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ABSTRACT: Nanocrystals are receiving increased attention for
pharmaceutical applications due to their enhanced solubility
relative to their micron-sized counterpart and, in turn, potentially
increased bioavailability. In this work, a computational method is
proposed to predict the following: (1) polymorph specific
dissolution kinetics and (2) the multiplicative increase in the
polymorph specific nanocrystal solubility relative to the bulk
solubility. The method uses a combination of molecular dynamics
and a parametric particle size dependent mass transfer model. The
method is demonstrated using a case study of α-, β-, and γ-glycine.
It is shown that only the α-glycine form is predicted to have an
increasing dissolution rate with decreasing particle size over the
range of particle sizes simulated. On the contrary, γ-glycine shows
a monotonically increasing dissolution rate with increasing particle size and dissolves at a rate 1.5 to 2 times larger than α- or β-
glycine. The accelerated dissolution rate of γ-glycine relative to the other two polymorphs correlates directly with the interfacial
energy ranking of γ > β > α obtained from the dissolution simulations, where γ- is predicted to have an interfacial energy roughly
four times larger than either α- or β-glycine. From the interfacial energies, α- and β-glycine nanoparticles were predicted to
experience modest solubility increases of up to 1.4 and 1.8 times the bulk solubility, where as γ-glycine showed upward of an 8
times amplification in the solubility. These MD simulations represent a first attempt at a computational (pre)screening method
for the rational design of experiments for future engineering of nanocrystal API formulations.
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■ INTRODUCTION

For orally administered solid-state active pharmaceutical
ingredients (API), the bioavailability is defined as the amount
of dissolved API in the blood within a predetermined
therapeutic range integrated over time. This API property is
one of the most essential design variables of any solid state API
crystal, as the bioavailability determines the rate and extent to
which the drug becomes available in circulation and hence to
what degree the drug can be efficacious. The first step in
transferring the drug from the ingested solid state tablet to the
bloodstream is the dissolution of the tablet itself, driven by the
solubility and area for mass transfer of the solid state tablet.
Insufficient dissolution, and hence reduced bioavailability, can
result in an inadequate amount of drug being transported to the
target, resulting in suboptimal treatment for the patient.
Specifically, the API’s solubility and dissolution rate must be
balanced with its absorption or metabolism rate in order to
provide maximum bioavailability. Currently, the pharmaceutical
industry is facing a bioavailability crisis, where it is estimated
that as high as 60% of newly discovered APIs possess poor
aqueous solubility,1,2 and hence insufficient bioavailability,

bringing this problem to the forefront of API manufacturing.
Due to the enhanced solubility of the nanocrystal resulting
from an increased surface area to volume ratio relative to its
micron-sized counterpart, nanocrystal APIs offers an intriguing
method to possibly combat poorly soluble bulk crystals. To
date, crystal production methods ranging from top down, such
as milling or high-pressure homogenizers, to bottom up, such as
nanoscale confinement or nanodroplet crystallization, are
employed to achieve nanocrystal API product.3−9 Accelerated
dissolution kinetics has been demonstrated upon nanosizing for
many poorly aqueous soluble API molecules10 such as
indomethacin,11 celocoxib,12 quercetin,13 ibuprofen,14 melox-
icam,15 itraconazole,16 and albendazole.17 However, no
computational framework exists for the screening on nano-
crystal polymorphs. Molecular level understanding into the
nanocrystal dissolution kinetics as a function of particle size and
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polymorphic form would provide an important step toward
designing for optimal nanocrystal drug delivery.
The solubility increase of nanocrystals has its origins in

interfacial effects resulting from the large surface area to volume
ratio of nanocrystals. Mathematically, this physics is encapsu-
lated in the Ostwald−Freundlich equation for spherical
particles, shown below in eq 1:

σ
= ∞ ⎜ ⎟⎛

⎝
⎞
⎠C r C

V
rRT

( ) exp
2

e
m

(1)

where r is the particle radius, σ is the interfacial free energy
averaged over all the faces of the crystal exposed to solution, Vm
is the molar volume (molecular weight divided by density), R is
the gas constant, T is the temperature, C∞ is the bulk solubility,
and Ce(r) is the solubility of the nanoparticle evaluated at
particle radius r. In addition to the solubility, the dissolution
rate is also intimately coupled to the interfacial area for mass
transfer, as the net rate of change of solid particle mass is the
flux of particles from the surface multiplied by the surface area.
Thus, the net effect of nanosizing, specifically whether the
dissolution kinetics increase or decrease, will be determined by
the competing factors of surface area decrease and solubility
increase. As the objective of nanocrystal API manufacturing is
to create API tablets with high bioavailability, and not solely
solubility, it is critical to determine how the dissolution rate
varies with particle size for each solid-state form, as it is not
guaranteed that merely reducing the size of the crystal will
result in enhanced bioavailability. If a nanocrystal of a given
polymorph lies in a surface reaction mass transfer limited
regime, a subsequent decrease in the particle size will decrease
the dissolution rate due to the decreased surface area. For
particles in a diffusion limited mass transfer regime, if the
solubility increase does not sufficiently offset the decrease in
surface area, the dissolution rate may decrease monotonically
with size. Being able to computationally screen to determine
how the dissolution rate varies with particle size will allow for
the discovery of high bioavailability API products.
Polymorphism is defined as the ability of a molecule to self-

assemble into multiple crystalline forms. It is essential to
understand that interfacial free energy, σ in eq 1, is a
polymorph specific parameter for a given solute−solvent liquid
composition. Consequently, different crystal structures of the
same API molecule will experience different percent increases
in the solubility relative to the bulk value in a given solvent. As
important, eq 1 implies that the polymorph solubility rankings
at bulk length scales need not apply for nanoparticles, a
phenomenon known as size dependent polymorphism.5,7,8

Hence, the stable form obtained under bulk crystallization
conditions may potentially become the metastable form upon
nanosizing, potentially leading to a reversal in the polymorph
dissolution kinetics ranking at the nanoscale when compared to
the bulk scale. As key API physical characteristics, such as
bioavailability, solid-state stability, and dissolution rate are
strong functions of the polymorphic form, it is essential to
understand the effects of nanosizing on the polymorphic forms
of the target API molecule to choose the appropriate crystal
structure for the desired application.18

Molecular dynamics (MD) is a simulation methodology in
which the positions and velocities of atoms are time integrated
forward by solving Newton’s equations of motion. With
continuous improvements in CPU clock speeds and develop-
ment of many core architectures such as NVIDIAs graphical
processing unit (GPU)19−21 and the Intel Xeon Phi

coprocessor,22−24 MD has been increasingly applied to study
nucleation25−31 and crystal growth32−37 of organic crystals.
However, the study of organic crystal dissolution using MD has
received far less attention. To date, most emphasis has been
placed on identifying the dissolution mechanism, and little
attention to the size and polymorph dependent dissolution
kinetics has been given. Hence, no computational strategy to
screen bioavailability with regard to particle size has been
proposed. Gao and Olsen identified the dissolution mechanism
of acetaminophen form I in water and showed that molecules at
edges and corners of a crystal surface detach most readily, due
to a decreased interaction with interior crystal molecules.38 This
shows the importance of the interfacial free energy upon
dissolution of nanocrystals. The nonspherical seed crystal
geometry considered in the work of Gao and Olsen led to an
anisotropic distribution of interfacial free energy over the solid
molecules on the crystal surface, where molecules on the
corners and edge possessed the highest energy, making them
dissolve most rapidly. Gao and Olsen later considered the
dissolution of form I and form II of acetaminophen for the
purpose of identifying solid-state conversion mechanisms.39

However, only one particle size was considered, and no attempt
at quantifying dissolution kinetics was made. Lanaro and Patey
performed simulations of NaCl dissolution for various initial
crystal shapes (cube, sphere, rod tablet) and identified the
dissolution mechanisms.40 Activation energies were also
determined by performing simulations at multiple temper-
atures. Comparisons with particle size independent classical
mass transfer models were performed to determine dissolution
kinetics. It was shown that NaCl dissolution is determined
mainly by the surface reactivity at the conditions studied. The
effect of various particle sizes and the enhancement of the
dissolution rate relative to micron sized particles were not
considered. Both MD and kinetic Monte Carlo have been used
to study the dissolution of aspirin, in which the face specific
dissolution kinetics of the experimental morphology were
calculated.41,42 The emphasis of the aspirin works was face
specific dissolution kinetics and not on the impact of the size of
the particle or the polymorphic form. The dissolution of
aspirin, paracetamol, and ibuprofen bulk crystals have also been
simulated using MD with the CHARMM, OPLS, and GAFF
molecular force fields to evaluate the ability of these force fields
to simulate crystal dissolution.43 However, the dissolution
kinetics were not addressed.
In the present work, a computational methodology for the

screening of polymorphic nanocrystals for dissolution rate and
bioavailability optimization is proposed. Specifically, α-, β-, and
γ-glycine polymorph dissolution kinetics are calculated as a
function of particle size through a combination of a parametric
mass transfer model and molecular dynamics. Glycine was
chosen as a model system as it is an organic molecule that is
well parametrized with existing molecular force fields and is
known to display size dependent polymorphism.5,8 The effects
of particle size dependent solubility and dissolution kinetics are
investigated for each polymorph. The remainder of the article is
divided into three parts. In the experimental section, the
computational details of the molecular dynamics simulations
performed are discussed, and the parametric mass transfer
model used is derived. In the results section, the findings of the
work are presented. Finally, the main conclusions are
summarized in the discussion and conclusion sections.
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■ EXPERIMENTAL SECTION
Dissolution Model. In this work, the mechanics of

dissolution are described using a classical mass transfer model
combined with the Ostwald−Freundlich equation. This is
necessary as tradition mass transfer models, such as the 1/3 or
2/3 root law, are derived under the case that the solubility of
the dissolving particle is not a function of the particle size
itself.44 This is clearly not the case for nanoparticles, as shown
by eq 1. Specifically, a Hixson−Crowell type of dissolution
equation was employed to model mass transfer. In the Hixson−
Crowell equation, the rate at which a substance dissolves is
proportional to the exposed solid−liquid surface area, and the
difference between the solute concentration in the bulk liquid
and the solute concentration at equilibrium.44 As MD
simulations employed in this work track the number of
molecules in the dissolving nanocrystal, differential equations in
this work will be cast in (t,n) coordinates through the
coordinate transformation r = λn1/3, where λ is a shape factor
that converts n1/3 to r. In these coordinates, the dissolution of a
solid particle can be represented by eq 2.

πλ= −n
t

k n C C
d
d

4 ( )2 2/3
b e (2)

where n is the number of molecules in the dissolving solid at
time t, k is a constant of proportionality encapsulating
resistance to mass transfer in the diffusion layer and interface,
Cb is the concentration of dissolved solute, and Ce is the
equilibrium solubility of the particle. For particles whose
interfacial free energy contributes negligibly to the total free
energy of the crystal, Ce is a constant, and the (r,t) version of eq
2 can be integrated to yield the well-known cube-root law.
However, for the particle sizes considered in this work, where
the initial radius is between 1.85 and 3 nm, the solubility will
deviate significantly from bulk solubility values, due to
interfacial free energy contributions. Thus, eq 1 is inserted
into eq 2 to yield eq 3, the differential equation for dissolution
of spherical nanoparticles.
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In the performed simulations, sink conditions for dissolution
exist, and hence, Cb is assumed to be zero. Equation 3,
therefore, is simplified to yield eq 4.
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Equation 4 can be expressed as a two-parameter model:
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where the A1 parameter is given by eq 6

πλ= ∞A kC 41
2

(6)

and A2 parameter is given by eq 7
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Finally, the solubility enhancement ratio, for a specified
crystal size, is trivially calculated with the knowledge of the A2
parameter and is given by eq 8
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In this work, the A2 parameter is determined through solid
state, liquid, and solid−liquid mixture enthalpy calculations and
is discussed in the Enthalpy Balance for Interfacial Energy
Calculation section. With knowledge of the polymorph specific
A2 parameter, the A1 parameter can simply be regressed to a
dissolution trajectory, allowing the calculation of the dissolution
rate for any particle size through eq 5.
The dissolution kinetics of polymorphs will be calculated

using the Hixson−Crowell model. Although the Cb − Ce
driving force for dissolution may not be the correct driving
force for particles under surface reaction limitations, it is
important to note that the conclusions stated herein are not
impacted. As eq 5 is derived to be parametric in form, the
ability to screen polymorphs and calculate dissolution kinetics
is merely reflected in the quality of fit of the model to the
simulated MD data. If a high R2 value is obtained from the fit of
eq 5 to the MD dissolution trajectories, the dissolution kinetics
can be reliably calculated.

Enthalpy Balance for Interfacial Energy Calculation.
For the systems considered in this work, which consist of
nanocrystals immersed in water, the initial total enthalpy of the
system can be decomposed into the terms shown in eq 9
assuming solution ideality:

σ= + +H n H n H Asys w w o s (9)

where Hsys is the total enthalpy of the crystal plus water system,
nw is the total number of water molecules in the MD
simulation, Hw is the enthalpy of pure liquid water per water
molecule, no is the initial number of solid glycine molecules, Hs
is the polymorph specific enthalpy per glycine molecule in the
bulk solid state (note this is a solid state value and hence
contains no interfacial contributions), σ is the interfacial energy
defined in eq 1, and A is the area of the solid−liquid interface
(assumed to be spherical). As three distinct polymorphs are
simulated in this study, Hs will have distinct values for α-, β-,
and γ-glycine, represented by the notation Hα, Hβ, and Hγ,
respectively. In the case of dissolving crystals, the enthalpy
difference between the glycine molecule in the solid and liquid
must also be considered, and eq 9 is augmented to yield eq 10:

σ= + + − − +H t n H n H H H n n t A( ) ( )( ( ))sys w w o s g,l s o

(10)

where Hg,l is the liquid phase glycine enthalpy per glycine
molecule, and n(t) is the number of solid glycine molecules at
time t. It is assumed that Hg,l is not a function of any existing
dissolved glycine concentration, which is a valid approximation
for the low liquid glycine concentrations simulated in this work.
To determine the critical polymorph specific σ parameter in eq
1 and eq 8, the specific enthalpy values Hw, Hg,l, Hs, Hsys(t) will
be calculated using MD. The details of these calculations are
discussed in the Crystal Dissolution and Water Simulation
Methods section. Finally, σ will be estimated through parameter
estimation using Hsys(t), n(t), Hw, Hg,l and Hs. The parameter
estimation methodology is discussed in the Parameter
Estimation section. Once the value of σ is known, the A2
parameter in the Hixson−Crowell mass transfer model can be
calculated using eq 7. Using the newly calculated value of A2, A1
is regressed to each average dissolution trajectory allowing for
dissolution rate calculation through eq 5. Figure 1 provides a
pictorial overview of the employed method.
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It must be remarked that σ in eq 1 is technically a free
energy. Thus, by equating the interfacial energy in eq 8 with
that in eq 1, we are neglecting entropy contributions to the
interfacial energy, resulting from the partial ordering of liquid
molecules at the surface of the solid crystal. Including the
entropy contributions would require more computationally
expensive free energy sampling computational procedures45

and may very well yield a statistically equivalent answer to the

enthalpy result for the case of the Zwitter-ion glycine, where
molecule−molecule interactions will be dictated heavily by
electrostatic potential energy contributions. This has indeed
been found to be the case of NaCl, where the interfacial energy
using the enthalpy approximation yielded a statistically
equivalent estimate of the interfacial free energy generated
using more rigorous free energy sampling procedures.46

As mentioned in the introduction, the calculated interfacial
energy represents the average interfacial energy averaged over
all crystal faces exposed to solution during the dissolution
process. This estimate needs to be distinguished from face
specific bulk crystal−liquid interfacial energy estimates. In
addition, previous MD studies have shown nanocrystal
interfacial energies may differ significantly from their bulk
counter parts due to Tollman-length and surface curvature
contributions.45

Crystal Dissolution and Water Simulations. In all
simulations performed, the GAFF force field with CNDO
atomic charges was used to simulate glycine. For water, the
SPC/E water model was employed.47 Standard GAFF force
field parameter combination rules were used for all simulations.
All crystal dissolution simulations were performed using an

in-house MD code suited for embarrassingly parallel multiple
replica simulations on Intel Xeon Phi coprocessor hardware.22

In all simulations, initial trajectories were launched by
generating randomly initialized atomic velocities according to
a Maxwellian velocity distribution. Short-range nonbonded
forces were truncated at 1.2 nm. Reciprocal space electrostatic
forces were computed using a particle mesh ewald (PME)
solver with a 1 × 10−6error tolerance. The number of PME grid
points was 100 in each direction. The temperature was
controlled using a Langevin thermostat with a relaxation time
of 2000 fs. The isotropic Berendsen barostat was used with a
1000 fs relaxation time and a set point of 1 atm for water
equilibration and crystal dissolution simulations. A value of
21454.85 atm was used for the bulk modulus of water to
determine the relaxation time constant in the Berendsen
barostat. The shake algorithm was employed to constrain the
motion of all bonds containing hydrogen. A shake tolerance of
1 × 10−4 was employed for all simulations, and a maximum
number of 25 shake iterations were allowed. Periodic boundary
conditions were employed in all directions. For all production
runs, the equations of motion were solved using a velocity
Verlet algorithm with a 2.0 fs time step.
To prepare an initial configuration of water molecules for

crystal dissolution simulations, a 9.5 nm cubic box was solvated
with SPC/E water molecules using the gromacs/5.048 solvate
command. The system was then equilibrated for 6 ns in the
NVT ensemble. The system was then equilibrated for an
additional 6 ns in the NPT ensemble for a total of 12 ns of
equilibration. All equilibration runs were performed at 330 K.
The final equilibrated configuration of water molecules was
then used to solvate polymorph specific seed crystals of various
sizes, again using the gromacs/5.0 solvate command. The
energy of the system was minimized in gromacs/5.0, using
steepest descent minimization, with an energy minimization
tolerance of 100.0 kJ/mol/nm. Polymorph specific seed crystals
were obtained by cutting 1.85, 2.0, 2.15, 2.30, 2.45, 2.60, and
3.0 nm radius α-, β-, and γ-glycine spherical crystals from their
respective bulk structures. The selection of these particle sizes
allowed a large number of nanocrystal sizes to be simulated
while keeping the distance between periodic images larger than
three cut-off lengths. This was done to minimize spurious finite

Figure 1. Methodology overview. In step 1, the drug molecule is
specified. In step 2, bulk solid-state, pure liquid phase, and nanocrystal
dissolution simulations are performed. The enthalpy and dissolution
trajectories are used to estimate the parameters in step 3 to calculate
solubility increase and dissolution kinetics.
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size effects. Bulk structures for seed generation were obtained
from the Cambridge Crystal Structure Database.49 Ten
independent crystal dissolution trajectories were then launched
from each initial crystal considered. This allows the averaging of
any stochasticity in the dissolution time series profile and allows
for the calculation of the average crystal dissolution kinetics.
The first 0.1 ns of a crystal dissolution simulation were
attributed to equilibration, and data was not monitored during
this time. After equilibration, the dissolution dynamics were
monitored for 0.5 ns for parameter estimation and data
generation. This length of simulation provided ample data for
the enthalpy calculations, as well as mass-transfer model
parameter estimation, without any significant dissolved glycine
concentration accumulating. This validates the sink conditions
Cb = 0 approximation in the dissolution model development.
To calculate the specific enthalpy of water at the conditions

employed in these simulations, the equilibrated SPC/e water
box was further propagated in time using MD for an additional
2 ns. The total enthalpy of the system was monitored, and the
enthalpy per water molecule was calculated as the average
enthalpy over time divided by the total number of water
molecules in the simulation. To determine the enthalpy of
liquid glycine, the 1.85 nm α-glycine crystal was simulated until
well past complete dissolution for all 10 trajectories.
Specifically, all 10 trajectories were simulated for 7.5 ns. Data
was recorded over the final ns. This corresponds roughly to a
dissolved glycine concentration of Cb = 0.05 g/cm3 or Cb = 0.4
glycine molecules/nm3. To simplify the methodology employed
here, a potential dependence of the liquid glycine enthalpy on
the liquid glycine concentration is neglected. However, Cb = 0.4
glycine molecules/nm3 implies that the number of glycine
molecules within the 1.2 nm force field cutoff employed is 0.7
glycine molecules on average. Therefore, any potential
contribution of glycine−glycine interactions to the liquid
glycine enthalpy is not expected to contribute significantly to
the liquid glycine enthalpy, as the vast majority of interactions
will be glycine−water in nature. The resulting liquid glycine
enthalpy was then calculated as the average glycine enthalpy
(total enthalpy−water enthalpy) over the final 1 ns time
interval, divided by the total number of glycine molecules.
Clustering Algorithm for Solid Particle Identification.

A local density criterion was used to determine if a glycine
molecule was a solid or liquid molecule.31,40,50 Glycine
molecules were considered solid if it possessed 11 or more
neighbors in a 0.6 nm radius sphere.50 That distance roughly
corresponds to the first minimum in the glycine−glycine center
radial distribution function. This number of neighbors
corresponds to the tail end of the bulk glycine density
distribution. A clustering algorithm was then employed to
determine the instantaneous size of the embedded crystal.
Although they do not meet the solid molecule density criterion,
it is important to include surface molecules in the clustering
algorithm, as they make up an increasingly large percentage of
the total number of solid molecules as the crystal size decreases.
Surface molecules were included in the clustering algorithm by
counting a molecule as solid if it had a neighbor who met the
density criterion, but did not meet the density criterion itself.
Solid State Crystal Lattice Simulations. For the triclinic

box based solid-state calculations of α-, β-, and γ-glycine, the
LAMMPS51 simulation package was employed. A Nose−
Hoover chain with a temperature relaxation time of 2 ps and a
pressure relaxation time of 1 ps was implemented for time
integration and temperature/pressure control. For all three

polymorphs, the crystal lattice was equilibrated at 330 K using
the following procedure: (1) energy minimization with an
energy and force tolerance of 1 × 10−6; (2) NVT equilibration
for 2 ns; (3) NPT equilibration for 2 ns using isotropic
coupling; (4) NPT equilibration for 2 ns using anisotropic
pressure coupling. This was done to allow the pressure and
volume to equilibrate before allowing the box lengths to
fluctuate independently. Following equilibration, a production
run of 2 ns was performed in the NPT ensemble with
anisotropic pressure coupling, during which time the system
enthalpy was monitored. The glycine solid-state enthalpy was
calculated as the average enthalpy over time during the 2 ns
production run divided by the number of glycine molecules in
the crystal lattice.

Parameter Estimation. To determine σ for each
polymorph, optimization based parameter estimation was
employed. Due to the ratio of glycine molecules to water
molecules in these simulations, which ranged between 1:100
and 6:100, the small enthalpy contribution of the glycine
molecules to the total enthalpy made the parameter estimation
sensitive to which data sets were fitted. To prevent a biased
estimate of the interfacial energy, we selected four to seven data
sets at random, and calculated the average interfacial energy
over many iterations. An enthalpy time series data set was
selected with probability 0.75, and the sum of squared error
between the predicted average enthalpy during dissolution from
eq 10 and the enthalpy time series data generated from all the
polymorph specific nanocrystal dissolution runs was minimized.
This procedure was conducted 1000 times with 1000 different
initial parameter guesses. The σ value was recorded, and the
parameter estimation procedure was employed three additional
times. This yields four σ values for averaging and statistical
uncertainty analysis for a fixed polymorph, and a value for σ
that best describes the average enthalpy during dissolution for
all particle sizes simulated. The final reported A2 value reported
is calculated using the average σ from all four parameter
estimation runs for a given polymorph. To estimate the A1
parameter in eq 5, the MD generated polymorph specific
dissolution data, along with the A2 parameter value
predetermined from the enthalpy calculations, is used to
calculate the best-fit parameter value for each of the seven
polymorph specific average dissolution trajectories. To generate
trial solutions to eq 5, eq 5 was solved using ode45 in
MATLAB, using trial parameter values generated by the
optimization algorithm as it iterates toward the best fit solution.
Specifically, the resulting sum of squared error between the
model prediction and MD data was minimized using
fminsearch in MATLAB to yield the optimal parameter values.

■ RESULTS
Interfacial Energy and Solubility Increase. In Table 1,

the specific enthalpy values Hw, Hg,l, Hα, Hβ, and Hγ are
presented.
From the estimated enthalpies, the enthalpy of solvation,

ΔHsolv, can be calculated from the difference between glycine in
solution and in the solid-state. ΔHsolv is predicted to be 12.9 kJ
mol−1 for α- and β-glycine, and 13.2 kJ mol−1 for γ-glycine.
The values in Table 1 were used in eq 8, and σ was

subsequently determined for each polymorph through the
parameter estimation procedure discussed in the Parameter
Estimation section. The time series enthalpy data and model fit
is found in Supporting Information, Figure S1. The σ values are
presented in Table 2.
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Equipped with the knowledge of σ and the A2 parameter for
each polymorph, the multiplicative increase in solubility can be
calculated for each of the initial particle sizes simulated in this
work. The results are shown in Figure 2.
Polymorph Specific Dissolution Kinetics. With the data

generated from MD for each polymorph and crystal size, and
the A2 parameter results in Table 2, the remaining A1 parameter
in eq 5 is regressed for each averaged dissolution trajectory.
This results in a high degree of model fit to the dissolution data,
above r2 = 0.95 for all data sets, allowing for an accurate
calculation of the dissolution kinetics. As an example, the
dissolution data and model fit for the 3 nm α-, β-, and γ-
polymorphs are shown in Figure 3A. All dissolution trajectories
can be found in the Supporting Information, Figure S2, along
with the associated model fits. In Figure 3B, we plot the A1
parameter for every initial particle size simulated, for all three
polymorphs simulated in this work. Finally, knowledge of the
polymorph specific dissolution model parameters in eq 5 allows
for the calculation of polymorph specific dissolution rates. The
dissolution rate calculated at the initial particle size (before
dissolution trajectory equilibration) for each polymorph is
plotted in Figure 4.

■ DISCUSSION
From the solid-state enthalpy calculations obtained for each
polymorph, the difference in crystal lattice stabilities are found
to be minimal at 330 K. This is in line with crystal structure
prediction results, which show that γ-glycine is the global
minimum in lattice energy by only a few kT.52−54 The
calculated value of ΔHsolv agrees well with the 17.3 kJ mol−1 α-
glycine experimental value calculated from the van’t Hoff
equation.31,55 This is also in agreement with previous estimates
from our group31 of 10.64 kJ mol−1, but is above the 3.1 kJ
mol−1 value predicted by Cheong and Boon.47 However, the
Cheong and Boon value was predicted at 298 K, which could
explain their lower value. Although the bulk lattices are
predicted to be similar in stability from the enthalpies, this is
shown to not be the case upon the insertion of the different
polymorphs of glycine into water. In solution, the inability of γ-
glycine to form energetically favorable configuration with the
aqueous medium render it much more unstable than either α-
glycine or β-glycine. This highlights the drastic effects that
solvents can play on the stability and kinetics of polymorphs.
Specifically, γ-glycine is shown to possess the largest σ (112.8

mJ/m2) by a factor of 3−6 relative to α- (19.1 mJ/m2) and β-
glycine (31.9 mJ/m2). Due to the magnitude of the γ-glycine
interfacial energy with water; γ is predicted to have a much
larger solubility increase upon nanosizing according to eq 1.
Whereas α- and β-glycine are shown to only possess a 1.25−
1.42 and 1.44−1.81 magnification in solubility respectively, γ-
glycine is shown to possess a 3.63−7.95 times increase in the
solubility. This makes γ-glycine potentially the attractive
polymorphic form for a glycine nanocrystal application in
vivo. Finally, for all polymorphs, the enthalpy of glycine in the
liquid is predicted to be higher than that in the solid state. This
shows that the dissolution of these nanocrystals is driven by the
entropy difference between glycine in the liquid and glycine in
the solid.
Although the exact β-glycine bulk solubility value is not

measurable in water due to rapid recrystallization kinetics,56 the
experimentally measured bulk solubility values of α- and γ-
glycine are statistically equivalent at 330 K, with α-solubility
reported as 38.5 ± 1.5 g/kg water at 55 °C, and γ- solubility

Table 1. Calculated Specific Enthalpy Values for Hw (Liquid
Water), Hg,l (Liquid Glycine), Hα (α-Glycine), Hβ (β-
Glycine), and Hγ (γ-Glycine)

material variable enthalpy per molecule (kcal/mol)

Hw −8.69 ± 1.87 × 10−4

Hg,l −61.71 ± 5.38 × 10−2

Hα −64.79 ± 0.80
Hβ −64.76 ± 0.78
Hγ −64.87 ± 0.67

Table 2. Polymorph Specific σ Values for α-, β-, and γ-
Glycine

polymorph σ (mJ/m2) A2

α 19.1 ± 0.11 2.45
β 31.9 ± 0.27 4.10
γ 112.8 ± 0.51 14.53

Figure 2. Multiplicative increase in the nanocrystal solubility relative
to the bulk value for (A) α- (red), β- (green), and (B) γ-glycine (dark
blue) nanocrystals.
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reported as 37.6 ± 1.6 at 57 °C, making the polymorph stability
ranking α- ≈ γ-glycine > β-glycine.55 Using the solubility
increase values reported in this work, γ-glycine solubility would
range between 299 g/kg water for the 1.85 nm particle and 136
g/kg water for the 3.0 nm particle. With its modest σ value of
19.1 mJ/m2, α-glycine solubility would range between 47.7 and
54.7 g/kg water, much lower than that of γ-glycine nanocrystals
of equivalent size. This yields the polymorph stability ranking
α- > γ-glycine at the nanoscale. This result is in agreement with
previous nucleation simulation of glycine in aqueous solution
performed by our group at supersaturated concentrations,
where the melting temperature of γ-glycine nanocrystals was up
to 20 K below α-glycine nanocrystals.31 This shows how bulk
scale material knowledge is poorly transferred to the nanoscale,
where new physics, emanating from the enhanced surface area
to volume ratio of the particles, dictates the stability, solubility,
and dissolution kinetics. Our recent MD nucleation simulations
at supersaturated and lower temperature conditions have

predicted a lower σ value for β-glycine (17.97 mJ/m2) than
α-glycine (31.0 mJ/m2).31 This suggests that the σ rankings
may undergo a reversal as a function of the liquid glycine
concentration. This could result in different glycine polymorphs
nucleating as a function of the applied supersaturation.
Upon batch crystallization from aqueous solution, the α-

glycine polymorph is commonly produced.57 However, γ-
glycine is the most stable lattice, posing the question as to why
γ is not obtained from aqueous crystallization. From a classical
nucleation theory perspective, which views the crystallization
process as a competition between the energetically favored
formation of the new solid phase, and the energetically
unfavorable creation of an interface, these σ results potentially
rationalize why γ-glycine, despite being the thermodynamically
preferred crystal lattice, is not observed upon batch
crystallization in aqueous solution, but rather α-glycine. From
the experimentally determined solubility values55,56 of the three

Figure 3. (A) Average dissolution trajectories, along with associated
model fit (dashed black line), are plotted for the 3 nm α- (red), β-
(green), and γ- (dark blue) nanocrystals. (B) Estimated A1 parameter
for all α- (red), β- (green), and γ-glycine (dark blue) nanocrystals vs
initial particle size (nm).

Figure 4. Calculated dissolution rate (molecules/ns) vs initial particle
size (nm) for all α- (red), β- (green), and γ-glycine (dark blue)
nanocrystals.
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polymorphs, γ-glycine would have a chemical potential
difference between the metastable liquid and solid similar to
α-glycine, and even greater than β-glycine. However, the large σ
value would render the free energy barrier to nucleation largest
for γ-glycine and render the kinetic accessibility of γ-glycine
negligible. This is equivalent to the results found in our
previous MD nucleation study.31

There is an observed direct correlation between the
magnitude of σ of a polymorph and the rate of dissolution,
with the rate of dissolution ranking, γ > β > α, being the same
as the σ ranking. However, solubility increase alone need not
guarantee that the dissolution kinetics increase with decreasing
cluster size. Of the three polymorphs studied in this work, only
α-glycine, the polymorph with the lowest σ, is observed to
display a monotonic increase in the dissolution rate with
decreasing particle size. In the case of α-glycine, the dissolution
kinetics are observed to vary from 212 molecules/ns in the 1.85
nm particle case, to the lowest dissolution rate of 169
molecules/ns obtained with the 3 nm α-glycine cluster, a
roughly 20% decrease in the dissolution rate. β-Glycine
dissolution kinetics display a unique minimum in the
dissolution rate, where the dissolution rate increases as the
size is increased past 2.3 nm, and this dissolution rate increases
as the size decreases past 2.3 nm. For the β-glycine nanocrystal
of these sizes, the competing effects of surface area and
solubility increase are of equal magnitude, leading the unique
minimum in the observed dissolution rate of the range of
particle sizes. Although glycine is known to display size
dependent polymorphism at supersaturated conditions,8 we
predict β-glycine nanocrystals to dissolve at rates greater than
or equal to α-glycine for all particle sizes tested. γ-Glycine
nanocrystals display the opposite dissolution kinetics trend to
α-. It is shown that the dissolution kinetics of γ-glycine
decreases monotonically with decreasing particle size, despite γ-
glycine possessing the highest σ of any of the polymorphs. It is
likely that the high driving force for diffusive mass transfer, Cb
− Ce(r), has rendered the rate of molecular detachment from
the solid cluster the rate limiting step of the dissolution process.
As the number of molecular detachments would scale
proportionally with the surface area, this would rationalize
the qualitative trend in the dissolution kinetics of γ-glycine.
Since the dissolution rate as a function of particle size and, in
turn, time, ultimately dictates the amount of available drugs in
the body, our finding highlights the fact that the solubility
increase of a nanoparticle due to size reduction need not
guarantee an increase in the API bioavailability. From the data
generated for each polymorphic form, and if the primary
concern is the maximize the dissolution rate of the dissolving
glycine crystal, γ-glycine would be the form predicted by our
simulations.
Administered nanoparticle API tablets are frequently biphasic

systems consisting of nanosize drug particles formulated with
stabilizing surfactants.10 Surfactants are needed to prevent
agglomeration of nanoparticles seeking to reduce their surface
area to volume ratio. The nanocrystal dissolution rate has also
been shown to be a function of the stabilizing surfactant
molecule employed.16 This could prevent the current set of
simulation data from agreeing with future measurements of the
dissolution kinetics of glycine nanocrystals formulated with a
stabilizing surfactant, as the impact of different formulations is
not addressed in this work. Future MD computational work will
seek to screen surfactants in addition to polymorphic type,
although large surfactant molecules could present a significant

computational challenge. Currently, particle size distributions
of nanocrystals commonly have average particle sizes ranging
between 200 and 600 nm using conventional top down
preparation procedures such as such as milling or high-pressure
homogenizers.58 These particle sizes are 2 orders of magnitude
larger than what MD can currently simulate. However, MD can
simulate the smallest particle sizes produced by bottom-up
nanocrystal production approaches. As such, the dissolution
kinetics of nanocrystals produced using these bottom up
approaches could be directly compared against MD simu-
lations. Bottom up nanoscale crystallization methods have
produced nanocrystals between 5 and 100 nm in diameter,
although these methods are not currently sufficiently scalable to
be used for manufacturing.5,7−9 As the aforementioned issues
are solely barriers through the computational time required to
simulate 200 nm particles and various stabilizing surfactant
molecules, we believe the method in general will extend to
more complicated organic molecules and formulations, and
therefore, the results presented herein present a first attempt at
a computationally prescreening for future engineering of
nanocrystal API formulations.

■ CONCLUSION
As an increasingly large fraction of newly discovered API
candidates are shown to possess poor aqueous solubility, and
hence potential bioavailability, nanocrystals are receiving
increasing attention due to their enhanced solubility relative
to their micron sized counterpart. The physical origin of this
solubility increase with nanosizing, the interfacial free energy σ
between the crystal and the aqueous medium is a polymorph
specific parameter, creating an additional material property for
consideration when selecting which solid state form is
appropriate for the desired application. Furthermore, as the
nanocrystal stability upon size reduction will be determined
increasingly by the magnitude of σ, the nanocrystal stability
ranking (solubility) need not be the same as that which was
determined at the micron scale.
MD provides a simulation methodology in which the

dissolution trajectories of organic crystals can be monitored
with femtosecond resolution and fully atomistic detail.
However, to date, only limited attention has been paid to the
problem of determining nanocrystal dissolution kinetics or
solubility increase, with the bulk of pharmaceutical based MD
simulations being devoted to the equally pressing problems of
crystal growth and nucleation. In this work, the dissolution
trajectories of the three experimentally observed polymorphs of
glycine (at atmospheric conditions), α-, β-, and γ-glycine, were
studied to determine the effects of the polymorphic form on
the resulting dissolution kinetics and solubility increase.
Through an analysis of the enthalpy time-series data generated
during dissolution, estimates for the interfacial energy for all
polymorphs were calculated.
Using the outlined methodology, it is shown that γ-glycine

has an interfacial energy (112.8 mJ/m2) roughly 3−6 times
larger than either α- (19.1 mJ/m2) or β-glycine (31.9 mJ/m2) at
sink conditions (no dissolved glycine). Using the Ostwald−
Freundlich equation, the resulting multiplicative solubility
increases, relative to the bulk crystal value, over the range of
cluster sizes simulated in this work, were 1.25−1.42 for α-
glycine, 1.44−1.81 for β-glycine, and 3.63−7.95 for γ-glycine. A
Hixson-Crowell type dissolution model, augmented with the
Ostwald−Freundlich equation, was then employed to calculate
the dissolution kinetics for each initial particle size and
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polymorph. Of the three polymorphs, only the dissolution
kinetics of α-glycine is observed to decrease monotonically with
increasing cluster size. On the contrary, γ-glycine is shown to
exist in the surface area limited regime, where the dissolution
kinetics increases monotonically with increasing cluster size.
The physical rationale for the surface area limited regime
proposed in this work is that the large interfacial energy of γ-
glycine makes the driving force for diffusion, the concentration
gradient between the bulk and the solubility, so large that the
limiting rate becomes molecular detachment at the interface.
The large interfacial energy of γ-glycine, relative to its
polymorph counterparts, results in the dissolution kinetics of
γ-glycine being 1.5−2× larger than either α- or β-glycine.
Finally, β-glycine is predicted to exist in an intermediate regime,
where the dissolution kinetics shows a distinct local minimum
over the range of cluster sizes studied. It is worthwhile to note
that, in this work, the topic of solid-state polymorphic
transformation has not been addressed. Given our latest
finding, this issue becomes even more important when tuning
bioavailability at the nanoscale since the rate of dissolution will
dramatically change if unforeseen transformation takes place.
This is a subject of future work. Also, thus far, sufficiently
accurate, sensitive, and reproducible methods needed to
determine bioavailability have solely been experimental, i.e., in
vitro or in vivo methods. These MD simulations represent a first
attempt at computational (pre)screening method for rational
design of experiments for future engineering of nanocrystal API
formulations.
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