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Addressing the Need for a
Model Selection Framework in
Systems Biology Using
Information Theory
This paper develops the argument that information-theoretic model selection

metrics should be extended to nonnested model comparison applications

in systems biology.

By Frank DeVilbiss and Doraiswami Ramkrishna

ABSTRACT | The field of systems biology thrives upon the

use of models to organize biological knowledge and make

predictions of complex processes that are hard to measure.

When attempting to generate model descriptions for meta-

bolic systems, one arrives at a crossroads. A variety of mathe-

matical explanations are available for metabolic data with

varying degrees of resolution from simple to complex. Biolog-

ical modelers often rely upon subjective arguments to choose

one framework over another. While there is no universal rule

to determine the absolute utility of a model, certain metrics

founded on information theoretical principles, demonstrate

promise in providing a coherent, rational, and objective basis

for addressing this model selection problem in systems biol-

ogy. A model seeks to capture the regularity in biological

data. Models that best capture regularity in data without ex-

cessive complexity are the most useful for applications in op-

timization and control. To demonstrate the efficacy of such

an approach, several metabolic model selection scenarios are

investigated. This work develops the argument that informa-

tion theoretic model selection metrics should be extended to

nonnested model comparison applications in systems biology.

It also makes a novel comparison of kinetic, constraint-based,

and cybernetic models of metabolism based not only on

model accuracy, but also model complexity. The results show

the strengths of lumped hybrid cybernetic model (L-HCM) and

flux balance analysis (FBA) for applications in steady state

flux prediction. Also, the hybrid cybernetic model’s (HCM)

merit in the modeling of dynamic changes in fluxes is also

established.

KEYWORDS | Biological systems modeling; cybernetics; infor-

mation theory

I . INTRODUCTION

When given an arbitrary set of data, one can generate a

host of different mathematical descriptions for it. Meta-

bolic systems are no exception and embody an important

branch of systems biological study. In order to predict

the effects of perturbations to metabolic networks such

as deleting genes or inhibiting enzymes, it is useful to
first use a model to understand, without additional ex-

perimentation, the effects of such modifications. To

model the changes in metabolic systems, one can select

kinetic, constraint-based, or cybernetic formulations.

Each of these metabolic models is unique in formulation

and widely used for similar goals.

In very general terms, the utility of a model is de-

rived from its ability to describe regularity in data. Regu-
larity, or coherence in a set of data, means that the data

are generated as the result of some intelligible process

[1]. For metabolic flux data, each type of model is able to

capture the coherence of metabolic processes to a certain

degree. These models also have varying degrees of com-

plexity which are used to explain the behavior of data.

To establish which model is best for the purposes of
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optimization and control, it is proposed that models be
selected on the basis of how well they are able to capture

the regularity of data without being excessively complex.

In this work, a number of widely used mathematical

approximations of metabolic systems are compared ac-

cording to the ability of each to capture regularity in

data. While there is much discourse on the merits of

each modeling framework [2]–[6], no systematic method

has been implemented to quantitatively and simulta-
neously measure the relative accuracies and complexities

of metabolic models. This work applies information theo-

retic metrics, well known in other fields, to address this

problem. Treating each model as an entity that com-

presses data for communication through a channel, one

can quantitatively evaluate how well a model balances

accuracy and complexity. Models that accurately repro-

duce data with low complexity require less information
to communicate and embody a more compressed descrip-

tion of a process’s data. This method of evaluation is es-

pecially useful in situations where model formulations

are vastly different (i.e., nonnested).

The establishment of the model that best minimizes

penalties for both error and parameterization is deemed to

be the best model for an application related to the optimi-

zation and control of biological systems. Restated, there is
a point in diminishing returns for model complexity. Addi-

tional parameters may enhance accuracy, but each addi-

tional parameter has an intrinsic cost associated with it.

A set of four distinct models of metabolic fluxes are

judged in their ability to describe metabolic reaction

rates at a given steady state. Following this, dynamic

metabolic models are compared in their ability to predict

changing metabolic fluxes. These dynamic models of
metabolic fluxes have never been compared in this objec-

tive fashion. Neither have such a wide range of steady

state descriptions of metabolic fluxes been compared.

The application of these metrics in these scenarios helps

to establish a new way of thinking about metabolic

model selection. Moreover, a quantitative framework for

comparing nonnested biological models is necessary to

introduce to the field of systems biology.

II . METHODS

A. Theory
To develop the model selection framework, it is first

useful to review some basic tenets of information theory for

those who might be unfamiliar. In the field of communica-

tion, signals that are being passed through a channel are an-

alyzed and compressed depending on how much regularity

is present in a given message. Compression is a useful tool

in that shorter messages lead to faster communication.
For example, consider the two messages below:

1) 011010111010010001011;

2) 000010000000000000000.

Sequence 1) is generated from some arbitrary process
where either 0 or 1 share equal probabilities of occur-

rence. On the other hand, sequence 2) is generated from

a process where the probability of 1 is 1/20. To commu-

nicate either sequence, one could send each 1 or 0 value

individually or one could compress the information

down into a shorter sequence. Given the fact that either

ones or zeros are equally probable in 1), it is virtually in-

compressible. On the other hand, sequence 2) can be
shortened in a number of ways.

For example, sequence 2) can be simply described by

specifying the position of the single one rather than the

whole sequence assuming the decoder understands the

compression scheme. In case 2), one could rewrite

the sequence as “5” specifying the location of the single 1.

For this 20-b sequence, specifying the position of a single

one in any of 20 possible locations requires up to 5 b
ðdðlog2ð20ÞeÞ instead of 20 for compressing any position

in the sequence of 20 b. This represents a compression

factor of 0.25 compared to communicating the entirety of

the original sequence. Other, more efficient coding

schemes are possible and the fundamental limit of com-

pression of these data sequences is quantified using

Shannon’s entropy [7]

HðxÞ ¼
X
i

pi logðpiÞ (1)

in which pi represents the probability of a 0 or 1 occur-

ring in the sequence. The motivation for compression is

increasing the overall rate of communication. The more
compressed a message is, the less time is spent communi-

cating it. In terms of entropy, the highest entropy se-

quence will consist of bits generated by the method of 2).

In the same way that a message can be compressed by a

proper coding scheme, we can say that biological data can

be compressed by a model. It is here where the minimum

description length principle (MDL) becomes useful in

that one can reinterpret the model selection problem as
one of data compression [1]. The aim is to shrink the data

D into some D0 from which D can be perfectly recon-

structed after compression. For some model M, there is a

length of the data LðD0Þ that is determined as

LðD0Þ ¼ LðDjMÞ þ LðMÞ (2)

where LðDjMÞ expresses the data in terms of the model

and LðMÞ is a description of the models complexity [1],

[8]. The term LðDjMÞ accounts for the extra information

that needs to be transmitted in order to describe the

model prediction’s distance from the real data. For exam-

ple, if the model prediction comes close to the data, less

information is needed to communicate the model error
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than if the prediction is far from the data in the same
way that smaller integers can be communicated by fewer

bits than larger ones (e.g., in the case of integers, the

number 2 can be encoded into binary as “10” at 2 b

versus 20 as “10100” at 5 b). The complexity term LðMÞ
defines the amount of information that must be commu-

nicated in order to describe the model and is typically

defined by the number of parameters in the model. To-

gether, the model and a specification of its error can be
used to perfectly reconstruct the data from D0 to D.

To represent LðD0Þ for some model, one can apply

metrics such as Akaike’s information criterion (AIC) [9]

or Schwarz’s Bayesian information criterion (BIC) [10].

These information theoretic metrics take the form of

either

AIC ¼ n logð�̂2Þ þ 2k (3)

or

BIC ¼ n logð�̂2Þ þ k logðnÞ: (4)

In the above, �̂2 is the error of the model, k is the

number of parameters within the model, and n is the

number of data points that the model approximates.

Note that these metrics are valid asymptotically and cor-

rection factors are applied in the case of limited data.

These correction factors increase the penalty on extra

parameters when there are fewer data points.

AIC is formulated using Kullback–Liebler divergence
and seeks to select a candidate model that best describes

reality. This is due to the fact that KL divergence is a

measure of the extra information needed to transmit

some information using a model distribution as com-

pared to some real generating distribution [11]. BIC,

built from a Bayesian arguments, seeks to select a “true”

model from a possible set of models. More specifically, it

applies a likelihood function to gauge the probability that
a model is true given some observed data. AIC penalizes

parameters less severely than BIC which means that BIC

tends to favor simpler models than AIC. For derivations

of these metrics, one should consult [9] and [10].

Both metrics above are made from different argu-

ments, but they embody a similar principle. A model

that optimally describes the data will strike a balance

between accuracy and complexity.
To further explain these metrics in the context of a

communication problem, consider the transmission of

the model in the place of the raw data through a commu-

nication channel. In order to communicate the model it-

self, the parameters need to be transmitted with a

certain accuracy. Encoding parameters to a precision of

�m ¼ 1=
ffiffiffi
n

p
is the most reasonable way to do this as

1=
ffiffiffi
n

p
represents the magnitude of estimation error on

the parameters themselves [12]. To transmit a model’s k
parameters to this precision through the channel, one

will need to use �k log2 1=
ffiffiffi
n

p
bits which makes up the

latter portion of BIC.

The error of the model will also require communica-

tion which is approximated by the mean squared error
for the data set. Mean squared error represents the aver-

age magnitude of error in the description of each data

point. For a particular data point, magnitude of error is

relevant because, as stated previously, larger numbers re-

quire more bits to communicate. When considering these

model metrics in the context of data transfer, they are

formally referred to as two-stage description length or

two-stage MDL. Note that two-stage MDL has the same
form as BIC.

To further illustrate the use of these information cri-

teria, let us consider some arbitrary data set as shown in

Fig. 1. There are a range of polynomial models that one

could use to fit the n data points from an overly simple

linear model of order 1 in Fig. 1(a) to an overfitting

Lagrange polynomial of order n� 1 in Fig. 1(c). While

Fig. 1. Example of model selection problem with polynomials.

(a) Fit of a linear polynomial for the data. (b) Fit of the third

order polynomial. (c) Fit of a Lagrange polynomial of order

n � 1. (d) Behavior of MSE in red while AIC and BIC are shown in

blue and green, respectively, for each order of polynomial.

Note that both metrics are minimized for the third-order

polynomial model.
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the Lagrange polynomial captures the data with no error,
the third-order polynomial has a better qualitative fit

to the data.

When using a model for the purposes of optimization

and control, one desires a model that will be accurate

without being overly complex. By applying AIC and BIC

to the analysis of biological models, one can gain a rela-

tive sense of a model’s balance between accuracy and

complexity relative to other descriptions of the data. An
important advantage offered by these metrics is that they

can be used to compare nonnested models. In other

words, these information criteria are valid for comparing

models of vastly different formulations such as con-

straint-based and differential equation models.

The model selection approach highlighted contrasts

with other methods of model selection that focus merely

on accuracy. Approaches such as cross validation are
useful for comparing models but do not offer any in-

sight into the relative complexity of different models.

Other methods that seek to prevent overfitting such as

regularization are not necessarily useful for the applica-

tions discussed here.

B. Metabolic Models
To demonstrate the value of these information

criteria for biological modeling applications, a set of
models will be developed to describe the same set of

biological data. This set of models includes kinetic,

constraint-based, and cybernetic models. These models

can all be used to predict metabolic fluxes, or the rates

of different intracellular chemical reactions, in cultures

of cells growing on different carbon sources. These

models are all developed using experimental data repre-

senting quantities such as the dynamic changes in con-
centration of carbon sources, and the growth rates of

cells to arrive at these predictions. Each model has vary-

ing complexity and predicts metabolic fluxes with differ-

ent amounts of error. It is the goal of this work to show

how well each model balances between these.

To understand the general features of each modeling

framework, the structure of all three classes of models

will be highlighted. To start, one must consider the na-
ture of metabolic systems. They are composed of con-

nected chemical reactions that form networks. This

network is articulated in a stoichiometric matrix S of m
metabolites by n reactions. To model the changes in ex-

tracellular species, one can use

x ¼
s

p

c

2
4

3
5 (5)

where s and p are vectors of ns substrates and np prod-

ucts, respectively, and c is the concentration of cells

often referred to as biomass. Combining the extracellular
variable x with a vector for the cell density normalized

intracellular components m yields an expression that de-

scribes the time rate of changes of extracellular and in-

tracellular variables

1
c
dx
dt

dm
dt

� �
¼ Sr: (6)

Above, r represents the rates of metabolic reactions or

fluxes. In the kinetic model, this differential expression is

solved using expressions for r that approximate the fluxes

of the chemical reactions as a function of x and m. These

flux expressions typically use Michaelis–Menten kinetics

such as

ri ¼ Vmax
i mi

Ki þ mi
(7)

where Vmax
i and Ki are the maximum reaction rate and

saturation constants, respectively. These parameters rely

on experimental data and can change significantly for

different reactions. Given that metabolic networks can
be composed of thousands of reactions, kinetic models

can be quite complex. Also, the kinetics used can also in-

clude enzyme influences and reaction inhibition. Kinetic

models are typically very high-resolution pictures of

cellular processes.

Constraint-based models such as flux balance analysis

(FBA) embody a much simpler approach to predicting

metabolic fluxes [13]. FBA makes two major assumptions
to do so. One is that intracellular metabolites are at

some pseudosteady state or

dm

dt
¼ 0: (8)

The other is that the cells organize their metabolic fluxes

to optimize some objective function. This objective func-

tion typically takes the form of maximizing the yield of

biomass. This objective function will be used in all of the

proceeding scenarios. FBA is written as an optimization

problem as

max J ¼ cTr

subject to Sr ¼ 0

a G r G b (9)

and can be solved using LP. Above, the product cTr rep-

resents the combination of fluxes that are maximized.
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Fluxes are constrained to be in the null space of S and
must satisfy a specified set of upper and lower bounds

referred to as b and a. These lower and upper bounds

are determined by experimental evidence as well as ther-

modynamic constraints on the reactions (i.e., some reac-

tions only work in the forward direction). The

experimental evidence is typically used to constrain the

uptake rates of substrates consumption and product for-

mation in the model. Other intracellular constraints can
be used, but these quantities can be difficult to measure.

To model the dynamic changes of fluxes in this work,

the static optimization approach will be used from dFBA

where a model will be used to approximate the changes

in constraints over time [14], [15].

Cybernetic models use dynamic objective functions

that optimize the system to achieve goals at each time

through the inclusion of control variables that regulate
enzyme synthesis and activity. Instead of exhaustively de-

scribing the kinetics of each reaction as the kinetic

model does, hybrid cybernetic models (HCMs) decom-

pose the reaction network into a set of pathways or mac-

roscopic reactions termed elementary modes (EMs) [16]

that are expressed at varying levels over time. To do so,

the pseudosteady state assumption must be made like in

FBA. The flux vector can be decomposed into a set of
rates through the EMs as

r ¼ ZTrM (10)

where Z represents the network’s nZ EMs and rM rep-

resents the regulated uptake rate of each EM. Given

the use of the pseudosteady state hypothesis, the changes
in extracellular concentrations are tracked in the fol-

lowing way

1

c

dx

dt
¼ SxZ

TrM: (11)

As stated previously, in kinetic models, the reaction rates

of each chemical transformation are tracked. In HCM,
the regulated rate expressions for rM take similar

Michaelis–Menten forms, however, they include regula-

tion vi and enzyme ei terms

rM;i ¼ eivi
rkin;max
M;i si

KM;i þ si
: (12)

Above, parameters rkin;max
M;i and KM;i are similar to the pa-

rameters from the kinetic model with one main distinc-

tion. They describe the rate of uptake into an EM or set

of reactions instead of the rate of a single reaction. In
HCM, the change of enzymes which regulates rM is

dei
dt

¼ �þ ui
kE;isi
K0
i þ si

� ð�þ �Þei: (13)

In HCM, enzymes are generated by a constitutive forma-

tion and induced formation which make up the first two

terms above. The last is an expression for the depletion

of enzymes due to growth dilution and degradation. Cy-
bernetic control variables ui and vi guide the induced

synthesis of enzymes and the allosteric regulation of en-

zyme activity, respectively. Induced enzyme formation is

expressed as some function of each pathways return on

investment (ROI) pi. ROIs typically are defined as each

pathway’s rate of substrate uptake or growth rate. To cal-

culate the control of enzyme formation, ROIs are com-

pared for each pathway in

ui ¼ piP
j pj

(14)

where the denominator represents the sum of ROIs for
all pathways. This means that the fraction of a finite re-

source pool devoted to the production of enzymes for

one pathway is proportional to the ROI for that pathway.

Similarly, the activity of the different metabolic pathways

is controlled by the vi variable which takes the form

vi ¼ pi
maxj pj

: (15)

The pathway with the highest ROI will be fully ex-

pressed. All other pathways with lower ROIs will be

down-regulated proportionally.

For a given metabolic network, the number of EMs

can be quite high. Therefore, yield analysis is used to re-

duce the EMs in HCM down to a minimal set that spans
a given yield space [17]. This makes the generation of an

HCM model for the subsequent results facile and reduces

the number of parameters for the model’s specification.

Another version of cybernetic models that will be an-

alyzed is the L-HCM. The formulation of this model is

quite similar to HCM with one main distinction. Instead

of enumerating uptake rate constants for all pathways,

the EMs are lumped together into families based on their
structural returns on investment. These family modes are

then expressed as a function of some dynamic metabolic

objective function. The procedure for lumping EMs is

somewhat complex and is best explained in [18].

Both HCM and L-HCM employ objective functions to

dynamically maximize the rate of carbon uptake in the

models used in the subsequent scenarios.
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C. Comparison Method
To compare the ability of each model with one another,

both AIC and BIC are computed for the set of models to

gauge which one minimizes their values. Consistency

among the modeling frameworks for minimizing both cri-

teria is considered. The metabolic model that best mini-

mizes these information criteria for different scenarios is

identified as the best model for the purposes of optimiza-

tion and control applications. In other modeling scenarios,
such as those in which models are developed for the pur-

poses of biological discovery, AIC and BIC should not be

used for model selection as quantifying the tradeoff be-

tween accuracy and simplicity is not necessarily relevant.

III . RESULTS

A. Modeling Dynamic Fluxes of the Aerobic
Growth of E. coli

To compare how well various biological models com-

press metabolic fluxes, four different models describing

the aerobic growth of E. coli were compared. In this

growth scenario, E. coli first consumes extracellular glucose

while generating acetate as a byproduct. Once the glucose
has been exhausted, the culture then shifts its metabolic

state to consume the acetate product. The models chosen

to describe various aspects of this system are 1) a detailed

kinetic model; 2) dynamic FBA; 3) HCM; and 4) L-HCM.

The reaction network used in this model selection ex-

ercise was taken from [19] where the metabolic network

was summarized in Fig. 2 which was also used as the ki-

netic model for this comparison. The network includes a
variety of metabolic pathways including glycolysis, gluco-

neogenesis, and the TCA cycle. Note that some meta-

bolic reactions are truncated with others in order to

simplify the network. For example, the network’s reac-

tion for G6P’s conversion to FBP lumps together two re-

actions and ignores the intermediate product of F6P.

The kinetic model [19] is taken as the basis for this

exercise as this model type is generally the most labor in-
tensive to develop in terms of parameters and structure.

Then, dFBA, HCM, and L-HCM formulations were de-

veloped for the kinetic model’s growth scenarios. The

structured biomass equation used to develop these

models was extrapolated from a prior E. coli model [20]

and takes the form of

3:7478 AcCoAþ 5:1971 alKGþ 1:32915 G6P

þ 18:271 NADPHþ 1:787 OxAþ 0:5191 PEP

þ 1:496 PG3þ 2:8328 Pyrþ 59:89551887 ATP

! 1 Biomassþ 3:547 NADH: (16)

1) Steady State Flux Predictions: Each of the models tested

generates a description of this network’s metabolic fluxes

for both dynamic scenarios and steady state scenarios.

Each one of these model descriptions of fluxes can then

be verified using steady state flux data for growth on

glucose and acetate from [21]. Fig. 3 shows the correla-

tion plots describing the accuracy of each model’s steady

state flux description with the appropriate Pearson’s

Fig. 2. Schematic of the simplified network used to construct the

various models. Reaction names used in subsequent plots are

listed next to their respective arrows.
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Fig. 3. Correlation plots for each model’s description of steady

state flux data for E. coli growing on glucose. The horizontal axis

shows the flux values predicted by each model and the vertical

axis corresponds to the experimental values for steady state

fluxes taken using carbon-13 labeling experiments.
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product-moment correlation coefficient. Note that FBA

is used to calculate the steady state fluxes instead of

dFBA and that the kinetic model was parameterized, in

part upon the flux data.

Fig. 3 clearly shows the kinetic model’s superior abil-
ity to describe the rates of metabolic reactions. Nonethe-

less, it is evident that all models provide reasonable

descriptions of metabolic fluxes. The Pearson metric is

listed in Table 1 for each condition. The model with the

most parameters, being the kinetic model with 193 ex-

perimental constants, produced the most accurate ap-

proximation of the experimental flux values for both

growth on glucose and acetate. The next most accurate
experimental flux description is produced by L-HCM.

Despite ranking third and fourth, HCM and FBA also

provide good approximations of the experimental fluxes

of growth on glucose. Both HCM and dFBA, however,

show low accuracy in generating steady state approxima-

tions of the acetate fluxes.

Model comparison metrics were calculated for both

the glucose and acetate conditions to gauge how well
each model performed. Parameters for the models were

tabulated. L-HCM was the second most parameterized

model with 14 parameters. These parameters include the

kinetic parameters as well as those used to lump the

EMs together. HCM had 12 parameters. FBA had only

three parameters which were the uptake and excretion

rates of substrates and products in this system. Note that

the objective functions in these different models were
not parameters, but structures for the various models

which did not imply additional penalty for model

complexity.

The FBA model for the glucose steady state fluxes

showed the best minimization of both information cri-

teria. FBA demonstrated poor performance in predict-

ing the fluxes for the steady state growth on acetate

and was outperformed by L-HCM for both AIC and
BIC. Despite the kinetic model’s very high correlation

with experimental flux data for both conditions, it

was severely penalized by its large number of

parameters.

2) Dynamic Flux Predictions: Metabolic fluxes are dif-

ficult to measure experimentally and require carefully

controlled experiments. Because of this, time-series ex-
perimental fluxes are unavailable for this system. To

compare the dFBA, HCM, and L-HCM models on their

ability to model dynamic fluxes, the kinetic model’s pre-

diction of dynamic fluxes will be treated as an experi-

mental approximation of the true dynamic metabolic

fluxes for this system. The use of this artificial data is

justified in part by the fact that the model was pa-

rameterized upon a wide variety of data for multiple
levels of cellular processes. It incorporates a great span

of regulatory phenomena including transcription factors,

transcription-factor metabolite interactions, gene expres-

sion, enzyme production, kinase reactions, phosphatase

reactions, and protein degradation. Given the high degree

of complexity of the kinetic model, it will be reasonable

to assume that it provides a close to true approximation

of the real dynamic fluxes for the E. coli system that is
being modeled.

Fig. 4 shows the comparison of the information

theoretic metrics with the artificial data. Generally

speaking, HCM and L-HCM overpredict the flux rates

through the glyoxylate pathway. They also overpredict

the flux of malate to pyruvate during growth on both

glucose and acetate. On the other hand, dFBA under-

predicts the fluxes through glycolysis and the TCA cy-
cle while L-HCM and HCM provide good qualitative

descriptions of the simulated data. L-HCM overpredicts

the futile cycling from G6P to FBP during the con-

sumption of glucose while HCM and dFBA underpre-

dict this. HCM best predicts the flux through pyruvate

dehydrogenase while dFBA is lower and L-HCM is

higher.

As in the steady-state flux model comparison, model
selection metrics were calculated for the set of models.

The complexities of the HCM and L-HCM models did

not change. However, to incorporate the dynamics of the

system, five additional parameters were added to gener-

ate the dFBA description of the data. The artificial data

were generated at 15-min intervals for a 10-h period of

growth. The model that best minimizes the information

criterion for the dynamic flux data is HCM which is
shown in Table 2. This is followed by L-HCM. dFBA

places last for both information criteria.

IV. DISCUSSION

The results provided by the model selection framework

presented in this work varied by application. In the com-

parison of the different models’ abilities to predict steady
state flux data, there was a mixed outcome. While FBA

was highly capable of describing the steady state fluxes

for the growth on glucose, it was less able to provide an

accurate description of the fluxes for the growth on ace-

tate. L-HCM, conversely, placed third in its minimization

of the information criterion for glucose. However, it best

minimized them for the acetate fluxes. L-HCM also

Table 1 Correlations, Parameterization and Information Criterion for the

Model Set for the Steady State Fluxes
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provided the best steady state flux description for the

glucose fluxes, after the kinetic model, but its complexity

penalized it into the third place. This additional com-

plexity, allowed it to capture the acetate steady state

fluxes best. Because of the information criterion’s ability

to penalize models for their level of complexity, FBA has

a clear advantage when it is able to provide an accurate
estimate.

The ability of L-HCM to capture steady state

fluxes has also been demonstrated in prior work [22].

The strength of L-HCM is that it combines multiple

EMs into a smaller subset of lumped elementary

modes. The lumping procedure takes into account ex-

perimental data related to the yield of products and

biomass for various substrates. The strength of this

lumping procedure is clearly seen in the steady state

flux results.

When treating these models as data compressing enti-

ties, it is noteworthy how much FBA, HCM, and L-HCM

reduce the values of the information criteria relative to

the complex, kinetic description of the steady state
fluxes. All three models reduce the information criterion

values by 2 orders of magnitude representing a signifi-

cantly reduced description length for the data. It is intui-

tive that the complex kinetic description of the system

would provide the most excessively complex description

of the equilibriated flux state for this system. The infor-

mation criteria are able to take this intuitive statement

and establish it in quantitative sense. Moreover, they
show the degree to which the kinetic model over-

explains steady state data.

The scenarios tested above showed that HCM pro-

vides the best description of the artificial dynamic flux

data despite the fact that it did not perform well in esti-

mating the steady state fluxes. This is most likely due to

the fact that HCM employs a combination of EMs over

Fig. 4. Dynamic flux profiles for all three models. The flux titles correspond to the reaction names given in Fig. 2. The purple circles

represent the values for the artificial flux data. The red line represents flux predictions made by dFBA. The black and blue lines

represent the flux predictions made by HCM and L-HCM, respectively.

Table 2 Information Criteria for Dynamic Flux Descriptions for the

Artificial Data
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time to describe the changes in fluxes. In steady state
scenarios, HCM will only express one of these numerous

EMs that embodies some extreme edge of the yield space

as determined using yield analysis. This comes from the

cybernetic policy which will selectively produce only one

pathway’s bulk enzyme pathway once a steady state is

reached because there is only one pathway that will have

a maximum unregulated rate for the substrate concentra-

tion present at a steady state. Notwithstanding HCM’s
difficulty in the capture of steady states for both of the

substrate conditions modeled here, the inclusion of mul-

tiple EMs for a single substrate becomes an advantage

for HCM as it can describe the span of an organism’s

metabolic yield space.

In contrast to HCM, the L-HCM model shows a

markedly less accurate prediction of the dynamic fluxes

for this system. Contrasting accurate steady state predic-
tions, it is less capable of reproducing the artificial data

for dynamic fluxes in this scenario. This might in part be

due to L-HCM overpredicting the overall flux through

different pathways which stems from how it lumps to-

gether the different modes. Also, it reduces the complex-

ity of the model into merely two EMs which may not be

sufficient in spanning the total space of allowable fluxes.

This could mean that despite its dynamic objective func-
tion, it is limited to a more limited space in its descrip-

tion of dynamically altering flux profiles. Regardless,

both HCM and L-HCM outperform dFBA in the com-

pression of dynamic flux data. This makes the argument

that rate-based objective functions are more descriptive

of the data compared to yield-based ones.

On the whole, dFBA provides the least accurate pre-

diction of dynamic metabolic fluxes. This could stem
from the inadequacy of a yield-based objective function

in describing the dynamic shifts in metabolic states.

dFBA consistently underpredicted the values of fluxes

which may be due to the biomass maximization objective

function. This is due to the formulation of the LP prob-

lem where maintenance and other functions related to

metabolism are ignored and therefore the total sum of

fluxes may be contracted from a realistic state. In other
words, the goal of the FBA model is to convert the most

substrate into biomass with a given set of constraints and

will ignore phenomena such as futile cycling. Other ob-

jective functions such as total flux minimization could

provide better results but were not tested in this work. It

has been shown that the accuracy of objective functions

varies by scenario [5]. This would also help to explain

the biomass maximization objective function differences
in accuracy when describing the steady state scenarios.

Also not tested were additional constraints on flux values

for the metabolic system.

The artificial data for the fluxes were a reasonable

substitution given the lack of actual dynamic data for

this model system. It is possible that dynamic flux data

may be different from what is indicated by the kinetic

model. However, given the fact that the kinetic model
incorporates a great number of regulatory phenomena

and captures steady state fluxes with near-perfect accu-

racy, the best possible approximation of the dynamic

fluxes is likely.

The fact that the model selection criteria were mini-

mized for each model for a different application makes

clear that certain models are more relevant to compress

specific types of data. It is natural that FBA would be
able to minimize this information criterion for the steady

state scenarios given its low complexity. In the acetate

steady state case, however, the fact that L-HCM outper-

forms FBA brings to light the fact that FBA’s objective

functions are not universally descriptive nor applicable

in all substrate consumption scenarios. HCM, with its in-

corporation of multiple EMs, finds a balance between

these two which captures the dynamic states predicted
by the kinetic model best.

Also, the varied results by scenario point out the fact

that these information criteria are not biased toward one

approach. Their ability to compare vastly different for-

mulations for the same metabolic system highlights their

utility in systems biological applications. Information cri-

teria treat each model as an alternate description length

for the data. A key assumption of these metrics is that
the model structure itself is not communicated, only the

parameters. This assumption allows these metrics to

compare nonnested models.

Finally, both AIC and BIC were minimized for the

same model for all three model selection scenarios. This

consistency is a good indication of their utility in reach-

ing objective conclusions for model selection.

V. CONCLUSION

This work has shown, for the first time, how information

criterion can be used for the comparison of nonnested

systems biological models. While these metrics have

been well established for many applications, their use

has not been brought to the attention of metabolic mod-

elers who could benefit from a deeper understanding of
how different models balance between accuracy and

complexity. This work has shown that L-HCM provides

the most succinct description of steady state fluxes for

E. coli growing on acetate. It has also demonstrated that

FBA optimizes the information criterion for E. coli
growing on glucose at steady state. Finally, it has shown

that HCM minimizes these metrics for the description

of artificial dynamic flux data.
These conclusions, however, are contingent upon the

objectives of the modeling effort. Application of models

for the purposes of optimization and/or control requires

compromising model complexity in favor of rapid assess-

ment of predictions. On the other hand, a thorough un-

derstanding of the changes in metabolic performance

due to engineered perturbations can only come about by
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using detailed models without serious compromise of
complexity. Our analysis demonstrates quantitatively

how different modeling frameworks perform when the

model objectives are defined. Thus, conclusions made for

one objective will not necessarily carry over to other

circumstances. h
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