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Abstraet--Discretized population balances of aggregating systems are known to consistently over-predict 
number densities for the largest particles. This over-prediction has been attributed recently by the authors 
(Kumar and Ramkrishna, 1996, Chem. En#ng Sci. 51, 1311-1332) to steeply non-linear gradients in the 
number density when a fixed pivotal particle size is used for each discrete interval. The present work 
formulates macroscopic balances of populations with due regard to the evolving non-uniformity of the size 
distribution in each size interval as a result of breakage and aggregation events. This is accomplished 
through a varying pivotal size for each interval adapting to the prevailing non-uniformity of the number 
density in the interval, The technique applies to a general grid and preserves any two arbitrarily chosen 
properties of the population. Comparisons of the numerical and analytical results have been made for pure 
aggregation for the constant, sum and product kernels. It is established that numerical predictions from 
macroscopic balances are significantly improved by an adapting pivot accounting for non-uniformities in 
the number density. 

1. I N T R O D U C T I O N  

In a recent paper (Part I) Kumar and Ramkrishna 
(1996) have proposed a fresh perspective on discretiz- 
ation methods for the solution of population balance 
equations. From this perspective, discretization is not 
viewed as an attempt to approximate the continuous 
number density function on a suitably fine scale. 
Rather, the salient feature of this new perspective is to 
target calculation of properties of the population of 
specific interest to an application without seeking the 
complete number density function. The properties 
concerned may be specific moments of the population, 
or more generally those that can be calculated from 
the number density function such as 

F , ( t )  = foI,(x)n(x,t)dx, i = 1,2 . . . .  (1) 

and approximation of their distributions among the 
discrete particle size intervals 

fl 
k+ I 

Fi, k(t) = f i (x)n(x , t )dx ,  i =  1,2 . . . .  (2) 
k 

where v represents, say, particle volume. If the number 
density is known accurately over a fine enough size 
scale all such properties can be calculated accurately. 
However, often for engineering applications only 
specific properties may be of interest so that the pre- 
cise evaluation of the number density function may be 
forsaken in favor of a more targeted calculation by 
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using coarse discretization methods. The perspective 
of Kumar and Ramkrishna (1996) is one of specifically 
designing the discrete formulation for calculation of 
selected properties. This approach is of particular 
significance to model-based control of particulate sys- 
tems in which there is considerable recent interest 
(Semino and Ray, 1995). 

The essence of the technique of Kumar and Ram- 
krishna (1996) lies in effecting what the authors refer 
to as preservation of changes in the chosen properties 
resulting from particle break-up and/or aggregation. 
More precisely, there must be consistency between 
two different ways in which discrete equations for the 
properties of specific interest may be obtained. One is 
to discretize the continuous equation for the property 
derived from the continuous population balance 
equation. The other is to drive it from the discrete 
population balance equations. This consistency 
is enforced by appropriately apportioning the total 
property for a particle to the adjacent representative 
sizes. 

This numerical technique (to be called Part I) has 
been tested for a large number of cases including 
polymerization-depolymerization and direct predic- 
tion of the second moment of the size distribution. 
The numerical predictions for all cases studied in 
Part I agree well with the analytical solutions with 
one exception. The use of a coarse geometric grid for 
solving PBEs with aggregation results in a consistent 
over-prediction in a size range that contains steeply 
decreasing number density (called "front"). Such over- 
prediction is a feature of other techniques proposed in 
the past as well, e.g. Bleck (1970), Gelbard et al. (1980), 
Hounslow et al. (1988). 
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Fig. 1. Distribution of particles before and after aggregation(constant kernel), when particles are initially 
distributed uniformly. 

In Part I, we have shown through a simple example 
that the over-predictions are due to the inadequacy of 
the uniform number density approximation to repres- 
ent a steeply decreasing number density for aggrega- 
tion. This example is reproduced here to provide the 
necessary motivation for the present work. Consider 
aggregation of particles for the constant kernel, 
with an initial population given as n(v,0)= 
[(1/Vo) exp (-V/Vo)]. Let us focus on just a simple 
event--aggregation of particles in size range {vi, 2vi} 
to form particles in size range {2vi, 4vi} while ignoring 
all other possible interactions that can influence 
populations in the two size ranges considered. The 
number density of new particles in size range {2vi, 4vi} 
and of those remaining in size range {vi, 2v~} at time 
t can be easily calculated. The number densities for 
both the size ranges can be scaled separately to obtain 
the corresponding probability densities (which do not 
depend on time for the constant kernel). Figure 1 
shows a plot of these densities for v~<< Vo. The same 
densities for v~ >> Vo are plotted in Fig. 2. As expected, 
the figures show that the distribution of new particles 
in size range {2v, 4vi} depends on the distribution of 
the aggregating particles in size range {vi, 2v~}. 

In comparison, the discretization technique of 
Part I equates this process to the aggregation of 
Ni particles of size x .  a representative size for size 
range {vi, 2vi}, form Ni/2 particles of size 2xi, irre- 
spective of the distribution of particles in size range 
{vi, 2v~}. Figure 1 shows that this is a good representa- 
tion for number densities that do not vary steeply. For 
those varying steeply, such as the one shown in Fig. 2, 

most of the new particles that are formed at any time 
t lie near the lower boundary of the size range 
{2v.4vi}. The discrete representation, however, ad- 
vances the new Ni/2 particles to the middle of the size 
range. More importantly, for size-dependent coales- 
cence kernels, the aggregation process is carried out at 
frequency q(x. x3, rather than a more relevant fre- 
quency [ ~ q(v~,vi)] that corresponds to the most 
populated sizes in size range {v, 2vi}. 

There are two ways to improve the accuracy of the 
numerical solution: (i) choose smaller sections such 
that the number density does not vary significantly 
over a section width; (ii) develop a technique that 
accounts for the variation of number density in a size 
range. The former has already been demonstrated in 
Part I with several strategies such as total or selective 
refining of the grid; the latter is the focus of the present 
work. The technique proposed here has the advantage 
over (i) in that it can be used with a coarse grid. It does 
away with a fixed representative (pivot) of each size 
interval which does not adapt efficiently to sharp 
variations in the number density and replaces it by 
a "moving" pivot. 

2. A MOVING PIVOT TECHNIQUE 

A complete description of the evolution of a popu- 
lation due to the particulate processes is provided 
through a density function which can then be used to 
obtain all evolutionary properties associated with the 
population. However, specific applications require 
only selected properties associated with a size 
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Fig. 2. Distribution of particles before and after aggregation (constant kernel), when particles are initially 
distributed exponentially. 

distribution. As noted in Part I, macroscopic balances 
(discretization techniques) can be designed to obtain 
with minimum effort the desired information asso- 
ciated with a size distribution accurately, while relax- 
ing on other less important properties. This is best 
accomplished if we solve directly for the quantities of 
interest, as illustrated in Part I. 

The macroscopic balances that consider the inter- 
action of a sub-population of particles in a size range 
with other sub-populations (for other size ranges) 
have their limitations as shown by the example in the 
previous section. Similar limitations also exist when 
the number density in a size range is assumed to be 
uniform as evidenced by the numerical results of 
Bleck (1970) and Gelbard and Seinfeld (1980). In anal- 
ogy with transport processes (integral momentum 
balances for boundary layers), the macroscopic bal- 
ances can be made more accurate by incorporating 
pertinent details of the variation of number density 
within a size range (This is akin to the classical ap- 
proximation of the velocity profile in a boundary 
layer in von Karman's integral momentum balances.) 
The distinguishing feature of the technique presented 
here is therefore the recognition of the variation of 
number density with size in a size range and its evolu- 
tion with time due to particle break-up and aggrega- 
tion. 

Clearly, an accurate representation of this variation 
requires complete knowledge of the number density, 
which macroscopic balances cannot afford. In this 
work, we will therefore include the variation of 
number density in a simple and an approximate way 

(e.g. using approximate forms of the velocity profile in 
integral momentum balances). 

We propose that if the properties of interest asso- 
ciated with a size distribution are p(v) and u(v) 
[ = p(v) g(v)], then for their direct prediction, a section 
i (size range vi to vi+ ~) should be identified with two 
quantities, Pi(t) defined as 

I v  ~i+ l 
Pi(t) = p(v) n(v, t) dv (3) 

i 

and a pivot xi(t) defined as 

fl . . . .  u(v)n(v, t) dv = O(v)p(v)n(v, t) dv 
i i 

= O [x,(t)] P~(t). (4) 

The definition of xi(t) has been chosen such that its 
location in size range {v~, v~+ 1 } reflects the variation of 
the relevant density u(v)n(v, t) in the ith size range. It 
also allows for the estimation of property u(v) for 
the ith section directly from P~(t) and xi(t). For the 
type of density shown in Fig. 1, x~ stays closer to the 
middle of the section and for steeply decreasing dens- 
ities, as shown in Fig. 2, it stays closer to the lower 
end of the section, i.e. closer to v~, thus capturing the 
aggregation process more realistically. If the density 
in a section changes from steeply decreasing to nearly 
uniform due to the particulate process, the pivot 
moves from the lower end of the section to the middle. 
Thus, the location of the pivot in a section at any 
instant reflects the variation of the relevant density in 
that size range. If proper equations are obtained for 
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the movement of the pivot with time, a change in the 
position of the pivot will appropriately reflect the 
changing density distribution for the section. The rest 
of this section is devoted to the derivation of the new 
discrete equations for directly obtaining the quantities 
of interest and the movement of the pivot. Note also 
that a moving pivot is more in keeping with the 
dictates of the mean value theorem of the calculus. 

S. KUMAR a n d  D. RAMKRISHNA 

We now express the density p(v, t) in terms of vari- 
ables Pfs and xfs (explicit dependence on t is sup- 
pressed for convenience) as 

2.1. Derivation of  the discrete equations 
Let us begin with the equation for number balances 

when particles breakup and aggregate. 

2fo On(v, t) = n(v - v', t)n(v', t)q(v - v', v') dr' 
& 

- f ;  n(v, t)n(v', t)q(v, v') dv' 

- r(v)n(v,t) + fl(v,v')F(v')n(v',t)dv'. 

(5) 

For the quantity of interest p(v), eq. (5) can be trans- 
formed to 

@(v, t )  
= ½ p(v) f ]  p(V -- V', t)~(v', t)r(v -- v', v') dr' & 

/~(v, t)p(v) f :  ~(v', t)r(v, v')dv' 

- r(v)p(v ,  t) 

oo V 

+ ~ [ ~ ] f l ( v , v ' ) F ( v ' ) ~ ( v ' , t ) d v '  (6) 

where 

p(v, t) = p(v)n(v, t) (7) 

r(v, v') = q(v, v')/[p(v) p(v') ]. (8) 

An equation for the variable P~(t), as defined earlier in 
eq. (3), can be obtained by integrating eq. (6) from v~ to 
vi+ 1. Thus, 

dPi(t) = ½f | . . . .  
P(v) dv 

dt ~ ~ 

f [  p(v - v', t)~(v', t) r(v - v', v') dr' X 

- i i ' + l d v f f ( v , t ) p ( v ) f ; f ( v ' , t ) r ( v , v ' ) d v  ' 

;? -- °'+'dvF(v).~(v,t) + dv 
i i 

p(v) . . . . .  xff[ )(v,v)r(v ) p ( v , t ) d v .  (9) 

Identical equations can be obtained for all P~(t)'s and 
thus eq. (9) can be considered as a set of equations for 
i = 1, 2 . . . . .  M where M is the total number of sec- 
tions. 

p(v, t) = ~ Pia(v - -  xi). (10) 
i 

Substituting for p(v,t) from eq. (10) in eq. (9), we 
obtain 

dPi J >~ k 
--dt = j.~k [1 -- ½6j, k]p(x j + xk)rxj.xkPjP k 

vi <~(x j+xk )<  vi+ 1 

u g!p! 
- pIx,)V,  X r . . . . .  P~ + Y, r ( x j ) P j  -,,__z 

k -- 1 j >~ i P ( X i )  

- r ( x , ) P i .  (11) 

Here 

fv 
~i+ 1 

_,,~g!~ = s(v)fl(v, xj)dv (12) 
i 

fl(V, Xk) = 0, V > Xk. (13) 

The equation for the movement of pivot xi with time 
can be obtained in the following manner. We first 
derive an equation for quantity S~ '+lu(v)n(v,t)dv, 
which is easily obtained by multiplying eq. (6) with 
g(v) and then integrating it from vi to v~+ x. Thus, 

.... t)dv] dtL.lv~ g(v)p(v, 

f .... ;o = ½ u(v)dv ~(v - v',t)~(v',t)r(v - v',v')dv' 
d v i 

fo,(V'.t)r,v.v')dv ' 

+ dv ~)) ~(v ,v ' )F(v ' )~(v ' , t )dv '  
i 

f v  ~i+1 

- dv O(v)F(v)~(v, t). (14) 
i 

Introducing eq. (4) on the 1.h.s. and differentiating xiP~ 
w.r.t, time, we obtain 

dPi 
Pi + g(x~) ~ = r.h.s, of eq. (14). (15) 

Substituting for/~(v,t) from eq. (10) and for dPi/dt  
from eq. (ll) ,  the final equation for the variation of 
g(xl) can be shown to be 

dg(xi) 1 j ~k 
[1 - ½ 6j,~] [ . ( x j  + x~) 

dt Pi j.k 
vi <~(xjq-Xk)<Vi+ 1 

-- g(xi)p(xj + Xk)]r~j.x~PjPk 

+ 1 y r ( x j ) P j  v~ ! ' !  - gtx,)Bly)l P'J>~i L -" ''J p (-~j) ~. (16) 

Coefficients -~") Bi, j and BLP~ can be evaluated from equa- 
tions similar to eq. (12). 

Thus, the sets of equations in eq. (11) and eq. (16) 
complete the set of ordinary differential equations 
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that need to be solved simultaneously for a solution. It 
is emphasized here that the present technique retains 
the capacity of that in Part I to deal with multiple 
breakage and a general grid. Further, the final equa- 
tions obtained here are internally consistent with the 
discrete equations for the evolutionary equations for 
p(v) and u(v) properties of the complete size distribu- 
tion. 

2.2 Discrete equations for the preservation of numbers 
and mass 

For internal consistency with regard to zeroth 
[p(v) = 1] and first moment [u(v) = v] (total numbers 
and total mass respectively), sets of equations in eq. 
(12) and eq. (16) reduce to the following simple equa- 
tions: 

dNi j~k 
dt -- ~ [1 -- ½ 6j, k] qxj. xkSjNk 

j ,k  
Vi ~(Xj+Xk)<Vi+I 

M 

Ni ~ q ..... Nk + ~ -(1) -- F(xj)NjBi,j - F(xi)Ni 
k = l  j ~ i  

dx i 1 
dt N~ 

where 

j ~ k  

[1 --  ½ 6 j , k ] [ ( X j +  Xk) 
j ,k  

V i ~(Xj+Xk)<Ui+I 

Ni s 7 >~i : k X J ] ' '  J L ~ i ' J  X i O i , j J  

(17) 

(18) 

Icfi+ l Iii+l 
Bg!,,~ = fl(v, xj)dv -,,~g!v) = vfl(v, xj)dv. 

(19) 

3. NUMERICAL RESULTS 

The present moving pivot technique, like the fixed 
pivot technique of Part I, can be used for the predic- 
tion of the desired properties with a general grid 
(uniform, geometric or non-regular) for pure break- 
age, pure aggregation, polymerization-depolymeriz- 
ation (solution of discrete-continuous PBEs) and the 
prediction of higher moments. This distinguishing fea- 
ture of the moving-pivot technique, however, is the 
inclusion of the addditional information in macro- 
scopic balances on how the number density varies 
with particle size in various size ranges. The focus of 
the numerical results presented here is therefore on 
testing the present technique for its special features 
only, and not an exploration of its full potential (these 
issues are addressed in Part I). Also, the numerical 
results have not been compared with other techniques 
as the only discrete technique that addresses the vari- 
ation of number density in a size range (Sastry and 
Gaschignard, 1981) involves a large number of double 
integrals and is very computation intensive. 

As discussed earlier in the paper, the fixed pivot 
technique over-predicts the numerical results for pure 
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aggregation in the size range that contains the front. 
The present technique was motivated by the view- 
point that this over-prediction could be remedied by 
including additional details in the macroscopic bal- 
ances. In this section, we therefore present the new 
results only for pure aggregation problems and com- 
pare them with the analytical results and the numer- 
ical results obtained using the fixed pivot technique 
for the same grid. 

The numerical results for the present technique 
have been obtained for the preservation of properties 
p(v) = 1 and u(v) = v, i.e. through the solution of eqs 
(17) and (18) and have been compared with the ana- 
lytical solutions presented by Scott (1968). The nu- 
merical results have also been compared with those 
obtained with the fixed pivot technique for the same 
grid. The initial conditions for Ni(t)s and xi(t)s for all 
calculations presented here correspond to the follow- 
ing number density distribution: 

n(v,O) = 1 exp ( -  V/Vo). (20) 
VO 

The volume of the smallest particle considered in the 
calculations is 10 -5, 1000 times smaller than the in- 
itial average volume. The numerical results have been 
presented in terms of cumulative oversize numbers vs 
the particle volume, where the former is defined as 

CON(v, t) = f :  n(v, t) dv. (21) 

Such a plot emphasizes the predictions for number 
density in the tail region and the zeroth moment of the 
size distribution (total numbers) in single plot. 

Figure 3 shows the numerical and the analytical 
results for the constant kernel q(v, v') = 1 for degree of 
aggregation N(t)/N(O) = 4 x 10 -3, where N(t) is the 
total number of particles at time t. The numerical 
results presented here have been obtained for two 
geometric grids (vi + 1 = rvD for r = 2, 1.4 (the numer- 
ical technique can, of course, be used with a general 
grid). The figure clearly shows that the fixed-pivot 
technique for r = 2 does not predict the shape and the 
movement of the front correctly; the total number of 
particles however, is predicted accurately as all the 
curves coincide with the analytical solution for v ~ 0 
[these results are the same as those would be obtained 
by the technique of Hounslow et al. (1988)]. The 
moving pivot technique with the same grid results in 
some under-prediction of the movement of the front 
(shape is predicted correctly), but in comparison with 
the results obtained with the fixed pivot technique, the 
present technique makes significantly improved pre- 
dictions. This is quite clear from only 33% under- 
prediction for the moving pivot technique in compari- 
son with 1800% over-prediction for the fixed pivot 
technique for the prediction of the particle size for 
CON(v, t) = 10- 20. 

With the use of a finer grid, r = 1.4, the results 
obtained by both the techniques are improved signifi- 
cantly; 16% under-prediction for the moving pivot 
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Fig. 3. A comparison of the numerical and the analytical size distributions for pure aggregation with the 
constant kernel q(v, v') = l, at time t = 100, N(t)/N(O) = 4 × 10 -3. 

and 200% over-prediction for the fixed pivot for the 
prediction of the particle size for CON(v, t) = 10 -2°. 
As the grid is refined further, the numerical solutions 
for both the techniques approach the analytical solu- 
tion. It is likely, though, that for extremely accurate 
predictions, both the techniques would require similar 
grids. 

For  size-dependent kernels, the fixed pivot tech- 
nique makes poor predictions for the shape as well as 
the movement of the front. This is clearly shown in 
Figs 4 and 5 for the sum and the product kernels 
respectively. The extent of over-prediction with a geo- 
metric grid, r = 1.5, for particle volume v correspond- 
ing to the smallest value of CON(v, t) shown in these 
figures is approximately two orders of magnitude. In 
comparison, the moving pivot technique, with the 
same grid, under-predicts the same results just by 
a factor of 1.7. With a finer grid (r = 1.2), both tech- 
niques make improved predictions and as stated be- 
fore, extremely accurate results may be obtained for 
similar grids only. 

It should be pointed out here that both the tech- 
niques, irrespective of the type of grid employed, pre- 
dict the total number of particles ICON(0)] correctly 
and conserve mass. 

The numerical results for all the three kernels indi- 
cate that the inclusion of additional information in 
macroscopic balances significantly improves their 
ability to predict the correct results. By allowing the 
location of a pivot to correspond to more populated 
sizes in a size range initially as well as at all later times, 
the large over-prediction observed for the fixed pivot 

technique is changed to a slight under-prediction. 
A further improvement in the numerical predictions 
within the framework of discrete balances is indeed 
possible. However, the form of the first term on 
the r.h.s, of eq. (5) indicates that this is possible 
only through a more precise specification of the 
variation of number density with particle size. This, of 
course, increases the complexity of the numerical 
technique. 

Recently, Kostoglou and Karabelas (1994) have 
compared the numerical techniques proposed by Gel- 
bard and Seinfeld (1980), Batterham et  al. (1981), 
Marchal et  al. (1988) and Hounslow et al. (1988). Their 
findings indicate that the numerical technique pro- 
posed by Batterham et al. (1981) makes good predic- 
tions of the advancing front, even though it counts the 
aggregation of particles in the same size range twice 
and does not predict the total number of particles 
correctly. The new understanding brought out by the 
present work clearly indicates that this is due to 
a fortuitous cancellation of errors. 

As with the technique proposed in Part I, the fixed 
pivot technique of Batterham et al. should result in 
over-prediction of the front. However, their strategy 
to assign a large fraction of new particles to the 
smaller pivot counterbalances the over-prediction. 
This, however, leads to wrong predictions of the total 
number of particles. [The authors assign ¼ particle 
to size xi and a to xi+ 1 when a particle of size 3x~/2 
is formed. Similarly for other new particles 
(x~ ~< v < 3xz/2), more than one, i.e. o/xi ,  particle is 
assigned to xz and none to x~+ 1.] 
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3.1. C h o i c e  o f  t e c h n i q u e  

Kostog lou  and  Karabe las  (1994) have compared  
the numerical  techniques proposed  before 1994. Their  
computa t ions  show tha t  the technique proposed by 
Houns low et  al. (1988) is the best al ternative.  Since 

then, Hounslow's  group (Litster et  al., 1995) has  gen- 
eralized original  technique to a geometric  grid of type 
v~+ t/v~ = r for the preservat ion of numbers  and  mass. 
The  paramete r  r is restricted to values 2 l/q, where q is 
a positive integer. In this section, therefore, we will 
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Fig. 6. A comparison of the numerical and the analytical number density distribution for pure aggregation 
with sum kernel for the same conditions as those in fig. 4 (semi-linear plot). 

confine ourselves to the comparison of only three 
techniques--Litster et al. (1995), the fixed pivot of 
Part I and the moving pivot of the present work. 

We begin with a comparison of the features of the 
fixed pivot technique and the technique of Lister et  al. 

The former applies for all values of parameter r for 
geometric grid and also arbitrary grids (see Figs 13 
and 16 of Part I), whereas the latter works only with 
selected geometric grids (r = 2, x/~, 21/3 . . . .  ); the for- 
mer can preserve general properties (see Figs 10 and 
11 of Part I), whereas the latter is confined only to 
numbers and mass. The simplicity of the underlying 
concept in the fixed pivot technique, that the particles 
should be assigned to the adjoining pivots such that 
the two properties are preserved, naturally leads to 
discrete equations for pure breakage and simulta- 
neous breakage and coalescence. Hill and Ng (1995), 
on the other hand, have followed Hounslow et al. to 
develop a discretization technique for pure breakage 
with the result that their technique has somewhat 
similar shortcomings. It can preserve numbers and 
mass only; furthermore, it suffers from the additional 
drawback that the coefficients of discretization de- 
pend on the breakage functions requiring elaborate 
derivations as demonstrated through their examples. 

We have carried out computations for several cases 
using the fixed pivot and the technique of Litster et  al. 
For identical grids and preservation of numbers and 
mass in the fixed pivot technique, the predictions 
made by both the techniques are exactly identical. The 
computation for both the techniques were carried out 
by using DIVPAG subroutine of IMSL with the same 

demands on the accuracy and they show that the fixed 
pivot technique takes less CPU time. As the number 
of equations used is increased, the fixed pivot tech- 
nique becomes increasingly more effÉcient. This is also 
in agreement with our finding that the CPU time for 
the fixed pivot technique increases as q2 whereas 
Litster et al. report that for their technique it increases 
as q3. Thus, it is clear that the fixed pivot technique is 
a very powerful, general and computationally efficient 
technique, and for appropriate values of involved 
parameters it produces solutions which are exactly 
identical to those of Hounslow et al. and Litster et al. 
and takes less computation time. 

We now compare the fixed pivot and the moving 
pivot techniques. To help us assess the effectiveness of 
the two techniques, we have re-plotted the results for 
the size-dependent sum kernel (Fig. 4) in terms of n(v) 
vs v plot in Fig. 6 and extended Iog[n(v)] vs v plot in 
Fig. 7. These results indicate that in the small particle 
size range, the moving pivot technique makes very 
accurate predictions even with a coarse grid and these 
are better than those obtained by using the fixed pivot 
technique with twice as fine a grid. Figure 7 contains 
even more interesting results. It shows that the fixed 
pivot technique predicts a tail of type v -"  rather than 
exp ( -  V/Vo) and as the grid is made finer, the predic- 
tions are improved but the non-exponential nature of 
the tail persists. 

In comparison, the moving pivot technique makes 
near perfect predictions of the shape of the exponen- 
tial tail even for r = 2; its location, however, is under- 
predicted and as shown earlier in Figs 3-5, the extent 
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of under-prediction can be reduced by choosing 
a suitable grid. Thus, accurate predictions of the 
populations of small particles and moments of the size 
distribution, and a near perfect prediction of the shape 
of the tail, all for coarse grids, are the advantages that 
only the moving pivot technique offers. Figures 6 and 
7 show that the results obtained with the moving 
pivot for r = 2 are much better than those obtained 
for r = 1.4 for the fixed pivot. The number of equa- 
tions employed in both the cases are the same; how- 
ever, the former involves more computation time be- 
cause the inequalities involved in eq. (11) need to be 
worked out repeatedly due to the evolving nature of 
the size distribution. 

Thus, for the same number of equations, the differ- 
ence in the CPU time for the time techniques is 
expected to be of the order of additional time needed 
for updating the inequalities. Our computation on 
a SUN Sparc station 5 indicate that for 60 equations, 
the fixed pivot and the moving-pivot techniques re- 
quire 2 s and 14 s respectively; the time needed for 
updating the inequalities, however, is only 0.3 s. For 
the constant kernel, the corresponding times are 2 and 
5 s and the time for updating the inequalities is mere 
0.28 s. It therefore appears that much more than ex- 
pected differences in the CPU times are due to ineffi- 
cient implementation of the numerical technique. We 
are currently developing an ODE integrator dedi- 
cated for solving simultaneous sets of equations such 
as those represented by eq. (17) and eq. (18). For 
applications requiring very accurate solutions or 
where the computation time is not an issue, the mov- 
ing pivot technique with even a black-box-type ODE 

integrator should be preferred. Of course, with a dedi- 
cated ODE integrator, the moving pivot technique 
will emerge to be a very powerful technique in terms 
of accuracy and the computation times. 

d. C O N C L U S I O N S  

We have shown in this work that the predictive 
capabilities of the macroscopic balances (or discretiz- 
ation techniques) for solving population balance 
equations can be significantly improved by ac- 
counting for variation of number density with size in 
a size range. This has been accomplished in a simple 
and approximate way (to guide the macroscopic bal- 
ances to respond differently to two size ranges that 
contain same number of particles but distributed dif- 
ferently in size space) through the the location of 
a moving pivot that represents the total population of 
the corresponding size range. 

Besides its additional qualities, the new moving 
pivot technique has the same general capabilities as 
the fixed pivot technique presented in Part I (Kumar 
and Ramkrishna, 1996), i.e. it can predict desired 
properties associated with an evolving size distribu- 
tion by using a general grid (uniform, geometric or 
non-regular) for pure breakage, pure aggregation, 
polymerization-depolymerization (solution of dis- 
crete-continuous PBEs with simultaneous breakup 
and aggregation). It has therefore been evaluated here 
only for its additional features. A comparison of the 
numerical results for the fixed pivot (Part I) and the 
new technique (moving pivot) with the analytical re- 
sults for the problems involving pure aggregation 
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indicates that the predictions with the new technique 
are indeed much closer to the analytical solutions. 
The new technique also serves to show that the cor- 
rect discrete representation of the birth term due to 
coalescence of smaller drops (which determines the 
movement of the front) is crucial for the accuracy of 
the numerical solutions. 

S. KUMAR and D. RAMKRISHNA 

V0 

xi(t) 

Greek letters 
fl(v, v') dv 

NOTATION 
/~!s) ,., as defined by eq. (12) 
CON(v, t) number  of particles of sizes greater 

than v at time t 
/ ~ . ( v )  monotonically increasing functions of 

particle size v 
Fi(t) an integral property defined as So f/(v) 

n(v, t) dv 
n(v, t)dv number  of particles in size range v to 

v + dv, at time t 
g(v) a monotonically increasing function 

of particle size v 
N(t) total number  of particles at time t 
Ni(t) total number  of particles in ith size 

range at time t 
p(v) a monotonically increasing function 

particle size v 
p(v, t) a modified density defined as 

p(v)n(v, t) 
Pi(t) total estimate of density of density 

/3(v, t) for ith size range at time t, 
defined as S:I ÷l p(v, t)dv 

q(v, v') aggregation frequency 
q ~ , , ~ j  aggregation frequency for sizes x~, xj ,  

q(xi, x j) 
r a parameter that defines the geomet- 

ric grid of the type vi+ 1 = rvi 
r(v, v') modified aggregation frequency, 

[= q(v, v')/p(v)e(v')] 
rx,,~j aggregation frequency for sizes x ,  x j, 

r(x.  x j) 
t time 
u(v) a monotonically increasing function 

of particle size v 
v, v' particle volumes 
vi, v~+l lower and upper boundaries for ith 

section 

r(v) 

a parameter in eq. (20), equal to initial 
average volume 
representative volume for ith size 
range, function of time 

number  of daughter particles formed 
in size range v to v + dv due to the 
breakage of a particle of size v' 
breakage frequency for a particle 
size v 
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