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a b s t r a c t

This paper adds to the tool kit of stochastic simulations based on a very simple idea. Applicable to both
SSA and Tau-leap algorithms, it can notably reduce computational times. Stochastic simulations are
based on computing sample paths based on the generation of random numbers with either exactly
stipulated distribution functions as in SSA (Gillespie, 1977) or in the method of interval of quiescence
(Shah et al., 1977) or distribution functions featuring approximations designed to promote efficiency (as
in Tau-leap algorithms (Cao et al., 2006; Tian and Burrage, 2004; Peng et al., 2007; Gillespie, 2001;
Ramkrishna et al., 2014) where a leap condition with the parameter epsilon is used). The usual strategy
involves sequential computation of a large number of sample paths over a bounded time interval which
is covered by a set of discrete time subintervals obtained by random number generation. The strategy
here departs from the foregoing by parallelizing the generation of random subintervals for the set of
sample paths until all sample paths have been computed for the stated time interval. The advantage of
this procedure lies in the fact that the time for initiation of the random number generator has been
notably reduced. Many examples are demonstrated from SSA as well as Tau-leap algorithms to establish
that the advantage of the approach is much more than conceptual.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of stochastic simulations has risen considerably
in recent times both from their applications to biology and
investigation of material behavior in the nano state. The repetitive
nature of simulations is responsive to simplifications of various
kinds. In this paper, we show that the simple strategy of paralleliz-
ing random number generations of time subintervals among
sample paths can produce notable reductions in computation time.

The idea of the methodology can be communicated in very
simple terms although to make a quantitative estimate of the extent
of improvement would require an inconvenient amount of effort.

Suppose we are interested in computing the behavior of a stochastic
process system over a specified time interval. The usual methodol-
ogy involves exploiting knowledge of the random behavior of the
system over successive discrete subintervals by generating random
numbers which conform to calculated distributions thus generating
a sample path of the process. When many such sample paths are
created one after the other, average behavior of the stochastic
system as well as fluctuations about the average can be calculated
after a suitable number of sample paths have been obtained. The
total computational time is clearly governed by the efficiency with
which sample paths are created. In what follows, we provide first a
simple analysis of the idea to show why the approach is attractive
and then demonstrate computational improvements quantitatively
with several examples. In showing that a computational procedure
has the advantage of being more efficient than an existing one,
it is essential to show that for a given computational time the
new procedure produces a distinctly more accurate solution.
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Alternatively, a solution of a specified accuracy must be shown to
accrue by the new method with a considerably lighter computa-
tional burden. While the foregoing demonstration would certainly
be essential to qualify the new procedure, a clearer understanding
can be had of the desired comparison by restricting considerations
to a simple example, inwhich it is possible to analytically show why
the proposed method is superior. To enable an analytic comparison,
we select a simple Poisson process whose properties are well
established. In the parallel strategy, will have initiated n sample
paths of the process at the outset and allowed to progress
simultaneously in time steps. Some paths will progress faster than
others. An average time of evolution may be defined (as in Eq. (1)
below) to track their concerted motion in time. Those that have
transcended the stipulated time will have “dropped off” from the
set of n paths. A calculation of the left-over sample paths becomes
possible for the Poisson process as also the fluctuations about it.
Relating the computation time to the number of steps in the parallel
and the sequential strategies, a comparison is enabled. What
follows is the translation of this idea in mathematical terms, from
which the efficacy of the parallel strategy is elucidated.

2. Analysis

Consider a stochastic process X tð Þ whose behavior is sought in
the interval I � 0; tf

� �
. Given the propensities (transition rates)

associated with change, it is possible to define strategies for the
simulation of discrete subintervals of time Ij � tj�1; tj

� �
;

j¼ 1;2;…;N for the process of interest with the property

[N�1

j ¼ 1
Ij � I; [N

j ¼ 1
Ij+ I; N¼ 1;2; :::

Clearly N is a random integer with an associated probability
distribution, say πk � Pr N¼ k

� �
. The computation of this prob-

ability may be tedious but it is not necessary for the ensuing
argument. The sample path generated is given by
X tð Þ ¼ Xj; tA Ij; j¼ 1;2;…;N. We presume that n sample paths
may be sufficient to obtain reasonable averaging. Further, random
number generation is assumed to take unit computation time per
interval. Thus the computation time taken for the above sample
path is N, which results from neglecting possible changes in the
computation time for different subintervals. Suppose n sample
paths are generated by the usual sequential strategy with the ith
sample path involving Ni subintervals of time. Then the computa-
tion time for the ith sample path is Ni. The total computation time

for the sequential strategy is
Pn
i ¼ 1

Ni.

In the parallel strategy we simulate n times, each time
subinterval, to produce a fragment of the averaged sample path,
the computation time for which is n. As we continue this parallel
strategy of computing the entire collection of sample paths in
fragments, automatically ending those paths that have reached or
exceeded the targeted time interval, the number of random
variables to be generated can be seen to diminish progressively
with a corresponding decrease in computation time.

Suppose for the sake of a preliminary demonstration, we
restrict ourselves to processes for which the time interval for the
next change at any stage is independent of its current state, (e.g.,
the Poisson process). We will be concerned with a collection of n
sample paths to evolve by simulation in discrete stages over time.
In other words, each simulation will lead to a jump in the process
over a time subinterval. Those sample paths that reach or
transcend time tf will have been completed and excluded from
further evolution. Thus we begin with a population of n sample
paths at the outset of the simulation. At the end of the first
simulation step, the n different sample paths will have evolved to

different times, say τ1; τ2; :::; τn. Since this first simulation step is to
be followed by numerous additional ones, the evolution of each

sample path after the ith step may be described by τi1; τ
i
2; :::; τ

i
Ki

n o
,

where Ki is the random number of sample paths left in the
collection after n�Kið Þ sample paths have transcended the interval
0; tf
� �

during the i simulation steps. Since stochastic simulations of
this type are contingent on the existence of a cumulative distribu-
tion function FT τð Þ for the time at which a change occurs, the jth
sample path in this collection which has evolved to time τij before

arriving at the ith will have an exit probability of μij �
R1
tf � τji

dFT τð Þ.
We seek to identify an equation for the population of sample

paths in the collection with reference to some average time of
evolution (rather than their individual times of evolution) to
represent all the sample paths in a given step. Towards this end,
a probability would be required for any sample path in the
collection to quit by transcending the interval 0; tf

� �
. We adopt

the average time for the ith step denoted τi as below which will
hold for the sample paths which survive for the next step.

τi � τi�1þ
Z tf � τi� 1

0
τdFT τð Þ=

Z tf � τi� 1

0
dFT τð Þ; τ0 ¼ 0 ð1Þ

The foregoing choice represents the average time at which
sample paths in the ith step have expended an average time of τi�1

in the previous step. The probability μi that a sample path exits in
the ith step from the collection may now be estimated as

μi ¼
Z 1

tf � τi

dFT τð Þ ð2Þ

If we now let Pi
k � Pr Ki ¼ k K1 ¼ nj� �

, then it is readily shown that

Piþ1
k ¼ 1�μi

� �k Xn�k

r ¼ 0

kþr

r

� 	
μri P

i
kþ r ; P0

k ¼ δk;n ð3Þ

Eq. (3) uses the initial condition that there are n sample paths in
all for which the subintervals are generated and may be rewritten
as

Piþ1
k ¼ 1�μi

� �k Xn
m ¼ k

m

k

� 	
μm�k
i Pi

m ð4Þ

The above equation is solved in the Supplementary material S.1 to
obtain the first and second moments of Kiþ1.

EKiþ1 ¼ ¼ n ∏
i

j ¼ 0
1�μj
� � ð5Þ

EK2
iþ1 ¼ n ∏

i

j ¼ 0
1�μj
� �2 nþ

Xi

k ¼ 0

μk ∏
k

j ¼ 0
1�μj
� ��1

" #
ð6Þ

The variance of Kiþ1, denoted V Kiþ1
� �

, is obtained from (5) and (6)

V Kiþ1
� �¼ EK2

iþ1� EKiþ1
� �2 ¼ n ∏

i

j ¼ 0
1�μj
� �2 Xi

k ¼ 0

μk ∏
k

j ¼ 0
1�μj
� ��1

" #

ð7Þ
from which the coefficient of variation, denoted COVi, is obtained
as

COVi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Kiþ1
� �q

EKiþ1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1

Xi

k ¼ 0

μk ∏
k

j ¼ 0
1�μj
� ��1

vuut ð8Þ

The computation time for the parallel strategy may now be

estimated from
Pimax

i ¼ 0
EKiþ1, where imax may be chosen by requiring

that the above EKimax þ1 is suitably small, which implies that n
sample paths have been cleared from the collection. The
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coefficient of variation (8) serves to verify that the fluctuation
associated with this population is negligible.

We now consider the very simple case of the Poisson process
adding to a population of individuals at mean rate λ; the change in
this process over time is the addition of an individual (in this case
independently of the prior population) which has the distribution
function given by FT τð Þ ¼ 1�e� λτ . For this case, we have from (2)

μi ¼ λ

Z 1

tf � τi

e� λτ dτ¼ e� λ tf � τið Þ ð9Þ

The expression (9) shows that, as τi approaches tf , μi
approaches 1 making the sample path increasingly likely to exit
the collection. From (1), we obtain the following for the Poisson
process.

τi ¼ τi�1þ
1
λ
�e� λ tf � τi� 1ð Þ tf �τi�1

� �
1�e� λ tf � τi� 1ð Þ ; τ0 ¼ 0 ð10Þ

For a preliminary quantitative demonstration, we consider
simulating the Poisson process by the sequential as well as the
parallel strategy. We have FT τð Þ ¼ 1�e� λτ to generate subintervals.

For the sequential strategy using the Poisson process, it is
possible to readily obtain the probability distribution π for the
discrete random variable N (see Supplementary material S.2), the
number of subintervals which sum to cover the time interval
0; tf
� �

. Thus

πk � Pr Sample path ends N¼ k
��� �¼ 1� 1

2k
1�e� λtf
� �kþ1

; k¼ 0; 1;2; :::

For the parallel strategy, we generate random numbers satisfy-
ing the cumulative distribution function F τð Þ ¼ 1�e� λτ , through
simulation of the uniform random variable X ¼ dU 0;1½ �.

2.1. Comparison of computation times: sequential and parallel
strategy

The expected computation time for the sequential strategy has
been shown to be given by

E
Xn
k ¼ 1

Nk ¼
Xn
i ¼ 1

ENk ¼ nEN ð11Þ

which follows from the sample paths possessing the same dis-
tribution function for generation of subintervals. EN, being the
expected number of subintervals in generating an entire sample
path, is given in the Supplementary material (S.3.2) reproduced
below.

EN¼
1
2Kmin Kminþ1ð Þ�2 1�rð Þ�2

Kmin�2r 1�rð Þ�1 ; r� 1
2

1�e� λtf
� � ð12Þ

where Kmin is as specified by Supplementary material (S.3.3). Thus
the expected computation time for the simulation of the Poisson
process using the sequential strategy is specified by (12).

Using the parallel strategy, the expected computational time
for the Poisson process is given by

n
Ximax

i ¼ 0

∏
i

j ¼ 0
1�e� λ tf � τjð Þ� 

ð13Þ

where τj is given by Supplementary material (S.4.3). The ratio of
(13) to (11) provides a good quantitative measure of the effective-
ness of the parallel strategy relative to the sequential strategy as it
is a direct comparison of the expected computation times. Fig. 1
shows the results of calculations. In this figure, simulation time
was plotted as a function of square root of λntf

� �
, and it clearly

indicates that the sequential algorithm would cost more CPU time
than the parallel algorithm at any given value of λ tf

� �
.

The demonstration above was made for processes in which the
distribution function for successive generation of quiescence
intervals was the same. For many applications, this is not a realistic
assumption so that a demonstration of the effectiveness of the
parallel strategy necessarily requires detailed simulations by both
strategies. Fig. 2 below provides a more detailed schematic picture
of how each method works.

Let us discuss strategies utilized in each method for a simple
scenario of simulations that is composed of 4 sample paths, shown in
the figure above. The sequential method simulates leaps sequentially
and keeps updating new states using information from the previous
step. This procedure is iterated until reaching the final tf . Upon the
completion of one, it then can be applied to the next sample path. The
parallel method, on the other hand, will start with generating the first
leap for each trajectory independently. Second leap for each sample
will then be simulated simultaneously and applied to update variables

Fig. 1. Comparison between two methods for eps¼0.001.
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that correspond to the previous states from the same sample path.
This procedure is carried on iteratively. Since generation of various
sample paths is independent, some sample paths will reach the
mature time before others. Due to that nature, the parallel method
can reduce the number of trajectories that need to be simulated as it
approaches the final time. Specifically, in Fig. 2B, it clearly indicates
that the sample path 4 can be dropped out of the simulation bath after
4 steps, followed by sample path 1 after another 2 steps. The number
sample path will keep decreasing as the simulation evolves with time,
hence reducing memory burden and CPU time. The strategy can also
be presented in a step-wise manner in the Section 3. To further
illustrate the key idea, in Sections 4 and 5, simulation results
corresponding to several examples are shown and discussed.

2.2. Parallelizing tau-leaping algorithm

� For a system with n sample paths to evolve, at time zero, set
the state of time for each sample path t1; t2; :::; tn equal to 0.

� Set up the initial numbers of molecules for each sample path,
say X1 t1 ¼ 0ð Þ ¼ xo1; X2 t2 ¼ 0ð Þ ¼ xo2; :::; Xn tn ¼ 0ð Þ ¼ xon where
the superscript o denotes the initial value. Note that
Xk; k¼ 1;2:::;n is a vector describing the states of the system
for the sample path k.

� Calculate the tau values τ1; τ2; :::; τn for each sample path and
accordingly generate poison random number for all reactions
of all sample paths. With information of stoichiometry, the
change of states for each sample path could be obtained as

δx1; δx2; :::; δxn. Note that δxk; k¼ 1;2:::;n is a vector describ-
ing the state change of the system for the sample path k.

� Update the states for each sample path by X1 t1þτ1ð Þ ¼
X1 t1ð Þþδx1; X2 t2þτ2ð Þ ¼ X2 t2ð Þþδx2; :::; Xn tnð Þ ¼ δxn� Update the state of time for each sample path by
t1’t1þτ1; t2’t2þτ2; :::; tn’tnþτn� For sample path k with tkotf , repeat step 3 to 5.

� The calculation is done when tkZtf for all kA ½1;2:::;n�.

3. Examples
Example 1. Schlogl's chemical reaction model (Cao et al., 2006;
Gillespie, 2001; Ramkrishna et al., 2014), known for its
bistability.B1 and B2 are constants with their particle numbers as
N1 and N2 respectively.

B1þ2X⟹⟸
c2

c13X; B2 ⟹⟸
c4

c3X ð14Þ
The values of parameters, adapted from Cao et al.'s paper and

Gillespie's paper (Cao et al., 2006; Gillespie 1977), c1 ¼ 3� 10�7,
c2 ¼ 10�4, c3 ¼ 10�3, c4 ¼ 3:5, N1 ¼ 1� 105, and N2 ¼ 2� 105. The
initial condition of X is 250 and we simulate the system up to tf ¼ 4.

Example 2. Consecutive linear reaction system (Cao et al., 2006;
Tian and Burrage, 2004; Peng et al., 2007)

X1⟹
c1

X2⟹
c2

X3 ð15Þ

Rate constants c1 ¼ 1 and c2 ¼ 1, and initial conditions X1 ¼ 104,
X2 ¼ 1 and X3 ¼ 0, we calculate X3 until time is equal to 0.1.

Fig. 2. Comparison of (A) Sequential method and (B) Parallel method.
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Example 3. Dimer (Cai and Xu, 2007) S1⟹c1ϕ; S2þS3⟹c2S4
At t ¼ 0, S1 ¼ 3000; S2 ¼ 3000; S3 ¼ 104. Moreover, c1 ¼ 1

and c2 ¼ 10�4. Our goal is to compare the results between
distributions generated by two algorithms at tf ¼ 2.

Example 4. In this system, a monomer S1 can dimerize to an
unstable form S2, which in turn coverts to a stable form S3. Since S2
is unstable, it can also convert back to S1 (Cao et al., 2006; Gillespie
and Petzold, 2003).

S1⟹
c1

ϕ; S1þS1 ⟹⟸
c3

c2S2; S2⟹
c4

S3

Initial conditions: S1 0ð Þ ¼ 4150; S2 0ð Þ ¼ 39564; S3 0ð Þ ¼ 3445
Rate constants: c1 ¼ 1; c2 ¼ 0:002; c3 ¼ 0:5; c4 ¼ 0:04
Our goal is to collect the distribution of the dimer at tf ¼ 10.

4. Results and discussion

Four examples have been utilized to compare the effectiveness of
the proposed parallelization, also referred to here as the simultaneous

algorithm. The first example was that of Schologl's system, for which
comparison was made of simulations with the τ-leap method invol-
ving Poisson distribution. Fig. 3, shows consistent results for the
distribution of X, by both methods, as the two curves virtually overlap
one another over the entire range. In Figs. 4 and 5, performances of the
two algorithms are compared in terms of CPU time. Clearly, the
sequential method requires substantially longer computation times for
the simulation, than the simultaneous algorithm. For instance, with
30,000 trajectories, the sequential algorithm ran about 50 times
slower than the other. In example 2, the binomial τ-leap method
was used for comparison, and a similar trend is seen in Figs. 6 and 7.
The simultaneous algorithm outperforms the sequential with a 120
fold improvement in CPU time. Figs. 8–10 were produced for example
3. Fig. 8 compared the accuracy of each solution generated by the two
algorithms to that produced by SSA with 50,000 trajectories. To fully
investigate the benefit of this method, the performances were
compared from two different aspects: in Fig. 9 epsilon, which
represents the measure of accuracy in the tau-leap algorithm (Cao
et al., 2006; Peng et al., 2007; Gillespie, 2001), was fixed and the
number of trajectories was changed and in Fig. 10 the number of
trajectories was fixed and epsilon was varied. In either case, the

Fig. 4. Comparison between two methods for Schlogl system using Cao et al. method.

Fig. 3. Comparison between two methods with 30,000 sample paths for Schogl system when e¼0.2.
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Fig. 5. Simulation time comparison at e¼0.2.

Fig. 6. Comparison between two methods using binomial algorithm when e=0.01.

Fig. 7. Comparison between two methods when e=0.01.
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Fig. 8. Comparison of distribution generated from different methods.

Fig. 9. Comparison between two methods.

Fig. 10. Comparison between two methods at different epsilon.
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Fig. 11. Comparison of distribution generated from different methods.

Fig. 12. Comparison between two methods at different epsilon.

Fig. 13. Comparison between two methods.
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simultaneous method has prevailed unambiguously over the other.
Figs. 11–13, display simulations for example 4, also show notably less
CPU time to produce the same results.

5. Conclusions

This paper establishes that the parallel strategy for generating
sample paths of stochastic processes is notably superior to the
usual sequential strategy followed in stochastic simulations. Since
each trajectory is independent of all the others and can vary
greatly in the number of steps within each sample path, simulta-
neous generation of several such leaps for different trajectories
eliminates the delay time between each trajectories. As a result,
for a given requirement of accuracy, the overall simulation time
can be optimized.

Symbol description:

Symbol Description
tf Predefined final time

τij Evolution of sample path j after i steps

μij Exit probability after i steps in the j-th sample path

λ Mean rate
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