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We demonstrate strong experimental support for the cybernetic model based on maximizing
carbon uptake rate in describing the microorganism’s regulatory behavior by verifying exacting
predictions of steady state multiplicity in a chemostat. Experiments with a feed mixture of glu-
cose and pyruvate show multiple steady state behavior as predicted by the cybernetic model.
When multiplicity occurs at a dilution (growth) rate, it results in hysteretic behavior following
switches in dilution rate from above and below. This phenomenon is caused by transient paths
leading to different steady states through dynamic maximization of the carbon uptake rate. Thus
steady state multiplicity is a manifestation of the nonlinearity arising from cybernetic mecha-
nisms rather than of the nonlinear kinetics. The predicted metabolic multiplicity would extend to
intracellular states such as enzyme levels and fluxes to be verified in future experiments. VVC 2012
American Institute of Chemical Engineers Biotechnol. Prog., 000: 000–000, 2012
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Introduction

Microbes significantly impact humans as many useful
products result from their metabolism. The important field of
metabolic engineering seeks to make genetic changes in an
organism towards maximizing the productivity of desired
products of very high impact such as biofuels, drugs, and
numerous others. Consequently, the cultivation, control and
design of microorganisms are an important aspect of modern
biotechnology. Metabolic processes are, however, subject to
strict genetic control of the cell’s protein synthesis machin-
ery resulting in preferential responses by the organism to its
environment and varying distribution of metabolic products.
This control is understood to be accomplished through
genetic switches triggered by various signals. A strictly
cause-and-effect based scientific approach to describing such
control is untenable because of the complexity of what is
known and the immensity of what is unknown. Recently,
Kim et al. (2008)1 have shown how the hybrid cybernetic

model (HCM) describes different uptake patterns of substrate
mixtures of glucose and pyruvate by Escherichia coli. Their
model is based on the cybernetic goal of maximizing carbon
uptake rate.

In this article, we subject the cybernetic model of Kim

et al. (2008),1 maximizing carbon uptake rate, to more rigor-

ous tests by comparing its predictions in a chemostat. Non-

linear analysis of the cybernetic model reveals many

interesting results. Thus, for substrate feeds containing a

mixture of glucose and pyruvate of appropriate composition,

the model predicts multiple steady states. Calculations show

that steady state multiplicity can be as high as 5 with 3 sta-

ble and 2 unstable. We desist from an exhaustive bifurcation

analysis in this exercise as our goal has been identification

of challenging and unusual scenarios for experimental verifi-

cation. Steady state multiplicity has been reported in the lit-

erature2 by models with kinetic mechanisms for metabolic

regulation. This is a manifestation of kinetic nonlinearity.

The multiplicity reported in this article is a consequence of

the nonlinearity present in the cybernetic mechanism rather

than of only the kinetic nonlinearity.

Our presentation begins by recapitulating the model by
Kim et al. (2008)1 followed by the results of computations
on steady state concentrations of various fermentation prod-
ucts, residual substrate levels, and biomass. The extent to
which the data conform to prediction is evaluated in detail in
the Results and Discussion with Concluding Remarks reflect-
ing on long term implications of this work.

Additional Supporting Information may be found in the online ver-
sion of this article.

Current address of Jin Il Kim: Samsung Engineering Co., Ltd.,
467-14 Samsung SEI Tower, Dogok 2 Dong, Gangnam-Gu, Seoul
135-856, Republic of Korea

Correspondence concerning this article should be addressed to D.
Ramkrishna at this current address: Forney Hall of Chemical
Engineering, 480 Stadium Mall Drive, West Lafayette, IN 47907-2100;
ramkrish@ecn.purdue.edu.

VVC 2012 American Institute of Chemical Engineers 1



Metabolic Model

Modeling framework

Dynamic metabolic behavior of microorganisms is suitably
modeled using the hybrid cybernetic approach.1,3 The ‘‘cyber-
netic’’ modeling approach describes cellular metabolism from
the viewpoint that a microorganism is an optimal strategist
making frugal use of limited internal resources to maximize
its survival.4,5 Metabolic regulation of enzyme synthesis and
their activities is made as the outcome of such optimal alloca-
tion of resources. The HCM incorporates the concept of ele-
mentary modes (EMs)6 into the cybernetic framework. EM is
a metabolic pathway (or subnetwork) composed of a minimal
set of reactions supporting a steady state operation of metabo-
lism. Any feasible metabolic state can be represented by non-
negative combinations of EMs. HCM views EMs as cell’s
metabolic options, which are optimally modulated under
dynamic environmental conditions such that a prescribed met-
abolic objective (such as the total carbon uptake flux) is maxi-
mized. An HCM for a chemostat can be given as follows:

dx

dt
¼ SxZrMcþ D xIN � xð Þ (1)

where c is the biomass concentration, x is the vector of nx
concentrations of extracellular components in the reactor
such as substrates, products and biomass, Sx is the ðnx � nrÞ
stoichiometric matrix, and Z is the ðnr � nzÞ EM matrix, rM
is the vector of nz fluxes through EMs, and D is dilution
rate. By setting D ¼ 0, Eq. 1 also represents a batch reactor
model. Fluxes through EMs are given as below:

rM;j ¼ vM;j eM;j=e
max
M;j

� �
rkinM;j (2)

where the subscript j denotes the index of EM, vM,j is the
cybernetic variable controlling enzyme activity, eM,j and emax

M;j

are the enzyme level and its maximum value, respectively,
and rkinM;j is the kinetic term. Enzyme level eM,j is obtained
from the following dynamic equation, i.e.,

deM;j

dt
¼ aM;j þ uM;j r

kin
ME;j � bM;jeM;j � leM;j (3)

where the first and second terms of the right-hand side
denote constitutive and inducible rates of enzyme synthesis,
and the last two terms represent the decrease of enzyme lev-
els by degradation and dilution, respectively. In the second
term of the right-hand side, uM,j is the cybernetic variable
regulating the induction of enzyme synthesis, and rkinME;j is the
kinetic part of inducible enzyme synthesis rate. In the third
and fourth terms, bM;j and l are the degradation and specific
growth rates, respectively. l is given as an element of
SxZrM corresponding to biomass in Eq. 1. The cybernetic
control variables, uM,j and vM,j are computed from the
Matching and Proportional laws,7,8 respectively:

uM;j ¼ pjP
k

pk
; vM;j ¼ pj

max
k

ðpkÞ (4)

where the return-on-investment pj denotes the carbon uptake
flux through the jth EM.

HCM for anaerobic E. coli growth

The foregoing formulation applies to modeling anaerobic
growth of E. coli GJT001 on glucose and pyruvate. Model is

developed along the following procedures: (i) construction of
metabolic network, (ii) network decomposition into EMs and
their reduction, and (iii) parameter identification. The meta-
bolic network is constructed by expanding the network used in
Young et al. (2008)9 to include assimilation of pyruvate and
reversed glycolysis reactions. The resulting network contains
14 reactions (1 reversible and 13 irreversible), and 18 metabo-
lites (8 extracellular and 10 intracellular) (Figure 1; Supporting
Information Tables 1 and 2). The network is decomposed into
49 EMs using METATOOL 5.1.10 Model simplification,
enabled by using the minimum number of modes to represent
yield data of fermentation products,11 leads to extraction of
four core modes (Supporting Information Table 3). The yield
data suggest that four EMs provided sufficient pathway options
for the organism to respond to conditions used in our experi-
ments. Kinetic equations are given as follows:

rkinM;j ¼
kmax
1

xG
KG;1þxG

ðj ¼ 1Þ
kmax
2

xP
KP;2þxP

ðj ¼ 2Þ
kmax
j

xG
KG;jþxG

xP
KP;jþxP

ðj ¼ 3; 4Þ

8><
>:

rkinME;j ¼
kE;1

xG
KG;1þxG

ðj ¼ 1Þ
kE;2

xP
KP;2þxP

ðj ¼ 2Þ
kE;j

xG
KG;jþxG

xP
KP;jþxP

ðj ¼ 3; 4Þ;

8><
>:

(5)

where the subscripts G and P denote glucose and pyruvate.

The decomposition of formate into hydrogen and carbon
dioxide is also considered in the model. Then, for formate, Eq.
1 is modified by including an additional term �rFc in the right
hand side. The kinetic form of rF is given as follows9:

Figure 1. Metabolic network of anaerobic E. coli growth on
glucose and pyruvate. Letters outside and inside the
dashed gray box denotes extracellular and intracellu-
lar metabolites, respectively. The full names of
metabolites are provided in Supporting Information
Table 1.
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rF ¼ kF
x2F

K2
F þ x2F

(6)

where the subscript F denotes formate.

MATLAB 7.1 (Mathworks, Natick, MA) is used for
dynamic simulations and parameter optimization. Transient
simulation curves are generated by solving ordinary differen-
tial equations given in Eqs. 1 and 3 using ode15s.m. Optimal
values of parameters including maximum reaction rate con-
stants (kmax

j ’s), and Michaelis constants (KG,j’s, and KP,j’s)
are identified using the nonlinear optimization function
lsqnonlin.m such that the sum of squared errors between
model simulations and batch data are minimized. Optimal
values for kF and KF are taken from Kim et al. (2008)1 as
7.998 and 6.997, respectively, and all other parameters are
presented together with their confidence intervals in Table 1.
The Michaelis constants were initially set at available past
estimates and subsequently corrected by optimization along
with all the rate constants. Michaelis constants varied only
slightly from their initial guesses reflecting their limited sen-
sitivity. More details on numerical simulation and parameter
identification are referred to Kim (2008).12

Experiments

Strain

A significant genotype of E. coli strain GJT001 (spontane-
ous cadR mutant of MC4100, (ATC35695) Dlac(arg-
lac)U169 rpsL150 relA1 ptsF, SmR)13 was used in this
study. GJT001 anaerobic shows wild-type glucose metabo-
lism and can grow in anaerobic conditions.

Culture Medium. (a) M9 minimal medium: The medium
is composed of Na2HPO4 (30 g/L), KH2PO4 (15 g/L),
NH4Cl (5 g/L), and NaCl (2.5 g/L), and modified SL-7 trace
element solution. (b) Modified SL-7 trace element solution:
HCl (6.5 mL/L), MgSO4(120mg/L), CaCl2(11.1 mg/L), FeS-
O4.7H2O (2.1 mg/L), H3BO3 (60 mg/L), MnCl2.4H2O (100
mg/L), CoCl2.6H2O (120 mg/L), ZnSO4.7H2O (145 mg/L),
NiCl2.6H2O (25 mg/L), CuSO4.5H2O (25 mg/L),
Na2MoO4.2H2O (25 mg/L), Na2SeO3 (20 mg/L).

Batch Experiments

• Medium: M9 minimal medium was used. The concentra-
tion of glucose and pyruvate were adjusted accordingly for
parameter identification. For anaerobic flask cultures, the
medium was 100 mM MOPS (3-(N-morpholino) propanesul-
fonic acid) buffer to stabilize pH and 10 mM NaHCO3 to
reduce the initial lag times.

• Cultivation: Preculturing was carried out aerobically in
overnight shake flasks. Before inoculation, 60 mL of fresh
medium was sparged with sterile nitrogen gas to establish
anaerobic conditions. The culture was then inoculated to an
initial OD 600 of �0.2. Anaerobic shake flask cultures were

grown in sealed 100 mL serum vials at 37�C with rotary
shaking at 100 rpm. Samples were periodically withdrawn
through a septum using a syringe and needle to avoid oxy-
gen contamination.

Chemostat Experiments

• Medium: M9 minimal medium at pH 7.0 was used in all
experiments. 10 mM NaHCO3 was added to reduce initial
lag time. Also, antifoam of 6 lL/L was added to prevent the
culture from forming foam. All chemicals used in the experi-
ments were reagent grade and obtained from Aldrich or
other international suppliers.

• Cultivation (I): Continuous culture experiments, reported
in Figures 3 and 4, were carried out in a 3 L Biostat B plus
(Sartorius Stedim, Germany) stirred and jacketed glass bio-
reactor, equipped with OD (optical density), DO (dissolved
oxygen), pH and temperature probes and connected to peri-
staltic pumps for flow rate, pH/antifoam control. Nitrogen
was continuously sparged at a flow rate of 0.5 L/min and the
culture broth (working volume of 1.5 L) maintained at a
temperature of 37�C, was agitated at 100 rpm using a stand-
ard disk turbine. A condenser maintained at 2–4�C was
attached at the vent line of the fermenter to prevent loss of
fermentation products. The bioreactor pH was controlled at
pH 7 by controlling additions of 2N NaOH and 2N HCl sol-
utions. The input flow rate was controlled using a BioRad
Econo pump with a 1.6 mm tube (0.6 mm ID) so that the

Table 1. Optimized Parameter Values of the HCM for Anaerobic

Growth of E. coli

j
kmax
j

(mmol/gDW/h)

KG,j

(mM)

KP,j

(mM)

aM,j (h
�1)

(fixed)

bM,j (h
�1)

(fixed)

kE,j
(h�1)*

1 0.394 � 0.013 0.08 � 0.42 – 0.004 0.05 0.44

2 0.171 � 0.005 – 0.07 � 0.19 0.004 0.05 0.217

3 0.410 � 0.016 0.133 � 0.78 0.8 � 1.63 0.004 0.05 0.456

4 0.339 � 0.013 0.04 � 0.22 0.2 � 0.87 0.004 0.05 0.385

The subscript j denotes the index for EMs (*kE,j is set to be
kmax
j þ bM;j � aM;j so that maximum enzyme levels become unity).

Figure 2. Batch experiments for anaerobic E. coli growth on
glucose-pyruvate mixtures. Blue and red symbols
denote experimental data when cells are precultured
on glucose and pyruvate, respectively, and solid and
dashed lines indicate simulation curves using the
HCM. Simultaneous uptake patterns were observed
with cells precultured on pyruvate, while sequential
or diauxic growth occurred with cells precultured on
glucose. The model fits both patterns well. The
model shows simultaneous pattern for cells precul-
tured on pyruvate as initial enzyme levels for pyru-
vate metabolism were high enough to favor EMs for
simultaneous utilization of pyruvate and glucose.
Preculturing on glucose, in contrast, favors selection
of modes taking up glucose. Both preferences above,
made in the interest of maximizing carbon uptake
rate, are enabled through the cybernetic variables.
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flow rates could be controlled in the range of 0.01–5 mL/
min with an accuracy of �5%. The output flow from the re-
actor was also controlled by another peristaltic pump which
was regulated by the level controller. Level control was
necessitated since the bioreactor pH was maintained at 7 by

controlling additions of 2N NaOH and 2N HCl solutions
through system pumps. Since the additions were less than 1
mL at any time and in intervals of more than 15 min, the
changes in flow rate and levels were not significant. The tur-
bidity (as OD) of the culture broth was continuously meas-
ured using the Fundalux II (Sartorius Stedium) on-line
turbidity measurement probe. The dissolved oxygen level in
the culture broth was continuously monitored using the DO
probe. M9 minimal medium containing 5 g/L glucose was
used as the initial fermentation medium which was inocu-
lated to an initial OD of about 0.1. The mode of operation
was shifted from batch to chemostat at the end of the expo-
nential growth phase, which was typically characterized by
an OD of about 0.5. Continuous feed to the chemostat con-
sisted of the M9 minimal medium containing NaHCO3 and
modified SL-7 trace element solution, with 10 mM glucose
and 15 mM sodium pyruvate. Dilution rates were varied in
the range of 0.286–0.342 h�1 through the Biorad pump and
the multiple number of experiments involved stepwise
increase in dilution rates followed by a stepwise decrease.
During continuous culture, the steady state was assumed to
have been attained by satisfying two conditions: (1) the run-
ning time of bioreactor at one specific dilution rate was at
least equal to or larger than five times the residence time
and (2) the OD is constant for 4 hours.

• Cultivation (II): Continuous culture experiments reported
in Figure 5 were carried out in a 3.7 L (working volume of
2.0 L) BioFloIII (New Brunswick), stirred at 150 rpm, where
nitrogen was sparged at a flow rate of �0.8 L/min. The bio-
reactor pH was controlled at pH 7.0 by controlling additions
of 8 M NaOH and 2N HNO3 solutions.. Continuous feed to
the chemostat was the M9 minimal medium containing anti-
foam, NaHCO3, 10 mM glucose and 40 mM pyruvate. Dilu-
tion rates were varied in the range of 0.243–0.342 h�1. All

Figure 3. Steady state concentrations of formate in a chemo-
stat with 10 mM glucose and 15 mM pyruvate feed
(40 mol % glucose). Symbols and lines denote exper-
imental data and model prediction, respectively.
Error bars denote standard deviations of data. Solid
and dashed lines indicate stable and unstable states
predicted by the HCM. At the top, experimental
data (red symbols) are collected along the increasing
direction of dilution rate D. At the bottom, experi-
mental data (blue symbols) are collected along the
decreasing direction of dilution rate D. Raw data are
provided in a separate file.

Figure 4. Multiple steady states for 10 mM glucose and 15
mM pyruvate feed (40 mol % glucose). Red and blue
symbols represent experimental extracellular meas-
urements collected along the increasing and decreas-
ing direction of dilution rate D. Solid and dashed
lines denote stable and unstable states predicted by
the model.

Figure 5. Multiple steady states for 10 mM glucose and 40
mM pyruvate feed (20 mol % glucose). Red and blue
symbols represent experimental extracellular meas-
urements collected along the increasing and decreas-
ing direction of dilution rate D. Solid and dotted
lines denote stable and unstable states predicted by
the model.
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other conditions are maintained to be the same as in Cultiva-
tion (I).

Analytical Techniques

• Cell density was monitored at 600 nm in a
spectrophotometer.

• The samples were centrifuged at 10,000 rpm for 7–10
min, washed with 0.15 M sodium chloride solution, and
dried in an oven until a constant weight was obtained. The
normal duration of drying was �18 hours. The conversion
factor from OD to cell density was �0.471 g-biomass/OD.
For fermentation products, broth samples were collected and
centrifuged at 10,000 rpm for 7–10 min. The supernatant
was stored in �20�C refrigerator for later HPLC analysis.

• Fermentation products were identified using Agilent
HPLC system equipped with an Aminex HPX-87H cation
exchange column(s) (Biorad Laboratories, MO). A mobile
phase of 10 mM sulfuric acid was used at a flow rate of 0.6
mL/min for metabolites studied in Figure 3 and 4 while 5
mM sulfuric acid was used at a flow rate of 0.8 mL/min for
metabolites studied in Figure 5. The temperature along the
column was maintained at 65�C. The level of pyruvate, suc-
cinate, lactate, acetate and formate in culture medium was
analyzed with a UV detector at a wavelength of 210 nm;
while the concentration of glucose and ethanol was analyzed
by Refractive Index (RI) detector. When there is significant
RI response overlap between glucose and pyruvate, the sam-
ples were diluted 10 times to alleviate any signal
interference.

Results and Discussion

Model identification from batch growth data

HCM has been successfully used to model E. coli growth
on mixed carbon source (glucose and pyruvate) by Kim
et al. (2008).1 In this model, different uptake patterns of glu-
cose and pyruvate can be experimentally validated depending
on whether the bacteria were initially cultivated on glucose
or on pyruvate. Different uptake patterns of glucose and py-
ruvate found experimentally depending on whether the bacte-
ria were previously cultured on glucose or on pyruvate could
be predicted by the model (Figure 2). While this would
appear to lend support to the cybernetic concept of maximiz-
ing carbon uptake rate, we describe below a more exacting
scenario for experimental evidence of the same.

Description of a continuous fermentation system

We consider a chemostat in which the bacteria are contin-
uously fed with a mixture of glucose and pyruvate at a con-
stant rate with simultaneous withdrawal of the well-stirred
culture at an equal rate. The issue of interest is the attain-
ment of steady state within the chemostat when cells wash
out at the same rate at which they multiply. Steady state
must of course be preceded by a transient period starting
from some initial instant. As the medium flows into the che-
mostat, the cells respond by manipulating pathway options
(as dictated by the model) to consume glucose and pyruvate
in proportions that will maximize the carbon uptake rate at
each instant of time. The maximization of carbon flux into
the cell is of course subjected to the uptake kinetics of the 4
EMs identified from experimental data. Under these circum-
stances, any given pathway option could be used to varying
extents (or at the extreme even eliminated from use). The

cells will continue adapting to the new environment through
a transient period until a steady state is achieved when the
optimal operation of pathway becomes time-independent. As
a result, system variables such as biomass, substrate and
products will also reach steady state. Young and Ramkrishna
(2007)8 have demonstrated in considerable detail how the
pathway options selected by cybernetic models are indeed
optimal.

Hysteresis behavior predicted by the model

Of particular interest to the chemostat scenario is the pos-
sibility, revealed through calculations, that the steady state
reached by the organism could depend on its initial state.
Such a calculation was enabled by first identifying model pa-
rameters from dynamic experimental concentration data on
substrates, biomass, and various fermentation products. The
model parameters were fitted only to batch growth data
obtained with glucose and pyruvate carbon sources. In other
words, no chemostat data were involved in parameter deter-
mination. Subsequent numerical computation from the non-
linear ordinary differential equations revealed that the
metabolic states in the chemostat at steady state are not
unique under certain circumstances. The conditions were
characterized by the dilution rate D and the fraction of glu-
cose in the substrate mixture c in the feed to the chemostat.
Figure 3 shows the steady state concentration of formate,
one of the fermentation products, as a function of the dilu-
tion rate for a particular value of c(¼ 0.4). Within this win-
dow, the steady state reached for a particular dilution rate,
say D1, starting from a steady state at another dilution rate
D2, for reasons to follow, may depend upon whether D1 [
D2 or D1 \ D2. It is obvious that without the guidance of
model simulation providing the narrow region of multiplic-
ity, an experimental effort towards determining it would
involve exhaustively covering the entire range of dilution
rates.

True source for hysteresis

The hysteresis phenomenon encountered above is of
course familiar aspect of nonlinear behavior of chemical
reaction systems.14 It is important to note here that the hys-
teresis is a product of the nonlinearity as well as the meta-
bolic shift that the cybernetic variables initiate. This
implication of the role of cybernetic regulation in the
observed multiplicity, can be recognized as follows. If the
cybernetic variables ui, vi are set to one (i.e., eliminating reg-
ulatory effects), even the model fit of the dynamic data is
seriously compromised; thus the model cannot be used to
address multiplicity. Multiple steady states are attained (Sup-
porting Information Figure 1), when multiple sets of reac-
tions are available at the same dilution rate for activation
towards achieving the metabolic objective.

Experimental verification

Consider the ‘‘turning points’’ in Figure 3, identified as
�D1; �D2; �D3 and �D4 in increasing order. If we pick D1 and D2

to be both less than �D1, the steady state attained would not
depend on whether D2 \ D1 or D2 [ D1. A similar thing
can be said of picking D1 and D2 to be both greater than �D4.
Suppose, however, that we increase the dilution rate from
less than �D1; the steady states predicted for formate would
vary along the top branch until reaching �D4. Along this
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branch the implication is that the organism is adhering to
pathway options changing only in small quantitative meas-
ures whereas with a very small increase in dilution rate
beyond �D4, the formate production drops precipitously! Of
course this drop is not to be viewed as ‘‘sudden’’ in a tempo-
ral sense as we are dealing with steady state behavior; never-
theless, on changing from a dilution rate D2 just left to �D4 to
a dilution rate D1 > �D4, the organism is predicted to make a
quick switch of its pathway options towards maximizing the
carbon uptake rate resulting in a significantly lower formate
production. What is true of formate is also true of other
fermentation products such as acetate, ethanol and so on
(Figure 4). Next consider experiments at dilution rates
decreasing from above �D4. The organism is predicted to con-
tinue along the lower branch of steady states with gradually
increasing fermentation levels until after reaching �D2 when
again a switch occurs to a higher fermentation level along an
intermediate branch. Further decrease of the dilution rate
results again in gradually increasing fermentation levels until
at �D1 there is again a step change in pathway option with a
spurt in fermentation activity. The predicted phenomena
should now be evident from further inspection of Figure 3. It
should also be clear that they provide the challenging sce-
nario we sought to put the cybernetic goal of maximizing
the uptake rate of carbon to a rigorous test.

Hysteresis arises also for other values of c with varying
multiplicity (Figure 5). Thus for c ¼ 0.2, two stable steady
states are predicted that are confirmed by experiments as well.

Raw data for Figures 3–5 are provided as Supporting In-
formation (see data file).

Animated results

For effective communication of our experimental effort
we provide a video clip containing the theoretical predictions
in Figure 3 (see Supporting Information). The data are intro-
duced first as an animated sequence from a low dilution rate
(\�D1) increasing to above �D4, and second from a high dilu-
tion rate (> �D4) decreasing past �D1. The foregoing exercise
will indeed show that the data are in conformity with predic-
tion for formate as well as the other fermentation products,
cell mass and the substrates. In drawing this inference, con-
cession must be made for proximity of the data to prediction
because of different measurement errors as well as drastic
model approximations due to reducing pathway options.

Conclusions

Although cybernetic models have been validated in the
past by successful prediction of various uptake patterns of
mixed carbon substrates,1,7,15 this article shows that meta-
bolic multiplicity behavior, implied by the cybernetic nonli-
nearity, is remarkably reproduced by experiments. This
behavior is a consequence of shifting emphasis of the orga-
nism on the use of pathway options rather than that of nonli-
nearity of the kinetics. However, as per the cited work of
Lei et al. (2001),2 a kinetic model suitably expanded to
account for regulatory effects can also reproduce such multi-
plicity of metabolic states.

Because the cybernetic model has the potential to describe
metabolic regulation at large, it is likely that the multiplicity
can extend considerably to include numerous subtly different
metabolic states. The demonstration of metabolic multiplicity
has been limited to extracellular variables in this article, it
indeed raises the question of how intracellular fluxes, gene

expression profiles, and numerous other measures of metabolic
behavior would serve to provide additional corroboration of
such cybernetic predictions. An effort in this direction is al-
ready in progress at Purdue’s Center for Science of Informa-
tion funded by the National Science Foundation.
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Notation

Symbols

c ¼ biomass concentration, g/L
D ¼ dilution rate, 1/h

eM,j ¼ level of enzyme which catalyzes the flux through the
jth elementary mode

emax
M;j ¼ maximal level of eM,j

kF ¼ rate constant for formate decomposition
kmax
j ¼ maximal rate constant for the flux through the jth ele-

mentary mode, mmol/(gDW h)
KF ¼ Michaelis constant for the flux through the jth ele-

mentary mode, mM
KG,j ¼ Michaelis constant for the flux through the jth ele-

mentary mode, mM
KP,j ¼ Michaelis constant for the flux through the jth ele-

mentary mode, mM
pj ¼ return-on-investment
rF ¼ specific rate of formate decomposition into CO2 and

H2, mmol/(gDW h)
rM,j ¼ flux through the jth elementary mode, mmol/(gDW h)
rkinM;j ¼ unregulated flux through the jth elementary mode

(i.e., kinetic part in vM,j), mmol/(gDW h)
rkinME;j ¼ kinetic part of inducible enzyme synthesis rate, 1/h
rM ¼ flux vector through elementary modes, mmol/(gDW h)
Sx ¼ stoichiometric matrix
t ¼ time, h

uM,j ¼ cybernetic variable regulating the induction of
enzyme which catalyzes the flux through the j the el-
ementary mode

vM,j ¼ cybernetic variable regulating the activity of enzyme
which catalyzes the flux

xG ¼ concentration of glucose, mM
xP ¼ concentration of pyruvate, mM
x ¼ concentration vector of extracellular metabolites

including substrates, mM; products, mM; and bio-
mass, g/L

xIN ¼ concentration vector of extracellular metabolites in
the feed, mM

Z ¼ matrix with elementary modes as column vectors
through the j the elementary mode

Greek letters

aM,j ¼ constitutive enzyme synthesis rate, 1/h
bM,j ¼ rate of enzyme degradation, 1/h

c ¼ mole fraction of glucose in the substrate mixture in
the feed to the chemostat

l ¼ specific growth rates, 1/h

Acronyms

EM ¼ elementary mode
HCM ¼ hybrid cybernetic model
OD ¼ optical density
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