaries as shown below.

d

	
Z
ðsÞ
2M;j



dt

5Dl

�	
Z
ðsÞ
2M11;j



1

	
Z
ðsÞ
2M;j21



1

	
Z
ðsÞ
2M;j11




23

	
Z
ðsÞ
2M;j



Þ1
	XR

r51

bs;rarðZ2M;jÞ


;

s51; 2; . . . ; n; j 2 SJ

(7)

d

	
Z

sð Þ
M;j



dt

5Dl

	
Z

sð Þ
M21;j



1

	
Z

sð Þ
M;j21



1

	
Z

sð Þ
M;j11



23

	
Z

sð Þ
M;j


� �

1

	XR

r51

bs;rar ZM;j

� �

;

s51; 2; . . . ; n; j 2 SJ

(8)

dhZ sð Þ
i;2Ni
dt

5Dl hZ sð Þ
i21;2Ni1hZ

sð Þ
i11;2Ni1hZ

sð Þ
i;2N11i23hZ sð Þ

i;2Ni
� �

1

	XR

r51

bs;rar Zi;2N

� �

;

s51; 2; . . . ; n; i 2 SI

(9)

dhZ sð Þ
i;Ni

dt
5Dl hZ sð Þ

i21;Ni1hZ
sð Þ

i11;Ni1hZ
sð Þ

i;N21i23hZ sð Þ
i;Ni

� �

1

	XR

r51

bs;rar Zi;N

� �

;

s51; 2; . . . ; n; i 2 SI

(10)

Operator Formulation. Equations 6–10 for each s may be

succinctly written by defining the following operators.

LI : <2M11 ! <2M11; LJ : <2N11 ! <2N11;

II � Identity on <2M11; IJ : Identity on <2N11

T � LI � IJ1II � LJ
� �

: <2M11 � <2N11
� �

! <2M11 � <2N11
� �

where

LI �

22 1 0 � � � 0

1 22 1 0 � � � 0

0 1 22 1 0 � � � 0

� � � �

0

0 � � � 1 22 1

0 � � � 0 1 22

2
666666666666666666664

3
777777777777777777775

2M11ð Þ3 2M11ð Þ

;

LJ �

22 1 0 � � � 0

1 22 1 0 � � � 0

0 1 22 1 0 � � � 0

� � � �

0

0 � � � 1 22 1

0 � � � 0 1 22

2
666666666666666666664

3
777777777777777777775

2N11ð Þ3 2N11ð Þ

The above are symmetric, tridiagonal (Jacobi) matrices with

real eigenvalues and orthogonal eigenvectors. Note further

that if we had chosen different sizes for the discrete reaction

domains, we would still have a self-adjoint operator.25

Denoting the eigenvalues and eigenvectors of LI and LJ by
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kI
i ; zI

i ; i 2 SI
� �

; kJ
j ; zJ

j ; j 2 SJ
n o

they are identified (see Amundson26) as

kI
i522 11cos

p i1Mð Þ
2 M11ð Þ

� �
; i 2 SI

zI
i5

X2M51

k51

sin p i1M11ð Þk= 2M12ð Þ½ �
sin p i1M11ð Þ= 2M12ð Þ½ �

� �2
" #1=2

3

sin p i1M11ð Þð2M11Þ= 2M12ð Þ½ �
sin p i1M11ð Þ 2M12ð Þ½ �

2
sin p i1M11ð Þ 2Mð Þ= 2M12ð Þ½ �

sin p i1M11ð Þ 2M12ð Þ½ �

sin p i1M11ð Þ 2M21ð Þ= 2M12ð Þ½ �
sin p i1M11ð Þ 2M12ð Þ½ �

�

�

21ð Þ2M

2
666666666666666666666666664

3
777777777777777777777777775

kJ
j 522 11cos

p j1Nð Þ
2 N11ð Þ

� �
; j 2 SJ

zJ
j 5

X2N11

k51

sin p j1N11ð Þk= 2N12ð Þ½ �
sin p j1N11ð Þ= 2N12ð Þ½ �

� �2
" #1=2

3

sin p j1N11ð Þð2N11Þ= 2N12ð Þ½ �
sin p j1N11ð Þ 2N12ð Þ½ �

2
sin p j1N11ð Þ 2Nð Þ= 2N12ð Þ½ �

sin p j1N11ð Þ 2N12ð Þ½ �

sin p j1N11ð Þ 2N21ð Þ= 2N12ð Þ½ �
sin p j1N11ð Þ 2N12ð Þ½ �

�

�

21ð Þ2N

2
666666666666666666666666664

3
777777777777777777777777775

The operator T is readily shown to be self-adjoint relative to

the regular inner product in H given by huI � uJ; vI � vJi5
huI; vIiIhuJ; viJ , where subscripts I and J are used to repre-

sent the regular inner products in <2M11 and <2N11,

respectively. The self-adjointness of T follows from that

of LI � IJ
� �

and II � LJ . We show the self-adjointness of

LI � IJ
� �

below.

h LI � IJ
� �

uI � uJð Þ; vI � vJi5h LIuI � uJ
� �

;

vI � vJi5hLIuI; vIiIhuJ; vJiJ
5huI;LIvIiIhuJ; vJiJ5h uI � uJð Þ; LIvI � vJ

� �
i

5huI � uJ; LI � IJ
� �

vI � vJð Þi

The self-adjoint projections of T are given by

PI
i � PJ

j

� �
ðÞ5hzI

i ; ðÞiIhzJ
j ; ðÞiJ

Spectral Representation of T and Its Functions.

T5
XM

i52M

XN

j52N

kI
i1kJ

j

� �
PI

i � PJ
j

� �

Since in the sequel, it would be necessary to obtain eT, we
identify it as

eT5
XM

i52M

XN

j52N

e kI
i 1kJ

jð Þ PI
i � PJ

j

� �

Toward Stochastic Simulation. The differential Eqs. 6–9
can be concisely written as
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dhZi
dt

5DThZi1hBa tð Þi (11)

where B � bsr; s51; 2; . . . ; n; r51; 2; . . . ;Rf g; a � a1 a2½
� � � aR�T . It is readily shown that the operator DT is self-adjoint
with respect to the inner product u; v½ � � hD21u; vi
where h; i is the inner product with respect to which D

and T are both self-adjoint.
The foregoing differential equation is to be integrated from

t5sp, where sp is the pth discrete time. Equation 11 may be
integrated subject to the value of hZ sp

� �
i. The solution may

be written as

hZ tð Þi5e t2spð ÞDThZ sp

� �
i1
ðt
sp

e t02spð ÞDThBa t0ð Þidt0 (12)

The first term on the right side of the above equation captures
the change in species due to diffusion occurring between

neighboring compartments and the second term describes the
change in particle numbers as the result of reactions. The sec-
ond term on the right hand side of Eq. 12 becomes difficult to
solve as the system involves high order reactions. Grima’s

EMRE method,19 briefly discussed in the earlier section, pro-
vides a tool to compute this average change and hence com-
plete the full calculations for this reactive-diffusive system.

Kullback-Leibler Divergence. Kullback-Leibler diver-
gence is a measure of how one probability distribution
diverges from an expected probability distribution.27–29 In a

general case, a calculated divergence of 0 indicates no differ-
ence detected between the two distribution, whereas,
Kullback-Leibler divergence of 1 indicates that the two distri-
butions behave in totally different manner and can conclude

they have no relationship to one another. The measurement
can apply to both discrete random variables and continuous
random variables. In our case, we will use the discrete version
shown in Eq. 13 below:

DKLðpðxÞjjqðxÞÞ5
X
x2X

pðxÞ ln
pðxÞ
qðxÞ (13)

where pðxÞ is the expected probability distribution and qðxÞ is
probability distribution which is used to estimate pðxÞ.

Examples

Diffusion augmented Schlogl’s system

The well-known system Schlogl has been well studied and

used widely to illustrate new simulation algorithms. The sys-

tem involves two reversible stochastic relations and the envi-

ronment can be assumed to be well-mixed. Here in this article,

we attempted to expand the system and allow diffusion to

occur within the domain of interest. We also perturb the condi-

tions slightly so that we can still relate our simulation results

for the diffusive reactive system with that of the original single

cell case. The Schlogl’s chemical reaction model is shown in

Ref. 14. This model is noted for its bistability. B1 and B2 are

constants with their particle numbers as N1 and N2,

respectively

B112X! c1

c2

3X; B2
! c3

c4

X

The values of (dimensionless) parameters, adapted from Cao

et al.,11 are c15331027, c251024, c351023, c453:5,

N1513105, and N2523105. The initial condition of X is 250

and we simulate the system up to t54.
For this application, we allow the same set of reactions to

occur within each squared sub-domain and the diffusion

between different neighbor sub-units. Also the particle num-

bers of B1 and B2 in the bulk surrounding the domain is main-

tained to be the same as those in the single cell case. We set

the particle numbers of all species in all compartments to be

zero and set diffusivity to be 0.1.

Bimolecular reactions-two model problems

This is a hetero-reaction which involves two species A and

B. The example is subjected to two reactions below:

A1B�!k1 B; 1�!k2 A

In the first reaction, B acts as a catalyst for the decay of A. The

second reaction is coupled with the first and represents the

generation of A. If we denote a the area of the cell. The values

for parameters are k1=a50:2s21; k2a51s21; Að0Þ55; and

Bð0Þ51.

Figure 1. Schlogl’s system (a) Distribution of X in the case of single cell simulation and (b) Distribution of X in the
center compartment in reactive diffusive system.

[Color figure can be viewed at wileyonlinelibrary.com]
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Discussion

Two main examples have been utilized to illustrate how

effectively the proposed method works. The first example is

the diffusion augmented Schlogl’s system. Figure 1a shows

the distribution of X at t54 by applications of two different

approaches: Langevin’s equation30–32 and Master equation

with 30,000 sample paths each. The figure shows a well-

known feature of this system, the bi-modal distribution. In Fig-

ure 1b, we have shown the distribution X in the central com-

partment of the domain using RDME.
From the figure, there is not much difference between two

distributions, coming from 5000 sample-path vs. 10,000

sample-path simulations. The number of sample paths is sig-

nificantly lower than that in the case of the single cell as the

time step is chosen to be the smallest of those generated for all

the compartments. This lower time step reduces the error in

the propensity function due to its being fixed during the time

interval. This comparison suggests that beyond 5000 sample

paths, simulation produces no significant difference in X dis-

tribution. The first interesting feature from this figure is that

the particle number is a lot lower as compared to that in the

single cell case. All inner compartments have all species set to

be zeros initially. As a result of that, there is only diffusion for

some period of time through which the materials are trans-

ferred from the bulk to the inner cells. Reactions first take

place at the outer regions of the domain and subsequently in

the inner regions as diffusion occurs and transfers materials

from the periphery to the interior. Specifically, in the center

compartment, there is no species initially thus nothing occurs

until much later, and this explains why the particle number of

X is much lower in this case. Another aspect of this plot is that

even though the range of X is reduced, the bimodal nature of

the distribution of X (observed in the single cell case) is

retained. This is a consequence of our choice of boundary and

initial conditions. In other words, fixing the bulk concentra-

tions in the exterior, provides for some uniformity with time

because of diffusion thus approaching the single cell circum-

stance. The center cell is also located at the position that is

most symmetric spatially, hence receives the most steady sup-

ply of particles from all directions because of diffusion.

Consequentially, X distribution in this case retains the bimo-

dality observed in the single cell case. To illustrate further,

consider Figure 2b which shows the X distribution in a com-

partment located in the outer-most layer.
Unlike the previous case shown in Figure 2a, the distribu-

tion shows no bimodal distribution for which our hypothesis is

as follows. Due to the gradient in concentration between the

bulk (source) and inner compartments (sink), there is a contin-

uous flow-in and flow-out which gives rise to a very different

set of conditions, as compared to the single cell case. On top

of it, concentration of species in neighboring compartments is

not uniform, differentiating this case from the previous case of

the center compartment where the concentration of species

around the compartment is relatively uniform. We have also

performed Kullback-Leibler divergence for both cases of the

center cells and the outer cell. The calculation of the KL diver-

gence is straightforward when we have the same set of data

with different frequencies for the two distributions. In our

case, since stochastic simulations can provide different values

from each sample path, two obtained data are composed of

values that are similar but not exact. As a result, the

Figure 2. Distribution of X in (a) center compartment and (b) outer compartment.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Dynamic plot of averaged X in the center
compartment.

[Color figure can be viewed at wileyonlinelibrary.com]
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calculations are modified as follows. Instead of looking at
each specific value and its corresponding frequency, we chose
to compare the total frequency of a small range of values. Spe-
cifically for this example, we selected the range to be 2. Also, E
50:0001 is chosen to assign to the range of values which is
available for one data set and not the other. The KL divergence
for the center compartment and the outer compartment shown
in Figure 2 are 0.0646 and 0.0869, respectively. Both values
indicate even with only 5000 samples paths, the obtained distri-
butions can capture around 92% or better of that from 10,000
sample paths. In Figure 3, we compare the averaged value of X
in the compartment located at the center of the domain at differ-
ent time points generated from two different method: RDME
method (10,000 sample paths) and our method.

The average value of X can be calculated as the sum of all
products between X value collected from all realization and its
corresponding frequency. The data points generated from our
methods show close prediction to those simulated by RDME.
The averaged relative error from all these points is only 0.12.
To further investigate the validity of our approach, we now fix
the final time point t54 and vary the positions. Figure 4 shows

the average value of X at different compartments within the

whole domain.
Horizontal axis indicates how many cell units that are

between the compartment of interest and the center compart-

ment. The two methods produce close predictions for the aver-

aged value of X at various compartments within the domain.

An interesting phenomenon, shown in Figure 4, has been

observed in this reaction diffusion system. There is a jump in

X between the cells located at the positions that are three units

and four units away from the center cell. Figure 4 shows the

average value of X at t 5 4 of different cells located at differ-

ent positions with respects to the center compartment. The

value of X at each specific location on the plot is calculated as

the average value from all the compartments that have the

same distance to the center compartment. Due to the nature of

how the initial conditions and boundary conditions were cho-

sen as well as the diffusion effect, value of X is not necessarily

diminishing monotonically with respect to the distance. We

fixed the concentration of B1 and B2 in the bulk surrounding

the domain to be the same as in the single cell case and zeros

everywhere in the inside of the domain initially. We then

allowed the diffusion to transfer the materials throughout the

domain. Because of that, reactions first take place at the outer

regions of the domain and subsequently in the region as diffu-

sion occurs and transfers materials from the periphery to the

interior. There are two main effects we have observed here.

Reactions occur to generate more X and diffusion transfer the

materials between compartments. Initially reactions only

occur close to the exteriors but diffusion carries both reactants

and products to the interior. At each time point, there are some

compartments located inside that gain X both from reactions

and the diffusion from the exterior side and so can break the

general trend that we would expect. For the specific time point

t 5 4 those specific cells that gain the double effect mentioned

above are located around four “compartments” away from the

center cell.
The averaged relative error is calculated to be 0.09. The cur-

rent algorithm outperforms the RDME in term of CPU time.

The simulation time for the present method is equivalent with

the amount of time it would take the RDME to simulate three

trajectories.

Figure 5. Stationary distribution of A.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 6. Stationary distribution of A in the reactive dif-
fusive system.

[Color figure can be viewed at wileyonlinelibrary.com]
Figure 4. Averaged value of X at different locations.

[Color figure can be viewed at wileyonlinelibrary.com]
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The second example is adopted from Ref. 33 except that we

modify the rate constant unit and diffusivity unit for reactions

and diffusion since our results are simulated for the domain in

two dimensions. Similar to the derivation in Ref. 33 the solu-

tion for the master equation in the well-mixed case can be

solved analytically in the similar manner and arrives as:

/ðnÞ5 1

n!

�
k2a2

k1B0

�n

exp



2

k2a2

k1B0

�
;

where the term on the left indicates the probability that there

are n molecules of A in the system. Figure 5 shows the distri-

bution of A from generating 10,000 sample paths in SSA

method and it is confirmed to have the same results as from

Eq. 13.33

For example 2, the whole domain is composed of

21x21 compartments. DA5DB51 lmð Þ2s21; L51 lm,

k150:2 lmð Þ22s21; k251 lmð Þ22
s21. Within any compart-

ment i; jð Þ, the propensity function for the reactions can be

computed according to:

aij;1 tð Þ5k1Aij tð ÞBij tð Þ=l2; aij;2 tð Þ5k1l2:

where l2 is the area of each compartment. In a similar manner,

we can write the propensity function for the diffusion of A and

B as AijDA=l and BijDB=l. Also, we find the ratio between the

propensity function of diffusion to that of reaction to be about

100, indicating that diffusion is a lot quicker than reactions in

this case. In Figure 6, we present the three main distributions:

the stationary distribution generated from Eq. 13, the distribu-

tion generated from the usage of SSA when the domain is

divided into 21 3 21 compartments, and the distribution gen-

erated by our present method. We denote them as distribution

(I), distribution (II), and distribution (III), respectively. In

Erban et al.,33 he discussed scenarios where the SSA might

not be able to capture accurate behaviors of the system. The

article further discussed criteria for choosing the appropriate

size of each compartment. This development incorporated the

effect of diffusivity to the selection of compartment size. He

called the new algorithm as an improved SSA and successfully

shown that this new algorithm predicts very closely the analyt-

ical solution. In our comparison, we compared results gener-

ated from the analytical solution, the regular SSA and our

present method.
Distribution (II) shifts to the right as compared to the first

distribution. This movement has been discussed in the work of

Isaacson24: in the theoretical limit l! 0, the bimolecular reac-

tion A1B! / is lost and the compartment model can only

recover the diffusion part. In the example, the second reaction

is a zero-th order reaction and so can be computed in term of a

total production of A in the whole domain, which is indepen-

dent of choice l. The bimolecular reaction, conversely, is a

second order reaction and hence its rate of consumption of A
decreases as l is reduced. These two effects result in a larger

amount of A at the end of the process in the domain. Gener-

ally, there is an agreement in the literature that there is a

bound on l so that l� k1= DA1DBð Þ.24,34 That also explains

why when l becomes small, the regular SSA might not neces-

sarily predict accurately the behavior of this system. However,

distribution III generated by our method produces similar pre-

diction to the stationary distribution I. KL divergence mea-

surement is used to compare among distribution shown in

Figure 6. Similar to the previous example, we selected the

range of each period to be 2 and epsilon to be 0.001. The

measurement of the KL divergence for the distribution gener-
ated by our present method and that by the regular SSA with
respect to the distribution generated by the analytical solution
are 0.0358 and 0.623. Both Figure 6 and KL measurement
indicate that our method can overcome the problem associated

with the selection of compartment size. In this example, the
simulation time for the present algorithm is as small as it
would take for the SSA to complete on two independent
trajectories.

Conclusion

This article introduces an algorithm which is capable of

capturing the average behaviors of chemical/biological species
in a reactive-diffusive system without generating multitudes of
sample paths. The method combines EMRE19 and Linear
Operator techniques to describe reaction and diffusion effects
simultaneously. Two examples have been used to illustrate the
validity of the method. Predictions generated by this algorithm
show good agreement with the SSA and require a much lower

CPU time for simulations. Extension of this method to larger
systems involving many species appears to be feasible. As
mentioned in Grima et al.,19 the algorithm was developed and
tested only on simple systems which are composed of a small
number of low order reactions. Complex systems with non-
linear reactions can also affect the accuracy of the approxima-

tions performed by present method. Also, since the original
method of Grima is assumed to work only for well-mixed sys-
tems, the value of time step needs to be chosen so that it is not
too large to violate that condition yet not too small so that it
may take too long to simulate the algorithm. Additional effort
on finding criteria for optimal time steps by and capturing
accurate behaviors of complex non-linear systems are all con-

sidered as future work for this present algorithm. To find the
optimal time step, the trial and error method can be used as the
initial step but full investigations on how the relative rate
between diffusion and reactions in each system might provide
the right choice of picking an optimal time step.
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