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Abstract

There is increasing recognition that stochasticity involved in gene regulatory processes may help cells enhance the signal or
synchronize expression for a group of genes. Thus the validity of the traditional deterministic approach to modeling the
foregoing processes cannot be without exception. In this study, we identify a frequently encountered situation, i.e., the
biofilm, which has in the past been persistently investigated with intracellular deterministic models in the literature. We
show in this paper circumstances in which use of the intracellular deterministic model appears distinctly inappropriate. In
Enterococcus faecalis, the horizontal gene transfer of plasmid spreads drug resistance. The induction of conjugation in
planktonic and biofilm circumstances is examined here with stochastic as well as deterministic models. The stochastic
model is formulated with the Chemical Master Equation (CME) for planktonic cells and Reaction-Diffusion Master Equation
(RDME) for biofilm. The results show that although the deterministic model works well for the perfectly-mixed planktonic
circumstance, it fails to predict the averaged behavior in the biofilm, a behavior that has come to be known as stochastic
focusing. A notable finding from this work is that the interception of antagonistic feedback loops to signaling, accentuates
stochastic focusing. Moreover, interestingly, increasing particle number of a control variable could lead to an even larger
deviation. Intracellular stochasticity plays an important role in biofilm and we surmise by implications from the model, that
cell populations may use it to minimize the influence from environmental fluctuation.
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Introduction

More than sixty percent of bacterial infections treated in

hospitals involve biofilm formation in the body [1]. Biofilm is the

consequence of bacteria encasing themselves in a slimy layer of

extracellular hydrated polymer matrix secreted by them [2].

Pathogenic biofilm is notorious for its high resistance to antibiotics

[3–5] and causing chronic infection [6]. It is possible that

conjugation, one of the horizontal gene transfer processes,

contributes to antibiotic resistance of the biofilm [7]. In this work,

the induction of conjugative plasmid pCF10 encoding tetracycline

resistance is studied as an example to illustrate the importance of

considering intracellular stochasticity on formulating a mathemat-

ical model for the biofilm.

Research on modeling biofilms has been increasing steadily in

the past few decades resulting in the elucidation of some features of

the biofilm. The layer model, which is usually composed of a

structure in which cells are distributed uniformly, is broadly

applied to analyze the biofilm in a reactor [8–10]. The structural

models which capture the variable biofilm thickness, density,

porosity and surface shape are usually constructed with cellular

automata [11–13] or particle-based model [14,15]. The transfer of

drug resistance [16] or spread of pathogen [17] has also been

described by empirically assigning some factors to cells which may

not be directly based on intracellular gene regulation. However,

current biofilm models focus much more on extracellular structure

and mass transfer than intracellular gene regulation; only a few of

them incorporate stochasticity in intracellular processes.

Stochasticity in gene expression arises from randomness

associated with cellular processes. Attention to fluctuations in

intracellular concentrations has arisen out of their implications to

gene regulation and stochastic as well as phenotypic variability

[18–23]. The noise of gene regulation is characterized by

appearance of a distribution of intracellular concentrations among

a population. It is generally understood that a bimodal distribution

of protein concentration may be observed when bistability is

encountered in deterministic behavior [24,25] although in light of

[26], it should be recognized that single cell bistability does not

always lead to a bimodal distribution in the population. The

deterministic model fails to predict the average behavior for a

system with bimodal distribution as it is unable to describe the

switch from one mode to another. There also are other limitations

of the deterministic model; recent findings such as stochastic

resonance [27,28], stochastic focusing [29], frequency-modulated

synchronization [30,31], and so on [32–34] also fall beyond the

scope of the deterministic model. From all of the foregoing

considerations, indiscriminate use of the deterministic model is ill-

advised.

In the current study, we develop a detailed understanding of the

deterministic model for describing gene regulatory phenomena in

the biofilm by comparing it with a comprehensive stochastic
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model. Towards this end, we analyze the induction of conjugative

plasmid, pCF10, in Enterococcus faecalis under both planktonic and

biofilm circumstances. The model shows that the deterministic

approach works well for planktonic situations but deviates

seriously for biofilms. It becomes important to realize that the

biofilm circumstance alters the nature of intracellular stochasticity

which cannot be captured by the simplicity of a deterministic

model.

Models

Mechanism of Conjugative Gene Regulation
The transfer of drug resistance in both planktonic and biofilm

environments has been examined in this study. Plasmid pCF10, in

Enterococcus faecalis, encoding tetracycline resistance is transferred

from pCF10 carrying donor cells to pCF10 deficient recipient cells

via inducible conjugation [35]. A signaling molecule, cCF10,

secreted by recipient cells [36] or provided by external addition,

triggers the intracellular gene regulation of donor cells to execute

conjugation. In this study, no plasmid transfer is examined but

only gene regulatory process has been investigated as it is the focus

of many researchers [37–41]. The network of the gene regulatory

process is shown in figure 1. Without cCF10, the plasmid DNA is

bound with a tetramer of repressor PrgX, which hinders RNA

polymerase binding to prgQ promoter and reduces the production

of QPRE [42,43], whose downstream products induce conjugative

transfer of plasmid pCF10 between donor and recipient cells. In

the opposite direction, Anti-Q is continually expressed [44]. Anti-

Q binds to QPRE through sense-antisense interaction [44] and

becomes Anti-Q:Qs complex [45,46], or simply Qs in the model.

The other longer mRNA, QL, comes from QPRE with no Anti-Q

bound. Both Qs and QL mRNA are translated to produce iCF10,

the other signaling molecule which behaves as an inhibitor to

cCF10, but only QL stimulates the expression of downstream

gene including prgB [47], an indicator for the onset of

conjugation [39,41]. Normally, without cCF10 the amount of

QL is small. In the presence of cCF10, a PrgX tetramer breaks

into two dimers that lift the repression on prgQ promoter [48].

When QPRE overwhelms Anti-Q, unbound QPRE starts to

produce QL [49] which stimulates the expression of prgB

encoding a surface aggregation protein and makes conjugation

occur [47]. In a nutshell, plasmid DNA is normally bound with

protein tetramer to stay at repressed configuration with less prgQ

gene expression. Without enough QPRE, the cell produces Qs

RNA which has no effect on downstream gene expression. In the

opposite case, with cCF10, plasmid DNA gets rid of protein

tetramer and changes to active conformation. Then, the cell

produces QL RNA which stimulates the expression of prgB and

enables conjugation.

Modeling the Planktonic Environment
In the planktonic environment, the cells and extracellular

variables are considered to be perfectly mixed. It will be of interest

to consider both deterministic and stochastic models of gene

regulation while accounting for the exchange of species between

the cells and the environment.

Description of the deterministic model for planktonic

environment. A detailed explanation of our notation is shown

in Table 1. The set of intracellular concentration variables is

represented by a vector x: xi, i~1,2, . . . ,6f g, which contains as

components, the concentrations of various intracellular species

denoted by lower case letters in Table 1. The extracellular

concentration variables are contained in a vector y: yi;f
i~1,2g. For the deterministic model the equations are formu-

lated with the assumption of perfect mixing and using mass

action kinetics. The dynamics associated with the intracellular

variables through cellular processes and gene regulation is

described by a rate vector _XX(xDy) containing the deterministic

reaction rates in terms of intracellular concentration vector x and

extracellular concentration vector y, where the notation ‘‘ Dy ’’

means ‘‘given y’’. The rate of change of extracellular variables is

denoted by the vector _YY(x,y). We also use particle numbers of

each species and represent them by symbols with caret tops. Thus

we use ŷyi to denote the number of the ith extracellular species

whose concentration is given by yi,i.e., ŷyi~yiVex. Further, the

rate of change of extracellular variables in number is denoted by

the vector
_̂
YŶYY.

The set of differential equations describing intracellular or

extracellular concentrations in vector form are shown below.

dx

dt
~ _XX(xDy) ð1Þ

dy

dt
~ _YY(x,y) ð2Þ

Figure 1. The gene regulation of pCF10 conjugation. The prgQ-
prgX gene pair regulates conjugation. The inhibitor iCF10 released by
pCF10 carrying donor cells, is encoded by QS and QL RNA, a product of
the prgQ gene. The pheromone cCF10 is released by pCF10 deficient
recipient cells in the extracellular environment or by added in. Without
the presence of cCF10, iCF10-PrgX protein complexes bind to pCF10
DNA and repress the expression of prgQ gene. When cCF10 enters the
donor cell, it alters the structure of PrgX protein and restores prgQ gene
to active conformation. In the repressed conformation, nearly all QPRE

reacts with Anti-Q to become Qs RNA which has no effect on
downstream conjugation-causing genes. In active conformation,
overwhelming amount of QPRE results in the production of QL to
stimulate the expression of prgB. The membrane protein PrgB helps
pCF10 carrying donor cells transfer pCF10 to recipient cells.
doi:10.1371/journal.pone.0079196.g001
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xT~½ qs qL qa i c b �, yT~½ I C �:

_XX(xDy)~

k½K1,1ozK1,2(1{o)� ( K3,5 qa

1zK3,5 qa
){(K4,1zm) qs

k½K1,1ozK1,2(1{o)� ( 1
1zK3,5 qa

){(K4,2zm) qL

k½K1,3ozK1,4(1{o)�{
N½K1,1ozK1,2(1{o)� ( K3,5 qa

1zK3,5 qa
){(K4,3zm) qa

K2,6I{(K4,6zm) i

K2,8C{(K4,8zm) c

K1,5qL{(K4,9zm) b

2
666666666666664

3
777777777777775
:

where o:
i4

i4zK3,8 c4
, represents plasmid DNA in repressed form

_YY(x,y)~
s K1,6(qszqL)D̂D{K2,6ID̂D
� �

s K1,8R̂R{K2,8CD̂D
� �" #

where s:
n

Vex

rep-

resents the ratio of the cell volume n to the extracellular volume

Vex. The entire nomenclature is shown in Table 2 with the values

of the reaction constants in Table 3. D̂D represents the total number

of donor cells in the system and R̂R, the total number of recipient

cells. For simulation, the initial cell numbers and volume

conversion factor are chosen as D̂D~30000, R̂R~7500, and

s~1:5|10{5. The initial conditions of intracellular states or

extracellular variables are assumed to be the steady-state values of

the pure donor culture and have been denoted as x0 and y0.

The exponent on i in the expression for o is taken to be four

because four peptides bind to the protein tetramer to manipulate

the configuration of plasmid DNA [44]. The first three rows of the

column vector _XX(xDy) represent the net rates of formation of Qs

RNA, QL RNA, and Anti-Q RNA. The total transcription rate of

QPRE, ½K1,1ozK1,2(1{o)�, includes the rate K1,1o for plasmid

DNA in repressed form and the rate K1,2(1{o) for the active

form; the total generating rate should be proportional to plasmid

copy number k. If QPRE is bound with Anti-Q, it becomes Qs,

otherwise it becomes QL; the fraction of QPRE to Qs is given by

(
K3,5 qa

1zK3,5 qa

) and to QL by(
1

1zK3,5 qa

). The rate constants for the

degradation of Qs and QL are K4,1 and K4,2, respectively; the

terms containing the growth rate m represent dilution of

intracellular entities due to growth. Similar to the generating rate

of QPRE, k½K1,3ozK1,4(1{o)� describes the generation rate of

Anti-Q. The second term of the third row represents the

consumption rate of Anti-Q due to binding with QPRE. The

uptake rate of iCF10 or cCF10 is proportional to its extracellular

concentration. The final row is the mass balance of PrgB with its

production rate assumed to be proportional to the concentration

qL of QL.

The generation and uptake rates of extracellular iCF10 or

cCF10 are described in _YY(x,y) of Eq.(2). The first term of the first

row of _YY(x,y) describes the rate at which extracellular iCF10 is

translated by Qs RNA or QL RNA in donor cells, and the first

term of the second row indicates the rate at which extracellular

cCF10 is produced by recipient cells. The second term of _YY(x,y)
represents the uptake rate of iCF10 in row 1, and the uptake rate

of cCF10 in row 2.

The derivation of extracellular concentration equations (Eq.(2))

are from the extracellular equations formulated in particle number

shown in Eq.(3) where
_̂
YŶYY(x,y) is the change of extracellular

particle number. In terms of the notation for particle numbers, the

change in the extracellular environment is written as

Table 1. Nomenclature of pCF10 system.

SPECIES SYMBOL Intracellular concentration Extracellular concentration

Component Symbol Component Symbol

mRNA Qs x1 qs

mRNA QL x2 qL

Truncated
RNA

Anti-Q x3 qa

Inhibitor iCF10 x4 i y1 I

Pheromone cCF10 x5 c y2 C

Protein PrgB x6 b

doi:10.1371/journal.pone.0079196.t001

Table 2. Nomenclature of pCF10 system.

Notation Name

qs Intracellular concentration of Qs mRNA

qL Intracellular concentration of QL mRNA

qa Intracellular concentration of Anti-Q RNA

i Intracellular concentration of iCF10

c Intracellular concentration of cCF10

b Concentration of PrgB membrane protein

o Ration of plasmid DNA in repressed form

N Plasmid copy number, equal to 5

I Extracellular concentration of iCF10

C Extracellular concentration of cCF10

m Specific growth rate, equal to 0.0002567 (1/s)

D̂D Number of donors

R̂R Number of recipients

s Volume conversion factor

n Cell volume

Vex Extracellular volume

doi:10.1371/journal.pone.0079196.t002
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d ŷy

dt
~

_̂
YŶYY(x,y) ð3Þ

_̂
YŶYY(x,ŷy)~

K1,6(qszqL)nD̂D{K
0

2,6ID̂D

K1,8nR̂R{K
0

2,8CD̂D

" #
, ŷy~

ÎI

ĈC

� �
There are two kinds of reactions in

_̂
YŶYY(x,y), formation and

transport. The formation is described by particle number

generated per cell per unit time multiplied by cell number. The

transport rate is proportional to the product of the extracellular

concentration and cell number. Note that K
0

2,6 or K
0

2,8 is not a

constant because the uptake of iCF10 occurs by active transport at

a rate depending on PrgZ protein [37]. By assuming the particle

number of PrgZ to be proportional to cell volume n, K
0

2,6 or K
0

2,8

can be represented as K2,6n or K2,8n where K2,6 and K2,8are

constants. The formation of cCF10 is proportional to the number

of recipient cells. Dividing Eq.(3) by Vexwhich is assumed to be a

constant, we have equations for extracellular concentrations,

Eq.(2). The cell numbers for donors and recipients for planktonic

circumstance are described by Eqs. (4) and (5) below where m is the

specific growth rate.

dD̂D

dt
~mD̂D ð4Þ

dR̂R

dt
~mR̂R ð5Þ

Note that we don’t account for conjugation in this study so that

the change of cell number only comes from exponential growth.

PBM with Stochastic Intracellular Gene Regulation, for

Planktonic Environment. The system of interest can be better

described by the population balance equation (PBE) coupled with

the extracellular environmental equations. A generic formulation

of PBE is presented by Ramkrishna [50]. It distinguishes a vector

of internal coordinates x and a vector of position coordinates r; the

former represents quantities associated with the cell and the latter

denotes the location. Cells with the same coordinates are viewed as

indistinguishable. Note that the position coordinate is not needed

for well-mixed planktonic environment but is necessary for biofilm

modeling. The formulation of a PBE with intracellular stochastic

processes described by continuous variables in Ito stochastic

differential equations is introduced in our previous work [51]. In

this study we formulate a PBE with discrete intracellular states.

dn½x̂x; t�
dt

~
X

u

au½x̂x{v̂vuDy�f n½x̂x{v̂vu ; t�{au½x̂xDy�n½x̂x ; t�g

zm n½x̂x ; t�
ð6Þ

The PBE for planktonic circumstance is shown in Eq.(6) where

n½x̂x; t� is the number of cells with state x̂x(symbols with caret tops

represent particle numbers). The mn½x̂x ; t� describes the rate of

increase of cell number due to replication. The particle numbers of

intracellular species are related to concentrations by x̂x~vx where

v is the cell volume and x represents concentrations assumed to be

uniform within the cell, v̂vu the vector describing the stoichiometric

change of x̂x and au the propensity [52,53] associated with reaction

u.

It is convenient to also have PBE with intracellular states in

concentration x. Thus we set n(x,t)~n½x̂x,t�. We further use the

notation au(xDy), the propensity represented in terms of concen-

trations of the uth reaction, as it is different from au½x̂xDy�. The

relationship between au½x̂xDy� and au xDyð Þis elucidated well in the

literature [26]; the effect of dilution on intracellular variables of

Table 3. Parameter values of pCF10 system.

Reaction constant Name Value Unit

K1,1 transcription rate of prgQ, DNA in repressed conformation 0.0084 (nM/s)

K1,2 transcription rate of prgQ, DNA in active conformation 0.0876 (nM/s)

K1,3 transcription rate of Anti-Q, DNA in repressed conformation 0.0125 (nM/s)

K1,4 transcription rate of Anti-Q, DNA in active conformation 0.0014 (nM/s)

K1,5 generation rate of PrgB 0.01 (1/s)

K1,6 generation rate of extracellular iCF10 0.005 (1/s)

K1,8 generation rate of extracellular cCF10 0.12 (nM/s)

K2,6 importation rate of iCF10 0.001 (1/s)

K2,8 importation rate of cCF10 2.5761024 (1/s)

K3,5 equilibrium constant of QPRE and Anti-Q reaction 0.0443 (1/nM)

K3,8 equilibrium constant of DNA binding reaction 1.006106 -

K4,1 degradation rate of Qs mRNA 0.001 (1/s)

K4,2 degradation rate of QL mRNA 0.001 (1/s)

K4,3 degradation rate of Anti-Q RNA 1.3661024 (1/s)

K4,6 degradation rate of intracellular iCF10 1.0061026 (1/s)

K4,8 degradation rate of intracellular cCF10 1.0061026 (1/s)

K4,9 degradation rate of PrgB protein 1.0061026 (1/s)

doi:10.1371/journal.pone.0079196.t003
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concentration is lumped into the degradation rate. Thus the

version of Eq.(6) written in terms of concentration is given by

dn(x; t)

dt
~
X

u

au x{vuDyð Þf n(x{vu ; t){au xDyð Þn(x ; t)g

zmn(x ; t), x[N, tw0

ð7Þ

where the equation implies the daughter cells share the same

intracellular concentration as parent cells.

The extracellular equation is identified as Eq.(8)

dy

dt
~

s
P
x

K1,6(qszqL)n(x; t){K2,6ID̂D

� �
s K1,8R̂R{K2,8CD̂D
� �

2
64

3
75 ð8Þ

The extracellular variable y may be viewed as deterministic as

the stochastic exchange rate with the numerous cells in the well-

mixed environment can be regarded as averaged. Also, we knowP
x

n(x; t)~D̂D
P
x

P(x; t)~D̂D where P(x; t) is the probability of a

cell with state x at time t.
While doing simulation of Eq.(7), the DNA conformation

change together with the sense-antisense interaction between

QPRE and anti-Q are considered as fast reactions. A quasi-steady-

state assumption is applied to the chemical master equation for

calculation purposes by separating variables x into xs and xf , the

slow and the fast reaction species. The probability can be

described by P(x,t)~P(xs,xf ,t)~P(xf Dxs,t)P(xs,t) with

dP(xf Dxs,t)=dt &0, and the master equation for calculation solely

in terms of xs. The propensity of xs can be approximated by

a xs,E½xf Dxs�
� �

[54]. The reactions and propensities for stochastic

simulation are listed in Table 4.

Modeling of Biofilm Environment
In modeling the biofilm environment, we envisage a two

dimensional film with vertical and horizontal coordinates (see

Figure 2). The top of the film is exposed to a well-mixed fluid

environment with concentrations of signaling molecules main-

tained constant while the bottom of the film is impervious to their

transport implying a zero gradient boundary condition. We will

identify the population balance equation for the cells and the mass

balance equations for the environment at each point in the biofilm.

The cells are assumed to be sessile and uniformly distributed

throughout the film. The mechanism of gene regulation and the

kinetic constants are assumed to be the same as for the planktonic

environment. We assume no movement or translocation of cells in

biofilm as the bacteria are trapped within the extracellular matrix.

We analyze a well-developed biofilm with constant thickness and

porosity [55]. The detachment of cells from biofilm is assumed to

be a continuous process having no effect on extracellular structure

or arrangement of cells.

For computational purposes, it is convenient to divide the entire

domain of the biofilm into a two-dimensional grid of subdomains.

The equations written for any points in the film are then adapted

to the subdomains (for both deterministic and stochastic models).

Each subdomain is suitably small (the length of the compartment is

less than 5 mm) to consider the extracellular variables to be well

mixed. The molecular dimension of iCF10 or cCF10 is 29615614

Table 4. The reactions and propensities for stochastic simulation.

Reaction Description Propensity

Anti{Q?11?Qs or Generation of every Qs occurs with consumption of one Anti-Q
k½K1,1ozK1,2(1{o)�( K3,5 qa

1zK3,5 qa

)

1?QL The generation of QL k½K1,1ozK1,2(1{o)�( 1

1zK3,5 qa

)

1?Anti{Q The generation of Anti-Q k½K1,3ozK1,4(1{o)�
1?PrgB The generation of PrgB K1,5qL

I?i The uptake of iCF10 K2,6I

C?c The uptake of cCF10 K2,8C

Qs?1 The degradation of Qs (K4,1zm)qs

QL?1 The degradation of QL (K4,2zm)qL

PrgB?1 The degradation of PrgB (K4,9zm)b

Anti{Q?1 The degradation of Anti-Q (K4,3zm)qa

i?1 The degradation of iCF10 (K4,6zm)i

c?1 The degradation of cCF10 (K4,8zm)c

doi:10.1371/journal.pone.0079196.t004

Figure 2. The schematic representation of the biofilm model.
The width of biofilm is considered to be much larger than its thickness
(L). For vertical direction, one end of biofilm attaches to wall (z = 0) and
the other end is exposed to liquid phase (z = L). The biofilm is
discretized into many subdomains, denoted by the boxed regions. The
length of subdomain is considered to be small enough for applying
well-stirred assumption.
doi:10.1371/journal.pone.0079196.g002
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A
o

[49]. The diffusion coefficient q is approximated by the Stokes-

Einstein equation with correction for the biofilm environment [56]

affording a value of 110.28 mm2/s. Comparing to the reactions,

the rate of diffusing through the compartment is 102–106 times

faster.

The deterministic model for biofilm circumstance. We

consider a biofilm of two dimensional domain

V: r: z,wð Þ; {?vwv?; 0vzvLf g which represents a rect-

angular extent with position vector r comprising a vertical

coordinate z and a horizontal coordinate w. The biofilm is

exposed to a well-stirred fluid at z~L, while the bottom z~0ð Þ is

impervious to transport of any chemical species. The population of

cells is described by a number density f x,r; tð Þ in spatial and

internal coordinates representing concentration of intracellular

variables. The population balance equation for this situation is

given by

Lf x,r; tð Þ
Lt

z+x
: _XX(xDy)f x,r; tð Þ~0, r[V, x[<6

z, tw0 ð9Þ

The above equation is coupled to environmental equation

which accounts for diffusion of extracellular species and their

exchange between the environment and the cells.

Ly(r; t)

Lt
~q

L2y

Lz2
z

L2y

Lw2

 !
zS( det )(y,r), 0vzvL,

{?vwv?, tw0

ð10Þ

where

S( det )(y,r):

s
Ð

(K1,6(qszqL){K2,6I)Vf (x,r; t)dx

sK1,8VR̂R{
Ð

K2,8CVf (x,r; t)dx

� �
2
664

3
775

is the local rate of change of extracellular variables due to cells

and V is the volume of V (with unit length in third dimension).

Eqs. (9) and (10) must be supplemented with boundary and initial

conditions. For the population density we have the initial

condition

f x,r; t~0ð Þ~f0 d(x{x0) ð11Þ

which implies that all cells have the same initial state and that the

number density is f0 everywhere and f0 can be determined by

f0 ~
D̂D

n(s{1zR̂RzD̂D)
ð12Þ

The initial and boundary conditions for y are given by

y(r; t~0)~y0 and
Ly

Lz
D
z~0

~0, yDz~L~yL ð13Þ

where yL is the concentration of y in fluid phase above the biofilm.

The vectors x0 and y0 are specified in Eqs(1) and (2). Boundary

conditions with respect to w are omitted in favor of periodic

boundary conditions in a discretized domain of the biofilm. The

thickness, L of the biofilm is assumed to be 240 mm [57]. For

computational purposes, the biofilm domain V is discretized into a

two-dimensional grid of subdomains identified by a single integral

index g. Thus we let

DVg~½zg{
1

2
Dgvzvzgz

1

2
Dz, wg{

1

2
Dwvwvwgz

1

2
Dw�

where Dz and Dw represent the vertical and horizontal lengths

respectively of each subdomain. The subdomain DVg has volume

DV with its centroid at rg: zg,wg

� �
. The subdomains are all of

equal volume so that DV~V=N , where N is the number of

subdomains. We adapt Eq.(9) to the subdomain DVg with due

apologies for use of the same symbol f for the number density in

the spatially integrated form

f (xg; t):
ð

DVg

f (x,r; t)dr

which is the number of cells per unit volume of intracellular state

space. On the left hand side above, we have renamed the

intracellular vector x as xg to indicate that the cells in subdomain

DVgshould be distinguished from cells from other subdomains.

Integrating Eq.(9) over DVg we obtain

Lf (xg ,t)

Lt
z+xg

: _XX xg Dyg

� 	
f (xg,t)~0, xg[<6

z, tw0 ð14Þ

where yg is the averaged extracellular concentration within the

subdomain with components Ig and Cg (the uptake rate of

peptides is linear to extracellular concentration).

The extracellular concentration within each subdomain is ready

to be solved by

Ly(r,t)

Lt
~q

L2y

Lz2
z

L2y

Lw2

 !
zS( det )

g (yg), r[DVg, tw0 ð15Þ

with

S( det )
g (yg):

s
Ð

(K1,6(qszqL){K2,6Ig)Nf (xg; t)dxg

s K1,8R̂R{
Ð

K2,8Cg Nf (xg; t)dxg

� �
2
664

3
775

which is the rate of change of extracellular variables in the

subdomain DVgdue to cells. Eq.(15) is calculated by finite

difference of each subdomain with continuity concentration and

flux on the boundary of subdomain. The simulation is carried out

for every subdomain at each time step.

The stochastic model for biofilm circumstance. We

formulate the stochastic model by using Reaction-Diffusion

Master Equation (RDME) [58] which accounts for both intracel-

lular stochastic processes and extracellular stochastic diffusion.

Note that the well-mixed assumption allowing us to separate the

extracellular equation from intracellular stochastic processes is no

longer valid in the biofilm case. The basic concept of RDME is to

grid the system volume V into the sub-volumes and treat the
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diffusion of particles from one compartment to another as random

walk which can be considered as a first order reaction in the

master equation [58]. We first partition the system into

compartments each comprising exactly one cell. For a system

with m donor cells, we define ~xx as the composite vector of

intracellular variables with ~xxh the intracellular states of a cell in

compartment h. Similarly, ~yy represents the composite vector of

extracellular variables with ~yyh denoting extracellular variables in

compartment h, and ~yyj,h is the jth element in ~yyh. Thus we have

~xx~½~xx1,~xx2,:::,~xxh,:::,~xxm�, ~yy~½~yy1,~yy2,:::,~yyh,:::,~yym�,
~yyh~½~yy1,h,~yy2,h�

where ~yy1,h is iCF10 and ~yy2,h is cCF10. Next, we formulate RDME,

Eq.(16), which allows us to trace all intracellular and extracellular

variables in every compartment.

d ~PP(~xx, ~yy; t)

dt
~

Xm

h~1

X
u

au ~xxh{vu, ~yyh{uuð Þ~PP ~xx1,:::,~xxh{vu,:::,~xxm , ~yy1,:::,~yyh{uu,:::,~yym; tð Þ



{au ~xxh, ~yyhð Þ~PP ~xx, ~yy; tð Þ
�

z
Xm

h~1

X2

j~1

X
s

q

l2
~yyj,hz1
� 	n

~PP ~xx, :::,~yyj,hz1,~yyj,hzs{1,:::; t
� 	

{~yyj,h
~PP ~xx, ~yy; tð Þ:

z ~yyj,h{1
� 	

~PP ~xx, :::,~yyj,h{1,~yyj,hzsz1,:::; t
� 	

{~yyj,h
~PP ~xx, ~yy; tð Þ

o
ð16Þ

where uu is the vector describing the stoichiometric change of y
associated with reaction u, the sum over s representing the net

diffusional exchange with the immediate neighborhood compart-

ments, and l is the length of the compartment.

As shown above, the diffusion is much faster than reaction, thus

we may apply quasi-steady-state approximation to the extracellu-

lar variables in the stochastic model. In other words, the

distribution of ymay be assumed to be stationary immediately

with respect to dynamic changes in x[54]. Thus.

~PP(~yyD~xx; t)&~PP(~yyD~xx) ð17Þ

We rewrite Eq.(16) in terms of the conditional probability as

shown in Eq.(18) below

~PP(~xx ; t)
d ~PP(~yyD~xx ; t)

dt
z~PP(~yyD~xx ; t)

d ~PP(~xx ; t)

dt

~
Xm

h~1

X
u

au ~xxh{vu , ~yyh{uuð Þ~PP ~yy1,:::,~yyh{uu ,:::,~yym D~xx1,:::,~xxh{vu ,:::,~xxm ; tð Þ



~PP(~xx1,:::,~xxh{vu ,:::,~xxm ; t)

{au ~xxh , ~yyhð Þ~PP ~yyD~xx ; tð Þ~PP(~xx ; t)
�

z
Xm

h~1

X2

j~1

X
s

q

l2
~yyj,hz1
� 	n

~PP :::,~yyj,hz1,~yyj,hzs{1,:::D~xx; t
� 	

~PP(~xx ; t){~yyj,h
~PP ~yyD~xx ; tð Þ~PP(~xx ; t)

z ~yyj,h{1
� 	

~PP :::,~yyj,h{1,~yyj,hzsz1,:::D~xx; t
� 	

~PP(~xx ; t){~yyj,h
~PP ~yyD~xx ; tð Þ~PP(~xx ; t)

o

ð18Þ

We apply the approximation in Eq.(17) to Eq.(18) and sum over

all ~yyto obtain.

d ~PP(~xx ; t)

dt
&

Xm

h~1

X
u

bu ~xxh{vu, ~yyh{uuð Þf ~PP(~xx1,:::,~xxh{vu,:::,~xxm ; t){bu ~xxh, ~yyhð Þ~PP(~xx ; t)
� ð19Þ

where

bu ~xxh, ~yyhð Þ~
X

~yy

au ~xxh, ~yyhð Þ~PP ~yy1,:::,~yyh,:::,~yymD~xx1,:::,~xxh,:::,~xxmð Þ:

The uptake rate of extracellular species is first order with

respect to concentration so that the reaction propensity

au ~xxh, ~yyhð Þis linear with respect to ~yyh and, in view of rapid

diffusional homogenization within the compartment, we have

bu ~xxh, ~yyhð Þ as au ~xxh,E½~yyhD~xx�ð Þ[54]. Then, we rewrite Eq.(19) as.

d ~PP(~xx ; t)

dt
&

Xm

h~1

X
u

au ~xxh{vu,E½~yyh D~xx1,:::,~xxh{vu,:::,~xxm�ð Þf ~PP(~xx1,:::,~xxh{vu,:::,~xxm ; t)

{au ~xxh,E½~yyh D~xx�ð Þ~PP(~xx ; t)
�

ð20Þ

Note that E½~yyhD~xx� is stripped of its temporal dependence because

of Eq.(17).

Eq.(20) couples together the probability of all states in every cell

and is very expensive for computation due to a large number of

states. We have therefore further simplified Eq.(20) by summing

over all ~xx except ~xxh to yield an equation in the probability

distribution at time t for intracellular states in only compartment h,

which we denote byP(~xxh, t).

dP(~xxh, t)

dt
&X

u

au ~xxh{vu,E½~yyhD~xxh{vu�ð Þf P(~xxh{vu,t){au ~xxh,E½~yyhD~xxh�ð ÞP(~xxh, t)g
ð21Þ

In Eq.(21) the expectation of ~yyh is conditional only on

specification of ~xxh as account has been taken of the dependence

on all other ~xx’s.

For computation, we enlarge the compartment so that we have

a total of Ncompartments in the system. Similar to the

deterministic model, we adapt Eq.(21) in the number of cells to

the subdomain DVg by defining n(~xxg; t):
P

P(~xxh, t) which sums

over all h compartments within subdomain DVg.

dn(~xxg ; t)

dt
&X

u

au ~xxg{vu,E½~yyg D~xxg{vu�
� 	n

n(~xxg{vu ; t){au ~xxg ,E½~yyg D~xxg �
� 	

n(~xxg ; t)
o ð22Þ

The system is simulated by t-leap [59] method. However,

instead of choosing a minimum value of t at each step, we use a

fixed t for every step. Although it forces us to choose the smallest t,

we take advantage of not having to calculate t at each round. Note

that the simulation calculates a sample path instead of a

distribution. The mean value at z location shown in result section

is obtained by averaging along with w coordinate.

Similar to yg of the deterministic model, E½~yyg D~xxg� in subdomain

DVgcan be obtained by averaging y calculated by equation below.

(16)

(18)

(19)

(20)

(21)

(22)
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Ly(r,t)

Lt
~q

L2y

Lz2
z

L2y

Lw2

 !
zS(sto)

g (E½~yyg D~xxg�), r[DVg, tw0:

where

S(sto)
g (E½~yyg D~xxg�)~

s
Ð

(K1,6(qszqL){K2,6E½~IIg D~xxg�)n(xg; t)dxg

s K1,8R̂R{
Ð

K2,8E½~CCg D~xxg�n(xg; t)dxg

� �
2
664

3
775:

describes the change of extracellular variables due to cells. The

diffusion equations of both stochastic and deterministic model use

Alternating Direction Implicit (ADI) finite difference method [60].

But, the exchange between cells and the environment is calculated

explicitly because there is no implicit method for tau leap model.

Comparing deterministic and stochastic models for

biofilm circumstance. For biofilm (figure 2), the deterministic

model predicts the same value for different w(horizontal coordi-

nate) as long as z(vertical coordinate) is fixed. For the stochastic

model, due to randomness, cells in different w may have different

intracellular states. Thus, we average the result from the stochastic

model along with w and compare the prediction of the

deterministic model at the same z position.

Results

Biofilm Changes the Nature of Intracellular Stochasticity
Instead of directly measuring the successful events of plasmid

transfer, many experiments monitor the expression of prgB [37–

41,61]. In this study, the PrgB protein concentration is one of the

intracellular states and serves as an indicator of conjugation.

In planktonic environment (figure 3A), the prediction of the

deterministic model (Eqs. (1) and (2)) is consistent with the average

from the stochastic model (Eqs. (7) and (8)). This result is not

surprising since the deterministic model has been used for many

decades and does predict the average behavior in numerous

situations. However, it treats all intracellular states as continuous

variables and ignores the natural discrete character of particle

copy number. Therefore, its universal applicability is at stake,

especially in biological systems with low intracellular particle

number. Whenever particle number is too low to be treated as a

continuous variable, the deterministic model could misrepresent

the real system. On the other hand, the stochastic model based on

CME does not suffer from this shortcoming as it directly deals with

discrete numbers of reacting species.

In biofilm environment (figure 3B), interestingly, deviation is

observed between the deterministic model and the stochastic

model. This phenomenon is more pronounced near the surface;

the bottom of the film is at z~0(z is vertical coordinate, figure 2)

and the outer surface at z~240. The average values of the

stochastic model shown in figure 3 B are obtained by averaging

through the horizontal coordinate at the same vertical position. In

order to further ensure that the deviation does not arise from a

different extracellular environment, we examine the extracellular

concentrations of cCF10 and iCF10. For extracellular cCF10

(figure 3C), the two surfaces overlap so that the deviation does not

arise from it. For extracellular iCF10 (figure 3D), although minute

differences can be observed it is not the reason for lower PrgB

protein of the deterministic model because less iCF10 should lead

to higher PrgB protein.

Increasing Particle Number does not Grant the use of
Deterministic Models

For the biofilm circumstance, there are two major reasons

identified in this study, which cause deviation of the deterministic

model from the stochastic model. From literature [62], smaller

particle numbers are known to lead to larger stochastic fluctua-

tions so we first discuss the effect arising from particle number.

Without washing out from mass transfer of flowing bulk fluid, cells

maintain high extracellular concentration of iCF10 and cCF10.

But, in biofilm, extracellular particles are exchanged with flowing

fluid phase resulting in low intracellular particle number. To see

the effect of particle number, we increase the bulk concentration of

iCF10 but keep that of cCF10 the same (figure 3E and 3F).

Interestingly we observe the deviation of the deterministic model

becomes larger when the concentration of iCF10 is increased. This

observation is not consistent with the prevailing impression that

increasing particle number of a control variable leads the system to

the deterministic limit. Instead, this result suggests that increasing

particle number does not always grant the use of deterministic

models.

The Stochastic Effect of Gene Regulation is Complicated
and Influenced by all Variables

In the other side, increase bulk concentration of cCF10 indeed

reduces the deviation of the deterministic model (figure S1). It is

our contention that the contrasting effects of cCF10 and iCF10 on

the relationship between the deterministic model and the

stochastic average are a manifestation of the same phenomenon

to be elucidated below. The influence of cCF10 or iCF10 on gene

regulation is through DNA conformation. Based on the fact that

iCF10 makes DNA in repressed configuration but cCF10 changes

it to the active configuration, we define below the following

probabilities for the stochastic model.

Pr (pCF10 in repressed configuration):prepressed (23)

Pr (pCF10 in active configuration):pactive~1{prepressed (24)

In the other side, the deterministic model follows o in Eq.(1).

While pactivew1{o, higher value of PrgB is predicted by the

stochastic model (figure 3B–F and figure S1).

The above difference between deterministic and stochastic

models comes from the fact that the average of a nonlinear

function is not equal to the function of the average. The

phenomenon has been recognized for decades [52]. The analytical

approach by Van Kampen [63] provides the primary understand-

ing. From system size expansion, the bigger the size of the system,

the less pronounced is this phenomenon. Paulsson et al. [29]

investigates with stochastic simulation algorithm (SSA) and

conclude that this phenomenon is profound while particle number

is low. In addition, a biological implication has been proposed and

named as stochastic focusing. Stochastic focusing can be under-

stood as follows. The signal noise itself may amplify the effect of

the signal. Of course, it is true only if the particle number of

signaling molecule is low enough. The original stochastic focusing

proposed by Paulsson is for signal noise so that it cannot be applied

to our system in which the extracellular fluctuation of the signaling

molecule is averaged out as described in the section Models. In our

study, only the effect of intracellular stochasticity has been

investigated. Nevertheless, the concept of stochastic focusing as

originally envisaged is the same as that implied in this work, viz.,

through stochastic fluctuation, there is an attempt by cells to

‘‘amplify’’ the effect from species with low particle number.

The Role of Stochastic Gene Regulation in Biofilm
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Figure 3. The behaviors of cells. A) For planktonic environment, the probability distribution of PrgB protein from population balance model with
intracellular stochastic gene regulation (surface) and the averaged value estimated by the deterministic model (solid curve) are consistent. B) For
biofilm cells, the bulk concentrations of both iCF10 and cCF10 are set to zero as in the natural niche of E. faecalis, the bulk fluid continues flowing [68].
The probability distribution of PrgB protein with time from deterministic model (solid surface) deviates from that of stochastic model (mesh surface)
because the former is not able to describe the difference of stochasticity from planktonic to biofilm environment. C) Both stochastic and deterministic
models have the same extracellular cCF10 concentration. D) Although the extracellular iCF10 predicted from the deterministic model is slightly lower
than that of stochastic model around time equal to one hour, this should not be the reason causing deterministic model predicting lower value of
PrgB in figure 3B because lower iCF10 should lead to higher PrgB. E) and F) Increasing particle number of iCF10 results in more deviation of the
deterministic model. The bulk concentration of iCF10 is 10 nM for figure 3E and 30 nM for figure 3F. The bulk concentration of cCF10 is 0 nM for
both. When bulk concentration of iCF10 increases, the particle number of intracellular iCF10 also increases and the fluctuation of intracellular iCF10 is
supposed to be less. But a higher deviation of PrgB protein from the deterministic model is observed.
doi:10.1371/journal.pone.0079196.g003
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Therefore, we further extend the use of the term, stochastic focusing, to

describe this underlying concept.

By applying the foregoing concept, for low particle number of

cCF10, the stochastic focusing of cCF10 may result in

pactivew1{o. Conversely, for the system with low particle number

of iCF10, the stochastic focusing of iCF10 results in prepressedwo.

Indeed, for a single variable, the effect fades out by increasing

particle number but the behavior of a cell is decided by the overall

effect. When particle number of iCF10 and cCF10 are both low,

both stochastic focusing is high and the outcome depends on

which effect is bigger. We know that cCF10 facilitates conjugation

while iCF10 suppresses it. If the stochastic focusing of cCF10 is

larger, the PrgB predicted by the stochastic model is higher than

that of the deterministic model and this is the case in figures 3;

when increasing particle number of iCF10 (decrease stochastic

focusing from iCF10) the stochastic focusing of cCF10 become

more significant and the deviation of the deterministic model is

larger (figure 3 E and 3F). It is also possible to let stochastic

focusing of iCF10 dominate the system and the deviation of the

deterministic model shows in opposite direction (figure S2); under

this circumstance, the deviation of the deterministic model is seen

to increase as bulk concentration of cCF10 is increased.

Stochastic Focusing is Amplified by Interrupting the
Feedback Loop

We have demonstrated that the change of particle number

alters stochastic focusing, but the influence of extracellular mass

transfer on stochastic focusing is not through it alone. We propose

here a new idea that interrupting the natural feedback loop can

also be a major cause for deviation of the deterministic model. To

illustrate it, we compare steady-state values for two cases. For both

cases, both iCF10 and cCF10, the periodic boundary condition is

applied to horizontal coordinate (w) and the reflection boundary

condition is applied to vertical coordinate at the bottom of biofilm

(z~0). In the first case, we allow cells to control the extracellular

iCF10 by assigning a reflection boundary condition at the top of

biofilm; and in the second case, the bulk concentration of iCF10 is

fixed. Because the purpose is to see the feedback effect of iCF10,

reflection boundary is applied to cCF10 at the top of biofilm for

both cases.

With reflection boundary condition at the top of biofilm, the cell

concentration used above shows only a small difference between

the stochastic average and the deterministic result so we simulate

the case of D̂D~30000, R̂R~3750, and s~7:5|10{6. For the first

case, the iCF10 concentration calculated by the deterministic

model at the top of the film is 2493 nM and we assign this value as

boundary condition for second case.

The predictions of the deterministic model for these two cases

overlap (figure 4). However, a clear difference can be observed for

the predictions of the stochastic model. When cells cannot fully

control extracellular iCF10 and feedback is intercepted, they have

less ability to compensate for the influence of random uptake of

cCF10. Note that the feedback loop attenuating stochastic

fluctuation does not contribute notably because of the large number

of cells averaging the extracellular iCF10 concentration. Moreover

the iCF10 concentration is more than 103 nM and its stochastic

fluctuation should not be significant. The outcome mainly results

from cells that are not allowed to balance the stochastic focusing

from cCF10 by controlling the production of iCF10.

Intracellular Stochasticity Renders Cell Population Less
Sensitive to Environmental Fluctuation

In the planktonic case, small environmental fluctuation may

influence the system just a little as the concentration of

extracellular iCF10 is of the order of 103 nM and that of cCF10

is of the order of 102. However, in the biofilm case, the

concentrations of extracellular species are nearly zero. It is of

interest to understand how the cell population responds to

environmental fluctuations. In this study, a Gaussian white noise

is imposed to the bulk concentration of iCF10 (figure 5 A).

It may be possible that the cell population uses intracellular

stochasticity to minimize the influence of environmental fluctua-

tion. We use deterministic and stochastic models to analyze the

behavior of cells. The PrgB level for the biofilm case with bulk

concentration of iCF10 and cCF10 as zero is served as the base for

examining the response of cells to small environmental fluctuation.

The difference of PrgB shows how cell population responds to

small environmental fluctuation (Figure 5B from the stochastic

model and 5C from the deterministic model).

That environmental change has less effect on cells deeply inside

the biofilm, is consistent with commonly held belief to this effect

[64]. For cells close to the surface, we observe that the stochastic

model is much less sensitive to environmental change. The

difference between Figure 5B and 5C comes only from the

intracellular stochasticity (as described in the section Models). In

other words, the stochastic nature of intracellular gene regulation

may help to reduce the influence of small environmental change

on the cell population. The underlying reason is due to the fact

that cells attempt to ‘‘amplify’’ the effect from signal while its

concentration is low. To further explain this concept, we refer to

the prediction from the deterministic model as DO (deterministic

output), that from the stochastic model as RO (real output) and

define stochastic focusing SF as the difference between RO and

DO. For a given z position, we may write.

RO(Il ,Cl)~DO(Il ,Cl)zSF (Il ,Cl) ð25Þ

where Il and Cl denote iCF10 and cCF10 concentrations in liquid

Figure 4. The influence of interrupting feedback loop. The dash
represents the prediction from the deterministic model and the solid
line from stochastic model. The black color is for the system with given
bulk concentration as boundary condition and the blue color is for
system with reflection boundary condition. For the deterministic model,
the results of two cases are overlapped. For stochastic model, lack of
feedback causes higher stochastic focusing.
doi:10.1371/journal.pone.0079196.g004
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phase (as indicated by suffice l) respectively. We have equation

below, as an example, to describe the change of Cl from zero to one.

RO(0,1){RO(0,0)½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
changepredictedfromstochasticmodel

%hbrace

{ DO(0,1){DO(0,0)½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
changepredictedfromdeterministicmodel

%hbrace

~ SF (0,1){SF (0,0)½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
thechangeofstochasticfocusing

%hbracev0

ð26Þ

Clearly, SFdecreases as Cl increases so the change of SF is in the

opposite direction to that of DO. Due to this feature, the change

predicted from the stochastic model with respect to increasing

environmental cCF10 is less than that of the deterministic model.

Similarly, when Il is increased, the stochastic model shows less

sensitivity to the change (figure 5). Cell population may utilize

intracellular stochasticity against small environmental change.

Thus, the response of cells is controlled more by their own density.

Discussion

In this study, we have investigated using a layer model the

behavior of a biofilm whose environment is altered by mass

transfer with a bulk liquid phase. We have emphasized the role of

intracellular stochasticity and investigated the fundamental con-

cept causing the deterministic model to deviate from observation.

Most models for biofilm growth usually focus on the biofilm

structure, and extracellular mass transfer [15,65]. Few of them

discuss the stochasticity of intracellular gene regulation. Thus the

issue of stochastic focusing demonstrated here is overlooked in the

literature.

Although the layer model does not fully reflect the structure of

biofilm, nor include the movement of cells within the biofilm [6], it

provides an appropriately simple setting for demonstration of the

effect of extracellular mass transfer on intracellular stochasticity

that cannot be handled by a deterministic model. Therefore, the

deterministic model possibly deviates from the stochastic model as

the system is subject to extracellular mass transfer. The concept

proposed by this study is ready for application to other

mathematical biofilm models because all of them involve mass

transfer. Of course, the structure of biofilm or movement of cells

can affect the stochastic focusing. But, as long as the particle

number is low and the feedback loop is interrupted, the stochastic

focusing should still be pronounced. With incorporation of the

additional features of biofilm structure and of cell movement, and

considerably augmented computational power, the formulation

and methodology of this paper would help to discover stochastic

focusing in this more complex setting. The simplifying assumptions

of this paper, made it possible however to discover the basic

attributes of stochastic focusing.

We have identified two main causes by which mass transfer

alters the stochastic nature; (i) by interrupting the feedback loop

and (ii) reducing the particle number. For (i), this study illustrates

the concept that feedback loops playing an important role on

stochastic focusing. The example demonstrated in the results

section may not closely purport to a specific biological system but

nevertheless the predictions shed a light on the above concept. For

example, there are two different experimental protocols of biofilm

formation in E. faecalis. Protocol 1 is to inoculate cells in a 96-well

microtiter plate [66]. Protocol 2 is to place a plastic ‘‘coupon’’,

which provides a flat surface for cells to attach, in a stirred

bioreactor. The ‘‘coupon’’ appears like a coin about 1 cm in

diameter; the chemostat is more than a liter with continuous

feeding and removing medium [61]. Case 2, discussed in the

results section may serve well to describe the circumstance of

protocol 2. As for protocol 1, the concentration of iCF10 in

100 uL medium may be influenced, to some degree, by the cells.

Protocol 1 is closer to case 1 (in the results section) than case 2.

Therefore we may surmise that protocol 1 may have less stochastic

focusing as compared to protocol 2. For (ii), we have pointed out

that the stochastic effect of gene regulation is an overall outcome of

the reaction network, exchange with the environment, and

transport. Hence it is important to recognize that behavior

obtained by indiscriminately increasing particle number of a

control variable does not necessarily submit to deterministic

modeling as it may result in even larger deviation. The simplicity

of the deterministic model must be weighed with losing the detail

of the nature of stochasticity. In this connection, various situations

in which stochasticity may be important and cannot be addressed

by the deterministic model, have been discovered recently (from

literature [27–34] and from this study). These studies provide us a

Figure 5. Cells with intracellular stochasticity are less sensitive to small environmental fluctuation. When iCF10 concentration in liquid
phase is subject to small environmental fluctuation, stochastic model are less sensitive to it. A) The Gaussian white noise with standard deviation of
10 nM. Only positive concentration is taken from the noise (the negative concentrations have been set to zero) and exactly the same noise is
imposed to both models. B) and C) the response from stochastic and deterministic models, respectively, after exposing to different magnitude of
Gaussian white noise, blue 10 nM, green 20 nM, red 40 nM and cyan 80 nM. Cell population may probably use this feature against unwanted
environmental fluctuation.
doi:10.1371/journal.pone.0079196.g005

The Role of Stochastic Gene Regulation in Biofilm

PLOS ONE | www.plosone.org 11 November 2013 | Volume 8 | Issue 11 | e79196



better sense of direction towards weighing computational cost with

modeling detail.

We have recently reported the conjugation of pCF10 as a

quorum sensing system with dual signaling molecules for self

sensing and mating sensing [67]. This dual signal system allows

cells not only to sense the density of recipients but also donors.

Undoubtedly, sensing both the population of donors and recipients

is critical to survival. However, for E faecalis, biofilm in situ may

grow in the presence of flowing bulk fluid [68] and the

concentration of signaling molecules is sensitive to environmental

fluctuation. Without appropriate mechanisms, the decision of

conjugation may depend majorly on the noise instead of cell

density, especially for cells near surface. The model development

in this study suggests that the stochastic nature of intracellular gene

regulation may render the cell population less sensitive to

environmental fluctuation (figure 5). Cell population may use

regulation to minimize the influence from extracellular noise so

that cells can sense their own population and ignore the

surrounding fluctuation. From the aspect of evolution, it has been

experimentally shown that cells are able to adjust the intracellular

stochasticity for survival [32]. It is therefore possible that this

delicate mechanism of utilizing intracellular stochasticity is the

product of evolution.

In pCF10 biofilm system, extracellular iCF10 and cCF10 are

manipulated by externally controlling their concentrations in the

fluid phase so that we can clearly illustrate experimentally a

picture of the concept. We have not discussed the stochastic

focusing from other intracellular variables in the result section to

avoid confusion. When the stochastic focusing of iCF10 and

cCF10 are small, the influence from other intracellular variables

may be observable. Stochastic focusing is a complicated phenom-

enon with many reactions contributing to it. Although we show in

this study that stochastic focusing in planktonic growth is

negligible, it does not imply that stochastic focusing is not

important in other planktonic systems. It is possible to observe

stochastic focusing in planktonic systems [29] but its effect in

biofilm circumstance is usually more pronounced.

Last but not least, reaction Diffusion Master Equation (RMDE)

is formidable for its extremely high computational burden; we

have proposed a way to separate extracellular mass transfer from

intracellular stochastic processes to formulate a PBE. The

computational burden of PBE is much less than that of RDME

so that PBE allows us to analyze the behavior of cells for a much

longer time.

Supporting Information

Figure S1 Increasing particle number of cCF10 results in less

deviation of deterministic model. The bulk concentration of

cCF10 is 1 nM, 2 nM and 3 nM for A, B, and C; the bulk

concentration of iCF10 is 100 nM for all three figures. When bulk

concentration of cCF10 is increased, the fluctuation of intracel-

lular cCF10 is reduced and less deviation of deterministic model is

observed (solid surface as deterministic model and mesh surface as

stochastic model).

(TIF)

Figure S2 The overall stochastic focusing of iCF10 and cCF10.

The bulk concentration of cCF10 is 3 nM for A and 5 nM for B;

the bulk concentration of iCF10 is 80 nM for both. A) the

stochastic focusing of iCF10 dominates the system for 180, z

,240 mm (for 0, z ,180 mm, the stochastic focusing of cCF10

dominate the system) B) When particle number of cCF10 is

increased, the deviation of deterministic model for 180, z

,240 mm becomes larger and the deviation of deterministic model

for 0, z ,180 mm changes sign because the stochastic focusing of

cCF10 no longer dominates the system.

(TIF)
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