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ABSTRACT: The “Tau-Leap” strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers
has had considerable impact on various applications. This strategy is reexamined with Chebyshev’s inequality for random
variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is
also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while
the use of Chebyshev’s inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces
the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed,
with respect to one discussed by Cao et al. (J. Chem. Phys. 2006, 124, 044109), a second pertaining to binomial leap (Tian and
Burrage J. Chem. Phys. 2004, 121, 10356; Chatterjee et al. J. Chem. Phys. 2005, 122, 024112; Peng et al. J. Chem. Phys. 2007, 126,
224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys. 2001, 115, 1716). The
performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called
stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor
for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset
in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from
diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational
improvements such as those reported herein are therefore of considerable significance.

1. INTRODUCTION

In recent times, stochastic simulations have assumed
extraordinary importance in modeling biological and nano
systems. The importance of the Monte Carlo simulation
methodology arises from its capacity to substitute for the less
tractable master equation and mean field approaches. This
capacity is derived from its basic simplicity which could,
however, be seriously compromised if computational times
become forbiddingly large because of the repetitive attribute of
the methodology. Consequently, considerable effort has come
to pass on finding efficient simulation strategies so that
computation of statistical averages of stochastic behavior can
become facile. The issue of efficiency arises in negotiating
accuracy with sacrifice of rigor or through crafty approxima-
tions. In stochastic systems, however, the validity of
approximations is uncertain because they invariably involve
future values of random variables in the system leading to
conservative and hence less efficient heuristics. The remedy
must lie in the use of mathematical propositions concerning
probabilities with which approximations about random
variables are true.
It is the purpose of this work to aid in the quest for efficient

stochastic simulation strategies by exploiting an important
inequality that could greatly rationalize the process. This is
Chebychev’s inequality that is routinely encountered in the
treatment of random variables.1 The inequality is concerned
with the probability with which a random variable deviates from
its expectation in terms of its variance.
We are concerned here with a stochastic system of chemical

transformations involving several species at a fixed temperature.
Temperature variation can be captured in the reaction rate
constants which can, in turn, influence the rate at which the

propensity function changes. However, this temperature change
needs to be small since one big assumption made throughout
the development of τ-leap is to assume the propensity function
stays constant during each leap. The stochastic behavior arises
out of the randomness in reaction rates and is reflected in the
numbers of different reaction species at different times.
Simulation of this system can be performed with an exact
algorithm that has come to be known as SSA (stochastic
simulation algorithm). The term “exact” is derived from the fact
that the simulation is based on rigorously derived distributions
of “waiting times” during which the system remains “quiescent”
without any reaction event. While the methodology is usually
attributed to Gillespie,2 a basic version of the idea appeared in a
paper by Kendall3 who used the term “quiescent interval”
instead of “waiting time”. This method was generalized for the
simulation of population balance equations in a doctoral thesis
by Shah,4 subsequently published in the chemical engineering
literature5 independently of Gillespie’s publication2 in the
geophysical literature. Some further insights as to the
connection of the foregoing algorithm to the master equation
for population balances are given by Ramkrishna.6

The virtue of SSA’s exactness is computational accuracy but
at the cost of large computation times. SSA also provides the
starting point for various improvements pursued by researchers
in this area to minimize the cost of computation. The term
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“tau-leap”, coined by Gillespie and co-workers, aptly describes
the underlying strategy of “leaping” over relatively less
significant events (as reflected by minimal changes in the so-
called “propensities” or transition rates of individual reactions).
For all of the methods discussed in this work, each leap is
checked after each calculation. Anderson’s method7 is a
precheck method and hence produces a very different
mechanism of filtering leaps. For any given selection of ε,
postcheck methods inevitably encounter some ineffective leap
steps at which the leap condition is violated. Depending upon
the number of violations and the extent of each violation, the
accuracy of the simulation will be affected. Our method
introduces a way to promote the likelihood of acquiring more
efficient leap steps by appropriate increase of δ. Anderson’s
method introduces a procedure to do precheck before
performing a calculation of leaps. Only steps where the criteria
are satisfied will continue with the calculation of the
corresponding leaps. Moreover, only the first step of picking
τ will follow the formula of Cao et al.8 The subsequent steps of
evaluating τ strictly follow their procedure. For each new
calculated τ, it is then evaluated with the leap condition.
Depending upon the value of τ, different scaling factors can be
applied to adjust τ. If a leap for ε = ε′ is rejected, τ will be
decreased by multiplying with some p < 1. If a leap is accepted
for ε = ε′ but would fail if ε = 3ε′/4, it will be reduced by
multiplying it by some p* that satisfies p < p* < 1. If a leap is
accepted for both cases, τ can be enlarged by raising it to the
power of q such that q is between 0 and 1. Thus, the algorithm
for precheck will only accept those τ that satisfy the leap
condition. However, in stochastic simulations, good results can
still be accomplished, as long as the number of unsatisfied leaps
is low. Every time a leap is rejected, a new calculation will need
to be made; therefore the question is a balance between
accuracy and speed. Anderson’s approach focuses on checking
the leap condition, whereas all other postcheck methods focus
on the issue of how to select a τ value. Therefore, the method
cannot be included in our comparison of postcheck methods
with the approach of this work. For that reason, this work will
exclusively focus on comparison among postcheck methods.
Negative population is another problem associated with the
usage of Poisson random number generation. In the later
version of the method of Cao et al.8 the author introduced ways
of capturing and treating critical reactions in which the negative
population might occur; Peng et al. implemented a binomial
leap strategy9−11 to resolve the problem. In addition to the
preceding treatments, we implement a novel strategy using the
Chebyshev inequality to improve the simulation process. In this
work, we show how the Chebyshev inequality can be used to
craft this temporal leap by specifying the probability with which
it influences the deviations in the stochastic numbers of
chemical species from their expected values. In so doing,
following Cao et al.,8 we retain the Taylor series expansion of
the propensities about the state of the system specified at
instant t truncated beyond the quadratic terms. A new
algorithm is derived simply using different probabilistic criteria
for approximations.

2. CHEBYSHEV INEQUALITY

We recall that for any random variable X with finite expectation
EX and variance VX the following inequality1 is satisfied for an
arbitrary ε > 0.

ε
ε

| − | ≥ ≤XPr{ EX }
VX

2 (1)

For our purposes, the preceding inequality may be restated as

ε
ε

| − | < > −XPr{ EX } 1
VX

2 (2)

Clearly inequality 2 stipulates the minimum of the probability
with which the random variable X deviates from EX by less than
ε.

3. DEVELOPMENT OF THE NEW “TAU-LEAP”
STRATEGY

As observed earlier, we adhere to the stochastic system
formulated by Gillespie and Petzold.8 Thus, there are N
chemical species in numbers represented by the random vector
X, involved in M transformations (reactions) with the vector νj
≡ {νij, j = 1, 2, ..., N} denoting the change in the numbers of
species due to each jth reaction event. Further, the reaction
propensity vector, conditional on X = x, is represented by
{aj(x); j = 1, 2, ..., M}. If at time t, X(t) = x, then after time τ
(i.e., τ > 0), we have1

∑τ τ τ ν+ − ≡ Λ =
=

t KX x x x( ) ( ; ) ( ; )
j

M

j j
1 (3)

in which Kj(τ;x) represents the number of jth reaction events
during the interval from t to t + τ. For the formulation of τ-leap,
Kj(τ;x) is assumed to be a Poisson process τa x( ( ); )j with
mean and variance given by aj (x) τ, notwithstanding the
change in X during this time interval. Thus, (3) is replaced by

∑τ τ νΛ =
=

ax x( ; ) ( ( ); )
j

M

j j
1 (4)

The “leap condition” of Gillespie and Petzold1 is given by

∑τ ε| + Λ − | ≤ ≡
=

a a a a ax x x x x x( ( ; )) ( ) ( ), ( ) ( )j j
j

N

jo o
1

(5)

where the symbol ε is to be distinguished from that appearing
in the Chebyshev inequality (1) or (2). Other replacements
considered by these authors for ao(x) do not affect the
treatment of this work. Defining

∑ ν≡
∂

∂
′ =′

=
′f

a

x
j j Mx

x
( )

( )
, , 1, 2, ...,jj

i

N
j

i
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1 (6)

∑ ∑μ σ≡ ≡
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′=
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′ ′f a f a

j M

x x x x x x( ) ( ) ( ), ( ) ( ) ( ),

1, 2, ...,

j
j

M
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j

M

jj j
1

2

1
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(7)

The change in propensity during the time interval between t
and t + τ is given by

∑τ τ τ+ Λ − ≡ Δ ≈
′=

′ ′a a a f ax x x x x( ( ; )) ( ) ( ; ) ( ( ); )j j j
j

M

jj j
1

(8)

The random variable Δaj (τ;x), in view of the approximation in
(8), has expectation EΔaj (τ;x) ≡ μj(x)τ and variance
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VΔaj(τ;x) = σj
2(x)τ. Gillespie and Petzold choose the interval τ

in accord with

τ τ τ
ε

μ
ε

σ
= ≡

| |=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

a a
min { }, min ,

j M
j j

j j1,2,...,

o o
2 2

2
(9)

We now consider the application of the Chebyshev inequality
to the random variable Δaj(τ;x) toward determining a suitable
criterion that will ensure the leap condition (5). We observe
first that the triangular inequality implies that

τ τ μ τ μ τ|Δ | ≤ |Δ − | + | |a ax x x x( ; ) ( ; ) ( ) ( )j j j j (10)

By imposing that

τ μ τ μ τ ε|Δ − | + | | ≤a ax x x x( ; ) ( ) ( ) ( )j j j o (11)

inequality (10) implies the leap condition (5). From (11), it
follows that

τ μ τ ε μ τ|Δ − | ≤ − | |a ax x x x( ; ) ( ) ( ) ( )j j jo

The preceding inequality does require that the right-hand side
be positive so that

τ
ε
μ

<
| |

a x
x
( )

( )j

o

(12)

to the right of which is a potential candidate for τ as prescribed
by Cao et al.8

Invoking the Chebyshev inequality (2) by replacing the ε
which appears there by (εao(x) − |μj(x)|τ), we obtain

τ μ τ ε μ τ

σ τ

ε μ τ

|Δ − | < − | |

> −
− | |

a a

a

x x x x

x

x x

Pr{ ( ; ) ( ) ( ) ( ) }

1
( )

[ ( ) ( ) ]
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j

j

o

2
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2

(13)

Since the right-hand side of (13) must be nonnegative, it is
readily found that an upper bound for τ is ao

2ε2/σj
2, thus

recovering the second candidate for τ-leap due to Gillespie and
Penzold. However, we produce a more effective choice of τ-leap
in this development.
If we let the right-hand side of (13) be appropriately close to

unity, a choice becomes available for τ. Thus, setting its value
equal to δ (e.g., δ = 0.95), we have (dropping henceforth the
argument x for notational simplicity)
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which obtains the following solution for τj, the subscript
referring to its being specific to the jth reaction.
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The positive solution is in conflict with (12) so that we must
seek only the smaller root with the negative sign which is
indeed less than ao(x)ε/|μj(x)|. Thus, we have
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which is of course consistent with (12). We conclude from this
analysis that the required τ is given by

τ τ=
=

min { }
j M

j
1,2,..., (17)

which assures the required leap condition (5) with a probability
of at least δ.
It is next of interest to compare the development here with

the Gillespie−Petzold solution (hereafter referred to as GPS).
Because (12) represents a common requirement, we only need
consider the other alternative ε2 ao

2/σj
2 for τj with that arising

from expression 16. In passing, the Cauchy−Schwartz inequal-
ity (which states that the absolute value of the inner product
between any two vectors is at most equal to the product of their
norms) can be used on (7) to show that

μ σ| | ≤ aj j
2 2

o (18)

which serves to further calibrate the plot of δ versus τ. We
return to compare our prescription for τj to that by GPS.
Suppose a specific value of ε is chosen. If we begin with
choosing

ε
σ

μ
>

| |a
j

j

2

o (19)

which implies that aoε/|μj| < ε2ao
2/σj

2, so that from GPS τj =
aoε/|μj|. For this ε, Figure 1a shows the layout of δ and τ and
thus the extent to which they may be negotiated for an efficient
simulation as guided by Chebyshev’s inequality. In particular, it
would appear that τj should in fact be safely less than aoε/|μj|
(instead of being equal to it as in GPS) so that δ has a suitably
positive value. Of course the resulting τ-leap would be lowered,
but sample paths generated from the process would more
reliably satisfy the τ-leap condition (5) which is indicative of
higher simulation efficiency. It is noteworthy that the GPS
choice is not backed by the probabilistic assurance of satisfying
the τ-leap condition (5). If, on the other hand, ε < σj

2/ao|μj|, the
GPS prescription would call for τj = ao

2ε2/σj
2 < σj

2/|μj|
2;

furthermore, it can be shown (see Appendix in the Supporting
Information) that τj > τ0, where τ0 is obtained from (16) by
setting δ = 0; thus the δ − τ scenario would change to that
shown in Figure1b. Thus, regardless of the choice of τj in (9),
Figure 2 locates it in the domain of negative δ thus denying any
probabilistic assurance that the τ-leap condition 5 would be
satisfied. It does not preclude, however, the generation of
meaningful sample paths for the process.
As long as τ is chosen to satisfy (12), there is no explicit

restriction on the choice of ε, although its smallness would
indeed govern the quality of the τ-leap criterion. Throughout
the simulation, both the method of Cao et al. as well as the
current method encounter a number of defective steps at which
the leap condition fails. As the number of these wasteful steps
increases, the accuracy will be negatively influenced (i.e., it will
require a higher number of sample paths to accomplish a fixed
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accuracy). Cao et al. proposed a procedure to generate leaps
but never proved mathematically how it can be satisfied. Hence,
some generated leaps might violate the leap condition badly
and affect strongly the overall quality of the simulation. One
way to avoid this problem and therefore to optimize the
process is to increase the probability of getting a good selection
of leaps. Two different ways which can accomplish this goal are
as follows. Clearly, smaller values of ε will be progressively
conservative and hence less effective in reducing computation
time. On the other hand, if we fix ε, the use of the Chebyshev
inequality may be regarded as a way to reduce the number of
wasteful simulations that violate the τ-leap criterion with the
stipulated ε. From (17), it is transparent that, for fixed ε, as δ→
1, τ→ 0, which would be undesirable. Higher values of τ can be
chosen by negotiating the value of δ to be suitably less than 1.
While it may at first seem that the lower leaps in our approach
may, not surprisingly, lead to more accurate solutions, it must
be understood that the methodology lies in its efficiency in that

a solution of given accuracy is obtained with a smaller number
of simulations. The proposed method thrives in the facility to
manipulate both the parameters ε and δ to promote efficiency.
The computational demonstration to follow would of course
confirm the foregoing observations.
The development of this work is readily adapted to the new

τ-leap method presented by Cao et al.,8 who relate the relative
change in propensity to that of the stochastic state variables
involved. For example, if aj(x) involves a first order reaction in
the ith species (alone), we have

Δ
=

Δa

a
x

x
j

j

i

i (20)

For the foregoing case, the τ-leap condition in the jth
propensity translates to |ΔXi| ≤ εxi in state variable domain.
For more general cases, Cao et al.8 obtain the τ-leap condition
in the state variables as

ε
|Δ | ≤

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

X
x
g

max , 1i
i

i (21)

where gi(≥1) represents the highest order of reaction with
respect to species i. Note that (21) implies a change of at least
one molecule; for an explanation of this and other aspects of
this algorithm, the reader is referred to Cao et al.’s report.8

The application of our methodology leads to the following
expression for τ which will satisfy the leap condition for X with
probability of at least δ.

τ
α
μ δ
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μ δ
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1
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i N
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i
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i

i
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i
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1,2,...,

2

2 2 2

(22)

where αi ≡ max{εxi/gi,1}, μ̂i(x) ≡ Σνijaj(x), and σ̂i
2(x) ≡

Σνij2aj(x).
The efficacy of the proposed algorithm is shown by

comparing it with that of Cao et al.8

Figure 1. Plots showing how τj (indicated as τ) may be chosen for
various values of δ, the probability with which the τ-leap condition is
satisfied for the case ε > σ2j/ao|μj|. (a, top) The GPS solution for τj
appears at the asymptote! (b, bottom) The GPS obtains τj in the
region for which δ < 0.

Figure 2. Comparison of the accuracy for the histogram between the
two methods: binomial method13 and the present method for ε = 0.02.
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The stochastic algorithm is usually employed to obtain the
average behavior of the system for a chosen time interval by
averaging several sample path simulations using the algorithm.
The SSA8,12 serves as a benchmark in evaluating the accuracy of
any algorithm by comparing the histogram obtained by sample
path averaging with that of SSA. In this regard, we use the same
metric as that used by Cao and Petzold.13 The comparison
between the algorithms presented in this work with others has
been made in two different ways. Thus, we compare the
accuracies obtained for a fixed computation time, which is more
focused on accuracy than computation time. Alternatively,
where accuracy is prescribed, computation times can be
compared for any two algorithms.
We employ two different examples for our demonstration.

They are (i) the Schlogl model noted for its bistability and (ii)
a linear consecutive reaction system. The algorithms used for
comparison are those due to Cao’s method,8 Gillespie’s
midpoint Poisson τ-leap method,11,12 and the binomial leap
method9,10 subsequently improved by Peng et al.11

4. EXAMPLES
Example 1. We consider the consecutive linear reaction

system as in (23).

→ →X1 X2 X3
c c1 2 (23)

We apply our τ selecting method with formula 22 for the
generation of τ. With rate constants c1 = 1 and c2 = 1 and initial
conditions X1 = 104, X2 = 1 and X3 = 0, we calculate X3 until
time is equal to 0.1.
Example 2. Schlogl’s chemical reaction model is shown in

(24). This model is noted for its bistability. B1 and B2 are
constants with their particle numbers as N1 and N2,
respectively.

+ ⇌ ⇌B X X B X2 3 ,
c

c

c

c
1 2

2

1

4

3

(24)

The values of parameters, adapted from Cao et al.,8 are c1 = 3 ×
10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5, N1 = 1 × 105, and N2 = 2 ×
105. The initial condition of X is 250, and we simulate the
system up to t = 4.

5. DISCUSSION OF RESULTS
Figure 2 shows the probability density for X3 at t = 0.1 for SSA,
the present method and the binomial method of Peng et al.,11

using ε = 0.02. The higher and close proximity of the
distribution by the present method to the SSA is clearly
evident. Table 1 shows the number of sample paths used for
averaging is only 10,000 for an accuracy notably higher than
that from the algorithm under comparison. Although the
computational time for each sample path for the present

method is higher, a more accurate solution is obtained with
40% higher speed. Figure 3 shows the accuracy of the

algorithms in comparison as a function of simulation time at
different values of ε. Histogram distance errors are measured by
106 samples and 105 samples generated from the SSA method
and the two τ-leap methods, respectively, at different values of
ε. For the same simulation time, the accuracy of the histogram
is notably higher for the present method.
Figure 4 shows comparison of the histogram error as a

function of simulation time for the present method against that

by Cao et al.8 for example 2. As in example 1, the notably
higher accuracy of the current method is evident for this
example also. Figure 5 compares the algorithm of Gillespie’s
midpoint Poisson method with the present method for the
same system. In both Figures 4 and 5, the number of SSA
samples is 106. The comparison was made based on a fixed
number of simulations for those methods at different values of
ε. The simulation time for the former is considerably higher

Table 1. Comparison of Results Generated from Two
Different Methods: Binomial Method13 and the Present
Method for the Consecutive Linear Reactiona

binomial method present method

no. of trajectories 30,000 10,000
ε 0.02 0.02
δ 0.667
histogram error 0.0090 0.0018
total simulation time (s) 5.417 × 103 3.269 × 103 (40% faster)

aThis table shows all of the parameters and results shown in Figure 2.

Figure 3. Comparison of histogram error corresponding to different
simulation times for the two methods being used to model the
consecutive linear reaction system. The binomial method of Peng et al.
is shown in red whereas ours is shown in blue.

Figure 4. Comparison of histogram error with respect to different
simulation times of two different methods: the method of Cao et al.8

in red and ours in blue. This plot shows the accuracy level of the two
methods for Schlogl’s system at different ε.
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than that for the latter. When higher accuracy is needed, the
computational time needed for Gillespie’s method is sub-
stantially longer. Another verification for our claim is shown in
Figure 6. In this figure, ε is fixed to be 0.2, and results generated

using two different methods at different numbers of samples
were then compared. Similarly, we observed that our present
algorithm improves both speed and accuracy. Although the
computation time for each sample path is notably larger for the
present work because of smaller time intervals, the higher
efficiency of the resulting sample path allows accurate results
with a significantly smaller number of sample paths as
established in Figures 3, 4, and 5. Indeed the foregoing results
bear testimony to notable improvements with our algorithm
arising from the use of Chebyshev’s inequality.

6. CONCLUSION
The algorithm presented in this work has attributes of efficiency
earned from being able to account for the likelihood with which
approximations for τ-leap are satisfied by simulated sample

paths. The choice of this probability is a rational guideline to
Monte Carlo simulations.
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