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ABSTRACT: A modeling framework is developed for predicting crystal morphology distributions with a goal toward their
control in the manufacture of crystalline products. This work distinguishes itself from prior efforts in this direction by its
comprehensive coverage of all possible morphologies based only on fundamental molecular information on the material. The
morphology of growing crystals is composed of a finite number of low-energy faces characterized by their Miller indices and
perpendicular distances. The symmetry of crystals allows the classification of kinetically and geometrically similar faces into
different groups identified by their perpendicular distances (h-vector). A set of different kinds of morphologies obtained by
combining different groups of faces is referred to as a morphology set. Further, a morphology graph is constituted with vertices as
elements of morphology set and edges specifying conditions for transformations between morphologies. These conditions form a
polyhedral cone, which will be called a morphology domain, in the space of h-vectors. The dynamics of crystal morphology is
given by the trajectories of the h-vector inside this morphology domain. The evolution of morphology distributions due to crystal
growth inside the morphology domain is described by a morphological-population balance model (M-PBM) which readily
submits to solution by the method of characteristics. The methodology, illustrated in controlling crystal morphologies of
potassium acid phthalate using additives, paves the way for model-based control of shape control of crystallization processes.

1. INTRODUCTION

Crystal morphology is a critical determinant of quality in
commonly used crystalline materials such as pharmaceutical
drugs, food products, fertilizers, specialty chemicals, cosmetics,
electronics and optical materials, and so on. Ensuring quality
calls for manufacturing strategies which rely on understanding
of the fundamental behavior of growing crystals interacting with
their environment. Their behavior depends on thermodynamic
properties as well as hydrodynamic conditions in crystallizers
that often lead them astray to undesirable shapes. A modeling
framework is therefore essential to prohibit such errant behavior
and to navigate crystals toward morphologies that cater to the
demands of downstream processing or even enhancing proper-
ties concerned with their application. To show that population
balances represent the ideal implement for such a framework
constitutes the main objective of this article, which we do by
attending to issues of formulation, solution and a demonstration
for application to control.
The need for developing engineering models for prediction

of morphology distributions has led researchers to formulate
multidimensional population balance models (PBMs) for

morphology distributions. These models are mostly confined
to the simplest geometry of crystals with cursory details on
their transitions which limit their applicability to real crystals. It
is reasonable to sum up the current issues associated with the
modeling of morphology distributions as (i) unavailability of an
efficient description of morphology, (ii) high dimension of the
model due to a large number of crystal faces, and (iii)
accounting for morphology transformations in treating
populations. The PBMs for the crystal morphologies with
two or three families of faces are readily derived as the number
of different kinds of morphologies is limited; however the
combinatorial explosion due to larger families greatly increases
the complexity in formulating PBEs. These challenges with the
use of existing models call for an enhanced population balance
framework accommodating the entire class of morphologies
and their transformations.
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In summary, the objective of this article is to develop a
comprehensive framework for formulation of population balance
models toward model-based control of crystal morphology
distributions growing in a crystallizer. The effects of other
processes such as nucleation, breakage, and agglomeration on
morphology distributions are neglected here. Although we
envisage general control strategies with the framework, we
restrict demonstration to control using additives.
The organization of the paper is as follows. Section 2 surveys

the literature on crystal morphology and their population
balance modeling. Section 3 introduces the elements of
morphology set, morphology graph, and morphology domain.
Section 4 discusses the single crystal model. Section 5 presents
the theory of morphological-PBM (M-PBM). Section 6 gives
the solution of M-PBM using the method of characteristics.
Section 7 demonstrates the controlled crystallization of potassium
acid phthalate crystals with additives using M-PBM framework,
and Section 8 summarizes the findings of this article.

2. PREVIOUS WORK
The development of crystal growth theories is mainly
concerned with predicting face-specif ic growth rates and
morphologies of crystals. (Note: the terms morphology, shape,
and habit are interchangeably used in the crystallography
literature and share the same meaning.) Crystal morphology is
usually classified as equilibrium, steady-state, and dynamic.
Equilibrium morphology is governed by the surface energies,
whereas the steady-state and dynamic morphologies are
dictated by the face-specific growth rates.
2.1. Equilibrium Crystal Morphology. The morphology

that minimizes the total surface energy of a fixed-volume crystal
is known as equilibrium crystal morphology. The formulation
of equilibrium morphology was proposed independently by
Gibbs1 and by Curie.2 Curie derived Gibbs’ equilibrium
condition using Gauss’ principle of virtual velocities on a
body subjected to capillary forces. The solution to Gibbs
equilibrium was later discovered by Wulff3 in his work on
measuring relative capillary constants from classical crystal
growth experiments. His theorem states that there exists a point
inside an equilibrium crystal, the Wulff point, such that the
perpendicular distances of tangent planes of the crystal from
the Wulff point are proportional to the surface tensions along
the tangent planes. The correct proofs of Wulff construction
were given by Hilton,4 Liebmann,5 Laue,6 and Dinghas,7 but
the proofs were specific to polyhedral shapes. The extended
and more general proof was provided by Taylor,8 showing that
for any function F of surface normals there is a convex shape,
the Wulff of F, which has the least surface integral for a fixed
volume. The equilibrium morphologies were further classified into
macroscopic and microscopic equilibrium morphologies.9 The
microscopic equilibrium considers surface and volume stresses in
sub-micrometer particles, whereas macroscopic equilibrium only
accounts for surface energies. Some good review articles on
equilibrium morphologies are also available in the literature.10−12

Thermodynamic equilibrium can be attained if the kinetic
processes involved are sufficiently rapid to change the morphology
of crystal without much increase in its mass. Smaller crystals may
conform to equilibrium morphology with only slight addition of
mass. However, the morphologies of larger crystals with small
surface-to-volume ratio are difficult to modify in short time-scales
thus impeding their rate of equilibration. In practice, crystal
morphology remains far from the equilibrium and therefore
governed by the kinetic processes.

2.2. Dynamic and Steady-State Crystal Morphologies.
The kinetics of crystal growth is governed by the growth rates
of faces. Frank13 deduced the growth morphologies from the
polar plots of distances traveled by the points on a surface along
the directions of their normals. Cahn et al.14 and Taylor et al.15

obtained Frank’s result from the characteristics of the Jacobi−
Hamilton equation for surface evolution. The emergence of
fans and shocks from the characteristics confirms the
development of faceted morphologies during crystal growth
and if the supersaturation is constant then the morphology can
attain a steady state. The steady-state morphology can be
obtained from the Wulff construction on the polar plot of
growth rates giving morphology with perpendicular distances of
faces proportional to their growth rates.16 The faces possibly
present on a crystal are the ones located at the “cusps” of the
polar plots of growth rates. In most practical cases, crystals
grow in diffusion-free regimes where the growth rates are
proportional to the surface energies. Therefore, the most likely
faces can be determined from the location of “cusps” in polar
plots of surface energies. The Hartman−Perdok theory17−19

enables the estimation of surface energies and identification
low-energy faces from the calculation of periodic bond chains
(PBCs). The theory classifies crystal faces into F- (flat), S- (stepped),
and K- (kinked) faces based on the number of PBCs being
more than one, exactly one and none, respectively. A crystal
face with a higher number of PBCs will have lower energy and
more stability. The faces likely to be present on crystals are
therefore the F-faces and may be some of the S-faces. Besides
the identification of faces that can appear during growth, their
growth rates are also essential for computing dynamic and
steady-state morphologies.
The fundamental theories of crystal growth rates are built on

the consideration of crystal structure (Bravais20−Friedel21−
Donnay−Harker22 method), surface energies (Hartman−
Perdok theory), and mechanistic processes (2D nucleation
model,23,24 Burton−Cabrera−Frank model,25 Chernov bulk
diffusion model,26 Winn-Doherty model,12 and MONTY27).
The relative growth rates of the faces govern the dynamics of
crystal morphology by manipulating the perpendicular
distances of faces. The evolving morphology often undergoes
transition caused by appearance or disappearance of faces.
Johnsen28 classified the crystal faces as “real” if they are present
on a crystal and “virtual” if they can appear later. He also
provided the sufficient condition for the virtual face becoming
real. Borgstrom29 and Alexandru30 considered the effect of
growth rates and the angle between the surface normals on the
disappearance of faces. They introduced the concept of critical
growth rates essential for real to virtual face transitions. Similar
conditions were also derived for two-dimensional (2D) crystals
by considering the lateral length of each face as a function of
the growth rates and angle between their normals.31,32 Prywer
extensively studied the face transitions on three-dimensional
(3D) crystals and developed the conditions for disappearance
of rectangular faces33 and more general conditions for arbitrary
shaped faces.34 (Note: Face transitions must not be confused
with phase transitions. The former means the appearance or
disappearance of faces on crystals, and the latter means
appearance or disappearance of different phases such as solid,
liquid, or gas.) Doherty and co-workers formulated the dynamic
model for 2D crystal morphologies showing the steady state to
be independent of seed morphologies35 and dynamic model for
3D crystal morphologies considering the multifurcation of
vertices into edges or faces.36 There are some other recently
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developed methods to evaluate crystal morphologies and their
transformations using a set-theoretic approach,37 Minkowski
additions,38 and vertex multifurcations.39 Ramkrishna and co-
workers37 were the first to introduce the idea of constructing a
morphology domain in h-space and address the issue of
morphology transformation using a set-theoretic approach.
Reinhold and Briesen38 take a different and interesting route to
describe morphology evolution of faceted and nonfaceted crystals
using Minkowski sum of elementary polyhedra. Subsequently,
Borchert et al.39 performed a detailed study of the behavior of
edges and vertices of crystals during morphology transformations
to derive morphology domains. The latest development in model-
ing crystal morphologies proposed by Singh et al.40 uses a set-
theoretic approach to obtain the morphology domain, which does
not involve multifurcation calculations for edges and vertices.
Their method involves identification of all possible kinds of
morphologies by constructing a morphology set where trans-
formations between them are readily obtained from a morphology
graph. They have introduced morphology domain as a
fundamental property of crystalline materials that dictates their
morphological evolution. A generalized single-crystal model that
accounts for the hybrid nature of the morphology domain was
developed. Their methodology comes with a general-purpose
software called MorphologyDomain41 to assess different morphol-
ogies and screen them using growth rate functions.
2.3. Population Balance Models for Morphology

Distributions. Morphology distributions are usually described
by the number density of crystals with more than one internal
coordinates. The change in number density due to crystal
growth, breakage, nucleation, or aggregation is collectively
described by a population balance equation (PBE).42 Cardew43

was the first to use PBEs to describe morphology distributions
with h-vector as internal coordinates. The h-vector is a vector of
perpendicular distances (h) of similar faces (a family) from
center, which can be used to compute geometric quantities
such as volume, area, etc. His analysis was however limited to a
specific morphology and does not consider face transitions.
Many crystalline materials such as hydroquinone and potassium
dihyrdogen phosphate (KDP) tend to grow in rod shape which
can be described using two dimensions viz. length and width.
The effect of crystallization conditions on aspect ratio of
hydroquinone44 and KDP45 crystals was studied using 2D
population balance models (PBMs). The availability of
advanced numerical techniques such as variants of discretiza-
tion methods46−48 and high-resolution algorithms49 have made
it possible to solve multidimensional PBMs in reasonable time.
Efforts have also been made to reduce the dimension of

PBMs for computability and measurability. At fixed super-
saturation, when relative growth rates are constant, the dynamic
changes in h-vector can be represented by the dynamics of the h
of a reference family and hence reducing the dimension of PBM
to one.50 Equivalently, under similar conditions, the dynamics
of h-vector can be expressed using age of crystals which also give
rise to one-dimensional (1D) PBM.51 Briesen52 transformed
the 2D PBM of parallelepiped-shaped crystals in a length−
width coordinate system to volume-shape factor coordinates.
Integrating over the shape factor coordinate yielded 1D PBM in
volume (measurable quantity) space, and the dynamic changes
in the shape factor were inferred assuming initial Gaussian
distribution of shape factors. The aforementioned trans-
formations can only be applied to specific situations, and they
may not be beneficial since the solution of such PBMs can be
readily obtained, without transforming them, using the method

of characteristics.42 Wang and co-workers53 applied 3D PBM to
potash alum where the internal coordinates are the h’s of three
families of faces. Subsequently, they performed principal
component analysis to reduce the dimension of h-vector of
potash alum which resulted in 3D PBM in principal component
space.54 In this case, there is no effective reduction in the
number of internal coordinates as it is the same as the
dimensions of symmetry-reduced h-vector. So far the PBMs are
developed for one type of morphology and do not consider
morphology transformations. Wan et al.55 introduced an ad-hoc
way to account for morphology transformations by exchanging
the number distribution between different morphologies. They
showed transformation of alum crystals with three families of
faces to one family. Since the crystal state space for alum was
not identified, the transition of crystals from three families to
two families was completely missed. Ramkrishna and co-
workers37 demonstrated the construction of crystal state space
for asymmetric octagonal crystals and developed coupled PBEs
accounting for morphology transformations. Their framework
was built for a few morphologies of asymmetric octagonal
crystals and requires more generality to be applicable to other
crystalline materials.
The eventual use of these models is to be able to predict and

control crystal morphologies and their distributions. The
identification of these models and their validation require
appropriate experimental tools to measure dynamic morphol-
ogies and supersaturation. A review on process analytical
technologies involved in crystallization can be found else-
where.56 As the flat crystals are relatively easier to measure, the
PBMs for such crystals can be readily identified and
control.57−59 However, the identification of PBMs for 3D
crystals requires techniques to measure their morphologies.
There exist some approximate methods for estimation of
h-vector from images of crystal projections.60,61 Singh et al.56

developed an image-analysis based method to measure h-vector
of any crystal using confocal microscopy. Although their
method provides direct measurement of h-vector, it requires
automation of confocal microscopes for the dynamic measure-
ments of morphology distributions. With further improvements
in existing technologies for dynamic measurements the
modeling approach presented in the article could provide an
effective framework for predictions and control of crystal
morphology distributions.

3. MORPHOLOGY DOMAIN: A FUNDAMENTAL
PROPERTY OF CRYSTALS

Crystal morphologies are the reflections of the molecular order
in crystalline materials. Given the information on crystal
structure and the constituting molecules, it is possible to
estimate the surface energies using Hartman−Perdok theory
(see the discussion in Section 2.2). The low energy surfaces are
the F-faces and may be some of the S-faces which are likely to
appear during crystal growth. The morphological changes in
crystals are due to the appearance or disappearance of faces that
can result in a finite number of morphologies. The different
morphologies of crystals possible can be obtained from the
morphology domain. The morphology domain has some
interesting properties that can be exploited for the synthesis
of specialized crystals. The subsequent sections will introduce
some preliminary concepts toward the establishment of the
morphology domain.
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3.1. Description of Crystal Morphology. The morphol-
ogy of a crystal with n number of low energy faces can be
represented by a polyhedron, such that

≤ ̃Nr h (1)

where N is a matrix formed by stacking, in a single column, the
unit normals (the reciprocal lattice vectors) of crystal faces as
row vectors, r represents position vectors in 3 and h̃ is a
vector of perpendicular distances of faces from the center of the
crystal. Therefore, h̃ is in the non-negative orthant of
n-dimensional real space +

n
0. The symmetry of crystals allows

the classification of faces into different families. According to
crystal growth theories, a family of faces with similar atomic or
molecular arrangements grows in an identical manner.
However, the dynamics of face transitions are strongly
dependent on the shape/geometry of individual faces and
constituting neighbors. A crystal can have different shapes of
faces forming a family such that there is no synchronization in
the face transitions. Further classification based on the shapes
of faces in a family would provide groups of kinetically and
geometrically similar faces, which in crystallography are referred
to as faces of identical form. Clearly, the faces of one form will
have identical growth rates and they will appear or disappear
simultaneously. A crystal with m forms of faces can be
represented by m distinct perpendicular distances forming a
vector ∈ +h m

0 such that at any time h̃ can be reconstructed
from h. Therefore, the dynamics of crystal morphology can be
uniquely determined from h (h-vector).
Example: Potash alum has n = 26 low energy faces that can

potentially appear during growth. These faces belong to 3
families such as {100} containing 6 faces, {110} containing 12
faces and {111} with 8 faces. In this case all the faces in each
family are similar in shape, and therefore the number of families
is equal to the number of forms of faces, which is m = 3.
Conversely, acetaminophen has four families of low-energy
faces such as {001}, {011}, {110}, and {201} summing up to
n = 14 faces. Each of these families except {201} has two
groups of geometrically different faces yielding m = 7 forms of
faces.
3.2. Morphology Set. As the faces of one form behave in a

similar way, their appearances or disappearances completely
depend on their growth rates which depend on crystallization
conditions. At any time there are only a few forms of faces present
on a crystal giving it a unique kind of morphology. Suppose
different forms of faces are named as F1, F2, ..., Fm whose
perpendicular distances from the center of crystal are h1, h2, ..., hm,
respectively. The morphology set is a set of all possible types of
morphologies obtained from different combinations of F1, F2, ...,
Fm faces forming a closed polyhedron. The possible combinations
of different forms of faces create a power set62 P containing 2m

subsets of {F1, F2, ..., Fm} such that

ϕ

= − −P F F F F F F F F F

F

{{ , , ..., }, { , , ..., }, ..., { , }, ..., { },

{ }, { }}
m m m m m

m

1 2 2 3 1 1

Each set in the power set corresponds to specific forms of
faces forming a specific type of polyhedron. According to the
definition, the only sets in the power set that form a closed
polyhedron will contribute to the morphology set. There exist
many theorems for identification of closed convex polyhe-
dron.63 Euler’s formula provides a simpler check for closed
polyhedron. A computationally efficient method to identify an
open convex polyhedron, without actually constructing it, is

finding a half-space devoid of face-specific normal vectors.
Conversely, the absence of such half-spaces will confirm the
existence of closed convex polyhedron. Furthermore, the half-
spaces can be realized by constructing a convex hull through
face-specific unit normals and origin. If the origin lies on/inside
the convex hull then the polyhedron is open/closed. Figure 1

demonstrates the aforementioned technique to identify closed
and opened convex polyhedra.
Clearly, the total number of sets in a morphology set will be less

than or equal to that of the power set. That means if there are S
number of sets in the morphology set then S ≤ 2m. The morphology
set can be written as M = {M1, M2, ..., MS}. Every set in the
morphology set represents a specific type of morphology that can be
described by a fewer number of independent h’s corresponding to
F’s in the set. The faces that are not present in a set are assigned as
virtual with their h’s being dependent on the real faces.
Example: potash alum of the space group Pa3 has m = 3

forms of faces, namely, F1 ≡ {100}, F2 ≡ {110} and F3 ≡ {111}.
The power set containing 23 = 8 subsets can be written as P =
{{F1,F2,F3}, {F1,F2}, {F1,F3}, {F2,F3}, {F1}, {F2}, {F3}, {ϕ}}.
The morphology set of potash alum is constructed from the
subsets in power set that form closed polyhedra and is
represented as

=

=

M F F F F F F F F F F F F

M M M M M M M

{{ , , }, { , }, { , }, { , }, { }, { }, { }}

{ , , , , , , }

1 2 3 1 2 1 3 2 3 1 2 3

1 2 3 4 5 6 7

The total S = 7 different morphologies possible for potash alum
are listed in Table 1.

3.3. Morphology Graph. Different kinds of morphologies
in the morphology set have different sets of real and virtual faces.

Figure 1. Identification of closed (top row) and opened (bottom row)
convex polyhedra. The convex hull (a2) through face normals ni of the
closed polyhedron (a1) encapsulates the origin, whereas the convex
hull (b2) through the normals of the open polyhedron (b1) passes
through the origin.
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Some of the real faces of crystal morphology can disappear
(become virtual) to produce a different morphology in the
morphology set. Likewise, some of the virtual faces of crystal
morphology can appear (become real) transforming to a different
type of morphology. Two types of morphologies in the morphology
set can transform to each other if one is the subset of the other. A
morphology graph can be constructed from the morphology set
such that every set is connected with its subsets. The morphology
graph is a bidirected graph with total R edges and S vertices. The
edges are denoted as es,s′, which are connecting the vertices Ms and
Ms′ such that s < s′ and s,s′ ∈ [1, 2, ..., S]. If there is only one edge
connecting two different morphologies (or vertices), then the total
number of edges in the morphology graph is given as

∑= −
=

R [2 2]
i

S
M

1

card( )i

(2)

where card(Mi) is the cardinality (measure of a set) of the set Mi.
The order of transitions is described as the number of different
forms of faces appearing or disappearing simultaneously. It is
therefore given as the difference in the cardinality of the connected
sets in the morphology graph.
Example: Figure 2 shows the morphology graph of potash

alum with S = 7 vertices and R = 14 edges. In this case e1,5, e1,6,
and e1,7 are the second -order transitions because the differences
in the cardinalities of connected sets are 2. Similarly, all
remaining edges are the first-order transitions. The edge e1,3 is
composed of three independent edges that relate M1 to M3 and
is shown in Table 2. That means there are three different ways
to attain M3 from M1 by the disappearance of F2 on either (1)
F1, or (2) F3, or (3) F1 and F3.
The dynamics of appearance and disappearance of faces are

known as virtual-to-real and real-to-virtual face transitions,

Table 1. Morphology Set of Potash Alum with Graphical Representation
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respectively. Since vertices define edges of a closed convex
polyhedron, a face transition can only occur at the vertices. The
necessary condition for face transitions is that the neighboring
faces must converge to a vertex. The sufficient condition for
disappearance of a face is that the real growth rate must be
greater than the virtual growth rate of a face and appearance of
a face requires its real growth rate to be less than its virtual
growth rate. Besides the strict positive values of h’s, the
necessary conditions provide the upper and lower limit on h
with respect to other h’s. The necessary condition for the real-
to-virtual transition of vth face is given by

=

−⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
h

h

h

h

n

n

n

n

v v
T

i
T

j
T

k
T

i

j

k

1

(3)

where i,j and k are the indices of faces that are neighbors of the
vth face. The necessary condition for the virtual-to-real
transition of the vth face is given by

<

−⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
h

h

h

h

n

n

n

n

v v
T

i
T

j
T

k
T

i

j

k

1

(4)

Equations 3 and 4 provide conditions for first-order face
transitions corresponding to each edge in the morphology
graph. The higher-order transitions satisfy more than one first-
order transitions.
Example: Every edge in the morphology graph corresponds

to specific forms of faces undergoing transitions. Table 2 shows
the conditions for face transitions for each edge in the
morphology graph. The left-hand sides of the conditions
contain h’s of the faces disappearing and become dependent on
those in the right-hand sides. It can be noticed that the h’s of
disappearing faces become dependent on h’s of only a few of
the existent faces but not all. These conditions together with

the strict positive values of h-vectors provide bounds on the
h-vector.

3.4. Morphology Domain. The edges of morphology
graph provide the constraints on the h-vector that confines its
domain in +

m
0. Each edge is associated with a set of linear

inequalities written as

≤A h 0r (5)

where Ar is a matrix associated with the rth edge. The
constraints on the h-vector given by eqs 3 and 4, which in the
case of potash alum are the set equations in column 5 and 6 of
Table 2, can be written together in matrix notation as

≤Ah 0 (6)

which is the equation of a convex polyhedral cone in +
m

0 with
vertex at the origin. Here A = [Ar]r = 1

R is a partitioned matrix
formed by column-wise stacking of Ar. Clearly, the row vectors
of A are the face-specific normals of polyhedral cone. The
morphology domain is defined as the phase space of crystal
morphologies confined in the polyhedral cone in +

m
0 and is

described as

= ∈ | ≤+C h Ah 0{ }m
0 (7)

Any point in the interior of the morphology domain
represents a crystal of specific size and morphology. The h
corresponding to the point can be converted to h̃ which when
supplied to eq 1 will give the crystal morphology. The
morphology domain is the fundamental property of crystals
that yields phase diagrams showing regions of different
morphologies. The morphology domain has the following
important attributes:
(1) If the faces that are likely to be present on a crystal are

the low-energy faces, then the resulting morphology domain
will give all possible morphologies of the crystal. The
morphology domain is only dependent on the crystal structure
and is independent of crystallization conditions.
(2) Broader the morphology domain, the wider would be the

collection of crystal morphologies. And the narrower domain
will allow only a few morphologies of crystals.

Figure 2. Morphology graph of potash alum. (a) Connected morphology set and (b) connected graphical morphologies.
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(3) The polyhedral symmetry of the crystals decreases as
moving away from the space diagonal. Therefore, the most
symmetric crystals lie on the space diagonal.
These interesting properties of morphology domain help in

identifying the target morphologies of crystals based on the
different applications. For example, (i) pharmaceuticals require
more symmetric crystals for ease in downstream processing, (ii)
tuning the band gap energies of semiconductor particles require
selection of specific shapes such as spheres, rods, or plates, and
(iii) better activities of catalyst particles require larger fraction
of reactive faces. The targeting of crystal morphologies can be
readily done using the morphology domain. However, the
attainability of such targets requires the dynamic studies of
crystal morphologies inside morphology domain, which will be
discussed in the subsequent section.
Example: The morphology domain of potash alum, given by the

set of equations in Table 2 or eq 6, is shown graphically in Figure 3a.
Although there are 14 edges in the morphology graph, the
number of faces in the morphology domain is 4, which means
that the remaining 10 planes are either on the edges of the
morphology domain or they are repeated. The faces, edges, and
interior of the morphology domain represent domains of dif-
ferent morphologies.
The domains of different morphologies in the morphology

domain are identified as M1- interior, M2- red plane, M3- green
planes, M4- blue plane, M5- intersection of red and green planes,

M6- intersection of red and blue planes, and M7- intersection of
blue and green planes. Unlike all other domains, M3 is a
hybrid domain formed by two planes and one edge. The
cross section of the morphology domain along the (111)
direction, shown in Figure 3b, identifies different regions of
Archimedean shapes that potash alum can take. Interestingly,
potash alum can only grow in symmetric shapes and cannot
take shapes such as needles and plates, which is a constraint
imposed by its crystal structure.

4. SINGLE CRYSTAL MODEL
The dynamics of crystal morphologies are governed by the face-
specific growth rates that can be determined from either
experiments or theory (discussed in Section 2.2). The face-
specific growth rates are expressed as m dimensional vector
Ḣ(h, c), which can be a function of h-vector and crystallization
conditions. Since Ḣ(h, c) represents growth rates of real faces,
it can take different values if some of the faces disappear (or
becoming virtual). Each kind of morphology in the morphology
set has an associated set of real and virtual faces (see Table 2).
The growth rates of virtual faces are dependent on the real faces
which can be realized by taking time derivatives of eq 3.
Therefore, there exists a unique growth rate vector for each
type of morphology in the morphology set. The projection
matrix Ps can be defined such that the modified growth rate
vector for morphology in the sth domain is given as Ps(Ḣ)Ḣ(h, c).

Table 2. Edge-Specific Conditions for Face Transitions in Potash Alum
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The projection matrix is a continuous function of Ḣ and varies
discretely with domains.
The morphology domain is the direct sum or union of the

domains of individual morphologies, such that

= + + +C C C C... S1 2 (8)

where Cs are the domains (generalized polyhedral cones)
corresponding to the morphologies Ms in the morphology
domain C and they are identified as

= ∈ | = ′ = ∈C C e e s Sh A h 0{ , }, [2, 3, ..., ]s r s s s, 1, (9)

Equation 9 says that equalities Arh = 0 associated with the
edges e1,s which are originating from M1 and leading to Ms will
define the domain Cs. Henceforth, the equalities associated with
the specific edges e1,s will be denoted as Dsh = 0. The
generalized architecture of morphology domain is such that
every other domain C2, C3, ..., CS is connected with C1 (the
interior of the morphology domain), where

= ∈ | <C Ch Ah 0{ }1 (10)

The dynamic equation for the evolution of single crystal
morphology can now be expressed as

α= ̇ ̇ ̇ ∈
t

C
h

H P H H h c h
d
d

( ) ( ) ( , ),s s s (11)

The prefactor αs(Ḣ) scales the projected growth rate vector
PsḢ such that the real growth rates are unaltered. As mentioned
before the projection matrix is not a continuous function of h
and changes discretely with different domains of morphology
within the morphology domain, such that

∑ ∑νν μ μ ν μ̇ = + ∈ ∈N NP H D G( ) , ( ) and ( )s
i

i i
T

j
j j

T
i s j s

(12)

where νi and μj are the orthonormal basis vectors of the null-
space of the matrix Ds and Gs, respectively. Here, the matrix
Ds corresponds to the lowest possible domain s for which

Dsh = 0 and DsḢ ≥ 0. Any domain has a set of real faces and
virtual faces (see Table 2), the growth rate of virtual faces are
related as DsḢ = 0, and the growth rates of real faces can be
expressed as a symmetric equation of line, GsḢ = 0. The matrix Gs
is a bidiagonal matrix with the number of rows being one less than
the number of real faces (F) present on the crystal. If there are no
virtual faces (first domain) then the projection matrix is the
identity matrix.

̇ =P H I( )1 (13)

Consider a crystal growing by surface-integration under fixed
crystallization conditions such that Ḣ is constant. If we know
the initial condition for h then the projection matrix Ps(Ḣ) and
the prefactor are also fixed. The solution of eq 11 can be
written as h(t) = h(0) + αsPsḢt which at suitably longer time
scales gives the condition for steady-state morphology.

α∝ ̇h PHs s (14)

The effect of initial condition diminishes over time, and all
crystals unanimously converge to the single steady-state
morphology, which can be observed in Figure 4.

5. MORPHOLOGICAL-POPULATION BALANCE
MODEL (M-PBM)

In this section, we will develop dynamic equations for
morphology distributions of crystal populations growing in a
batch crystallizer. The morphology distribution is described by
a number density n(h,t) of crystals in the morphology domain.
The population dynamics in different domains are driven by
different growth fields αsPsḢ.
The dynamics of morphology distributions in each domain

are described by population balance equations. The change in
morphology distribution in the sth domain is due to two
primary factors: (i) growth field αsPsḢ and (ii) feed Ḃs coming
to sth domain from other connected domains. As the crystals
growing-out and leaving the sth domain cannot affect the
morphology distribution of its own domain, this effect is not

Figure 3. (a) Morphology domain of potash alum and (b) cross section of the morphology domain along (111) plane indicating regions of different
Archimedean solids.
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considered in formulating population balance equations. The
projection matrix Ps specific to sth domain can be obtained
from the matrices Ds and Gs. For the sake of brevity, we will use
Ps for the combined expression αsPs which can be referred to as
scaled-projection matrix.
The feed from other domains can come to the sth domain

if they are directly connected with it. The connectivity of the
domains can be elucidated from the morphology graph. Here,
we consider an analogous morphology graph with first-order
transitions where edges are connecting a set to its subset in a
forward direction. The vertices and edges of this unidirected
morphology graph are related using incidence matrix G = [gs,r]
as

=M GE (15)

where M = [Ms] is an S × 1 vector of vertices and E = [es,s′] is a
column vector of first-order edges. The positive elements in the
row vector of G indicate feed coming from higher domains, and
the negative elements indicate feed coming from lower
domains. The set of first-order edges that may feed the sth
domain from the higher domains can be identified as

= ∈ | = + ̇ > ∈+J r R g s SD H 0{ [1, 2, ..., ] 1, }, [1, 2, ..., ]s s r s,

(16)

And the set of first-order edges that will feed the sth domain
from the lower domains is given as

= ∈ | = − ̇ < ∈−
′J r R g s SD H 0{ [1, 2, ..., ] 1, }, [1, 2, ..., ]s s r s,

(17)

The information from Js
+ and Js

− can used together to generate
flux maps, which depend on the growth rate vectors. Now,
generalized population balance equations can be formulated in
a domain Cs considering the fluxes coming from higher
domains.

∂
∂

+ ∇· ̇ = ̇ ∈
t

n t n t B Ch PH h c h h( , ) ( , ) ( , ) ,s s s (18)

The feed rate Ḃ1 for C1 is zero because it is the highest domain
in the morphology domain. The population balance equation
for C1 is given as

∂
∂

+ ∇· ̇ = ∈ ̇ <
t

n t n t Ch H h c h h AH 0( , ) ( , ) ( , ) 0, and1

(19)

The structure of Ḃs is determined by Js
+ which accounts for the

fluxes coming from higher domains and it can be written as

∑ δ̇ = ̇ |
∈

′ =

=+
′

−

B n tA P H A h h( ) ( , )s
r J

r s r D h

A h

0

0s

s

r (20)

It can be seen that Ḃs only accounts for first-order transitions.
The fluxes due to higher-order transitions are already
accounted as a linear combination of first-order transitions in
eq 20. There are some additional equations accounting for
fluxes coming from lower domains, which are given as

̇ | = ̇ | ∈=

=
′ =

−

−
′

n t n t r JPH h P H h( , ) ( , ) ,s s sD h 0

A h
D h 0

0
s

r

s

(21)

The morphological-population balance eqs 18 and 19 are
subjected to the following boundary conditions.

|| ̇ || =n tPH 0 c 0( , ) ( , ) 0s (22)

̇ → || || → ∞n tPH h c h 0 h( , ) ( , ) ,s (23)

The right-hand side of eq 22 can take a nonzero quantity in
presence of nucleation. The boundary condition (23) is often
referred to as a regularity condition.
The growth of crystal populations consumes supersaturation,

which again affects face-specific growth rates. The dynamics of
supersaturation in a batch crystallizer coupled with the number
density, such that

∫ρ
=

− −
S t

c n t n

c

h h h
( )

[ ( , ) ( , 0)] d
c0

sat (24)

where c0 is the initial concentration, csat is the saturation
concentration, ρ is the crystal density, and S is the
supersaturation which is defined as ratio of bulk concentration
to saturation concentration. As growth rates are a function of
supersaturation, dynamic analysis of morphology distributions
with population balances must take into account the reciprocal
effects of the crystal growth on supersaturation.
Thus, eqs 18, 19, 21, and 24 form a morphological-

population balance model for crystal morphology distributions
whose solution will be discussed in Section 6. The
morphological-population balance model (M-PBM) for potash
alum is developed in Appendix I. The consistency of M-PBM
can be checked by number balance.

6. SOLUTION OF M-PBM
The morphological-population balance equations are a set of
hyperbolic partial differential equations, whose solution can be
obtained using the method of characteristics.64 The character-
istic of eq 18 is given by eq 11. Evolution of the number density
along the characteristic can be written as

= ̇ ∈
t

n t B Ch h
d
d

( , ) ,s s (25)

Figure 4. Different crystals of potash alum growing (black arrows) in
an identical growth field and converging to a steady-state morphology
(magenta arrow).
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Since the feed rate Ḃs is independent of number density in Cs,
the solution of eq 25 can be obtained as

∫= + ̇ ′ ′ ∈n t n B t t Ch h h( , ) ( , 0) ( ) d ,
t

s s
0 (26)

The solutions for number densities obtained by time
integration in eq 26 are mutually coupled with the mass
balance equation (eq 24) through the characteristics.

7. ADDITIVE CONTROLLED CRYSTALLIZATION OF
POTASSIUM HYDROGEN PHTHALATE

Potassium hydrogen phthalate (C8H5O4K, KHP, or KAP) crystals
are the molecular ionic solids that are used as buffering agents,
standards for total organic carbon testing, monochromators and

analysers in X-ray diffractometers and many other applications.
The connected net analysis of KAP yielded three relatively
energetic F-faces such as {010}, {110}, and {111} that are more
likely to appear during crystal growth. The morphology graph and
morphology domain are already established for KAP.40 The
morphology graph of KAP is shown in Figure 5 which connects
the four different morphologies through four edges.
The morphology domain of KAP can be constructed using

conditions of face transitions shown in Figure 5b. Figure 6a shows
the morphology domain of KAP, and Figure 6b shows the cross
section of the morphology domain along the (111) direction. The
broader morphology domain of KAP can accommodate a wider
range of morphologies than potash alum. The accessible
morphologies in the morphology domain are governed by the

Figure 5. Morphology graph of KAP.40 (a) Connected morphology set and (b) connected graphical morphologies with edges showing conditions
for face transitions.

Figure 6. (a) Morphology domain of KAP and (b) cross section of the morphology domain along the (111) direction showing region of steady-state
morphologies (dashed line). Each line in that region represents the trajectory of steady-state morphology at fixed concentration of ethylene glycol
(EG) and varying supersaturation from 1% (dark circle) to 5% (open circle).
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growth rates. Kuznetsov et al.65 experimentally measured the
growth rates of KAP at different supersaturations and
concentrations of ethylene glycol (an additive). Steady-state
morphologies of KAP at different supersaturations and concen-
trations of ethylene glycol can be obtained from eq 14, and the
region spanned is shown in Figure 6b.
The region of steady-state morphologies also indicates the

directions of growth rate vector Ḣ(σ,xEG). Here, the growth rates
are a function of relative supersaturation σ = (S − 1)% and mole
percent xEG of ethylene glycol in the aqueous solution of KAP.
The growth rate vectors are confined in the morphology domain
such that AḢ < 0. The flux map resulting from the growth rate
vectors is shown in Figure 7.

Consider a population of seed crystals of morphology M1
growing in a batch crystallizer. The governing population
balance equation corresponding to the flux map in Figure 7 can
be written as

σ∂
∂

+ ̇ ∇ = ∈
t

n t x n t Ch H h h( , ) ( , ) ( , ) 0,EG 1 (27)

Since the crystals of other morphologies are not present, there
will be no influx of crystals from lower domain. The solution of
eq 27 along the characteristics

σ= ̇
t

x
h

H
d
d

( , )EG (28)

is given as

=n t n th h( , ) ( ( ), 0) (29)

The evolution of supersaturation is then given by eq 24 and the
mole percent of ethylene glycol is related to supersaturation as

=
+

×
σ( )

x t
c

c T
( )

1 ( )
100

tEG
EG

( )
100 sat (30)

7.1. Additive Controlled Crystallization. Consider the
cooling batch crystallization of KAP from aqueous solution using
ethylene glycol as additive. Usually, the manufacturing targets in
such systems are high productivity and better product quality such
as sphericity and purity of crystals. Seeded crystallization under
moderate supersaturation is mostly preferred in large scale
synthesis to minimize nucleation. If the seed crystals (pre-

nucleated) are needle shaped then synthesizing crystals, without
sacrificing their productivity, of better sphericity requires proper
tuning of operating conditions such as temperature and additive
concentration. The optimization problem can now be stated as
follows: Maximize the sum of mass fraction and sphericity of
crystals growing in a batch crystallizer for 100 s by manipulating
temperature and additive concentration. The parameters and
initial conditions for the problem are given in Table 3.
The optimization problem maximizes final sphericity to 0.7681

and final mass to 0.8187 kg/m3 for σ = 5% and xEG = 0.03 mol %.
The necessary temperature and ethylene glycol concentration to
maintain the required σ and xEG are 308 K and 22.4 mM,
respectively. The final mean size and shape of the crystals are given
by Eh = [4.51 7.34 14.71]T μm. The mean aspect ratio of
crystals is reduced from 10 to 3, which is a 70% reduction.
The analysis of morphology distributions among crystal

populations was restricted to cases without the phenomenon of
nucleation. Inclusion of nucleation would require the added
arsenal of nucleation kinetics with information on morphology
distribution of freshly formed nuclei.

8. CONCLUSIONS
This article presents a generalized framework for dynamics of
single crystal morphology and morphology distributions. The
systematic approach to identify dynamic equations can be
summarized as follows:
Step 1: Determine low-energy faces (F-faces) of a crystalline

material using Hartman−Perdok theory and group them
according to kinetic and geometric similarity (forms) of faces.
Step 2: Identify morphology set, morphology graph, and

morphology domain for a crystal. They can be readily identified
using software MorphologyDomain.41 The matrices Ar and Ds
will be determined in this step.
Step 3: Obtain the growth rate vector Ḣ and identify prefactor

αs and projection matrices Ps for each domain. The evolution of
single crystal morphology can now be described by eq 11.
Step 4: Develop an analogous morphology graph with first-

order edges and determine the corresponding incidence matrix
G. Identify the set of edges Js

+ connecting the higher domains
and the set Js

− connecting the lower domains with the sth domain,
respectively. The flux maps can be created using Js

+ and Js
−.

Step 5: The M-PBM can now be developed from eqs 18, 19,
21, and 24. The solution of M-PBM can be obtained by the
method of characteristics.

Figure 7. Flux of map of KAP crystals growing in the aqueous solution
containing ethylene glycol additive.

Table 3. Parameters and Initial Conditions for KAP
Crystallization

parameter value

density of KAP: ρ 1640 kg/m3

saturation concentration: csat(T) 0.032T
2(K) − 16.1742T(K) + 2091.2 kg/m3

initial conditions value

initial concentration of KAP: c0 153.01 kg/m3

number of seed crystals: N 1 × 1011 m−3

initial seed distribution Gaussian distribution
mean Eh [0.5 0.5 5]T μm
variance Vh [2.5 2.5 5.5]T × 10−3 μm2

material domain of seed
distribution

Ehi − 2(Vhi)
1/2 ≤ hi ≤ Ehi + 2(Vhi)

1/2,
i = 1, 2, 3

initial volume fraction of seed 1.0766 × 10−6

initial mass of seed crystals 1.8 × 10−3 kg/m3

average sphericity 0.5291
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The M-PBM and single crystal model describe dynamics of
crystal morphology due to crystal growth in morphology
domain. The effect of other processes such as nucleation,
breakage, and agglomeration on morphology distributions can
be incorporated in M-PBM following the identification of
appropriate kernels. For example, the nucleation kernels can be
determined from the Gibbs critical nucleation theory where
crystal nuclei take equilibrium morphologies. The formulation
of breakage kernels require the identification of cleavage planes
which determine the likely faces to appear during breakage.
Accounting for agglomeration introduces considerable addi-
tional complexity. Thus the framework developed here is
applicable for relatively lean population densities of crystals.
The morphology domain is a material property of crystals

that is independent of crystallization conditions, although
trajectories of growing or dissolving crystals in the former
depend on the latter. The morphology domain can be
considered as a phase diagram for crystalline materials, which
presents all possible morphologies of a crystal. Morphology
domain can also help in discovering crystal morphologies that
are possible but have yet to be found experimentally.
The solution of M-PBM can be quickly obtained from the

method of characteristics which enables it for model-based
control of crystal morphologies. Obviously, such solutions are
also amenable to use in conjunction with other methods for
morphology domain due to Borchert et al.39 The methodology
was implemented for additive-controlled crystallization of
KAP. The M-PBM of KAP and its solution was discussed in
Section 7. The needle-like crystals of KAP was modified to
more symmetric crystals by controlling temperature and
additive concentration. The current framework provides a

great opportunity for discovery of new crystal morphologies
and platform for efficient model-based control.

■ APPENDIX I: M-PBM FOR POTASH ALUM

The formulation of M-PBM requires identification of
morphology set, morphology graph, Ar (morphology domain),
Ds, Ps, G, Js

+, Js
−, and Ḃs. The morphology set, morphology

graph, and Ar for potash alum are shown in Table 1, Figure 2,
and Table 2 respectively. A user-friendly software called
morphology domain41 can synthesis the morphology set,

Figure A1. Morphology graph of potash alum with first-order
transition in the forward direction.

Table A1. Values of Ds, Gs, αs, and Ps for Fixed Growth Rate Vector Ḣ ≡ ̇ ̇ ̇H H H[ ]1 2 3
T = [1 1.5 1.8]T of Potash Alum
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morphology graph, and morphology domain for any material.
The matrix Ds corresponds to the linear inequalities associated
with the edge e1,s and the matrix Gs can be formed using
elements of Ḣ. For the sake of clarity in the foregoing analysis,
a fixed growth rate vector Ḣ = [1 1.5 1.8]T of arbitrary units is
chosen in the direction pointing toward M5 (the cubic
morphology) in morphology domain. The projection matrix
can be computed using eq 12. Table A1 shows the specific
values of Ds, Gs, αs, and Ps for potash alum. A morphology
graph (shown in Figure A1) analogous to Figure 2a can be
constructed using first-order edges such that each set is
connected forwardly with its subset. The vertices and edges of

the morphology graph of potash alum in Figure A1 are related
using eq 15 as follows:

=

− − − − −
− −

− −
− −

− −

⎡

⎣
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(31)

The identification of Js
+ and Js

− is a function of growth rate
vector Ḣ which, for the sake of clarity, is fixed in the direction
pointing toward M5 (the cubic morphology) in the morphology
domain. The set of fluxes coming from higher domains Js

+ and
those coming from the lower domains Js

− to the sth domain at
given face-specific growth rates will create a flux map. The flux
maps of potash alum at different growth rates are shown in
Figure A2.
The set Js

+ corresponding to Figure A2a and the feed rates Ḃs

on the right-hand side of eq 18 are given in Table A2.
The set of fluxes Js

− coming from lower domains are accounted
by eq 21, which for potash alum are given in Table A3.

Notations
A matrix of normal vectors of the faces of morphology

domain [−]
Ar submatrix of A associated with the rth edge of the

morphology graph [−]
Ḃs feed coming to sth domain from other connected

domains [m−m s−1]
c0 initial concentration of solute [mol m−3]
cEG concentration of ethylene glycol [mol m−3]
csat saturation concentration of solute [mol m−3]
C morphology domain [−]
Cs sth domain of the morphology domain [−]
Ds matrix of normal vectors defining the sth domain of the

morphology domain [−]

Figure A2. Flux maps showing interaction between different domains under different growth rates. (a) Flux map when the growth rate vector is
pointing toward M5 and (b) flux map when growth rate vector is pointing toward M6.

Table A2. Incoming Fluxes Js
+ from Higher Domains and the

Resulting Feed Rate Ḃs for Potash Alum

Table A3. Incoming Fluxes Js
− from Lower Domains and Flux

Balance Equations for Potash Alum
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es,s′ name of the edge in the morphology graph connecting
vertices Ms and Ms′ [−]

E a column vector of first-order edges of the morphology
graph [−]

Fi name of the family of faces of the ith form [−]
Gs a bidiagonal matrix that relates the growth rates of real

faces in sth domain of the morphology domain [−]
hi ith element of h [m]
h m-dimensional vector of perpendicular distances of

crystal faces from crystal center. Also called as h-vector
[m]

h̃ n-dimensional vector of perpendicular distances of
crystal faces from crystal center [m]

Ḣ m-dimensional growth rate vector [m s−1]
Js
+ A set of first-order edges that will feed the sth domain

from the higher domains [−]
Js
− A set of first-order edges that will feed the sth domain

from the lower domains [−]
m number of different forms (kinetically and geometri-

cally similar) of faces [−]
Mi ith set in the morphology set M representing a

collection of different forms of faces [−]
M S × 1 vector of the vertices Ms
n number of low-energy faces (F-faces) [−]
n(h,t) number density in the morphology domain [m−m]
ni unit normal vector of the ith face [−]
N null space [−]
N n × 3-dimensional matrix of unit normal vectors of

crystal faces [−]
P power set containing 2m subsets of {F1, F2, ..., Fm} [−]
Ps projection matrix for the sth domain of the

morphology domain [−]
r position vector in three-dimensional space [m]
R number of edges in the morphology graph [−]
S number of sets in the morphology set M [−]
t time [s]
xEG mole fraction of ethylene glycol [−]
αs prefactor that scales the projected growth rates PsḢ

such that the real growth rates are unaltered [−]
δ(Arh) k-dimensional Dirac delta function [m−k]
ρ density of crystals [kg m−3]
νi ith ortho-normal basis vector of the null space of Ds

[−]
μi ith ortho-normal basis vector of the null space of Gs

[−]
3 three dimensional real space [−]

+
m

0 non-negative orthant of m-dimensional real space [−]
+
n

0 non-negative orthant of n-dimensional real space [−]
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