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ABSTRACT: The phenomenology of particulate systems are embedded into the population balance model through breakage,
aggregation, or growth kernels. Aggregation kernel is a difficult kernel to predict from first principle because of its nonlinear
nature. In this work we demonstrate a new methodology to obtain the aggregation kernel through inverse problem approach.
This new approach is based on the method of weighted residuals and does not rely on specific traits of the system like self-
similarity. The residual approach reduces the inverse problem into solution of a set of linear equations. However, the system of
equations is badly conditioned and therefore requires regularization for accurate solution. In this work Tikhonov regularization
technique has been used. The new method has been demonstrated successfully for constant, sum, and product kernel.

■ INTRODUCTION

In the hope of providing a reasonable explanation for
contributing to a special issue for one’s own felicitation, this
paper is an attempt to bring to the forefront the subject of
inverse problems that we believe to be an essential aspect of
identifying population balance models. While there have been a
few publications in the past demonstrating the importance of
inverse problems, the overwhelming approach to the use of
population balances has been through force-fitting parameters
in models that are either empirical or based on mechanisms of
uncertain validity. Satisfactory fits often lend unwarranted
support to the model as they are frequently under restricted
conditions. The paper by Mahoney et al.1 demonstrates the
risks of such fitting. Yet, we wish not to be disparaging of the
ever increasing effort on the use of population balance models,
as their presence in engineering analysis, design, and control is
a reflection of their high relevance to many dispersed phase
processes encountered in engineering technology. Because of
the ill-posed nature of inverse problems, without appropriate
numerical armory to counter its effect, their solution is often
difficult. It is our objective in this paper to show some success
in this regard and possible directions for the future. Specifically,
this work introduces a new technique for extraction of
aggregation kinetics using the inverse problem approach.
Modeling of aggregation is one of the major areas2,3 in

population balances. Aggregation is the process whereby two or
more particles come together and remain bound for long
enough to be considered a unique new particle. Two
subprocesses are considered important: First, the frequency at
which particles come near enough to one another so that they
can interact with each other. This is generally termed the
collision frequency, and is a well explored area. Smoluchowski4

predicted the collision frequencies for particles moving by
Brownian motion and in laminar shear fields. In another major

study, Drake5 investigated collisions in turbulent fields
(collisions due to inertial effects and diffusion).
Once the particles have come into contact, a second

subprocess can be modeled to predict the efficiency of the
collision, whether the particles remain together. For droplets,
this has been predicted using film-drainage models by
Muralidhar and Ramkrishna.6 For granulation processes,
Ennis et al.7 developed a model which measures the ratio of
granule collisional kinetics energy to the viscous dissipation to
model the efficiency. For crystallization or precipitation
particles, Hounslow et al.8 and Hounslow et al.9 have developed
a model based on the ratio of the strength of necks formed by
deposited material to the straining force of the surrounding
fluid. The experimental system was a differential reactor,
allowing the rapid study of aggregation under many different
conditions.
The current modeling of particulate processes involves

diverse approaches including direct observation of particles or
populations followed by model parameter estimation or inverse
problem techniques to quantify the models. The distinction
arises between the a priori assumptions of model form as
required for direct parameter estimation and the more general
form allowed in inverse problem formulation. The advantage of
a more flexible form is balanced by the requirement for more
free parameters and therefore more experimental data.
However, this becomes an attractive approach when suitable
models have been tried and found to be elusive.
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The most direct method of evaluating particle kinetics is the
observation of individual particles to determine their behavior.
This is difficult for aggregating systems where particles must be
followed and their interactions must be monitored to observe
collision effects. A tracking technique has been applied for
studying the growth, but not for the aggregation of crystals.10

Inverse problems arise mathematically when the solution to a
differential or integro-differential equation is known, but
phenomological functions in the model are not. While solutions
to these problems can be derived in a number of cases, these
problems are often ill-conditioned, and noise as well as
discretization of experimental measurements obviates approx-
imate numerical methods. Inverse problem methods are
particularly attractive in the absence of a priori knowledge of
appropriate forms for particle dynamic laws, since the form can
be determined directly from the experimental data. Besides,
they can also serve to assess the veracity of candidate physical
models since the result can be compared with the model forms.
Inverse problem solution techniques for population dynamics

have been long pursued by Ramkrishna,11 including the use of
self-similarity to determine aggregation12 and breakage13−16

laws. The technique is similar to that used by Thompson17 in
developing his empirical aggregation kernel for aerosol
coalescence. These techniques rely, however, on specific traits
of the system, for example, self-similarity, that depend on both
the aggregation kernel and initial condition. In the presence of
significant particle growth, self-similarity is not achieved,
requiring other techniques. Mahoney et al.1 have shown the
inverse problem technique where the growth and aggregation
may be decoupled and obtained. Bramley et al.18,19 have applied
a combination of inverse-problem and parameter estimation
techniques, using the dynamic variation of the zeroth and third
moments of the distribution to calculate time-varying growth,
aggregation, and nucleation parameters.
Recent studies on inverse problem are more centered around

breakage problems. Self-similarity has been a key assumption in
the majority of such works13−16,20−23 involving the inversion of
breakage equation. Kostoglou and Karabelas24 presented a
work focused on the sensitivity of the relationship between self-
similar particle size distributions and breakage kernel.
Kostoglou and Karabelas25 found the deterministic breakage
rate using the framework of statistical theory and demonstrated
the method to derive existing models (deterministic laws) in a
systematic and consistent way. Maaß and Kraume26 have
presented a technique to solve the breakage population balance
equation for the determination of breakage laws using single
drop experiments.
The current work introduces a simple technique based on

weighted residuals for performing the inverse problem for
generation of the aggregation law. This is especially applicable
in areas where the full kinetics resulting from multiple effects
(turbulence, collision frequency, and efficiency) are not yet
understood. The method of weighted residuals (MWR)
converts the inverse problem to an ill-posed system of linear
equations. Therefore, the issue of ill-posedness is addressed and
some directions for stabilizing the solution are given. In
particular, a detailed analysis of the impact of data smoothness
and scaling on solution properties is performed using some
examples.

■ METHOD OF WEIGHTED RESIDUALS
The population balance equation (PBE) expresses the
relationship between the kinetics of individual particles and

the dynamics of the entire population distribution. The
population balance equation used here is based on a continuous
particle size distribution. This can be derived either from a
direct balance on the number density, or as the expectation of
the underlying true discrete number density.11

There are two common choices for the particle size
dimension, particle length, or volume. While mathematically
equivalent, there are practical numerical considerations for the
formulation. If length is chosen as an internal coordinate, the
Jacobian term in the aggregation birth term is non-unity while
for volume it is unity. For the formulation of method of
weighted residual, we consider the one-dimensional pure
aggregation population balance equation in volume coordinates
as

∫
∫

β

β
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−
∞
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Here t ≥ 0 and f(v,t) is the transient number density
distribution. The first term represents the birth of the particles
of size v as a result of the coagulation of particles of sizes (v −
u) and u. Here we shall refer to size as the particle volume. The
second term describes the merging of particles of size v with
particles of other sizes. The second term is called the death
term. The nature of the process is governed by the coagulation
kernel β representing properties of the physical medium. It is
non-negative and satisfies the symmetry condition β(u, v, t) =
β(v, u, t). The insertion of time in the aggregation kernel is
because of the uncertainty involved in the existence of a time-
independent kernel to describe the aggregation process.

Residual Formulation. The method of weighted resid-
uals27 can be used for forward simulation of population balance
equations. We wish to approximate the number density
function f by a function f,̃ which is a linear combination of
basis (shape) functions φj chosen from a linearly independent
set. That is,
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=
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j j
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Note that the coefficients are made a function of time to
incorporate the variation of number density with time. It is also
important that the approximate solution satisfies the required
boundary conditions. Upon substitution of this form into the
PBE (1) and arranging all the terms in the left to yield a
nonzero residual the equation becomes
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The notion in the MWR is to force the residual to zero in some
average sense over the domain. In other words, the unknown
coefficients αj are obtained at any time in such a way that the
inner product of the residual with a suitably chosen weighting
function becomes identically zero. Mathematically:

∫ ψℜ = =
∞

v v i n( ) d 0, 1, 2, ...i0 (4)
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where the number of weight functions ψi is exactly equal the
number of unknown coefficients αj in f.̃ This results in a system
of ordinary differential equations for the unknown coefficients
αj. Once the coefficients αi are known, they can be used in (2)
to approximate the number density f. Note that the accuracy of
the solution f ̃ depends on the choice of basis functions.
We adapt this approach for identifying the aggregation kernel

in the following way: first, the aggregation kernel is written
approximately in terms of a finite set of basis functions and
unknown coefficients:

∑β β α ϕ≅ ̃ =
=

u v t u v t t u v( , , ) ( , , ) ( ) ( , )
j

n

j j
1 (5)

whose substitution into the aggregation PBE generates the
residual:

∫

∫
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Note that the equation for the residual, while nonlinear
(quadratic) in the measured (known) number density, f, is
linear in the coefficients of expansion for the aggregation
kernel. This greatly simplifies the numerical analysis. Now
proceeding as before with an additional integration over time
between [tk, tk+1], we obtain

∫ ∫ ψℜ = =
∞+

t v v i nd ( ) d 0, 1, 2 ...
t

t

i0k

k 1

(7)

The aggregtion kernel (and hence the unknown coefficients)
may be considered to be constant over a reasonably short time
scale, that is, between [tk, tk+1]. This leads to the following
system of linear equations in unknown αi’s,

α =A b (8)

where the coefficients of the matrix A, for each k, are given by
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The ith component of the right-hand side vector b, is given as

∫ ψ= −
∞

+b v f v t f v t v( )[ ( , ) ( , )] di i k k
0

1 (10)

The above system of equations needs to be solved for each pair
of measurements [tk, tk+1]to advance the system in times.
The next step is to choose an appropriate shape function.

Polynomials are usually chosen as shape functions. In this work
we have taken the bilinear shape functions over square
elements. A typical square element is shown in Figure 1
along with the notation. The shape function at the node i of an
element e has value 1 at the node i and vanishes over any
element boundary that does not include the node i. Thus, for a
given element we have at the node
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Typical bilinear shape functions at the intersection of four
square elements are shown in Figure 2. It may be noted that the
value of the ith coefficient is same as that of the kernel at the ith
node.

Once the shape functions are decided, we must choose the
weighting functions. The simplest weighting functions to use
would be Dirac delta functions in size. In that case, the method
becomes that of collocation. However, the method is not
limited to this simplest weighting function as any other
weighting functions may also be used if required. A constant
weighting function ψ(v) = 1 may also be used but it will
produce only one equation for each measurement of system.
This has been used by Bramley et al.18 to determine a single
constant for a priori known size dependency of aggregation law.
In this work, Dirac delta functions in size, that is, ψi(v) = δ(v −
vi), are chosen for easy evaluation of the particle size integral.

Figure 1. Generation of bilinear basis functions.

Figure 2. Typical local bilinear basis functions used in this study.
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In this case, the coefficient matrix A and the right-hand side
vector b become

∫ ∫

∫ ∫
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and

= −+b f v t f v t[ ( , ) ( , )]i i k i k1 (12)

This completes the formulation of the method of weighted
residuals.

■ RESULTS AND DISCUSSION
In this section, we focus on extraction of approximate
aggregation laws using the proposed method. We test for
three most popular empirical kernels, namely, constant, sum,
and product kernel.
Extraction of the Constant Kernel. Various parameters

for the forward problem for the constant kernel case is
summarized in Table 1. First, the forward problem has been

solved and data is generated on 100 linearly spaced grid points
in size and 10 linearly spaced points in time as shown in Figure
3a. It can be seen that the number density is well contained in
the region chosen and forms a well behaved monotonic surface.
The aggregation kernel has been described in terms of nine
basis functions in v−v′ space. For the Dirac-delta functions
(weights), six linearly spaced points in particle size between 0
and 13 have been chosen because six equations are needed. The
remainder of the equations will be obtained by using symmetry.
Time limits are taken from 0 to 1. In the following test
problems we shall consider the kernels to be time independent
and hence the coefficients will also be time independent.
The basis functions (ϕ) have been defined as bilinear

functions on the two-dimensional coarse grid defined by v = v′

= [0, 6.5, 13], for a total of 9 basis functions as shown in Figure
4. All integrations are performed using the recursive adaptive

Simpson quadrature method using the function dblquad in
MATLAB. This finally leads to a system of nine linear
equations in nine unknown αi’s,

α =A b (13)

where A is given as shown in Chart 1 and the right-hand side
vector obtained from eq 12 is given by

= − × −b [ 0.0098 0.0116 0.0043 0.0012 0.00031 7.428 10 0 0 0 ]5 T

It may be noted that the last three equations have been
obtained using symmetry. It is evident from the nature of A that
the system of equations is badly conditioned. The condition
number of the matrix A is 1.57 × 109 and hence, the inversion
may not be accurate. The result of the inversion has been
shown in column 2 of Table 2. where this set of equations is
solved for α’s using Matlab command linsolve. It may be
seen that for most of the nodes the inversion is successful but
significant deviation occurs to the nodes where the population
is very less. One of the ways to circumvent this problem is to
use regularization techniques. In this work we use Tikhonov
regularization to improve the accuracy of the solution. The
details of the method including the regularization parameter
used has been provided in the Supporting Information. Column
3 of the same table shows the result using the Tikhonov
regularization. As expected, the results show improvement for

Table 1. Parameters Used for Forward Problem: Constant
Kernel Case

parameter value

β(v, v′) 1
f(v, 0) exp(−v)
f(v, t) (4/(t + 2)2) exp(−2v/(t + 2))

Figure 3. Evolution of number density for constant kernel.

Figure 4. Elements and nomenclature of nodes for a discretized
domain.
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node points which have low population density (nodes 3, 6, 7,
8, and 9). However, the last node (node 9) could not be
predicted accurately.
The inversion requires product of number density at v and v′

which is very small at the upper right corner point of the v − v′
domain. Hence, it is unlikely that an aggregation kernel be
found accurately at this point. We need to have an alternate
strategy for finding the kernel at such sparse nodes. We have
used extrapolation using the Matlab function gridfit
successfully to obtain the aggregation kernel for the ninth
node. Since the ninth point can be obtained using
extrapolation, the last rows and columns of the coefficient
matrix may be omitted altogether, and one can solve the
resulting 8 × 8 system instead. This improves the condition
number of the matrix over 3 orders of magnitude. The results
of the inversion has been shown in Table 2, column 4.
Interestingly, this does not improve the solution significantly,
and rather the eighth node was predicted poorly.
It may be noted that the major reason for the large condition

number of the matrix is the area containing a very small
population. One may tend to think that restricting the domain
to only a large population may remove this problem. However,
our simulations show the opposite: if we remove the tail, the
integrations become inaccurate which leads to grossly
inaccurate results. Also making a finer grid not necessarily
improves the inversion. It leads to more number of elements
with even smaller values and a few with larger values. The
condition number swells to a very large value and inversion
becomes more difficult. For example, if we use a 16 node grid
instead of 9 node grid, the condition number of the matrix A
jumps to 1011 which leads to inaccurate values of the
coefficients.
It appears from the foregoing discussion that accurate

evaluation of the integral is important. To check whether the
accuracy of the integral is affected by the accuracy of the

interpolation, we run the inversion with exact solution of the
forward problem instead of using interpolation of the synthetic
data. The result has been shown in column 6 of Table 2. It can
be seen that results improve slightly which signify that the
interpolations were accurate. It also implies that monitoring the
accuracy of the interpolation is important. However, much
stress cannot be given toward this end because data may have
significant noise.
To test whether noise in the data can be dealt with using this

method, we added 4% white Gaussian noise to the exact
solution (see Figure 3b). The result of inversion using the noisy
data are shown in Table 2, column 7. It can be seen that the
noise gives inaccurate results at low population nodes, but
results are reasonably accurate where population density is
high.

Extraction of Sum Kernel. Now, we apply the inverse
problem methodology to a more difficult situation. The number
density function for sum kernel has been shown in Figure 5. It
can be seen that the function chosen is nonmonotonous (as
given in Table 3) and shows a sharp maxima near the small
volume limit. The number density also falls very rapidly with
volume after this maximum. However, the domain must be
extended to a larger value to avoid significant domain loss. This
makes this problem more challenging than the constant kernel
case. The data has been generated at linearly spaced points in
particle volume between 0 and 80 and the time domain is
divided into 10 linearly spaced points from 0 and 1.3. The
aggregation kernel has been described in terms of nine basis
functions as before in a two-dimensional coarse grid defined by
v = v′ = [0, 40, 80]. Dirac points are also chosen in the same
manner.
The major feature for inversion for this case is that the data

should be available in a finer mesh, at least in the region of
sharp variation in number density. Otherwise, the interpolation
error will be significant. The inversion results are shown in

Chart 1

Table 2. Determined Coefficients for the Constant Kernel Problema

9 × 9 9 × 9 8 × 8 8 × 8 8 × 8 9 × 9

α wo Reg. w Reg. wo Reg. w Reg. wo Int. w Reg. 4% wGn

α1 0.9863 0.9863 0.9899 0.9899 1.0001 0.833
α2 1.0018 1.0120 1.0097 1.0097 1.0003 1.3
α3 1.0776 1.0130 1.0297 1.0314 0.9978 0
α4 1.0118 1.0120 1.0097 1.0097 0.9998 1.3
α5 0.9760 0.9754 0.9806 0.9805 1.0001 0
α6 0.9280 1.0075 0.9886 0.9646 1.0188 0
α7 1.0776 1.0310 1.0298 1.0314 1.0023 26.86
α8 0.9280 1.0075 0.9686 0.9646 0.9810 0
α9 5.2092 0.2959 0.9806 0.9805 0
cond(A) 1.57 × 109 1.57 × 109 3.47 × 105 3.47 × 105 3.48 × 105 8.1 × 109

aTrue values for α1···α9 = 1. Annotation: wo, without; w, with. wo Reg, without using Tikhonov regularization; wo Int.; using the analytical function
value at all necessary intermediate points for integration instead of using interpolation. This removes the interpolation error. 4% wGn: Results
obtained by adding 4% white Gaussian noise to the number density data.
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Table 4. It can be seen that the coefficients are predicted with
reasonable accuracy except the last node. Tikhonov regulariza-
tion helped to improve the accuracy of most of the nodes, but
the accuracy of a few nodes have been mildly affected by the
regularization. Solving a reduced system (8 × 8) did not
improve the condition number dramatically, and solutions are
of a similar nature as those obtained by a full (9 × 9) system. In
this case also we check the accuracy of interpolation, and the
results using the analytical solution are shown in last column of
Table 4. It may be seen that the results improved slightly
signifying that interpolations were reasonably accurate. The last
column of Table 4 shows the case where data with 4% white
Gaussian noise is used. Like a previous case, the low population
nodes are not predicted well, but the high population nodes are
predicted with reasonable accuracy.
Extraction of Product Kernel. In this section, we extract

the product kernel for which the parameters are given in Table
5. The solution of the forward problem for this case has been

shown in Figure 6. It can be seen that like constant kernel, the
plot of the forward problem is a monotonic surface. However,

as we will see, the inverse problem rightly identifies the
difference. Here the kernel is zero at the axes and hence the
domain should be divided into smaller parts to obtain nonzero
values of the aggregation kernel inside the domain. However, at
the beginning we shall assume no such knowledge about the
kernel and start with the same coarse elements. The values of
different α’s are shown in Table 6. It can be seen that the value
of the kernel has been extracted within 1% on nodes which has
nonzero value of the kernel, except the sparsest node. However,
it produces nonzero values for the nodes where the true kernel
value is zero. The value, however, is small compared to the
kernel value at other places and the kernel may be considered
to be reasonably extracted over the domain. Regularization
using Tikhonov regularization has been tried for this problem

Figure 5. Evolution of number density for sum kernel. The sharp peak
near the small volume limit may be noted.

Table 3. Parameters Used for Forward Problem: Sum Kernel
Case29

β(v, v′) = v + v′
N0 = 1, v0 = 1
f(v, 0) = exp(−v)
τ = 1 − exp(−Ta)
f(v, t) = (N0/v0)ϕ(x,Ta) where x = v/v0 and Ta = N0v0t
ϕ(x,Ta) = (1 − τ) exp[− (τ + 1)x]∑k = 0

∞ ((τkx2k)/((k + 1)! Γ[(k + 1)]))

Table 4. Determined Coefficients for the Sum Kernel Problema

9 × 9 9 × 9 8 × 8 8 × 8 9 × 9

α true values w Int. wo Reg. w Int. w Reg. w Int. wo Reg. wo Int. wo Reg. 4% wGn

α1 0 −0.326 −0.145 −0.114 0.0117 0.1527
α2 40 40.86 40.29 40.167 39.727 27.78
α3 80 81.63 74.02 77.788 78.898 62.08
α4 40 40.86 40.29 40.167 39.727 27.78
α5 80 73.90 78.34 75.808 78.463 57.81
α6 120 107.53 137.08 114.73 117.38 0
α7 80 81.63 74.02 77.788 78.898 62.08
α8 120 107.53 137.08 114.73 117.38 0
α9 160 17.04 146.58 0
cond(A) 1.5 × 109 1.50 × 109 1.7 × 108 1.8 × 108

aAnnotation: wo, without; w, with. wo Reg, without using Tikhonov regularization; wo Int., using the analytical function value instead of interpolated
values; 4% wGn, results obtained by adding 4% white Gaussian noise to the number density data.

Table 5. Parameters Used for Forward Problem: Product
Kernel Case29

β(v, v′) = vv′
N0 = 1, v0 = 1
f(v, 0) = exp(−v)
f(v, t) = (N0/v0)ϕ(x,τ) where x = v/v0 and τ = N0v0

2t
ϕ(x,τ) = exp[− (τ + 1)x]∑k = 0

∞ ((τkx3k)/((k + 1)! Γ[2(k + 1)]))

Figure 6. Evolution of number density for product kernel.
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also but found to be ineffective for such a high-condition
number.
The extraction with a finer mesh with 16 nodes has also been

shown in Table 6. It can be seen that the condition number is
one order more but the kernel has been extracted with
reasonable accuracy. Like previous case, the zeros are predicted
as small negative numbers. We tried with another solver
lsqnoneg which is constrained to produce only a positive
solution. Although it produces zeros in place of negative
solutions, the accuracy of other nodes are reduced. The
Tikhonov regularization also improves the solution only
marginally. The last column shows the result where a small
noise has been added to the data. The linsolve solver
produced a lot of large negative values in this case (not shown).
However, the constrained solver lsqnoneg worked very well
for this case. The solutions are very accurate, and the method is
successful even with noise. It seems that the solution of the ill
conditioned set of linear equations is the vital step for inversion.

To investigate the case with even finer mesh, we increase the
number of nodes to 25 and 100, respectively, and repeat the
calculations. However, the condition number of A becomes
very high for both the cases (1015 and 1028, respectively). We
attribute this to increase in the number of elements with an
even higher difference in values. The result of the inversion
with 25 nodes has been shown in Figure 7 (right). It can be
seen that the quality of inversion is poor. To investigate
whether the failure was due to any factor other than ill
conditioning of the matrix, A × αtrue has been compared with b
as shown in Figure 7 (left). They show an exact match for both
the 25-node and 100-node cases (result not shown). Hence, the
failure of inversion in such fine meshes was due to ill
conditioning of the linear system. If information over such finer
mesh is required, a suitable regularization technique will be
required. Using weight functions other than Dirac delta is also
another option but that will require some minor changes in the
formulation.

Table 6. Determined Coefficients for the Product Kernel Problema

α αTrue αInv wo Reg α αTrue αInv wo Reg αInv 4% wGn lsqnonneg

α1 0 −0.045 α1 0 0.0005 0
α2 0 0.216 α2 0 −0.0046 0.0038
α3 0 0.523 α3 0 −0.1946 1.249
α4 0 0.216 α4 0 −9.6741 0
α5 400 398.4 α5 0 −0.0046 0
α6 800 796.5 α6 177.76 177.70 177.76
α7 0 0.523 α7 355.55 356.43 348.62
α8 800 796.5 α8 532.33 565.25 536.58
α9 1600 1056.9 α9 0 −0.1946 0

α10 355.55 356.43 356.04
α11 711.12 771.30 0
α12 1066.6 1702.3 0
α13 0 −9.6741 0
α14 533.32 565.25 581.34
α15 1066.6 1702.3 0
α16 1600.0 −12785 0

cond(A) 1.25 × 1012 3.96 × 1013

aAnnotation: wo, without; w, with. wo Reg, without using Tikhonov regularization; wo Int., using the analytical function value instead of interpolated
values; 4% wGn, results obtained by adding 4% white Gaussian noise to the number density data.

Figure 7. Inversion for the case of product kernel with 25 nodes. Although A × α matches exactly with b, the inversion is accurate only for 33% of
nodes (Values differing more than an order have been omitted for clarity).

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b01368
Ind. Eng. Chem. Res. 2015, 54, 10530−10538

10536

http://dx.doi.org/10.1021/acs.iecr.5b01368


■ CONCLUSIONS AND OUTLOOK

A new inverse problem methodology has been demonstrated in
this work. This new strategy is based on the method of
weighted residuals and has been demonstrated for the inversion
of the aggregation population balance equation. This method
does not depend on the existence of special traits for the system
like self-similar behavior.
The new method has been demonstrated successfully for

constant, sum, and product kernel. Like many inverse problems,
this method also needs the solution of an ill-conditioned system
of linear equations with condition number ranging from 109 to
1013. The accuracy of inversion is therefore dependent on the
effectiveness of the regularization technique. Tikhonov
regularization has been used successfully in this work. However,
a few issues should be considered for application of this method
to noisy experimental data:
(1) Effect of noise: Simulations show that the accuracy of the

inversion is dependent on the amount of noise present. The
effect of noise is also dependent on the kernel. Some degree of
noise cancellation is also possible because of the integral nature
of the method. Casewise guidelines therefore may be obtained
which will foretell the expected degree of accuracy if the signal-
to-noise ratio of data is provided. It has also been observed that
the tail of the PSD should be included for accurate inversion.
But data over the tail region may contain larger noise than
other regions of the PSD. For such a data set, the proper
strategy for treating the tail data can be explored; for example,
data smoothing may be used.
(2) Refinement of the grid: An important feature of this

method is that the condition number of the linear system
increases as the grid is refined. Hence, it is difficult to obtain
more accurate results from a finer meshing in size domain.
Scaling of the matrix, alternate weight function, and a more
sophisticated regularization technique are possible remedies to
this problem.
Improvement on these aspects should help evolve a robust

tool toward inversion of experimental data on aggregation
systems to obtain aggregation kernels.
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