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a b s t r a c t

The population balance model is the common approach to simulation and prediction of the size distribu-
tion and other properties of particulate systems. Population balance models include any nucleation,
growth, breakage and agglomeration mechanisms that are relevant to all industrial particulate processes.
However, there are some limitations to many of the previous population balance model formulations for
systems with agglomeration. Limitations include physically irrelevant and/or empirically based agglom-
eration kernels, difficulties in assessing the influence of process conditions (e.g. hydrodynamics, particu-
late physical properties), solution method efficiency for optimization and control applications, and loss of
information on constituent particles. These limitations have prevented the use of population balance
models to accurately predict and simulate agglomeration in suspension techniques such as spherical
crystallization. To overcome these limitations, an extension of the concept of a coupled population bal-
ance model is presented for application in the simulation and optimization of a spherical crystallization
system. A coupled population balance model formulation has been developed for a semi-batch, reverse
addition, anti-solvent crystallization system with agglomeration. The system includes nucleation and
growth of the primary crystals and subsequent agglomeration. The advantages presented by a coupled
population balance model formulation include the ability to optimize for specific primary and agglomer-
ate sizes. This presents an opportunity to find optimal operating conditions that meet both bioavailability
and manufacturability demands.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Since its introduction, the population balance model (PBM) has
been widely used and accepted as the model formulation method
for simulation and prediction of the size distribution and other
properties of particulate systems (Randolph and Larson, 1971;
Ramkrishna, 2000). PBMs allow for systems that include any or
all of the following mechanisms: nucleation, growth, breakage
and agglomeration. Following the initial work by Smoluchowski
(Smoluchowski, 1917) on the rate of aggregation for spherical par-
ticles, there have been many contributions for systems that exhibit
agglomeration including dispersion (bubble) coalescence
(Coulaloglou and Tavlarides, 1977; Prince and Blanch, 1990), gran-
ulation (Iveson, 2002; Liu and Litster, 2002) and particle aggrega-
tion during crystallization (Marchal et al., 1988; David et al.,
1990; Kumar and Ramkrishna, 1997). The shared limitation in
the models between many of the previous studies is the loss of
information of constituent particles. This limitation presents obsta-
cles in the estimation of the kinetic parameters (nucleation and
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Nomenclature

ntc(x, t) number density (no. m�4) representing the primary
crystals

ncs(x, t) number density (no. m�4) representing the un-
agglomerated crystals

na(x, t) number density (no. m�4) representing the agglomer-
ates

ncaðk; tÞ number density (no. m�4) representing the un-
agglomerated crystals and agglomerates

G growth rate (m s�1)
B nucleation rate (no. m�3 s�1)
d(x) dirac delta function (m�1)
bðx; kÞ agglomeration rate (m3 no. �1 s�1)
Dcs,agg(x) death (disappearance) of crystals in suspension due to

agglomeration (no. m�1 s�1)
Ba,agg(x) birth of agglomerates from crystal and agglomerate

interactions (no. m�1 s�1)
Da,agg(x) death of agglomerates from crystal and agglomerate

interactions (no. m�1 s�1)
V(t) suspension volume (m3)
x, k characteristic length (m)
t batch time
~nðx; tÞ ¼ VðtÞnðx; tÞ redefined (non-volumetric) number density
wi weights
Li abscissas

Fs solution flow rate (mL/min)
CS solute (benzoic acid) concentration (g mL�1)
Cin solution concentration (g mL�1)
xSASR solution to anti-solvent ratio
qc crystal density
kv shape factor
S supersaturation
SASR solution to anti-solvent ratio
N agitation rate
kg, g, kb, b growth and nucleation rate constants
e energy dissipation (W kg�1)
Np stirrer power number
ds diameter of the stirrer (m)
AE agglomeration efficiency
P porosity
Cfinal final concentration of solute (g mL�1)
Cmax maximum concentration
wi optimization weights
BT bioavailability target
MT manufacturability target
Ltc;10, La;10 first moment based mean size
Vtc;30;Vcs;30;Va;30 third moment based mean volume
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growth rate vs agglomeration rate) and in developing an under-
standing of the influence of process conditions on each in popula-
tion (constituent particles vs agglomerates). Having information
regarding the constituent particles would allow for improved par-
ticle design through more accurate parameter estimation, simula-
tion, optimization, and control; particularly for the increasingly
popular technique of agglomeration in suspension.

Agglomerating fine particles in suspension, through the use of a
bridging liquid, to improve particle properties and downstream
process efficiency has been known since the late 1960s. Initially,
the technique was used mostly in bulk chemical industries, e.g.
coal beneficiation (Petela, 1991). Since then agglomeration in sus-
pension techniques have been geared towards application in the
pharmaceutical industry to improve filtration and downstream
processing of active pharmaceutical ingredient (API) during crys-
tallization by eliminating granulation and milling unit operations
(Kawashima, 1984; Kawashima et al., 2003; Amaro-González and
Biscans, 2002). In this respect the technique is often referred to
as spherical crystallization. Interest in the application of spherical
crystallization in pharmaceutical processes has increased through
the continued development and understanding of the operating
conditions (Kawashima et al., 1982a, 1982b; Kawashima, 1995),
choice of binding agent (Katta and Rasmuson, 2008), kinetics
(Kawashima and Capes, 1974) and mechanisms (Kawashima
et al., 2003; Rasmuson and Thati, 2011; Thati and Rasmuson,
2012; Blandin et al., 2003) that govern experimental outcomes.
Peña and Nagy (2015) studied and showed the benefits of spherical
crystallization as a process intensification technique, whereby both
internal (primary crystals) and external (agglomerates) properties
can be controlled experimentally through a decoupled continuous
spherical crystallization (CSC) approach; providing the means by
which both biopharmaceutical (bioavailability, dissolution) and
manufacturing (flowability, filtration, drying) properties can be
simultaneously adapted to meet desired quality specifications. This
technique opens the door for combined experimental and model-
ing approaches for the optimization and control of both the pri-
mary crystal and agglomerate properties in spherical
crystallization processes. However, many of the PBMs currently
in literature would fail to accomplish this because of the aforemen-
tioned limitations and loss of constituent particle information.

The limitations in previously developed PBMs are related to the
complex crystallization phenomena occurring during spherical
crystallization processes. For previous models, agglomeration was
either an incidental process occurring along with nucleation and
growth during crystallization or the main process occurring in
seeded or seed-fed systems with negligible nucleation and growth.
This allowed for empirical agglomeration models often indepen-
dent of system properties and solely dependent on fitting to exper-
imental data (Seyssiecq et al., 2000). The accuracy of those models
are limited, are very system dependent and have difficulty captur-
ing all the influencing process parameters on the system. More-
over, they only take into consideration the evolution of the
agglomerates and not that of the constituent primary crystals. As
previously mentioned, from the mechanistic point of view there
are numerous studies in the literature that propose agglomeration
mechanisms. However, there has yet to be a comprehensive corre-
lation between the proposed mechanisms of spherical crystalliza-
tion, which include nucleation, growth and agglomeration, and
the appropriate agglomeration kernel. This has largely been influ-
enced by the inherit loss of information in the PBMs and the lack
of process analytical technology (PAT) tools to help determine
and validate proposed mechanisms (Nagy et al., 2013).

Bemer (1979) was one of the first to study agglomeration in
suspension from both an experimental and modeling approach.
His work led to further implementations of combined experimen-
tal and modeling studies. David et al. (2003) developed a multi-
layer agglomeration model that considers the efficiency of agglom-
eration based on the collision mechanism (i.e. Brownian, laminar,
or turbulent). As particles change in size their collision mechanism
or flow field can change from Brownian to laminar to turbulent, as
particle size increases. In their model, the kernel accounted for
changes in the collision mechanism and was also a function of
the supersaturation and temperature through the growth rate
which was used as the efficiency term. It is known that



Table 1
Common agglomeration kernels.

Size-independent Ka

Product Ka(rirj)3

Sum Kaðr3i þ r3j Þ
Brownian (Smoluchowski, 1917) Ka

ðriþrjÞ
ðri�rjÞ

Shear Ka(ri + rj)3

Modified Shear Kaai,j(ri + rj)3

Turbulent
Kaðri þ rjÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

i þ U2
j

q
Zauner and Jones (2000) 5:431 � 10�17ð1þ 2:29e1

2 � 2:429eÞS2:15

Madec et al. (2003)
Kaðr3i þ r3j Þ ðci þ cjÞa 100� ciþcj

2

� �d
� �a

Blandin et al. (2005) and Kuboi et al.
(1984)

Ka = f(ri, rj, t)eff(ri, rj, t)
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agglomeration is enhanced by inter-particle growth or agglomera-
tive bond formation; when supersaturation increases the subse-
quent inter-particle growth between two particles that come in
contact increases allowing for higher agglomeration efficiency
(Brunsteiner et al., 2005). Madec et al. (2003) simplified the
agglomeration model by incorporating a more relevant process
parameter into the kernel, specifically their work accounted for
the composition of bridging liquid in an agglomerate. It has been
shown that there is a critically optimal range for the ratio of bridg-
ing liquid to solute volume (BSR); below or above this critically
optimal range would produce loosely compacted agglomerates or
paste-like amorphous agglomerates, respectively (Petela, 1991;
Thati and Rasmuson, 2012; Peña and Nagy, 2015). This unique
incorporation of the bridging liquid composition served as the effi-
ciency term by which the process would reach equilibrium.

The most comprehensive study in this area is that of Blandin
et al. (2005). In this combined experimental and modeling study,
key aspects of agglomeration in suspension are noted:

(1) The agglomeration mechanism is a three-step process; (i)
bridging liquid droplets capture solid particles and form
agglomerate nuclei, (ii) compaction of the agglomerate
nuclei due to collisions with other particles causes a rapid
decrease in the mean diameter, (iii) growth and consolida-
tion then occur due to the hydrodynamics and process con-
ditions of the system (i.e. collisions, BSR).

(2) Agglomeration is only efficient in the critical BSR range; the
agglomerate size increases with a strong dependence on
BSR, weak dependence on solids concentration and inverse
dependence on agitation rate.

(3) Porosity decreases as mean diameter reaches equilibrium.
(4) Agglomeration stops once the agglomerates become too

compact to deform.

Based on these fundamental experimental observations an
agglomeration model considering the size and concentration of
the agglomerating particles, with the agglomeration kernel
expressed as a function of the meeting probability and agglomera-
tion efficiency of the process, was developed. The meeting proba-
bility was described by a function of the target efficiency,
agglomerate sizes, and collision velocity (Kuboi et al., 1984). The
simulations from this work were in agreement with experimental
data when the necessary parameters were fit to the data. By iden-
tifying the critical experimental mechanisms, Blandin et al. was
able to develop a comprehensive model that accounted for both
the mechanistic phenomena (e.g. deformability, collision effi-
ciency, and compaction) and process conditions (e.g. energy dissi-
pation, BSR, primary particle size). Although this model showed
significant superiority over many others observed in the literature,
it still has the limitation of losing the information of the con-
stituent particles. Moreover, the model relies on the assumption
that the initial particles participating in the agglomeration are
monodispersed. Table 1 summarizes various kernels found in the
literature used for agglomeration in suspension modeling with r
defined as the radius of the particle and is interchangeable with
the characteristic length.

To overcome the issues of loss of information a coupled PBM
formulation is required. A coupled PBM formulation could simulta-
neously tracks the evolution of the primary crystals and the evolu-
tion of the agglomerates. The relationship between primary crystal
properties and their effect on final agglomerate properties would
thereby be more evident and more efficient than in traditional
approaches. To the best of our knowledge, the only previous work
that presented this approach is that of Ochsenbein et al. (2015). In
their study, Ochsenbein et al. focused on the agglomeration of
needle-like crystals in suspension. Through a coupled PBM
framework Ochsenbein et al. were able to develop a population
balance equation (PBE) to describe the evolution of the primary
crystals by a two-dimensional growth rate to represent the needle
like structure of the crystal. Then another PBE was used to describe
the evolution of the agglomerates as a function of the primary crys-
tals. For the agglomeration kernel, they derived their own modified
kernel that included both characteristic lengths of the primary
crystals participating in the agglomeration. The new PBM formula-
tion also allowed for the development of new parameters that add
value to the simulations due to their experimental relevance. How-
ever, the work of Ochsenbein et al. neglected nucleation, some-
thing common to previously developed PBMs with
agglomeration. The coupled population balance model framework
will be extended herein.

The contribution of this work is the extension of the coupled
PBM framework for application in the simulation and optimization
of an agglomeration in suspension system. A coupled PBM frame-
work has been developed for a semi-batch, reverse addition, anti-
solvent crystallization system with agglomeration. Reverse addi-
tion anti-solvent crystallization techniques entail the addition of
solution to the anti-solvent. The technique is carried out for low
solution to anti-solvent ratios to produce very fine crystals due
to very high supersaturation generation. The system includes
nucleation and growth of primary crystals and subsequent agglom-
eration. The purpose of the work is to exploit the advantages pre-
sented by a coupled PBM framework; for example, the ability to
optimize for specific primary and agglomerate sizes. This presents
an opportunity to find optimal operating conditions that meet both
bioavailability and manufacturability demands. It also allows for
the ability to develop a first principles based parameter for
agglomeration efficiency and a first principles based estimate for
porosity. Additionally, through the retention of the information
of the primary particles, the interplay between the effects of oper-
ating conditions on the properties of the primary crystals versus
the agglomerates will be clear.
2. Model development for agglomeration in suspension

Modeling the agglomeration in suspension system is decom-
posed into three populations: all primary crystals, un-
agglomerated crystals and agglomerates. The system of coupled
population balance equations will be coupled with a mass balance
equation to enable the modeling of the crystal size distribution
(CSD) properties and agglomerate size distribution (ASD) proper-
ties simultaneously. The model will allow us to relate the CSD
and ASD properties to micromeritic properties (e.g. porosity and
agglomeration efficiency). The PBM will incorporate nucleation,
growth and agglomeration mechanisms. This coupling allows for
a PBE that describes the entire primary crystal population whether
part of an agglomerate or not. However, the PBE does not track the
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location of the primary crystals. The inability to track the location
of the primary crystals creates a difficulty in assessing the expo-
sure of each individual crystal to supersaturated fluid; especially,
once it is incorporated into an agglomerate. Hence, for simplicity,
it is assumed that primary crystal growth rate is independent of
its in environment (i.e. particles partaking in agglomeration have
the same kinetics (growth) as particles remaining in suspension).
This assumption is a limitation of the model but studies the liter-
ature have shown that agglomerate strength is dependent on
supersaturation of the system due to growth of crystals within
an agglomerate (agglomerative bond) (Brunsteiner et al., 2005).

The set of PBEs are as follows:

@

@t
½VðtÞntcðx; tÞ� ¼ � @

@x
ðGðxÞVðtÞntcðx; tÞÞ þ dðxÞVðtÞB ð1Þ

In Eq. (1), ntc(x, t) is the volumetric number density (no. m�4) repre-
senting the primary crystals in the system; regardless of whether
the crystal is part of an agglomerate or not (total crystals). G
(m s�1) is the growth rate, B (no. m�3 s�1) is the nucleation rate, d
(x) (m�1) is the Dirac delta function, and V(t) (m3) is the suspension
volume. x (m) represents the characteristic length and t is the batch
time.

@

@t
½VðtÞncsðx; tÞ� ¼ � @

@x
ðGðxÞVðtÞncsðx; tÞÞ þ dðxÞVðtÞB� Dcs;aggðxÞ

ð2Þ

Dcs;aggðxÞ ¼ VðtÞncsðx; tÞ
Z 1

0
bðx; kÞncaðk; tÞdk ð3Þ

In Eq. (2), ncs(x, t) is the volumetric number density (no. m�4) repre-
senting the un-agglomerated crystals (crystals in suspension). This
equation differs from the first equation by the third term (Dcs,agg(x)
(no. m�1 s�1)) which represents the death (disappearance) of crys-
tals due to agglomeration (Eq. (3)). The death of crystals can occur
through crystal agglomeration with other crystals or agglomerates.
This is denoted by the volumetric number density ncaðk; tÞ (no. m�4)
which represents both crystals and agglomerates of a characteristic
size k. In Eq. (3), bðx; kÞ represents the agglomeration rate (m3 -
no.�1 s�1) of a particle of characteristic size xwith a particle of char-
acteristic size k.

@

@t
½VðtÞnaðx; tÞ� ¼ � @

@x
ðGðxÞVðtÞnaðx; tÞÞ þ Ba;aggðxÞ � Da;aggðxÞ ð4Þ

Ba;aggðxÞ ¼
x2

2

Z x

0

bððx3 � k3Þ1=3; kÞncaððx3 � k3Þ; tÞVðtÞncaðk; tÞ
ðx3 � k3Þ2=3

dk

ð5Þ

Da;aggðxÞ ¼ VðtÞnaðx; tÞ
Z 1

0
bðx; kÞncaðk; tÞdk ð6Þ

In Eq. (4), na(x, t) is the volumetric number density (no. m�4) repre-
senting the agglomerates produced from the birth (Ba,agg(x) (no.
m�1 s�1)) and death (Da,agg(x) (no. m�1 s�1)) of agglomerates from
crystal-agglomerate and agglomerate-agglomerate agglomeration.
bðx; kÞ is the same as the term in Eq. (3) and represents the agglom-
eration rate. It is important to note that traditionally the agglomer-
ation birth and death terms are expressed with volume as the
internal coordinate. However, since all the other mechanisms are
expressed with respect to characteristic length a modification is
made to express this in terms with respect to characteristic length
following modification steps from the literature (Marchisio et al.,
2003a, 2003b; Costa et al., 2007). Eqs. (2) and (4) are coupled
through Eq. (7).

ncaðx; tÞ ¼ ncsðx; tÞ þ naðx; tÞ ð7Þ
Eq. (7) is simply the addition of the un-agglomerated crystals
and the agglomerates denoted by the number density function
nca(x, t) (no. m�4). This combined population is used to account
for crystal-crystal and crystal-agglomerate interactions and
reduce the number of terms in the birth and death terms in
Eqs. (1)–(6). Eq. (1) is intentionally made to stand alone based
on the assumption of uniform kinetics for all populations tracked
in the system. The set of equations will all be coupled by the
mass balance which will ultimately determine nucleation and
growth kinetics.

3. Solution method

Most of the spherical crystallization systems in literature are
semi-batch with limited modeling work. For this reason, a
semi-batch system with combined cooling and reverse addition
anti-solvent is modeled. To account for the volume change in a
semi-batch system the number density functions are expressed
as a redefined number density (~nðx; tÞ ¼ VðtÞnðx; tÞ) (Nagy et al.,
2008; Yang and Nagy, 2014). The modified PBM will be as
follow:

@

@t
~ntcðx; tÞ ¼ � @

@x
ðGðxÞ~ntcðx; tÞÞ þ dðxÞVðtÞB ð8Þ

@

@t
~ncsðx; tÞ ¼ � @

@x
ðGðxÞ~ncsðx; tÞÞ þ dðxÞVðtÞB� ~Dcs;aggðxÞ ð9Þ

@

@t
~naðx; tÞ ¼ � @

@x
ðGðxÞ~naðx; tÞÞ þ ~Ba;aggðxÞ � ~Da;aggðxÞ ð10Þ

~ncaðx; tÞ ¼ ~ncsðx; tÞ þ ~naðx; tÞ ð11Þ

~Dcs;aggðxÞ ¼ ~ncsðx; tÞ
Z 1

0
bðx; kÞ~ncaðk; tÞdk ð12Þ

~Ba;aggðxÞ ¼
x2

2

Z x

0

bððx3 � k3Þ1=3; kÞ~ncaððx3 � k3Þ; tÞ~ncaðk; tÞ
ðx3 � k3Þ2=3

dk ð13Þ

~Da;aggðxÞ ¼ ~naðx; tÞ
Z 1

0
bðx; kÞ~ncaðk; tÞdk ð14Þ

The above set of PBEs can be solved using the quadrature
method of moments (QMOM) approximation for the redefined
moments (Marchisio et al., 2003a, 2003b; Costa et al., 2007;
Gimbun et al., 2009).

~lk ¼
Z 1

0
xk~nðx; tÞdx �

XN
i¼1

wiL
k
i ð15Þ

The quadrature approximation transformed set of PBEs can be
written as:

d~ltc;k

dt
¼ k

XN
i¼1

wtc;iL
k�1
tc;i GðLtc;iÞ þ dðkÞVðtÞB ð16Þ

d~lcs;k

dt
¼ k

XN
i¼1

wcs;iL
k�1
cs;i GðLcs;iÞ þ dðkÞVðtÞB

� ~Dcs;aggðwca;i; Lca;i;wcs;i; Lcs;i; kÞ ð17Þ

d~la;k

dt
¼ k

XN
i¼1

wa;iL
k�1
a;i GðLa;iÞ þ ~Ba;aggðwca;i; Lca;i; kÞ

� ~Da;aggðwca;i; Lca;i;wa;i; La;i; kÞ ð18Þ
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~Dcs;aggðwca;i; Lca;i;wcs;i; Lcs;i; kÞ ¼
XN
i¼1

wcs;iL
k
cs;i

XN
j¼1

wca;jbðLcs;i; Lca;jÞ ð19Þ

~Ba;aggðwca;i; Lca;i; kÞ ¼
1
2

XN
i¼1

wca;i

XN
j¼1

wca;jðL3ca;i þ L3ca;jÞ
k
3bðLca;i; Lca;jÞ ð20Þ

~Da;aggðwca;i; Lca;i;wa;i; La;i; kÞ ¼
XN
i¼1

wa;iLa;i
XN
j¼1

wca;jbðLa;i; Lca;jÞ ð21Þ

~lca;k ¼ ~lcs;k þ ~la;k ð22Þ

The set of PBEs is solved with the product difference (PD) algo-
rithm and the number of quadrature points used is N = 3 which
solves for the weights (wi) and abscissas (Li). Details regarding
the PD algorithm can be found in the literature (Gimbun et al.,
2009; Gordon, 1968; Mcgraw, 1997). Matlab� ode15s is used to
solve the set of ODEs.
1 For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.
4. Mass balance and kinetics

The mass balance equations used in the model for the semi-
batch reverse addition anti-solvent crystallization of benzoic acid
is derived as:

dV
dt

¼ Fs ð23Þ

dCS

dt
¼ ðCBA0 � CsÞ

V
Fs �

3qckvG~ltc;2

V
ð24Þ

dxSASR
dt

¼ Fs

V0
ð25Þ

M ¼ qckv ~ltc;3

V
ð26Þ

where V (mL) is the volume of mother liquor mixture, Fs (mL/min) is
the flow rate of solution being added to the system, CS (g mL�1) is
the solute (benzoic acid) concentration, CBA0 (g mL�1) is the solute
concentration in the solution being fed, and xSASR is the solution
to anti-solvent ratio. In Eq. (24), qc is the density of the crystal
and kv is the shape factor and are fixed at 1.316 (g mL�1) and
0.524, respectively. For simplicity it is assumed that the solvent
mixture density change is negligible. M (g mL�1) represents the
magma density of the slurry.

The nucleation and growth rate kinetics for traditional anti-
solvent crystallization of benzoic acid were used for this study
and taken from the literature (Ramisetty, 2013).

B ¼ kbðN Þð1þ i �MÞðS� 1ÞbðN Þ ð27Þ

G ¼ kgðN ÞðS� 1ÞgðN Þ ð28Þ

S ¼ CS

Csat
ð29Þ

Here the nucleation and growth kinetics depend on supersatu-
ration, S, (which is generated by changes in the solution to anti-
solvent ratio (SASR) and temperature) and agitation rate, N . The
variable i is an empirical parameter that influences the extent to
which a system is driven by primary or secondary nucleation.
The i parameter is not given in the reference and hence will be used
to do a parameter study on the effect of secondary nucleation on
the results of the model formulation. The dependence of the rate
constants on the agitation rate is shown in Table 2.
There are limited complete studies of the solubility of benzoic
acid in ethanol-water mixtures for various concentrations and
temperatures except for O’Grady’s PhD thesis (O’Grady, 2007). In
his study, O’Grady carried out various solubility experiments for
benzoic acid at different temperatures and ethanol-water mix-
tures. The data from his work is taken and fit to a third order poly-
nomial with respect to both temperature and solution to anti-
solvent ration (SASR) using the Matlab function fit. In Fig. 1, the
y-axis (left) and z-axis (right) are read as the concentration of ben-
zoic acid in ethanol expressed in g per mL.

The agglomeration kernel used for this study is a homogeneous
kernel derived from the combination of the Brownian diffusion
kernel and the Zauner and Jones (2000) and will be referred to as
the Brownian + kernel. It is expressed as:

bðLi; LjÞ ¼ aðbþ ce1
2 � deÞSe kaðLi þ LjÞ2

LiLj
ð30Þ

The first portion of the agglomeration kernel is composed of the
parameters and process conditions defined by Zauner and Jones
(2000) where a, b, c, d and e are constants, e is the energy dissipa-
tion and S is the supersaturation. The energy dissipation is defined
as follows:

e ¼ Npd
5
sN

3

V
ð31Þ

where Np is the stirrer power number, ds (m) is the diameter of the
stirrer and N is the agitation rate over V, the volume of the slurry
(Subero-Couroyer et al., 2006). The second part of the kernel is
the Brownian portion that takes into account the surface area effect
of the two particles partaking in the agglomeration and is divided
by the product of the two particles which allows for a determina-
tion effect; as the particles get larger the effect of the Brownian por-
tion of the kernel is reduced. This is appropriate as this model
allows the agglomeration rate to decreases as the particles get lar-
ger, a common behavior seen in agglomeration in suspension tech-
niques like spherical crystallization.

5. Agglomeration efficiency and porosity

As pointed out by Ochsenbein et al. (2015), one of the advan-
tages of the coupled population balance model is that it allows
for the development of physically relevant parameters. One param-
eter is the agglomeration efficiency. The coupled PBM framework
allows for the population of all primary crystals, un-
agglomerated crystals and agglomerates to be tracked, allowing
for the determination of the efficiency of the agglomeration pro-
cess with regards to the total number of crystals contained in the
agglomerates.

Fig. 2 is a schematic representation of the three populations
being tracked by the coupled PBM framework. As the figure
depicts, the primary crystals population consist of each individual
crystal outlined in green1 within the green dashed box, the indi-
vidual crystals left in suspension consist of those crystals circled
in blue dotted lines and lastly the agglomerates consist of those
particles circled in red solid lines. Expressed in terms of volume,
Fig. 2 illustrates that the ratio of the volume of agglomerates to
the volume of total primary crystals is a measure of the extent of
agglomeration:

% of agglomerated crystals ¼ 100
Va

Vtc

� �
ð32Þ
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Fig. 1. (Left) Solubility data from O’Grady (2007) of benzoic acid in ethanol-water
mixture with respect to temperature. (Right) Resulting solubility surface as a
function of solution to anti-solvent ratio and temperature. The solution to anti-
solvent ratios from O’Grady were expressed as volume ratios for the solubility
surface.

Fig. 2. Schematic of the different populations being tracked by the coupled PBM
framework.

Table 2
Empirical kinetic constants retrieved from Ramisetty (2013).

N - agitation rate (rpm) kg (10�6) g kb (107) b

400 1.5 3.1 1.2 1.6
600 2.6 3.5 3.2 1.9
800 3.2 3.8 3.6 2.3

R. Peña et al. / Chemical Engineering Science 167 (2017) 66–77 71
This definition can be very easily defined using the moments of
the PBM (~ltc;k; ~lcs;k; ~la;k). Specifically, the third moment of each PBE
which is a volume based moment can be used to express the
agglomeration efficiency as:
AE ¼ 100
~la;3

~ltc;3

� �
ð33Þ

Porosity is a property of interest in agglomeration and granula-
tion due to the effects it can have on other properties like dissolu-
tion and compressibility. Many times a final desired porosity can
determine the experimental conditions.

Fig. 3 illustrates how the porosity of an agglomerate decreases
as subsequent agglomeration continues over time. Due to the
one-dimensional PBE, reconstructing the size of the agglomerate
from the characteristic length makes the assumption that the par-
ticle produced from an agglomeration event is a sphere. This
assumption causes high porosity initially (see agglomerate on left
in Fig. 3) which is similar to what occurs experimentally. As subse-
quent agglomeration continues the assumption of a sphere
becomes more reasonable and the porosity decreases in the very
same manner seen experimentally (left to right in Fig. 3).
Expressed in terms of volume Fig. 3 states that volume of the pore
(Vp) is equal to the volume of agglomerates minus the difference
between the volume of primary crystals and volume of un-
agglomerated crystals. The porosity determined by dividing this
difference by the volume of agglomerates.

Vp ¼ Va � ðVtc � VcsÞ ð34Þ

ep ¼ 1� ðVtc � VcsÞ
Va

ð35Þ

Similar to the agglomeration efficiency the porosity can be cal-
culated with respect to the moments of the coupled PBM
(~ltc;k; ~lcs;k; ~la;k).

P ¼ 1�
~ltc;3
~ltc;0

� ~lcs;3
~lcs;0

~la;3=~la;0
¼ 1� Vtc;30 � Vcs;30

Va;30
ð36Þ

The aforementioned set of coupled population balance equa-
tions and defined parameters are to be used in an optimization
framework where internal properties like crystal mean size and
external properties like agglomerate mean size can be optimized
for subject to constraints on agglomeration efficient and yield,
and other quality attributes or process constraints.

6. Optimization framework

Three optimization scenarios were analyzed: (i) minimizing pri-
mary crystal size, (ii) maximizing primary crystal size, and (iii)
attaining bioavailability and manufacturability targets. For sim-
plicity the total particle mean size using the first and zeroth
moment of the respective populations were used, Ltc;10 and La;10.
The batch time is fixed at 300 min (�5 h) which is typical for
agglomeration in suspension systems like benzoic acid spherical
crystallization. The optimization variables are the dynamic operat-
ing profiles for temperature (T ðtÞ), agitation rate (NðtÞ) and solu-
tion flow rate (FsðtÞ). The level of discretization for the
optimization variables is 10. All the scenarios were subject to the
same variable bounds and constraints. The bounds were chosen
based on the range of the available solubility and kinetic data.
The framework includes constraints on cooling/heating rate, (@T

@t),
solution addition (SASR), agglomeration efficiency, (AE), yield,
(Cfinal) and initial flow rate, (Fsð0Þ). Due to the fact that a reverse
addition anti-solvent crystallization system was chosen for this
study the constraint on the initial flow rate assures that a certain
crystal mass will be generated otherwise the optimizer may try
to crystalize one large particle towards the end of the batch. The
optimization problem for the first two scenarios can be written as:

min
T ðtÞ;NðtÞ;Fs ðtÞ

� Ltc;10 or Ltc;10 ð37Þ



Fig. 4. The zeroth moment for each population in the PBE set for the minimization
of Ltc,10.

Fig. 3. Schematic of agglomerates with similar characteristic lengths but different internal properties (i.e. porosity).
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s.t.

16 6 T ðtÞ 6 28
�
C ð38Þ

400 6 NðtÞ 6 800 RPM ð39Þ

0 6 FsðtÞ 6 2:5 mL=min ð40Þ

�0:4 6 @T
@t 6 0:4

�
C=min ð41Þ

0:25 6 SASR 6 0:40 ð42Þ

AE P 50% ð43Þ

Cfinal 6 0:75Cmax ð44Þ

Fsð0Þ P 1:0 mL=min ð45Þ

The new variable Cfinal is the final concentration of solute in
solution while Cmax is the maximum concentration if all the solu-
tion is added to the system and no crystallization occurred. As
written the constraint requires a 25% yield. The optimization prob-
lem is solved using the ‘‘interior point” method of fmincon in Mat-
lab. The objective function of the optimization problem for the last
scenario can be written as:

min
T ðtÞ;NðtÞ;Fs ðtÞ

w1ðBT � Ltc;10Þ2 þw2ðMT � La;10Þ2 ð46Þ

BT and MT represent bioavailability and manufacturability targets.
For this scenario the optimization problem is a multi-objective
framework with w1 and w2 being the weights for each objective.
The weights in Eq. (46) are shown as a generalization for situations
in which bioavailability or manufacturability is more heavily
weighted than the other. In this work, w1 and w2 each have values
of one. This scenario is restricted to the same constraints previously
described.

7. Results and discussion

7.1. Minimizing primary particle mean size

The first scenario of interest is the minimization of the particle
size. Minimization of primary crystal mean size is relevant in many
industrial scenarios and helps with micromeritic properties in
pharmaceutical applications like bioavailability and dissolution.
This scenario will also serve to illustrate the capabilities of the cou-
pled population balance model approach. The moments of this sce-
nario illustrate the ability to keep track of all the populations in the
PBE set. Fig. 4 shows the zeroth moment for the three populations.
The zeroth moment is representative of the total particle count. In
Fig. 4, the total particle count for the primary crystals in the system
increases as solution is fed and the system becomes supersatu-
rated. For this scenario, an inflection point occurs (at 105) indicat-
ing a significant increase in nucleation and a plateau is reached (at
220 min) indicative of zero supersaturation (zero nucleation).

Focusing on the zeroth moment of the un-agglomerated crystals
and the agglomerates it can be seen that there is an initial increase
in un-agglomerated crystals that correlates with that of the pri-
mary crystals when the system first nucleates. There is a delayed
increase in the agglomerate counts since agglomeration cannot
begin until there are crystals present. At 38 min, the un-
agglomerated crystals count begins to spike but is then quickly
reduced due to agglomeration. Since agglomerate formation can
occur from crystal-crystal, crystal-agglomerate and agglomerate-
agglomerate interactions, the zeroth moment of the agglomerates
continues to decrease further; even though there is no longer
nucleation (zeroth moment of primary crystals plateaus). The dif-
ference in magnitude of the primary crystals and un-
agglomerated crystals in the beginning is also an indication of
agglomeration.

Fig. 5 shows the third moment for the three populations. As the
system begins to nucleate and grow the volume of the primary
crystals increases steadily until the supersaturation is depleted.
Comparing both Figs. 4 and 5 suggests that most of the particle vol-
ume is created at the onset with low total counts followed by sec-
ondary nucleation shown by the jump in the total counts but only a
slight increase in total volume. The volume of un-agglomerated
crystals is significantly smaller than the volume of primary crystals
and agglomerates suggesting that most of the agglomeration hap-
pens at after the infliction (increase in nucleation) in primary crys-
tals counts. The third moment of the three populations shows the
same trend for all optimization scenarios investigated and hence
will not be shown for other scenarios.

Comparing Figs. 4 and 5 can be misleading given that in Fig. 4
the total count of un-agglomerated crystals is increasing along
with that of primary crystals, while in Fig. 5 the total volume of
un-agglomerated crystals rapidly decreases and is significantly
smaller than that of the primary crystals. This can be clarified by
looking at the mean sizes of the three populations.

The mean size optimization profiles of the three populations for
this scenario are shown in Fig. 6. The mean size is expressed as the



Fig. 5. The third moment for each population in the PBE set for the minimization of
Ltc,10.

Fig. 7. Optimal flowrate, temperature and agitation rate profiles for the minimiza-
tion of Ltc,10.
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first moment divided by the zeroth, Ltc,10. The minimum primary
particle size achievable in this scenario is 2.5 mm. While the crys-
tals left in suspension have a mean size of 0.1 mm and the agglom-
erates are of a mean size of 28.8 mm. The small size of the un-
agglomerated crystals again suggests that the increase seen in
the total counts relates to secondary nucleation, which in turn cor-
responds to a small particle size and very small/negligible volume.
The agglomerate mean size and the primary crystal mean size fol-
low the trend observed from the zeroth moment. When the pri-
mary crystal mean size plateaus the agglomerate mean size
increases otherwise they follow the same pattern as the primary
crystal mean size increases the agglomerate mean size increases
and vice versa.

Fig. 7 shows the optimal flowrate, temperature and agitation
rate profiles for the minimization of the primary crystals mean
size. Flowrate is initialized at its upper bound, the temperature
profile starts near its lower bound and the agitation rate is initial-
ized at its upper bound. High nucleation or crashing out is charac-
teristic of reverse addition anti-solvent crystallization. As a result,
the optimizer begins the process by nucleating from the addition of
solution to the anti-solvent, at lower temperatures and high agita-
tion rate to promote nucleation and generate small crystals. This
period lasts the first 15 min and allows for the system to reach a
supersaturated state quickly.

Immediately following the initial period, the flow rate of solu-
tion is decreased to its lower bound, the temperature begins to
decrease further and the agitation rate is decreased to 600 RPM.
These changes allow the system to decouple the effects of solution
addition, temperature and agitation on nucleation. Whenever solu-
tion addition is increased, temperature is slightly increased and
whenever solution addition is decreased, temperature is slightly
decreased allowing for nucleation to be controlled by flowrate or
temperature. This keeps the system supersaturated and in a nucle-
ation phase, evident by the continued decrease in the primary crys-
Fig. 6. Primary crystal mean size (Ltc,10), un-agglomerated crystals mean size (Lcs,10)
and agglomerate mean size (La,10) for Scenario 1.
tals mean size, until the plateau in primary crystals is reached at
220 min. Nucleation is reduced in this period by an increase in
temperature and solution addition. This period is continued until
the end of the batch. This final addition of solution satisfies the
solution to anti-solvent ratio constraint and decreases supersatura-
tion. Fig. 8 shows the operating curve along the solubility surface
for this scenario.
7.2. Maximizing primary particle mean size

Maximizing particle size also has industrial relevance in that
some systems exhibit low downstream processing efficiency when
the particle size is too small. For this scenario, Fig. 9 shows the pri-
mary crystal count very quickly reaching a plateau (100th min)
indicative of the system avoiding secondary nucleation. A similar
behavior in the zeroth moment of un-agglomerated crystals and
agglomerate population is observed. The initial spike in the num-
ber of un-agglomerated crystals increases similarly to the primary
crystals, however once the primary crystal counts plateau the
counts of un-agglomerated crystals decreases sharply. This is fol-
lowed by an increase and then a decrease in the agglomerate
counts as the system transitions from crystal-crystal agglomera-
tion to agglomerate-crystal and agglomerate-agglomerate
agglomeration.

Fig. 10 shows the optimization results for the maximization of
the primary particle size. The maximum achievable primary parti-
cle size is 41.8 mm. While the un-agglomerated crystals left in
Fig. 8. Operating curve along the solubility surface for the minimization of primary
crystal size.



Fig. 9. The zeroth moment for each population in the PBE set for the maximization
of Ltc,10.

Fig. 10. Primary crystal mean size (Ltc,10), un-agglomerated crystals mean size
(Lcs,10) and agglomerate mean size (La,10) for Scenario 2.

Fig. 11. Optimal flowrate, temperature and agitation rate profiles for the maxi-
mization of Ltc,10.

Fig. 12. Operating curve along the solubility surface for the maximization of
primary crystal size.
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suspension have a mean size of 61.6 mm and the agglomerates are
of a mean size of 117.8 mm. With regards to the growth of the pri-
mary crystals and agglomerates the trends are very similar to that
of the first scenario. The mean size of the primary crystals remains
constant after the 100th min which aligns with the plateau in pri-
mary crystals counts indicative of little supersaturation or growth
beyond this point. As in the previous scenario, the agglomerate
mean size increases when the primary crystal mean size is con-
stant or when increasing. Interestingly, the un-agglomerated crys-
tal mean size continues to increase even after the 100th min point.
This is due to the agglomeration kernel used to describe the sys-
tem. The Brownian + kernel favors the agglomeration of smaller
particles. Hence, once the system plateaus with regards to counts
and has depleted supersaturation; agglomeration will favor smal-
ler particles, which is the reason for the increase in mean size of
un-agglomerated crystals, due to the removal of fine crystals from
this distribution. This is also the reason why the increase in the
mean size of un-agglomerated crystals increases with a higher
order trend versus the agglomerate mean size which increases
with a linear trend. Every small crystal that leaves the un-
agglomerated crystals population increases the percentage of large
crystals left behind while only marginally increasing the size of the
agglomerate they attach to.

Fig. 11 shows the optimal process profiles for this scenario. The
solution flow rate is initiated at 1.0 mL/min and quickly increased
to the upper bound while the temperature is increased linearly to
the upper bound (30 �C). As seen in Fig. 12 (solubility surface), the
system is not supersaturated at the onset, and thus the delayed
start in counts and mean size. As the solution flow rate is increased
to 2.5 mL/min and the temperature is held constant, the system
becomes supersaturated and crystals begin to nucleate and grow.
The addition of solution is continued through the 75th minute until
the system again becomes undersaturated. A steady decrease in
temperature follows, bringing the system back to a supersaturated
state. An increase in nucleation results as evident by the sharp
increase in counts and subtle decrease in mean size. The process
completes with another cycle of increasing temperature and
decrease in agitation rate. This effectively serves to reduce the
amount of supersaturation that is consumed due to nucleation
and drives growth. This is evident by the increase in primary crys-
tal mean size before the system plateaus and the temperature is
brought to saturation.

7.3. Bioavailability and manufacturability targets

Optimizing for both bioavailability and manufacturability tar-
gets is the unique scenario that is made feasible by the proposed
coupled population balance model framework. Prior to evaluating
the attainability of bioavailability and manufacturability targets,
the maximization of agglomerate particles is evaluated to under-
stand the range and limitation to the maximum agglomerate size;
although the optimal profiles are not shown here. The maximum
attainable agglomerate size for the fixed batch time and operating
conditions used here is 154.4 mm. The minimum and maximum
size for the primary crystal were 2.5 and 41.8 mm, respectively.
Given these results, the bioavailability target, BT, for the mean size
is set to 10 mm and the manufacturability target, MT, is set to
50 mm.

Fig. 13 shows the results of the mean sizes for the bioavailabil-
ity and manufacturability targets. Both the bioavailability and
manufacturability target sizes were attained within 1 mm.
BT = 10.1 and MT = 49.9 mm. The trends of mean size profiles



Fig. 14. Optimal flowrate, temperature and agitation rate profiles for the bioavail-
ability and manufacturability target.

Fig. 15. Operating curve along the solubility surface for the bioavailability and
manufacturability targets.

Table 3
Summary of optimization results with constraint values.

Parameters Min Ltc,10 Max Ltc,10 BT/MT

Ltc,10 (mm) 2.5 41.8 10.1
La,10 (mm) 28.8 117.8 49.9
AE (%) 96.5 77.5 75.6
Yield 0.25 0.31 0.41
SASR 0.39 0.40 0.37

Fig. 16. Porosity profiles for all three optimization scenarios.

Fig. 13. Primary crystal mean size (Ltc,10), un-agglomerated crystals mean size
(Lcs,10) and agglomerate mean size (La,10) for Scenario 3.
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described for the previous scenario is similar in this scenario.
When the primary crystals mean size is increasing or constant
the agglomerate mean size increases. While the primary crystal
mean size is constant the un-agglomerated crystal mean size
increases because agglomeration favors smaller particles due to
the agglomeration kernel used in this case. All the mean sizes
decrease when nucleation occurs due to the increase in smaller
counts for all populations.

Fig. 14 shows the optimal process profiles for the solution flow
rate, temperature and agitation and Fig. 15 shows the operating
line along the solubility surface. Analyzing these figures together,
it is obvious that the optimal profile is a combination or interpola-
tion of the previous two scenarios. One apparent difference is the
number of temperature cycles observed in this scenario driven
by the need to balance both nucleation and growth of the primary
crystals so to attain both targets. From a solution flow rate per-
spective, the system is initiated and carried in the same manner
as the previous scenario of maximizing primary particle size. The
solution flow rate is initiated at 1.0 mL/min and then increased
to the upper bound while the temperature is increased linearly
to the upper bound (30 �C). As in the previous scenario, the system
is undersaturated until the solution flow rate is increased (Fig. 15).
A temperature cycling phase then commences at a very low solu-
tion addition. This temperature cycles and low solution addition
balance nucleation and growth allowing for both the bioavailabil-
ity and manufacturability targets to be reached. The agitation rate
follows the same trend as both previous scenarios.

The agitation profile is fairly similar for all three scenarios indi-
cating that agitation rate is impacting the nucleation and growth
kinetics more than the agglomeration kinetics. Overall the trend
in agglomerate size with respect to changes in agitation rate did
not match those reported in the literature (Kawashima, 1984,
1995; Katta and Rasmuson, 2008). This is most likely due to the
set of nucleation and growth kinetic models used as both have
an agitation rate dependence. The influence temperature profiles
also had an impact on this results since most spherical agglomer-
ation experiments had previously been conducted at constant
temperature.

Table 3 summarizes the optimization results. All scenarios met
the agglomeration efficiency (larger than 50%), yield (25% or
greater) and SASR constraints (between 0.25 and 0.40). The
bioavailability and manufacturing target scenario required the
lowest amount of solution to the system but produced the highest
yield. This is most likely due to the greater number of temperature
cycles. The scenario to minimize primary crystal mean size had
lowest yield most likely due to prevention of growth in the system.
This scenario also had the highest agglomeration efficiency which
is also related to the high amount of nucleation in this scenario and
the fact that agglomeration favors smaller particles.



Table 4
Comparison of optimization results with different i values.

Empirical parameter Min Ltc,10 Max Ltc,10
Ltc,10/La,10 (mm) Ltc,10/La,10 (mm)

i = 1 2.5/28.8 41.8/117.8
i = 0.01 19.8/145.8 89.6/156.1

Fig. 17. Primary crystal mean size (Ltc,10), un-agglomerated crystal mean size
(Lcs,10) and agglomerate mean size (La,10) when i = 0.01 for both minimization (left)
and maximization (right) of primary crystal size.
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Fig. 16 shows the porosity profiles from the optimization sce-
narios. As detailed in the model development section, this
approach to estimating porosity is unique and derived from the
moments of the distributions. The benefits of calculating porosity
in simulations is the ability to design process around the ideal
porosity for specific dissolution and compression properties. The
porosity is not included in the optimization studies as it would
require an appropriate scaling parameter to make physical sense.
The porosity for the different scenarios show similar final values
with different profiles. The porosity profile for the maximization
of primary crystal size increases initially and then decreases as
the system continues to agglomerate without supersaturation or
nucleation (Figs. 9 and 10). The profiles for the minimization of pri-
mary crystal size and target bioavailability and manufacturability
both follow similar cycles of increasing and decreasing porosity,
which correlates well with the temperature and nucleation cycles
seen in optimal profiles and total counts.

7.4. Effects of secondary nucleation

The parameters used for the presented results were taken from
literature values. However, the empirical parameter i found in the
nucleation rate expression is not found in the literature and was
not fit to experimental data prior to this study. A study to under-
stand the effects of this parameter on the simulation and optimiza-
tion results was conducted. Table 4 shows the differences in the
results for minimization and maximization of primary crystal for
i equal to 1 and 0.01.
The results from shown in Table 4 show that a lower i value
results in a significantly larger achievable minimum andmaximum
primary crystal mean size. Modulating i varies the extent of sec-
ondary nucleation in the system. A lower i value decreases the
extent of secondary nucleation which in return allows more super-
saturation to be consumed by growth.

Fig. 17 shows the mean size profiles for both the minimization
and maximization of primary crystal size. The mean size profiles
show a significant difference from that of the system with a higher
value for i. Most notably, changes in the mean size for the agglom-
erate follow more closely the changes in mean size of the primary
crystals. The agglomerate mean size stays relatively constant,
increases and decreases with the same trend as primary crystal
mean size. This shows the impact that secondary nucleation can
have on the final agglomerated size. The trends observed with
lower values for i are more reasonable when compared to the
experiments in the literature (Rasmuson and Thati, 2011; Thati
and Rasmuson, 2012), but will need to be fit to experimental data
to attain a system specific value.

8. Conclusions

In this work, a coupled population balance model with nucle-
ation, growth and agglomeration was developed. Three popula-
tions of interest are tracked: primary crystals, un-agglomerated
crystals and agglomerate populations. Tracking these populations
separately gives access to otherwise unattainable information in
traditional population balance models. This allows for optimiza-
tion frameworks and process design efforts tailored to the property
specifications for each population.

An optimization framework has been developed to achieve
optimal flowrate, temperature and agitation rate profiles for a
reverse addition, anti-solvent crystallization system of benzoic
acid with agglomeration. The results of this work show that oper-
ating parameters can be optimized to achieve the desired primary
and/or agglomerate properties. The framework allows for bioavail-
ability (primary crystal size) and manufacturability (agglomerate
particle size) optimization. Moving forward this model formulation
will allow for the development of better, more relevant kinetic and
agglomeration parameters. Given that each population is tracked
separately, kinetic parameters can be fit separately without having
to lump all the kinetics into one population; thereby increasing
accuracy of the parameter fit. Agglomeration kernel identification
would greatly improve with this model formulation, and can begin
the shift from purely empirical kernels to combination kernels that
relate the physical mechanisms and operating conditions more
accurately. Moving forward the proposed model formulation will
be fit to data from various agglomeration in suspension systems
to assess its capability to predict product properties.
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