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Abstract

Acute Lymphoblastic Leukemia, commonly known as ALL, is a predominant form of cancer during childhood. With the
advent of modern healthcare support, the 5-year survival rate has been impressive in the recent past. However, long-term
ALL survivors embattle several treatment-related medical and socio-economic complications due to excessive and
inordinate chemotherapy doses received during treatment. In this work, we present a model-based approach to personalize
6-Mercaptopurine (6-MP) treatment for childhood ALL with a provision for incorporating the pharmacogenomic variations
among patients. Semi-mechanistic mathematical models were developed and validated for i) 6-MP metabolism, ii) red blood
cell mean corpuscular volume (MCV) dynamics, a surrogate marker for treatment efficacy, and iii) leukopenia, a major side-
effect. With the constraint of getting limited data from clinics, a global sensitivity analysis based model reduction technique
was employed to reduce the parameter space arising from semi-mechanistic models. The reduced, sensitive parameters
were used to individualize the average patient model to a specific patient so as to minimize the model uncertainty. Models
fit the data well and mimic diverse behavior observed among patients with minimum parameters. The model was validated
with real patient data obtained from literature and Riley Hospital for Children in Indianapolis. Patient models were used to
optimize the dose for an individual patient through nonlinear model predictive control. The implementation of our
approach in clinical practice is realizable with routinely measured complete blood counts (CBC) and a few additional
metabolite measurements. The proposed approach promises to achieve model-based individualized treatment to a specific
patient, as opposed to a standard-dose-for-all, and to prescribe an optimal dose for a desired outcome with minimum side-
effects.
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Introduction

1.1. Background on ALL & Maintenance Therapy
Acute Lymphoblastic Leukemia (ALL) is a malignant state of

the bone marrow characterized by an abnormal and uncontrolled

proliferation of lymphoblasts. In the U.S., yearly incidence of ALL

is more than 5,000 [1] and is the leading class of cancer among

children. Treatment for ALL comprises three phases. Newly

diagnosed patients undergo remission-induction treatment using a

combination of chemotherapeutics to bring down the tumor

burden to less than 1% of the initial leukemic cells [2]. This is

followed by consolidation therapy using high-dose of drugs to

target specific locations of usual leukemic cell migration. The final

phase of the treatment is maintenance therapy (MT) which utilizes

relatively mild doses of drug over a period of 2–3 years to eradicate

residual leukemic cells. Common acute side-effects during ALL

treatment include but are not limited to myelosuppression, gastro-

intestinal intolerance, hepatotoxicity, pancreatitis and neuropathy.

Having accomplished a high 5-year event-free-survival (EFS)

rate of ,85%, the next obvious focus is on minimizing acute and

chronic treatment-related side-effects. This may include: i)

identifying patient subgroups that are non-responsive and/or are

prone to excessive side-effects and ii) choosing optimal dosage for

each subgroup/patient. Though the 5-year EFS is obviously

significant, and deceptively so in some sense, two thirds of the

long-term survivors embattle treatment related late effects [3–5].

Recurrent ALL, secondary neoplasm and other multiple chronic

medical conditions are prevalent among the survivors. They also

encounter psychosocial issues, impaired quality of life and enjoy

lower rate of socioeconomic advantages [3]. Clinical studies show

that the administration of high dose of chemotherapeutic agents

poses a significant risk towards long-term survival and quality-of-

life among childhood cancer survivors [3,6–9].

1.2. Importance and Issues of Maintenance Therapy
Maintenance therapy forms an important and indispensable

part of the overall ALL treatment program. About 40% of the

patients have minimal residual disease (MRD) at the end of

consolidation; MRD is highly correlated with relapse rate [10].

Hence, a carefully designed and administered MT protocol is

important to eradicate the residual disease. Patient self-adminis-
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tered oral combination of 6-Mercaptopurine (6-MP) and Meth-

otrexate (MTX) is shown to improve the overall treatment

outcome [10–12]. Clinical studies show that inadequate mainte-

nance therapy leads to recurrent ALL whereas aggressive

treatment results in acute side-effects and secondary malignancies,

thus calling for the optimization and individualization of MT [13–

17]. Hence, it is very important to monitor and optimize the

treatment intensity during MT.

There are, among others, two major challenges encountered

during MT of childhood ALL. First is the genetic polymorphism

exhibited in the enzyme activity of Thiopurine Methyl-transferase

(TPMT), an enzyme that plays a major role in conversion of 6-MP

into various metabolites [18]. TPMT genetic polymorphism is

directly correlated with treatment outcome and hence it is adopted

as a companion diagnostic tool in many 6-MP protocols

[14,19,20]. 6-MP is a pro-drug which undergoes intracellular

metabolism involving two competing metabolic pathways [21].

The desired pathway leading to 6-thioguanine nucleotide (6-TGN)

is catalyzed by an enzyme HGPRT. The catabolic pathways are

catalyzed by TPMT which leads to the formation of various

methyl-mercaptopurines (MeMP). The relative activities of

HGPRT and TPMT are genetically transcribed and regulated

for a given patient and dictates the net concentration of the active

metabolite 6-TGN and hence the treatment outcome. For

instance, in patients with high TPMT activity, 6-TGN pathway

is suppressed, resulting in low 6-TGN concentration and hence

treatment failure. On the other hand, in patients with low TPMT

activity, encounter life-threatening myelotoxicity and treatment

interruptions. Hence, it is prudent to utilize the TPMT genotype/

phenotype as a basis to guide the treatment protocol for an

individual patient [22].

Second is the inability to evaluate the treatment progression

during MT due to the residual nature of the disease. Measurement

of residual leukemic cells during MT remains elusive given the

milder treatment condition and low turn-over rate of leukemia

cells. During MT, bone marrow cell populations are exposed to 6-

MP; when the cells move to the periphery, they retain the

metabolized products. Thus, the concentration of 6-TGN in

peripheral red blood cells (RBCs) is shown to indicate the systemic

exposure to the chemotherapy agent and hence correlated to the

treatment efficacy and toxicity [23]. Clinical studies show that the

mean corpuscular volume (MCV) of the peripheral RBCs

increases significantly due to the exposure to 6-TGN and provides

an opportunity to be utilized as a surrogate marker for treatment

Figure 1. A generalized approach for model-based prediction and optimization of treatment outcome. A model representing the
underlying physiology is formulated and average patient parameters are estimated using data from literature and past clinical trials. GSA is used to
reduce the parameter space and identify most sensitive parameters with sparse clinical data. Following nominal initial dose, few measurements are
taken from an individual patient in order to adapt the model to the patient. Patient-specific model is used to predict the treatment outcome and
subsequent doses are optimized based on NMPC prediction.
doi:10.1371/journal.pone.0109623.g001
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monitoring [23–25]. Currently, in ALL MT, patients are initially

treated with doses based on body surface area and are titrated to

target neutrophil range of 1000–2000/mL. However, it is not

possible to precisely judge the nadir of neutrophil level.

1.3. Importance of Individualized Treatment
Though mathematical models and optimal control theory have

been utilized in almost all fields of science and engineering for over

a century with tremendous contributions, they are not utilized to

their fullest potential in medical applications [26]. Application of

Mathematical approaches have shown excellent utilities in

understanding and solving several issues in HIV, diabetes

[27,28]. Several aspects of cancer dynamics have also been

studied through mathematical models [29–31]. Mathematical

models, suitably empowered by systems theoretic methodology,

derive their strength from their potential to quantitatively evaluate

known or conjectured mechanisms of physiological processes.

Clinical studies on childhood ALL show that some treatment

regimens perform better than others [17,32,33]. A Pediatric

Oncology Group study concluded that compared to twice-daily

regimen, daily dosing regimen resulted in significantly higher

metabolites of 6-MP [32]. In a recent study on Brazilian childhood

ALL patients during MT [33], significantly higher 5-year EFS and

overall survival rates were observed in intermittent treatment

group. These results suggest that since one dose regimen performs

better than the other, there exists an optimal regimen that

performs better than many other regimens. Unfortunately, it is not

possible to explore all possible combinations of regimens in a

clinical trial.

We recently developed a semi-mechanistic model for indirect

measurement of treatment efficacy using MCV of the RBCs as a

surrogate marker [25]. The model considered a given concentra-

tion of active metabolite 6-TGN in RBCs and predicts dynamic

changes of MCV in response to 6-TGN. Metabolism of 6-MP into

6-TGN and side-effects were not considered in that work. The

present study aims to extend the model by explicitly incorporating

the metabolism of 6-MP to 6-TGN and the major side-effect

(leukopenia) during treatment. In addition, a simple and effective

model-reduction technique based on global sensitivity analysis

(GSA) is introduced to reduce the parameter space. This is

important because personalization requires model adaptation to

an individual patient through effective identification of parameters

with sparse clinical data. The proposed modeling and sensitivity

based approach will take into account the pharmacogenetic

variation, through TPMT enzyme activity, to estimate the initial

Table 1. Glossary of state variables and parameters for 6-MP model.

Model variables Description Units

xg Amount of 6-MP in Gut pmol

xp Amount of 6-MP in Plasma pmol

xt Concentration of 6-TGN in RBCs pmol/86108 RBCs

xm Concentration of MeMP in RBCs pmol/86108 RBCs

Parameters Description Units Values

ka 6-MP Absorption Rate from Gut per day 4.8

ke 6-MP Elimination Rate from Plasma per day 5.0

kpt 6-MP to 6-TGN Conversion Rate pmol 6-MP converted per day 29.8

Kt MM Constant for 6-TGN pmol 4.046105

kpm 6-MP to MeMP Conversion Rate pmol 6-MP converted per day 655.8

Km MM Constant for MeMP pmol 3.286105

kte 6-TGN Elimination Rate from RBCs per day 0.0714

kme MeMP Elimination Rate from RBCs per day 0.06

e Actual TPMT Activity Units per ml RBC 13

emax Maximum TPMT Activity Units per ml RBC 26

npt Stoichiometric coefficient for 6-TGN Conversion pmol 6-TGN produced per pmol 6-MP/86108 RBCs 1

npm Stoichiometric coefficient for MeMP Conversion pmol MeMP produced per pmol 6-MP/86108 RBCs 1

doi:10.1371/journal.pone.0109623.t001

Figure 2. Schematic representation of 6-MP metabolism.
Following oral intake to the gut, 6-MP is absorbed into the plasma
from where it is eliminated through various routes. From plasma, 6-MP
diffuses into the cells and enzymatically converted to 6-TGN and MeMP,
which in turn are eliminated from the cells at a constant rate.
doi:10.1371/journal.pone.0109623.g002
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Figure 3. Simplified schematics of the leukopoiesis and erythropoiesis model. Stem cells reside in the bone marrow, proliferate, mature
and enter the circulation as fully functional leukocytes. Stem cells receive biochemical feedback for proliferation from the circulating blood. On
treatment initiation, 6-MP enters the bone marrow and imparts cytotoxicity to the stem cells. Leukocytes and RBC MCV in the circulating blood are
routinely measured and used as a dose-limiting parameter. A. Leukopoiesis, B. Erythropoiesis. Additional compartment for MCV was added to account
for the dynamic changes following 6-MP treatment. Solid arrows represent cellular movement; dashed arrow represents property changes.
doi:10.1371/journal.pone.0109623.g003

Table 2. Glossary of state variables and parameters for leukopoiesis model.

Model variables Description Units

SL No. of proliferating progenitors cells per kg

CL1 No. of maturing leukocyte precursors cells per kg

CL2 No. of maturing leukocyte precursors cells per kg

CL2 No. of maturing leukocyte precursors cells per kg

L No. of circulating leukocytes cells per liter blood

Parameters Description Units Values

kmax
pl Maximum proliferation rate per day 0.3287

r Feedback parameter cells per liter blood 8.26109

cl Steepness parameter for feedback none 0.4368

ELmax Maximum effect of drug on L per day 0.0782

ECL50 Saturation constant for drug on L pmol/86108 RBCs 84

ktl Inter-compartmental transfer rate per day 0.1207

kdl Clearance rate of leukocytes per day 0.5346

doi:10.1371/journal.pone.0109623.t002
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dose based on established therapeutic window. Once measure-

ments (6-TGN, MCV and Leukocyte levels) are available

following initial dose, patient specific sensitive parameters are

identified. Once individual patient model is available, we used

nonlinear model predictive control (NMPC) to optimize the

dosage subject to a minimum level of WBC. The uncertainty in

the patient-specific parameters associated with the treatment

response models can be minimized by adaptively changing them

according to the frequently available CBC data. The model is

simple enough to be implemented in the clinical settings and

requires few measurements of metabolites concentration and

routinely measured CBC data to be able to adapt to individual

patients. Although not modeled explicitly, implementation of such

approach may help to improve the long-term EFS and quality-of-

life among childhood ALL patients as they are the resultants of

inappropriate dosing. The overall strategy is depicted in Fig.1. In

section 2, we detail the methodologies utilized in this work

including models to describe 6-MP metabolism, leukopoiesis and

MCV dynamics. In section 3, we show some of the important

results of this work with the simulation of virtual patients’ response

to 6-MP treatment. In sections 4, we discuss the results and

implications of this work.

Models and Methods

Let a generic dynamic model for any given drug and patient be

given by a system of ordinary differential equations with the

following form,

dx tð Þ
dt

~f x tð Þ,h,u tð Þð Þ; x 0ð Þ~c y tð Þ~g x tð Þ,h,u tð Þð Þð1Þ

where x tð Þ[<n :state variables, h[<p :model parameters,

u tð Þ[<q : drug input, c[<n :initial conditions, y tð Þ[<l :model

output. In most circumstances f x tð Þ,h,u tð Þð Þ will be a nonlinear

function and a numerical solution is readily available. For the

purpose of this study, the parameter space h[<p is divided into

redundant parameters, ~hh[<r and sensitive parameters

ĥh[<s~<p{r. Sensitive parameters are identified for each patient

whereas redundant parameters are fixed for all patients at average

value.

2.1. Modeling 6-MP Metabolism
Although the TPMT pharmacogenomics and the metabolism of

6-MP is one of the extensively studied systems in clinical

pharmacology literature, mathematical models are limited. We

are only aware of the works of Hawwa et al. [34] where TPMT

genotype was considered as one of the covariates to describe the

inter-individual variations. However, many studies show that

TPMT phenotype is a better marker than the TPMT genotype

because there is a huge variation of TPMT enzyme activity within

a specific genotype. A simplified schematic of the 6-MP

metabolism accounting for two major metabolites is shown in

Fig. 2. Following oral intake to the gut, 6-MP is absorbed at the

rate of ka into the plasma where it undergoes first-pass elimination

at the rate of ke. From plasma, 6-MP gets into RBCs followed by

intracellular metabolism. There is a negligible concentration of 6-

MP reported inside RBCs [35]; hence, we assume that 6-MP gets

metabolized as soon as it enters RBC. 6-MP undergoes

metabolism through two major pathways driven by HGPRT

and TPMT leading to 6-TGN (active) and MeMP (inactive),

respectively. Though there are several forms of MeMP produced,

for modeling purpose, they are lumped into a single component

collectively catalyzed by TPMT. 6-TGN and MeMP are

eliminated from RBCs at the rates of kte and kme respectively.

npt and npm are included for unit consistency across equations.

Table 3. Glossary of state variables and parameters for MCV model.

Model variables Description Units

SR No. of proliferating erythrocyte progenitors cells per kg

CR1 No. of maturing erythroid precursors cells per kg

CR2 No. of maturing erythroid precursors cells per kg

CR3 No. of maturing erythroid precursors cells per kg

R No. of circulating erythrocytes cells per kg

M MCV of circulating erythrocytes femto liter (fL)

Parameters Description Units Values

kmax
pr Maximum proliferation rate per day 1.4

y Feedback parameter cells per kg 4.0261011

cr Steepness parameter for feedback none 0.1

ERmax Maximum effect of drug on L per day 0.0022

ECR50 Saturation constant for drug on L pmol/86108 RBCs 82.2

ktr Inter-compartmental transfer rate per day 0.702

kdr Clearance rate of circulating leukocytes per day 0.0085

a Empiric coefficient for 6-TGN effect on MCV fL/pmol/86108 RBCs 0.055

M0 Baseline MCV fL 85

doi:10.1371/journal.pone.0109623.t003
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dxg

dt
~{kaxgzd tð Þ

dxp

dt
~kaxg{kexp{

kpt 1{erelð Þxp

Ktzxp

{
kpmerelxp

Kmzxp

dxt

dt
~

nptkpt 1{erelð Þxp

Ktzxp

{ktext

dxm

dt
~

npmkpmerelxp

Kmzxp

{kmexm

ð2Þ

The model equations for 6-MP metabolism based on mass-

action kinetics are shown in Eqn. 2. The description and units of

all the state variables and parameters are listed in Table 1. The

conversion of 6-MP into 6-TGN and MeMP is modeled using

Michaelis–Menten (M-M) kinetics. Patient specific TPMT enzyme

activity is represented as a relative activity level to their maximum

level. Thus,

erel~
e

emax

ð3Þ

where e denotes TPMT enzyme activity. It is observed in the

clinical studies that the production of 6-TGN is not limited by the

Figure 4. Average patient 6-MP model fit to literature data. A. Model fit to RBC 6-TGN concentration data. B. Model fit to RBC MeMP
concentration data. Solid dots represent data points and curves represent 6-MP model (Eqn. 2) fit. Error bars represent standard error.
doi:10.1371/journal.pone.0109623.g004

Figure 5. Leukopoiesis model fit to average patient data. Solid
dots represent average patient data and curve represent leukocyte
model (Eqn. 4) fit. The model mimics the clinical observation during 6-
MP treatment; Depletion of leukocytes following 6-MP dosing has been
countered by the body’s feed-back mechanism. Error bars represent
standard error.
doi:10.1371/journal.pone.0109623.g005
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HGPRT activity but is negatively correlated with TPMT activity

[36]. Hence, it is assumed that a fraction erelð Þ of 6-MP is

converted to methylated metabolites based on the enzyme activity

observed in a specific patient and the rest 1{erelð Þ is converted to

active 6-TGN.

2.2. Modeling Treatment Response
In humans, blood cells (RBCs, WBCs, platelets etc.) are one of

the most dynamic and vital population of cells with high turnover

rates. Since most of the cytotoxic drugs, such as 6-MP, are

designed to target fast-renewing cells, they invariably destroy bone

marrow cells. Consequently, monitoring of peripheral blood count

has become an integral part during chemotherapy to assess the

bone marrow toxicity. However, this is a reactive rather than a

proactive approach as the bulk of the damage is done to the

immature, bone marrow cells instead of the peripheral cells. Since

the maturation takes about 5–12 days, there will be a marked

delay in the realization of the effects in the periphery. Thus, the

prediction of the cellular dynamics during 6-MP treatment would

help to forecast the oncoming decline in the cell population and

adopt corrective measures before the patient contracts the side-

effect. Mathematical models are in use to describe many facets of

the hematopoiesis processes [37,38]. Although mechanistic models

are rich in physiology and are able to display diverse system

behavior, they come with the price of several parameters. With the

constraint on data, semi-mechanistic models of specific behavior

within the exhaustive overall process would be of much use.

2.2.1. Modeling Leukopoiesis. The model to study the

effect of chemotherapy on leukocytes was inspired by [39]. The

schematic diagram of the leukopoiesis is depicted in Fig. 3A. The

stem cells and early proliferating progenitors are depicted as

compartmentSL. During early stages of stem cell differentiation,

cells have the potential to proliferate. As they mature, they expel

their nucleus and loose their proliferating potential [40]. 6-MP’s

cytotoxicity is due to incorporation of 6-TGN as false nucleotides

into the DNA. Hence, 6-MP will have no influence on cells in the

later stages lacking nuclei. Consequently, it is assumed that the

cells in this compartment are the sole casualties of the cytotoxic

drugs. Proliferation rate of the cells in this compartment is a

function of leukocytes in the circulating system i.e. kpl~kpl Lð Þ.
This feedback mechanism is mediated by a cytokine known as

granulocyte–colony stimulating factor (G-CSF). The next three

compartments, viz. CL1,CL2andCL3, cater for the maturation

process. Cells in these compartments are not susceptible to

cytotoxic drugs as they are not proliferating. The fully matured,

functional leukocytes enter the circulation, perform their functions

for a specified period and die at a constant rate.

dSL

dt
~kpl Lð ÞSL{ELdrug xtð ÞSL{ktlSL

dCL1

dt
~ktlSL{ktlCL1

dCL2

dt
~ktlCL1{ktlCL2

dCL3

dt
~ktlCL2{ktlCL3

dL

dt
~ktlCL3{kdlL

ð4Þ

The equations for leukopoiesis model are given in Eqn. 4. The

description and units for all the state variables and parameters for

the leukopoiesis model are listed in Table 2. In the stem cell

compartment, positive feedback for proliferation with amplitude

modulated negatively by L is represented using the following

structure:

kpl Lð Þ~kmax
pl

rcl

rcl zLcl
ð5Þ

Although the feedback is mediated by biochemical messenger

G-CSF, the concentration of G-CSF is inversely proportional to

circulating leukocytes as G-CSF is mainly cleared by the receptors

on the leukocytes [41]. Unlike the term used in [39], which is a

monotonically increasing function of leukocytes, Eqn. 5 has a

saturating nature which derives its basis from receptor theory [42–

44]. 6-MP effect in this compartment assumes the following Hill

type kinetics.

ELdrug~
ELmaxxt

ECL50zxt

ð6Þ

where xt is the 6-TGN concentration obtained from 6-MP model.

The cells are transferred to the maturing compartments at the rate

of ktl . The matured cells enter the circulation at the rate of ktl and

die at the rate of kdl .

2.2.2. Modeling MCV Dynamics. Erythropoiesis, similar to

leukopoiesis, is a process through which the body generates

erythrocytes and hence assumes a similar model structure. The

schematic diagram of erythropoiesis and MCV dynamics is shown

in Fig. 3B. The proliferating fraction of the erythroid stem cells

and early progenitors are represented as SR. Cells in this

compartment are assumed to be vulnerable to 6-MP. Proliferation

rate of these cells is regulated by the number of RBCs R. This

feedback mechanism is mediated by a cytokine known as

Figure 6. MCV model fit to average patient MCV data. Solid dots
represent the data from literature and the solid line shows the model
(Eqn. 7) fit with 6-TGN concentration of 158 pmol/86108 RBCs. The
model fits the data well; it reaches the steady state and stays at DMCV
of ,8 fL, which is typically observed during 6-MP treatment at Riley
Hospital for Children. Error bars represent standard error.
doi:10.1371/journal.pone.0109623.g006
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erythropoietin (EPO). CR1,CR2 and CR3 represent the maturing

erythroid precursors. Fully functional RBCs enter the periphery,

circulate for ,120 days and die at a constant rate. MCV, which is

the total volume of RBCs divided by the number of RBCs, in

compartment M increases due to two phenomena: 1) inflow of

new cells from the bone marrow (RBCs are larger when they enter

the circulation and loose about 15% of the volume during their

lifetime), 2) due to the administration of 6-MP. MCV decreases

due to the death of RBCs which depends on the current MCV.

When xt~0, the only influence on MCV would be the imbalance

in RBC production. At steady state (and without 6-MP), the two

terms on the right hand side will cancel each other.

dSR

dt
~kpr Rð ÞSR{ERdrug xtð ÞSR{ktrSR

dCR1

dt
~ktrSR{ktrCR1

dCR2

dt
~ktrCR1{ktrCR2

dCR3

dt
~ktrCR2{ktrCR3

dR

dt
~ktrCR3{kdrR

dM

dt
~ axtzM0ð ÞktrCR3{kdrMR½ �=R

ð7Þ

Table 4. List of parameters identified for individualization through GSA (in bold letters) together with other fixed parameters.

6-MP Model (Variable for GSA: xt)

Parameters P d(~hhi,0)v(:)
n o

§0:95 % error(actual/
maximum)

kpt 84.61 100

kte 46.36 54.8

Kt 0.0003 3.561024

ke 0.0002 2.461024

ka 4.061025 4.761025

kpm 2.161029 2.561029

Km 2.161029 2.561029

kme 0 0

Leukopoiesis Model (Variable for GSA: L)

ktl 65.54 100

kmax
pl 49.12 74.9

kdl 39.02 59.5

ªl 22.61 34.5

ELmax 17.60 26.9

h 2.18 3.32

ECL50 0.25 0.38

MCV Model (Variable for GSA: M)

ktr 76.48 100

kmax
pr 50.09 65.5

kdr 20.71 27.1

a 11.00 14.4

ERmax 10.49 13.7

cr 2.48 3.24

y 0.71 0.93

ECR50 0.0034 0.004

doi:10.1371/journal.pone.0109623.t004
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The model equations for erythropoiesis and MCV dynamics are

given in Eqn.7. The feedback for proliferation amplification in

stem cell compartment, was approximated by the inverse

proportion of the circulating RBCs as follows,

kpr Rð Þ~kmax
pr

ycr

ycrzRcr
ð8Þ

The effect of 6-MP treatment on this cell population is modeled

using Hill type kinetics.

ERdrug~
ERmaxxt

ECR50zxt

ð9Þ

A linear relationship, with coefficient a, was assumed for the

effect of drug on the MCV [23]. The loss of MCV was attributed

to the death of the RBCs. The resulting total volume was

normalized by the total number of RBCs. DMCV is calculated as

the change in MCV from the baseline (untreated MCV) when 6-

MP is administered. The description and units for all the state

variables and parameters for the MCV model are listed in

Table 3.

2.3 Parameter Estimation
Model parameters were estimated through minimization of sum

of squared errors between model predicted values and the

experimental data with the following cost function

argmin
h

Xl

j~1

Xnexp

i~1

yj ti Dhð Þ{ŷyj tið Þ
wj

� �2
 !

ð10Þ

where nexp represents the number of experimental data points, ŷyj

is the experimental data. When more than one variable is

measured, appropriate weight, wj is used to normalize the cost

function. Hybrid genetic algorithm is used as an optimization

routine to perform the error minimization step and implemented

using Matlab functions ‘ga’ and ‘fmincon’ [45]. Parameter bounds

for optimization algorithm were chosen from feasible physiological

ranges available in the literature.

Figure 7. 6-MP model fit to individual patient data obtained from literature. Solid dots indicate the individual patient 6-TGN concentration
and the solid line represents the model fit. Patient # 8 was omitted from analysis as it is observed that the dosing was discontinued or substantially
lowered. The estimated patient-specific parameters are provided in Table 5.
doi:10.1371/journal.pone.0109623.g007
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2.4 Model Reduction through Global Sensitivity Analysis
Due to a large inter-patient variability in treatment response,

the models developed here have to be adapted to individual

patients’ characteristics through parameters. Since clinical data are

generally sparse, it is not possible to uniquely identify all the

parameters as the system is underdetermined. This quandary can

be addressed through model reduction using sensitivity analysis

(SA) to identify redundant parameters in the model [46]. SA aims

to distribute, either quantitatively or qualitatively, the variation in

the model output to variation in the model inputs, e.g. parameters.

Table 5. Patient-specific parameters estimated for 6-MP, leukopoiesis and MCV models.

6-MP Model

Pat. No. kpt kte

1 38.4 0.0646

2 41.4 0.0815

3 23.9 0.0604

4 18.76 0.0453

5 17.4 0.0788

6 15.83 0.0867

7 20.04 0.0452

Mean 25.1 0.0661

SD 10.45 0.017

Min 15.83 0.0452

Max 41.4 0.0867

Leukopoiesis Model

Pat. No. kmax
pl cl ELmax ktl kdl

i 0.338 0.45 0.06 0.123 0.3653

ii 0.322 0.465 0.068 0.12 0.661

iii 0.434 0.3445 0.081 0.1852 0.6637

iv 0.3943 0.9154 0.2075 0.0926 0.525

v 0.392 0.1786 0.093 0.1411 0.5145

vi 0.3735 1.8 0.2513 0.0858 0.5711

vii 0.447 0.9012 0.1664 0.1305 0.679

viii 0.8 0.4818 0.2506 0.2663 1.2261

Mean 0.4376 0.6921 0.1472 0.1431 0.6507

SD 0.1525 0.5155 0.0817 0.0584 0.2546

Min 0.322 0.1786 0.06 0.0858 0.3653

Max 0.8 1.8 0.2513 0.2663 1.2261

MCV Model

Pat. No. kmax
pr ktr ERmax kdr a

a 1.682 0.862 0.004 0.0131 0.095

b 1.284 0.657 0.0085 0.0126 0.038

c 0.871 0.444 0.0075 0.0074 0.0375

d 1.4243 0.735 0.0037 0.014 0.0527

e 2.204 1.131 0.002 0.0198 0.105

f 1.6631 0.847 0.016 0.0155 0.0544

g 1.55 0.787 0.0058 0.0122 0.0393

h 1.94 0.992 0.0044 0.0156 0.047

i 1.594 0.811 0.0088 0.0123 0.0509

j 1.92 0.981 0.0179 0.0202 0.0456

Mean 1.6132 0.8247 0.0079 0.0143 0.0565

SD 0.3736 0.1917 0.0053 0.0038 0.0238

Min 0.871 0.444 0.002 0.0074 0.0375

Max 2.204 1.131 0.0179 0.0202 0.105

doi:10.1371/journal.pone.0109623.t005
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Although it is reasonable to assume that the changes in the model

input affect the model output, not all inputs influence the model

identically. Thus, SA sheds light on the important model

parameters that drive the model outputs. Since the model

parameters vary widely among patients, we employ global

sensitivity analysis (GSA). Soboı́ technique was used to estimate

the total sensitivity indices [47]. Lower and upper bounds were

chosen at 50% and 200% of the mean respectively. 1000 sets of

parameter were sampled through sparse-grid technique. Although

redundant parameters have little influence over the variable of our

interest, they impart indirect effect through other auxiliary

variables. Hence, redundant parameters are fixed at a nominal

value (equal to that for an average patient) instead of being

eliminated. Since any uncertainty in the estimation of the highly

sensitive parameters will influence the model prediction greatly, it

is prudent to estimate the most sensitive parameters as accurately

as possible with the limited data available and be less concerned

about the least sensitive ones. The error involved in such an

approximation can be estimated as follows [47].

Let the set of parameters be h: ĥh,~hh
� �

in which

~hh: ~hh1,~hh2, . . . ,~hhr

� �
[<r represents the r redundant parameters

and ĥh comprises the sensitive parameters. Further let fo

representf with h~ ĥh,~hho

� �
where ~hho denotes the redundant

parameters fixed at nominal value. For any redundant parameter
~hhi, if Stot

~hhi
vv1, then the error of approximating f withf0, d(~hhi,0),

by fixing ~hhi at a nominal value ~hhi,0 can be estimated by

P d(~hhi,0)v 1z
1

e

� �
Stot

~hhi

� 	
§1{e; where 0veƒ1ð11Þ

where Stot
~hhi

is the total sensitivity index of the model output

corresponding to parameter ~hhi. For an arbitrary value of e~1=3,

the probability of getting d(~hhi,0)v4Stot
~hhi

is more than 2/3.

2.5 Optimal Treatment Planning through NMPC
The final step in model-based individualized dosing is the

determination of optimal dosage using patient-specific models. In

this work, we utilize NMPC to optimize the dose due to its

inherent nature of calculating the input based on the predicted

system behavior subject to the state and input constraints as well as

the optimization of a given cost function [48,49]. In general, based

on the measurement obtained at timet, the controller predicts the

evolution of treatment response over a prediction horizon T and

estimates the dosing profile that optimizes the predetermined

clinical objective function. To account for disturbances and

model-patient mismatch, the optimization problem is solved for

finite horizon but only the first dosing action is prescribed. The

remaining samples are discarded and a new optimization problem

is solved based on ytz1 at the next clinical visit (tz1). For the

case of regulating the system in Eq. 1 to the predetermined

Figure 8. Leukopoiesis model fit to individual patient data
obtained from literature. Solid dots indicate the individual patient
WBC count and solid lines represent the model fit. The estimated
patient-specific parameters are provided in Table 5. The model mimics
diverse behavior observed during 6-MP treatment.
doi:10.1371/journal.pone.0109623.g008

Figure 9. MCV model fit to individual patient data obtained
from Riley Hospital for Children. Solid dots indicate DMCV of
individual patient undergoing 6-MP treatment and solid lines represent
the model fit. The estimated patient-specific parameters are provided in
Table 5.
doi:10.1371/journal.pone.0109623.g009
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physiological target value Y, the quadratic cost function is defined

as follows.

J u, yð Þ~ v
XT

0

Y{y h,u,tð Þð Þ2 ð12Þ

Where u~ u1,u2,:::,uT{1½ �is the optimization vector consisting

of all the control inputs fort~1,2,:::,T{1. When more than one

clinical target is optimized i.e. WBC as well as MCV, the errors

are added and weighted appropriately with v for the two targets.

The constrained finite time optimal control problem can be

formulated as follows,

min
u

J u, yð Þ ð13Þ

subject to

uminƒu(k)ƒumax

Duminƒu(k){u(k{1)ƒDumax

ð14Þ

where umin,umax&Dumin,Dumax are constraints on range and slew

rate of the 6-MP dose respectively. The restriction on slew rate is

included to avoid extreme changes in dosage that will trigger

drastic or negligible changes in associated cell population.

Results

3.1 Parameter Identification for Average Patient Model
3.1.1. 6-MP Model. The data for estimating the parameters

in the average patient model was collected from patients

undergoing 6-MP treatment (‘‘per protocol’’ group; n = 8) [50].

The dose schedule was assumed for a 70kg patient. Dose schedules

for patients who encountered severe toxicity were altered but

information pertaining to the modification was not given.

Moreover, 6-TGN concentration data do not reflect major

variation in the metabolite levels. Hence, we assume stable dose

over the treatment period. Feasible range of parameters were

chosen as follows: The range for ke was obtained from reported

mean 6-MP plasma half-life of 1.2 hrs (range: 0.4–3.3 hrs) [51].

The range for kawas estimated from lumping absorption rate and

bioavailability reported in [34]. Conversion rates kpt&kpm


 �
and

M-M constants Kt&Kmð Þwere estimated from Vmaxand Kmvalues

given in [36,52]. The elimination rates for metabolites

kte&kmeð Þwere estimated using elimination data from rat [53].

eand emaxwere fixed at 13 (median) and 26 (maximum) as assessed

in [50,54]. The average patient model fit to clinical data is shown

in Fig. 4 and the estimated parameters are given in Table 1. The

estimated parameters are observed to be in the ranges reported in

the literature. It can be seen from the figure that the model fits the

6-TGN and MeMP data very well. Given the inter-assay

coefficients of variation for 6-TGN and MeMP of 18% and

22%, respectively, the model predictions are extremely good.
3.1.2. Leukopoiesis Model. The data for estimating the

parameters in the leukopoiesis model in eqn. 4 was obtained from

the same study as that of 6-MP metabolism data [55]. The

leukocytes count for individual patients (n = 8) was used to

calculate the average leukocyte count. The initial bounds for

parameter estimation were chosen based on the physiological

observation. ktl was chosen based on the mean transit time

required for differentiation and maturation. kpl is slightly more

than or equal to ktl, taking into account the death rate in the

Figure 10. Virtual patient simulation for leukocyte and MCV
model. Data for 6-MP model and leukocyte model are assumed to have
originated from the same patient. The resultant estimated parameters
for three representative patients are used to simulate the virtual patient
response. It is apparent from the figure that different patients achieved
different levels of response for the same dose, thereby achieving
different treatment outcome. A. Leukocyte model, B. MCV model.
doi:10.1371/journal.pone.0109623.g010

Table 6. Comparison between model-predicted values (mean 6 SD) and published clinical results for model response variables.

Variables Published Values [23] Model Prediction p-value (mean) p-value (variance)

6- TGN 176.0697.63 (n = 37) 172.18671.0 (n = 7) 0.9034 0.2175

DMCV 5.863.58 (n = 37) 5.9565.17 (n = 70) 0.8606 0.009

Leukocytes 6.4362.61 (n = 20) 5.9362.33 (n = 56) 0.4526 0.2511

doi:10.1371/journal.pone.0109623.t006
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proliferation fraction of the cells. The range for kdl was chosen

based on the half-life of leukocytes [56]. r accounts for the

variation in the proliferation rate when the circulating leukocytes

deviate from the baseline, so steady state levels of leukocytes was

chosen as a range. The steepness parameter cl was assumed to be

positive to impart negative feedback. The range for ECL50was

chosen closer to observed concentration of 6-TGN in leukemia

patients. A conversion factor of 15.5 kg/liter of blood was used to

convert the cells per kg to cells per liter blood in the equation for

leukocytes.

The estimated parameter values of the leukopoiesis model for

average patient are listed in Table 2 and the model fit to the

average patient data is shown in Fig. 5. At steady state, kpl is

estimated to be 0.157 day21, which is slightly higher than ktl value

of 0.1207 day21 as expected. The difference accounts for the

random death of cells in the proliferating progenitor compartment

which is not explicitly considered in the model. The estimated

value of r is in the vicinity of steady state leukocyte values. The

value of ktl results in a slightly higher mean residence time for bone

marrow population but it is anticipated given the fact that the

inter-compartmental transfer rates are assumed constant in order

to minimize the number of parameters. ECL50 value of 84 pmol/

86108 RBCs is within the expected range considering the 6-TGN

concentration of 100–250 pmol/86108 RBCs observed in many

human studies.

3.1.3. MCV Model. The experimental data for average

patient MCV model (eqn. 7) parameter estimation was collected

from published works [23]. Initial conditions were chosen based

on the physiological values for bone marrow erythroid population,

RBCs and MCV [40]. Bounds for parameter estimation was

chosen based on the biology of the erythropoiesis like bone

marrow residence time, half-life of RBCs and our previous work

[25]. Fig. 6 shows the MCV model fit to the average patient data.

The estimated parameters are listed in Table 3. The steady state

value of kpr is slightly higher than the transfer rate as observed in

the leukopoiesis model. The estimated value of feedback param-

eter y is in the range of steady state RBC count which is essential

to impart proliferation amplification should the number of RBCs

drop. The steepness parameter cr is much less than cl which shows

that the feedback process is not as strong as that for leukocyte. This

is in expected line given the fact that the turnover rate of RBCs is

not as high as leukocytes. The values for kdr and aare close to

physiological and literature values [23].

3.2. Model Reduction for Individualization
Variables for GSA and model reduction are the clinically

measurable outputs, viz. 6-TGN concentration (xt), leukocyte

number (L), and RBC MCV (M) from the three models

respectively. The probability of the actual error d(hi,0), involved

in fixing any parameter hi at hi,0, remaining below a certain level

was assumed to be more than or equal to 0.95 e~0:05ð Þ. Since the

sensitivity indices vary over the treatment period, we assumed six

representative time points across the treatment period and

cumulative error was calculated using Eqn. 12.

P d hi,0ð Þv
X6

1

1z
1

0:05

� �
Stot

hi

( )
§0:95 ð15Þ

Any parameter, for which the error involved is less than 5% of

the error associated with the most sensitive parameter, will be

regarded as redundant and hence fixed at the average patient

value for all individual patients. The sensitive parameters

considered for individualization of each model are listed (in bold

letters) with corresponding errors in Table 4. For 6-TGN model,

the important parameters are the ones closely related to

production and elimination of the active metabolite of our interest

as observed in population studies [34]. This also points out that the

conversion rate is the rate limiting step during 6-TGN production.

Feedback mechanism and age related death are important

regulation steps during hematopoiesis and helps to maintain the

balance between the resources and body requirements [57]. These

parameters together with death rate due to drug have naturally

come out to be the sensitive ones in WBC and MCV models.

3.3. Model Individualization
The 6-TGN concentration and leukocyte count data for

individual patients were obtained from [55]. The model fitting

to the individual patient data is shown in Fig. 7 and the estimated

individual parameters are listed in Table 5. In light of the reported

inter-assay coefficient of variation for 6-TGN (18%), the model fits

the data reasonably well. For leukocyte data, individual patients

were not identified in the plots for 6-TGN concentration and

leukocyte count in the original data source. Hence, average patient

6-MP model parameters were used to simulate the leukopoiesis

model. The model fitting to the individual patient leukocyte data is

shown in Fig. 8 and the estimated individual parameters are listed

in Table 5. From the figure, it is evident that each patient responds

to the treatment differently. In some patients, the feedback

mechanism is strong enough to return the leukocytes towards the

Figure 11. Model-predicted standard deviation in the treat-
ment response over treatment period. A. Standard deviation for
leukocytes response as a function of time, B. Standard deviation for
DMCV. Variability explained by the models is in line with the pattern
observed during 6-MP treatment.
doi:10.1371/journal.pone.0109623.g011
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desired level whereas in others, the feedback is weak which is a

common phenomenon in leukopoiesis [42].

Individual MCV measurements from pediatric ALL patients

were obtained from Riley Hospital for Children in Indianapolis.

The data was de-identified and collected according to approved

IRB protocol (0505002519). Patients were undergoing MT with 6-

MP and MTX. Patients were given a standard initial 6-MP dose of

75 mg/m2 and subsequent doses were adjusted in accordance with

observed leukocyte count. Hence, the dosing pattern and dosage

varied substantially among and within patients. 6-TGN levels were

not measured in these patients, so average parameters were used in

6-MP model. The model fitting to individual patient data are

shown in Fig. 9 and the estimated parameters are listed in

Table 5.

3.3.1. Predicting Response through Virtual Patient

Simulation. In order to appraise the variations in response to

the treatment, we have created virtual patients by assuming a

correspondence across the parameter sets of the three models, i.e.

all possibilities of parameter set combinations across three models.

This has produced 56 virtual patients for leukocyte response and

70 virtual patients for MCV response. Figures 10A & 10B show

three representative patient responses for leukocytes and RBCs,

respectively. It is apparent from these figures that, for the same

pattern of drug dosing, individual patients varied widely in their

response. The comparison between the published results and

model predicted values for the three models are summarized in

Table 6. The results are statistically significant using t-test (for

mean comparison) and F-test (for variance comparison) and thus

show that the model prediction and clinical results are the same.

The model predicted standard deviation (SD) for DMCV is

significantly higher than the literature values as there were many

dose adjustments in our study; whereas Decaux et al. study was

conducted at stable dose.

Fig. 11 shows the profiles of standard deviation in leukocyte and

MCV responses. The variations predicted by the models are

physiologically anticipated. For leukocytes, the variation spikes at

the start of the therapy as there are huge variation in response to

the therapy. As the treatment progresses, the feedback mechanism

gets underway and brings the leukocyte population back to the

base line which is relatively constant for all the patients. This helps

to subside the variation at the later stages of the treatment. In

contrast, for DMCV, the variation at the onset of the treatment is

small compared to that of the later stage. This is expected since the

treatment response is based on the MCV change after four months

of continuous therapy.

In order to validate the model’s ability to predict future

response, we estimated parameters for individual patients with

N{3ð Þ original data points. With these parameters, the remaining

data points were predicted and the SSEs are calculated for full and

N{3ð Þ data points. For all patients, the differences in SSEs are

less than 2% for 6-MP model, and less than 5% for leukocyte and

MCV models.

Figure 12. Optimal dosing based on 6-TGN concentration as therapeutic target. A & B. Optimal 6-TGN concentration and optimal 6-MP
regimen respectively, for a patient with low TPMT enzyme activity. C & D. Optimal profiles for a patient with high TPMT enzyme activity. Patient with
low TPMT activity required significantly lower dose compared to the standard treatment and vice versa. Dashed line shows the therapeutic target
level.
doi:10.1371/journal.pone.0109623.g012
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3.4. Dose Optimization
NMPC control strategy was applied to clinical scenarios using

three different therapeutic targets: i) 6-TGN, ii) leukocyte count,

iii) both leukocyte count and DMCV. All dosing calculations are

based on 15 days sampling horizon with 75 days treatment

window. Clinical studies propose a therapeutic window of 235–

400 pmol/86108 RBCs for 6-TGN concentration for effective

management of both efficacy and toxicity [20,58]. Hence, we

optimized 6-MP input with a target 6-TGN concentration of

300 pmol/86108 RBCs. Fig. 12 shows the optimal 6-MP input

together with resultant 6-TGN concentration for low and high

TPMT activity patients. Dose inputs for different patients suggest

that dosage varies mainly as a function of the 6-TGN conversion

ratekpt. From the figure, low TPMT patient required 31.82% less

dose compared to the standard dose whereas, high TPMT patient

needed 20.25% higher. Although 6-TGN concentration is not an

ideal target, as there are further variability in pharmacodynamics,

it proves useful in certain clinical conditions where efficacy

measures are categorical and highly subjective. Fig. 13 shows the

optimal dosage for current clinical practice where the dosing

decisions are primarily driven by leukocyte count. Currently,

patients are ‘titrated’ to a target leukocyte level of 36109 cells/liter

using a trial-and-error approach. However, with the help of

NMPC, the oncoming leukopenia is predicted and dosing

adjustments are made in a timely manner so that the leukocyte

count remained close to the critical level for fighting infection.

Fig. 14 shows the optimal 6-MP profile with simultaneous

optimization of both therapeutic targets, i.e. maximizing efficacy

without causing severe toxicity. The significance of these dose

optimization should be viewed from the maximization of

therapeutic benefits rather than the reduction of drug input as

the cost of drug is only a fraction of the overall healthcare

spending. Interestingly, cumulative optimal dosage for some of the

patients are equivalent to their actual cumulative clinical dosage,

but timely reduction or suspension of treatment predicted by

NMPC has proven vital for forestalling life-threatening toxicity or

compromising efficacy.

Discussion

We have presented here a modeling and individualized dosing

approach to predict the treatment outcome and optimize the

dosage during chemotherapy of childhood ALL. It should become

transparent from this paper and other similar efforts [59,60] that

mathematical models could in fact be an eminent substitute for

empirical treatment adjustments. Mathematical models were

developed and validated for 6-MP metabolism, MCV dynamics

(a surrogate marker for treatment efficacy) and leukopenia (a dose-

Figure 13. Optimal dosing based on leukocyte count as target. A. Evolution of leukocyte count in response to optimum 6-MP dosing. Dashed
line represents critical leukocyte level and solid dots represent clinical data for an average patient. B. Optimum 6-MP dosing profile predicted by
NMPC. The standard daily 6-MP dosing is 75 mg/day.
doi:10.1371/journal.pone.0109623.g013
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limiting side-effect during treatment). The models were fitted to

real patient data obtained from clinical settings. It is evident from

the figures 8–10 that the models fit the data well with reduced

parameter space. It is important to note that the data needed for

this study did not come from the same source so we had to assume

that the 6-TGN concentration was that of an average patient in

leukopoiesis and MCV models. Some of the variations observed in

the patient-specific parameters of leukopoiesis and MCV models

may have arisen from the fact that the patients have performed

significantly different from the average patient’s 6-TGN concen-

tration.

The implementation of the proposed approach in clinical

practice can be envisioned as follows: When the new patient

completes the induction treatment and is ready to start the 6-MP

based consolidation and maintenance therapy, TPMT enzyme

activity has to be measured. This actual TPMT enzyme activity

will replace the estimate e in the 6-MP model and dictate the initial

6-MP dosing based on therapeutic window based NMPC. As the

metabolite measurements and CBC become available, parameters

can be progressively estimated from the most sensitive to the least

sensitive in the reduced parameter group and the models are

adapted to the new patient. Once a patient-specific model is

obtained, future course of action can be predicted and optimized

using NMPC.

It is a known fact that the global sensitivity indices for various

parameters are not identical at different time points. Given the fact

that only a few sensitive parameters are estimated to individualize

the model, future experiments for new patients have to be

designed carefully to estimate these parameters with precision. In

this line, dynamic model-based design of experiment strategies can

be exploited to estimate the optimum measurement points and

other design variables. Efforts are in progress to determine the

optimal experimental points for each of these models and compare

the parameter precision and prediction capabilities of the models

with a reduced data set.

It has been the aim of this work to address issues concerning the

survival and well-being of children afflicted by ALL. The

methodology, however, has import for treatment of other cancers

or diseases as well where treatment involves the same or similar

drugs. For instance, 6-MP is the major drug in treating

autoimmune diseases and inflammatory bowel disease (IBD)

whose incidence rate far exceeds that of ALL. Similar issues to

Figure 14. Optimal dosing based on leukocyte count and MCV as target. A. Evolution of leukocyte count in response to optimum 6-MP
dosing. B. Evolution of DMCV response with optimum 6-MP dose. Dashed lines represent critical leukocyte and target MCV levels and solid dots
represent clinical data for an average patient. C. Optimum 6-MP dosing profile predicted by NMPC. The standard daily 6-MP dosing is 75 mg/day.
doi:10.1371/journal.pone.0109623.g014
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that of ALL have been reported in IBD treatment with 6-MP.

Hence the proposed techniques have the potential to be extended

to a broader class of diseases and medical conditions. Admittedly,

besides the technical solutions described here, there are other

challenges to individualized treatment such as physiological,

logistical, economical and societal in nature. When addressed

together, it has the potential to reduce healthcare cost as well as

improve the quality-of-life among patients by effectively tuning the

therapy for each patient based upon their own response instead of

the statistics of prior trials.
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