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Modeling metabolic systems: the need for dynamics
Hyun-Seob Song, Frank DeVilbiss and Doraiswami Ramkrishna
Living organisms exhibit dynamic shifts of metabolic pathways

to cope with various perturbations. Such temporal change of

modus operandi is one of the key mechanisms characterizing

metabolic behavior. In this review, we highlight the importance

and potential of dynamic modeling in understanding and

harnessing metabolic systems, in particular, for bioprocess

optimization and metabolic engineering. In a field that harbors a

variety of approaches, their relative assessment calls for

appropriate quantitative measures. Toward this, we present

rational criteria for the evaluation of metabolic models, and

recent advances in dynamic modeling that include accounting

for dynamic regulation at the whole network level, development

of frameworks able to handle large-scale networks on the basis

of pathway analysis, and whole-cell modeling of a simple

microbe.
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Introduction
An essential aspect of quantitatively assessing the beha-

vior of any system is through mathematical modeling

which is a process of capturing the salient features of

the system by compromising its complexity to an extent

dictated by the level at which we seek understanding.

Such a model is an approximation to the system with a

quality that may have varying attributes suitable for

different goals. However, a basic quality of a model is

its ability to be predictive under circumstances beyond

those that were used for its identification. Both the extent

of this outreach and the speed with which computation

can be accomplished could serve to characterize the

quality of the model.

Frequently, different model frameworks for a system

become available to a system because of varying pre-

mises, necessitating a discrimination strategy to assess
www.sciencedirect.com 
their relative effectiveness. Rational measures of com-

parison would depend on the modeling goals to which

reference was made earlier. We will review such measures

and demonstrate their use in modeling metabolic systems

with some examples.

The focus of this paper is on dynamic modeling which

aims to capture the temporal evolution of the system. The

basic phenomenological input to such modeling would

consequently be the rates of the various process com-

ponents appearing in a dynamic formulation that will

necessarily involve differential equations with temporal

derivatives. Most process systems feature nonlinearities
that result in complex dynamic and steady state beha-

viors. Avenues exist for their mathematical treatment that

produces experimental scenarios otherwise unavailable

for testing major hypotheses in the model.

In relating the foregoing general comments about mod-

eling to metabolic systems, we are confronted with sev-

eral peculiar features. First, there is the enormity of the

number of reactions, second the elaborate gene regulatory

structure in which the syntheses of a multitude of

enzymes are controlled by signal transduction processes,

and third the allosteric control of the activities of

enzymes. Comprehensive accounting for regulatory

phenomena is a forbidding task as it pervades through

all of metabolism.

The need for dynamic modeling arises from having to

predict performance rates. Thus the productivity of a

metabolic product is the overriding issue in metabolic

engineering as a design purely based on yields is often

foiled by impaired growth of the organism thus not

reflecting an increase in productivity.

Our objective in this paper is to examine the metabolic

modeling landscape with respect to how the modeling

goals are realized by the various approaches that are

currently available in the literature.

Why is dynamics important in modeling
metabolism?
A model is an approximate representation of the protocol.

Various frameworks currently available for modeling

metabolism include kinetic models, cybernetic models

[1��], and constraint-based approaches [2] (Figure 1).

Among those, metabolic networks have been studied

most intensively by steady state analyses such as con-

straint-based approaches based on genome-scale stoichio-

metric models. These frameworks provide detailed

images of metabolism at high resolutions, and have served
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Different forms of mathematical models used for the study of metabolism. Fully dynamic whole-cell models account for dynamics of individual

components, and their interactions and regulation without introducing simplifying approximations. Although attractive, dynamic models at this level are

not available yet. Thus, alternatively, we may use other dynamic models based on the kinetic description only, or the cybernetic approach. For the

detailed steady-state analysis of metabolic networks, constraint-based approaches such as flux balance analysis are most popular. To facilitate the

understanding, models that may be used for the study of human behavior are presented as counterparts of metabolic models.
as a useful tool for the study of metabolism in broad areas,

including metabolic engineering [3] and biomedical

research [4].

Then, why are we interested in dynamic modeling frame-

works? The primary reason for this is, simply and cor-

rectly, that metabolism is an intrinsically non-stationary

process, and thus, its underlying characteristics are best

captured by dynamic descriptions, rather than by still

ones. This means that the study of dynamic features is

essential for improved understanding and utilization of

metabolic systems.

System understanding

Distinct features of a metabolic system are revealed from

its dynamic behavior. In the field of system identification,

the most informative data on a system are generated by

dynamic perturbations determined by the optimal design

of experiments [5]. Dynamic data generated as such not

only help to characterize a system, but also serve as a test

bed for the choice of a right model among alternative

candidates [6��].
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Understanding of dynamic features is particularly import-

ant in the study of cyclic and oscillatory phenomena

observed in many living organisms. Dynamic oscillations

such as those observed in yeast [7,8] require dynamic

models for their elucidation. Similarly, the metabolic

cycles in photosynthetic organisms in light and dark

periods [9], and in pathogens adapting each developmental

stage to their host environment [10] would call for dynamic

modeling approaches. These dynamic behaviors and other

complex phenomena such as steady state multiplicity

[11��,12] are examples of emergent properties that cannot

be understood or explained by focusing individual entities

apart, but arise when components collectively interact.

Productivity

The value of dynamic tools would be fully realized in the

application to industrial bioengineering for the pro-

duction of biofuels, medicines, and other consumable

products. To ensure economic viability of these biopro-

cesses, it is of crucial importance to maximize the pro-

ductivity, that is, the rate at which the target metabolites

are produced.
www.sciencedirect.com
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Enhancement of productivity can be achieved by two

complementary approaches [13]: process optimization

and metabolic engineering. In regard to the former,

dynamic metabolic models have been typically

employed for optimal design, configuration, and control

of bioreactors [14,15]. Dynamic models are essential in

metabolic engineering as well, while they have been

infrequently used in that area. Metabolic control

analysis (MCA) is a theoretical tool most commonly

used in metabolic engineering. MCA identifies control-

ling fluxes from control coefficients that quantitate the

extent of the system response to the changes or per-

turbations of network parameters, such as the substrate

availability or enzyme activity [16,17]. Dynamic exper-

imental data, or a dynamic model providing enzyme

kinetics, is an essential input for the implementation of

MCA. In silico tools that are currently most popular for

metabolic engineering are constraint-based  methods

based on stoichiometric models. Due to their intrinsic

adherence to the steady state assumption, however, the

scope of these methods has been limited to yield, rather

than productivity.

Yield and productivity are totally different performance

criteria, while they have been used in the literature

without clear distinction by somewhat confusing

terms such as efficiency or effectiveness. Yield is the ratio

of the formed amount of a target product to the

consumed amount of a substrate, and thus

dimensionless. On the other hand, productivity is the

substrate consumption rate multiplied by yield,

and thus has the unit of rate. These two quantities are

not necessarily proportional, and often show

conflicts [18].

More precisely, two concepts of productivity are avail-

able, that is, specific and volumetric [19]. They differ in

the definition of substrate consumption rate. That is,

specific and volumetric productivities define the sub-

strate consumption rate per unit cell mass and per

unit culture volume, and have the units of [g/(gDW h)]

and [g/(l h)], respectively. By multiplying cell concen-

tration [gDW/l], the former is converted to the latter.

We may view specific productivity as a measure of

performance at the cell level, and volumetric pro-

ductivity at the reactor level. It is important to note

that, in addition to yield, growth and uptake rates are

major factors determining productivity, and should be

accounted for in designing new strains. It is often

observed that while the product yield is increased,

the production rate is reciprocally low due to reduced

growth rate [20–22]. One mistake to avoid is separating

the goals, that is, aiming at yield maximization through

metabolic engineering, and productivity enhancement

by process optimization. The highest productivity

comes from the synergistic and consistent efforts in

both directions.
www.sciencedirect.com 
Metabolic regulation

Dynamic behaviors of metabolic systems are determined

primarily by their regulatory mechanisms. Although com-

plete understanding of metabolic regulation is not avail-

able yet, we address two main features.

First, it may be viewed that metabolic regulation takes

place at the whole-cell level to achieve a certain goal. In

other words, all cellular components directly or indirectly

involved in metabolic reactions, such as genes, RNAs,

proteins, and metabolites, are elegantly orchestrated

toward the global objective, that is, survival. Con-

sequently, metabolic systems can be studied most effec-

tively by a systems biology approach treating a cell as a

system regulating all components in the same context.

Systems biology explores network behavior of biological

systems at the whole system level, in particular their

dynamic nature [23], and ultimately aims to uncover

the design and operation principles of metabolic networks

[24].

Another crucial feature is that cellular regulation is

severely constrained by metabolic burden due to the

limited internal resources, such as ribosomes, RNA poly-

merase, and ATP [25]. Consideration of metabolic burden

is particularly important in designing new strains, because

the addition of synthetic circuits is potentially perturbing

the availability of these resources, leading to negative

effects on the host cell metabolism. Metabolic models

should provide a reasonable description on these regu-

latory features by which the dynamics of metabolism is

determined.

How complex should a model be?
Various classes of dynamic metabolic models are cur-

rently available, ranging from simple unstructured to

complex whole-cell models. Trade-off exists between

complexity (i.e. the number of variables and parameters)

and realism (i.e. accuracy and prediction range). For the

choice of a most suitable one, therefore, candidate models

should be evaluated and compared based on rational

criteria such as those provided below.

Modeling goals

Appropriate selection of a particular model can be made

considering the goal of modeling [14]. In general, main

goals of modeling include understanding of system

characteristics, prediction of system behavior in new

conditions, and discovery of new strategies for system

improvement [26]. Under a given goal, the model com-

plexity is determined by the level at which we explore the

system.

In case that several frameworks show similar performance

in fulfilling a goal, the simplest model would be preferred

if we follow the principle of Occam’s razor [27]. In order to

determine optimal operating conditions of fermenters, for
Current Opinion in Chemical Engineering 2013, 2:373–382
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instance, we may not need a whole-cell metabolic model.

Genome-scale networks used for this purpose may be

regarded as a sledgehammer to crack a nut. A much

simpler model may provide an accurate description of

dynamic interaction between an organism and environ-

ment (i.e. culture conditions). Utility of models with

reduced complexity is, however, constrained by their

narrowed scope resulting from oversimplification or

neglect of some essential features. As such, the degree

of complexity is to be determined by the modeling goal

we set.

Information theoretic tools

The determination of appropriate model complexity for a

given biological application can be made more system-

atically using information theoretic and statistical tools

[28�,29,30]. A formalized extension of Occam’s razor,

particularly, presents a uniquely potent way of approach-

ing the model comparison problem which is referred to as

the Minimum Description Length (MDL) principle [31].

MDL is used to reinterpret the model selection problem

as one related to data compression [32].

For an arbitrary dataset D and a certain model M, we can

define a specific length of the dataset, L(D), and similarly,

a length of the model, L(M), that can be measured using

information theory. In information theory, L(D) and L(M)

are the amount of information it takes to communicate

the data set or model encoded into binary across a channel

of communication and measuring the number of bits. In a

special case that the dataset is perfectly reconstructed by

the model without any error of description, the model

compresses the data if the inequality L(M) < L(D) is

satisfied. It is often, however, that models do not provide

an exact description of a given dataset. To perfectly

encode D, L(D) is defined by L(M) plus the error between

model prediction and data, L(DjM) [33], that is,

LðDÞ ¼ LðDjMÞ þ LðMÞ (1)

This implies that compression is limited by an additional

term, L(DjM). The MDL principle states that, for a set of

models, the one that compresses the data most or captures

best the regularity in data is deemed most useful [34].

L(M) is often represented as a function of the parameter

number of a specific model. This model selection

criterion provides a measure of how well a model com-

presses data, and Eqn. (1) applies to both mechanistic and

non-mechanistic models.

For illustration, let us consider a set of n data points

generated from a process with a given level of noise [35].

One can attempt to describe this dataset using poly-

nomials of varying degrees, from a line to a Lagrange

polynomial of degree n � 1 (Figure 2). The Lagrange

polynomial perfectly generates the dataset at the cost of
Current Opinion in Chemical Engineering 2013, 2:373–382 
complexity. On the other hand, the linear model is simple

but fails to capture the data trend. A statistically sound

metric helps to select a model that represents the best

compromise between model complexity and accuracy of

data fit. These concepts may be readily demonstrated via

the application of Akiake Information Criterion (AIC)

[36] and Bayesian Information Criterion (BIC) [37] for-

mulated in more digestible terms with a mean squared

error approximation of model fit, ŝ2
k [38]:

AIC ¼ logðŝ2
kÞ þ 2ðk þ 1Þ

n
(2)

BIC ¼ logðŝ2
kÞ þ k logðnÞ

n
(3)

where k denotes the number of model parameters. AIC is

formulated to estimate the Kullback-Liebler divergence

of a model and penalizes parameters less severely than

BIC which is built from a Bayesian framework. The AIC

and BIC values in Figure 2d show the preference of the

polynomial of degree 3, as opposed to higher degree

polynomials which fit the dataset with a smaller sum of

squared errors.

Robustness test

Another useful check for model reliability is robustness

test. Robustness is the capability of a system to maintain a

certain function in face of perturbations, a fundamental

property possessed by living organisms [39,40]. For

instance, cells still grow despite frequent genetic

mutations, or unfavorable changes of environmental con-

ditions. Therefore, it is important that metabolic models

hold a similar robust nature. In general, models that

account for regulation tend to be more robust and reliable

in comparison to others that do not [41].

Robustness test requires the specification of a perform-

ance index. In the analysis of metabolic networks using

the frameworks such as flux balance analysis [42] and

metabolic pathway analysis [43,44], steady state-based

measures (e.g. maximal biomass yield or the number of

pathways producing biomass) have been used as this

performance function. A more realistic test is, however,

to use dynamic performances such as growth rate or

uptake rate, in place of yield-based criteria.

Frameworks for dynamic metabolic modeling
In this final section, we provide a brief overview of

currently available dynamic modeling frameworks, along

with their advantages and limitations, and the connec-

tivity among different approaches. This discussion covers

unstructured and structured models, accounting for

dynamic regulation at a network level, the usefulness

of quasi steady-state (QSS) approximation, and whole-cell

modeling.
www.sciencedirect.com
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Figure 2
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Evaluation of the model performance with different complexity. For tutorial purpose, data points (15 in total) are generated from randomly selected

polynomial with noise added. (a) Linear regression, (b) cubic polynomial approximation of data, (c) fit of Lagrange polynomial of degree 14, (d) values

of information theoretic measures (AIC and BIC) and mean squared error (MSE) of polynomials of varying degree from 1 to 14.
Unstructured versus structured models

Unstructured models are based on a lumped description

of metabolic networks. They assume only a limited

number of reaction steps (often, a single step) from

substrates to products. These simple models have been

used for simulating various growth patterns of a single

or multiple strains. In an environment of multiple

substrates, cells exhibit a sequential or simultaneous

consumption pattern depending on a pair of substrates.

These regulatory behaviors have been successfully

modeled using the cybernetic control laws [1,45]. This

framework is termed Lumped Cybernetic Modeling

(LCM). Despite such simplicity in their model struc-

ture, LCM has provided accurate simulation of complex

dynamic oscillations observed in the aerobic growth of

yeast [46]. The same could be modeled using purely

kinetic representation with an increased number of

parameters. Kinetic models of this kind have been

used for the optimal design and control of bioprocesses

[47–49].
www.sciencedirect.com 
The scope of model application can be expanded by

accounting for detailed structure of metabolic networks.

Those structured models are useful in a multitude of

applications, including design of new strains for industrial

use, investigation of fundamental principles underlying

cellular functions, such as robustness, optimality and

adaptability [50], as well as bioprocess optimization

[51]. Frameworks of interest include metabolic ensemble

modeling [52,53], and the approach by Smallbone et al.
[54]. These methods are able to circumvent the difficulty

arising from rigorous parameter estimation by using

steady state information in place of time course data.

Ensemble modeling builds up a large set of candidate

models that achieve a certain steady state flux distribution

in a given condition. The subsequent reduction of can-

didate models to a smaller set is enabled by acquiring

additional sets of data from perturbation experiments

such as flux shift, for example, in response to enzyme

overexpression. Smallbone et al. proposed a framework to

construct a large-scale kinetic model based on linlog
Current Opinion in Chemical Engineering 2013, 2:373–382
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Figure 3
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Comparison of FBA and L-HCM with respect to their prediction of

intracellular flux distribution of S. oneidensis. Metabolic models and flux

data are taken from Song et al. [69] and Tang et al. [73]. The range of

predictions is due to variability in interpretation as to how a parameter is

defined. In the case of L-HCM, only 7 parameters are trained upon data

as the remaining parameters are generally insensitive ones. For FBA,

several combinations of substrate uptake levels were used leading to

another range of values.
kinetics. As essential inputs to the model, it is prerequi-

site to have fluxes and metabolite concentrations at a

reference condition in the whole network.

Accounting for dynamic regulation at a network level

For reliable and robust prediction, metabolic models

must necessarily incorporate regulation. Accounting for

dynamic regulation at a network level poses a serious

challenge due to incomplete knowledge on the details of

regulatory mechanisms. Although so-called genetically

structured models (e.g. [55,56]) are available for a tiny

network, they are not considered a whole network-based

model.

The cybernetic control principle offers a promising

alternative in this regard. The basic hypothesis of cyber-

netic modeling is that cells allocate limited internal

resources in an optimal way so that a given metabolic

objective is maximized. Young and Ramkrishna [57]

establish a theoretical foundation on the cybernetic con-

trol laws based on optimal control theory in a general

form, providing a rational way to develop a cybernetic

model for a large size metabolic system.

Quasi steady-state (QSS) approximation and QSS

models

Developing fully dynamic models for a large scale net-

work is hampered, not only by a heavy computational

burden in simulation, but also by a proportionally

increased number of parameters. Accurate parameter

determination is practically impossible as many of them

are insensitive to experimental data. For instance, in a

large-scale kinetic single-cell model for mammalian cell

cultures, only 37 parameters of 357 in total were found to

be estimable within 25% of their nominal values [58].

To avoid this problem, we can consider the dynamics of

only the slowly changing variables (such as extracellular

metabolites) by assuming fast variables (such as intra-

cellular variables) to be in QSS [59]. With the appropriate

identification of the time domain of variables, this treat-

ment significantly reduces the order of dynamic models.

The apparent structure of QSS models is as simple as

unstructured models due to a small number of

parameters, but the range of their application is over-

lapped with that of fully dynamic models. That is, QSS

models predict intracellular fluxes that are immediately

redistributed  in accordance with the change of extra-

cellular variables, and can be applied to metabolic engin-

eering.

QSS models have two classes: One is constraint-based

approach such as dynamic flux balance analysis (DFBA),

and the other is metabolic pathway-based frameworks,

including macroscopic bioreaction models (MBMs) [60],

and hybrid cybernetic models (HCMs) [61,62] and

lumped HCMs (L-HCMs) [63,64��].
Current Opinion in Chemical Engineering 2013, 2:373–382 
DFBA predicts flux distribution from uptake fluxes (kine-

tically modeled) using linear programming (LP) such that

a chosen objective (e.g. biomass yield) is maximized [65].

The use of LP allows for genome scale network-based

dynamic simulation. As the flux vector obtained from LP

represents a particular solution among many alternative

optimal pathways connecting substrate and products,

additional treatments should be considered for reliable

simulations [66].

In MBMs and HCMs, on the other hand, a flux distri-

bution is represented as a combination of multiple meta-

bolic pathways called elementary modes (EMs) [67].

HCMs view EMs as metabolic options and describe

the uptake flux to be optimally distributed among EMs

such that a metabolic objective (such as growth rate or

total uptake flux) is maximized. Dynamic regulation of

EM fluxes is not considered in MBMs. In both models,

however, the large number of EMs adds considerably to

the kinetic parameters associated with substrate uptake

rates leading to an overparameterization problem as

measurements available for identification are restricted

to the limited number of extracellular variables. In this

connection, the work of Song and Ramkrishna [68] shows
www.sciencedirect.com
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Figure 4
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Connectivity of metabolic models. Green and red networks imply metabolic and genetic circuits. Arrows and circles indicate fluxes and metabolites,

respectively. Solid green circles in the network denote account for dynamics of intracellular metabolites, while gray circles assume steady state. The

valves on the pathways indicate flux regulation by the cybernetic control laws. Models with open orange box consider interactions with environment,

while gray box does not. Acronyms: DFBA, dynamic flux balance analysis; EMA, elementary flux analysis; FBA, flux balance analysis; HCM, hybrid

cybernetic model; LCM, lumped cybernetic model; L-HCM, lumped hybrid cybernetic model; LKM, lumped kinetic model; LP, linear programming;

MBM, macroscopic bioreaction model; QSS, quasi steady state.
how substantial reduction can be effected on the number

of EMs from an inspection of experimental data on the

yield vector space for extracellular products.

Recently, Song and Ramkrishna [63,64��] developed the

L-HCM which integrates the merits of LCM and HCM.

That is, the L-HCMs describe distribution of cellular

resources in the network in terms of lumped EMs which

are weighted averages of EMs in families classified

according to similarity of metabolic function. As a result,

L-HCMs can accurately predict dynamic cellular

responses to environmental changes [69] and genetic

perturbations [70��], from a limited set of measurements.
www.sciencedirect.com 
Extension of the L-HCM framework to genome scales is

in progress using optimization-based algorithms (e.g.

[71�,72]) that enable the sequential identification of

EMs from a large size network.

L-HCM and DFBA are two interesting frameworks to

compare due to similarities in the data requirement for

parameter identification, and the size of manageable

metabolic networks. Information theoretic measures

introduced above are used to compare FBA and L-

HCM for flux predictions of Shewanella oneidensis [69].

Starting from the flux data [73] as a means for testing the

accuracy of model predictions, AIC and BIC values were
Current Opinion in Chemical Engineering 2013, 2:373–382
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calculated for each respective model (Figure 3). It is

shown that L-HCM delivers, relative to FBA, accuracy

at a low cost of model complexity.

Whole-cell modeling

In a recent work by Karr et al. [74,75��], the life cycle of

the human pathogen Mycoplasma genitalium was modeled

at the entire cell level. This whole-cell model accounts for

all essential biological processes such as DNA replication,

RNA transcription, protein synthesis, metabolism, and

even cell division, showing how a whole-cell model can be

constructed by combining all genome-level information

of individual components and their interactions. This

may not be considered, however, a fully dynamic model

due to the difficulty in identifying a large set of

parameters, and uncertainties on the details of dynamic

regulatory mechanisms. Instead, simulation was per-

formed by integrating probabilistic and constraint-based

approaches.

Model connectivity

Figure 4 displays the level of simplification introduced to

metabolic models and their mutual connectivity.

Although no existing models may be satisfactory in all

respects, their reliability is determined by the capability

of appropriately accounting for interactions among geno-

type, phenotype and environment.

Conclusions and future prospects
Dynamic shifts of metabolic states are an inherent

strategy of living organisms to ensure the survival in face

of various irregular perturbations. Such defense mechan-

isms determine the key metabolic characteristics of a

given organism, which manifest themselves most distinc-

tively during the occurrence of dynamic changes. There-

fore, dynamic models provide the most appropriate

framework to understand and harness metabolic systems.

In particular, they serve as an indispensable tool for

productivity enhancement, which is beyond the scope

of steady state-based models. Despite the great potential

of dynamic models in a wide range of applications, their

use in metabolic engineering has been less frequent than

steady state network analyses. The main reason for this is

the difficulty in extending dynamic models to a large scale

network. To resolve this issue, recent frameworks inte-

grate network analysis with a small number of dynamic

(extracellular) variables based on QSS approximation.

Due to the ability of QSS models to incorporate large-

scale networks, they are expected to serve as a useful

alternative to fully dynamic models currently unavailable.

Success of QSS models may be enhanced if regulation is

accounted for, as by using cybernetic control laws. In

parallel with QSS modeling, we anticipate significant

progress in whole-cell modeling. Even so, the value of

QSS models lies in the trade-off between complexity and

accuracy.
Current Opinion in Chemical Engineering 2013, 2:373–382 
Acknowledgment
The authors are grateful for the support by the Center for Science of
Information (CSoI), an NSF Science and Technology Center, under grant
agreement CCF-0939370.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1.
��

Ramkrishna D, Song HS: Dynamic models of metabolism:
review of the cybernetic approach. AIChE J 2012, 58:986-997.

This article overviews the development of the cybernetic modeling frame-
work over the past three decades, highlighting the capability of account-
ing for dynamic regulation at the whole network level and the prospect of
incorporating genome-scale networks.

2. Orth JD, Thiele I, Palsson BO: What is flux balance analysis? Nat
Biotechnol 2010, 28:245-248.

3. Xu C, Liu L, Zhang Z, Jin D, Qiu J, Chen M: Genome-scale
metabolic model in guiding metabolic engineering of
microbial improvement. Appl Microbiol Biotechnol 2013,
97:519-539.

4. Kim HU, Sohn SB, Lee SY: Metabolic network modeling and
simulation for drug targeting and discovery. Biotechnol J 2012,
7:330-342.

5. Asprey S, Macchietto S: Designing robust optimal dynamic
experiments. J Process Control 2002, 12:545-556.

6.
��

Flassig RJ, Sundmacher K: Optimal design of stimulus
experiments for robust discrimination of biochemical reaction
networks. Bioinformatics 2012, 28:3089-3096.

The authors present an optimal design of experiments for robust dis-
crimination. The suggested sigma-point approach is useful for evaluating
dynamic biological models with widely distributed parameters due to
intrinsic variability as well as experimental variances. Thanks to several
numerical such as derivative free estimation of expectation and co-
variance, the algorithm is able to handle non-smooth functions such
as the one included in cybernetic models.

7. Finn RK, Wilson RE: Population dynamics of a continuous
propagator for microorganisms. J Agric Food Chem 1954,
2:66-69.

8. Tu BP, Kudlicki A, Rowicka M, McKnight SL: Logic of the yeast
metabolic cycle: temporal compartmentalization of cellular
processes. Science 2005, 310:1152-1158.

9. Johnson CH, Egli M, Stewart PL: Structural insights into a
circadian oscillator. Science 2008, 322:697-701.

10. Foth BJ, Zhang N, Chaal BK, Sze SK, Preiser PR, Bozdech Z:
Quantitative time-course profiling of parasite and host cell
proteins in the human malaria parasite Plasmodium
falciparum. Mol Cell Proteomics: MCP 2011,
10 M110 006411.

11.
��

Kim JI, Song HS, Sunkara SR, Lali A, Ramkrishna D: Exacting
predictions by cybernetic model confirmed experimentally:
steady state multiplicity in the chemostat. Biotechnol Progr
2012, 28:1160-1166.

This article provides cybernetic model-based predictions of steady state
multiplicity occurring in anaerobic growth of Escherichia coli. The authors
emphasize that the multiplicity is a consequence of the nonlinear regula-
tion, rather than of only nonlinear kinetics.

12. Lei F, Rotboll M, Jorgensen SB: A biochemically structured
model for Saccharomyces cerevisiae. J Biotechnol 2001,
88:205-221.

13. Song HS, Ramkrishna D: Issues with increasing bioethanol
productivity: a model directed study. Korean J Chem Eng 2010,
27:576-586.

14. Gernaey KV, Lantz AE, Tufvesson P, Woodley JM, Sin G:
Application of mechanistic models to fermentation and
biocatalysis for next-generation processes. Trends Biotechnol
2010, 28:346-354.
www.sciencedirect.com

http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0005
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0005
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0010
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0010
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0015
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0015
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0015
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0015
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0020
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0020
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0020
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0025
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0025
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0030
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0030
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0030
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0035
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0035
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0035
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0040
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0040
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0040
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0045
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0045
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0050
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0050
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0050
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0050
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0050
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0055
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0055
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0055
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0055
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0060
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0060
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0060
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0065
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0065
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0065
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0070
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0070
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0070
http://refhub.elsevier.com/S2211-3398(13)00076-2/sbref0070


Modeling metabolic systems: the need for dynamics Song, DeVilbiss and Ramkrishna 381
15. Song HS, Kim SJ, Ramkrishna D: Synergistic optimal integration
of continuous and fed-batch reactors for enhanced
productivity of lignocellulosic bioethanol. Ind Eng Chem Res
2011, 51:1690-1696.

16. Moreno-Sanchez R, Saavedra E, Rodriguez-Enriquez S, Olin-
Sandoval V: Metabolic control analysis: a tool for designing
strategies to manipulate metabolic pathways. J Biomed
Biotechnol 2008, 2008:597913.

17. Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ,
Lee PW: Metabolic control analysis in drug discovery and
disease. Nat Biotechnol 2002, 20:243-249.

18. Song HS, Morgan JA, Ramkrishna D: Towards increasing the
productivity of lignocellulosic bioethanol: rational strategies
fueled by modeling. In Bioethanol. Edited by Lima MAP. InTech;
2011.

19. Ozturk SS, Hu W-S: Cell Culture Technology for Pharmaceutical
and Cell-based Therapies. CRC Press; 2006.

20. Chu BC, Lee H: Genetic improvement of Saccharomyces
cerevisiae for xylose fermentation. Biotechnol Adv 2007,
25:425-441.

21. Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-
Grauslund MF: Reduced oxidative pentose phosphate pathway
flux in recombinant xylose-utilizing Saccharomyces cerevisiae
strains improves the ethanol yield from xylose. Appl Environ
Microbiol 2002, 68:1604-1609.

22. Anesiadis N, Cluett WR, Mahadevan R: Dynamic metabolic
engineering for increasing bioprocess productivity. Metab Eng
2008, 10:255-266.

23. Cassman M: Barriers to progress in systems biology. Nature
2005, 438:1079.

24. Alon U: An Introduction to Systems Biology: Design Principles of
Biological Circuits. London: Chapman & Hall; 2006.

25. Glick BR: Metabolic load and heterologous gene-expression.
Biotechnol Adv 1995, 13:247-261.

26. Bailey JE: Mathematical modeling and analysis in biochemical
engineering: past accomplishments and future opportunities.
Biotechnol Progr 1998, 14:8-20.

27. Gauch HG: Scientific Method in Practice. Cambridge University
Press; 2003.

28.
�

Penny W: Comparing dynamic causal models using AIC, BIC
and free energy. Neuroimage 2012, 59:319-330.

Author develops framework to identify models using information criteria
to distinguish a generating model from class of candidate models. This
embodies a practical demonstration of concepts in this review.

29. McDonald CP, Urban NR: Using a model selection criterion to
identify appropriate complexity in aquatic biogeochemical
models. Ecol Model 2010, 221:428-432.

30. Symonds MR, Moussalli A: A brief guide to model selection,
multimodel inference and model averaging in behavioural
ecology using Akaike’s information criterion. Behav Ecol
Sociobiol 2011, 65:13-21.

31. Roos T: Short course: introduction to information-theoretic
modeling. Fifth Brazilian Conference on Statistical Modelling in
Insurance and Finance; Maresias, Brazil: 2011.

32. Barron A, Rissanen J, Yu B: The minimum description length
principle in coding and modeling. IEEE Trans Inform Theory
1998, 44:2743-2760.

33. Grünwald PD: The Minimum Description Length Principle. MIT
Press; 2007.

34. Rissanen J: Information and Complexity in Statistical Modeling.
Incorporated: Springer Publishing Company; 2007.

35. Kirk P, Thorne T, Stumpf MP: Model selection in systems and
synthetic biology. Curr Opin Biotechnol 2013, 24:767-774.

36. Akaike H: Information Theory and An Extension of the Maximum
Likelihood Principle. International Symposium on Information
Theory. 2nd edn.. Armenian SSR: Tsahkadsor; 1973,267-281.
www.sciencedirect.com 
37. Schwarz G: Estimating the dimension of a model. Annals
Statistics 1978, 6:461-464.

38. McQuarrie AD, Tsai C-L: Regression and Time Series Model
Selection. Singapore: World Scientific; 1998.

39. Kitano H: Towards a theory of biological robustness. Mol Syst
Biol 2007, 3:137.

40. Kitano H: Biological robustness. Nat Rev Genet 2004, 5:826-837.

41. Young JD, Henne KL, Morgan JA, Konopka AE, Ramkrishna D:
Integrating cybernetic modeling with pathway analysis
provides a dynamic, systems-level description of metabolic
control. Biotechnol Bioeng 2008, 100:542-559.

42. Edwards JS, Palsson BO: Robustness analysis of the
Escherichia coli metabolic network. Biotechnol Progr 2000,
16:927-939.

43. Behre J, Wilhelm T, von Kamp A, Ruppin E, Schuster S: Structural
robustness of metabolic networks with respect to multiple
knockouts. J Theor Biol 2008, 252:433-441.

44. Wilhelm T, Behre J, Schuster S: Analysis of structural
robustness of metabolic networks. Syst Biol (Stevenage) 2004,
1:114-120.

45. Kompala DS, Ramkrishna D, Jansen NB, Tsao GT: Investigation
of bacterial-growth on mixed substrates — experimental
evaluation of cybernetic models. Biotechnol Bioeng 1986,
28:1044-1055.

46. Jones KD, Kompala DS: Cybernetic model of the growth
dynamics of Saccharomyces cerevisiae in batch and
continuous cultures. J Biotechnol 1999, 71:105-131.

47. Wang L, Ridgway D, Gu T, Moo-Young M: Kinetic modeling of
cell growth and product formation in submerged culture of
recombinant Aspergillus niger. Chem Eng Commun 2008,
196:481-490.

48. Charalampopoulos D, Vázquez JA, Pandiella SS: Modelling and
validation of Lactobacillus plantarum fermentations in cereal-
based media with different sugar concentrations and
buffering capacities. Biochem Eng J 2009, 44:96-105.

49. Vázquez JA, Murado MA: Unstructured mathematical model for
biomass, lactic acid and bacteriocin production by lactic acid
bacteria in batch fermentation. J Chem Technol Biotechnol
2008, 83:91-96.

50. Steuer R, Gross T, Selbig J, Blasius B: Structural kinetic
modeling of metabolic networks. Proc Natl Acad Sci U S A 2006,
103:11868-11873.
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