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Abstract--A new framework for the discretization of continuous population balance equations (PBEs) is 
presented in this work. It proposes that the discrete equations for aggregation or breakage processes be 
internally consistent with regard to the desired moments of the distribution. Based on this framework, 
a numerical technique has been developed. It considers particle populations in discrete and contiguous size 
ranges to be concentrated at representative volumes. Particulate events leading to the formation of particle 
sizes other than the representative sizes are incorporated in the set of discrete equations such that properties 
corresponding to two moments of interest are exactly preserved. The technique presented here is applicable 
to binary or multiple breakage, aggregation, simultaneous breakage and aggregation, and can be adapted 
to predict the desired properties of an evolving size distribution more precisely. Existing approaches employ 
successively fine grids to improve the accuracy of the numerical results. However, a simple analysis of the 
aggregation process shows that significant errors are introduced due to steeply varying number densities 
across a size range. Therefore, a new strategy involving selective refinement of a relatively coarse grid while 
keeping the number of sections to a minimum, is demonstrated for one particular case. Furthermore, it has 
been found that the technique is quite general and yields excellent predictions in all cases. This technique is 
particularly useful for solving a large class of problems involving discrete-continuous PBEs such as 
polymerization-depolymerization, aerosol dynamics, etc. 

1. I N T R O D U C T I O N  

Beginning with Smoluchowski 's  description of the 
stability of mono-dispersed colloids, populat ion 
balance equations t (PBEs) have found diverse 
applications in areas involving particulate systems. 
These equations are particularly useful for situations 
where particles continually lose their identities, e.g. in 
crystallizers, l iquid-l iquid and gas- l iquid contactors, 
microbial fermentors, fluidized beds, polymer reactors 
(Ramkrishna, 1985). PBEs have also been used to 
study raindrop size distributions, aerosol dynamics, 
crushing of materials, stability of emulsions and so on. 
A successful use of PBEs, however, depends on our 
ability to solve them numerically as the analytical 
solutions are rare. The recent thrust on model-based 
control of particulate systems indicates that, in addi- 
tion, numerical solutions be accurate and be obtain- 
able in real time. 

Several numerical techniques, e.g. method of 
weighted residuals, method of moments,  or thogonal  
collocation, collocation on finite element, have been 
proposed in the literature and have been reviewed by 
Ramkrishna (1985). Computationally,  however, the 
method of discretization of the continuous PBE has 
emerged as an attractive alternative. 

* Corresponding author. Tel.: 317-494-4066. Fax: 317-494- 
0805. E-mail: ramkrish@ecn.purdue.edu. 

t In the physics literature, the PBE for the pure aggrega- 
tion problem is known as the Smoluchowski equation. 
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Consider the PBE for a populat ion of particles 
which undergo break-up as well as aggregation. 

fo 
On(v,t) 1 t )n(v ' , t )Q(v v')dv' ~t = ~ n(v -- v', -- v', 

j o  

-- F(v)n(v, t) 

fo - n(v, t)n(v', t)Q(v, v')dv'  

+ /~(v, v')r(v')n(v', t)dv'. (1) 

The moments M~ of the number density function 
n(v, t) defined as 

fo o M ,  = v"n(v, t) dv (2) 

are then obtained from eq. (1) as 

= - dv dr '  I-if' + v'" - (v + v') ~] 
do do 

x Q(v, v')n(v, t)n(v', t) 

fo o + dv'n(v', t )F(v')v '~' 
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Our interest here is in formulating population bal- 
ances in discrete particle state space. The quest for 
a discrete formulation of eq. (1) may be likened to 
macroscopic balances in the analysis of transport 
problems where one seeks conservation equations for 
an entity in a chosen finite volume of material or 
space. Integrating the continuous equation [eq. (1)] 
over a discrete size interval, say v~ to vi+ t, 

f: r 1 v dNi(t) 1 , 
dt - ~ dv n(v - v , t)n(v', t ) Q ( v -  v', v')dv' 

~ d o  

-- ~+'n(v, t )dv n(v', t)Q(v, v')dv'  
~ d o  

f y f  + dv fl(v, v ')F(v')n(v' ,  t )dv '  
i 

where 

- f l  '+', dvF(v)n(v ,  t) 

f l  i+1 
Ni(t)  = n(v, t)dv. (5) 

i 

The set of equations (4) reflects a loss of autonomy.* 
The basic question here with regard to discretiz- 

ation is whether autonomy can be restored. It will 
then be possible to solve the discrete equations for the 
total number of particles in a size range. The accuracy 
of the numerical solution will of course depend on the 
manner in which autonomy is restored. The objective 
of the present paper is therefore to first review the 
existing literature with regard to this question and 
then propose a new technique that is general, com- 
putationally efficient, and allows improvements in 
accuracy where needed. 

The paper is organized as follows. It begins with 
a critical assessment of previous work in Section 2. 
Section 3 deals with the derivation of discrete equa- 
tions for the new technique. Numerical results are 
obtained for the cases including polymerization- 
depolymerization (simultaneous breakup and ag- 
gregation) for which analytical solutions exist so that 
the accuracy of the numerical technique can be reli- 
ably evaluated. This is presented in Section 4. Section 
5 discusses a major source of error in the numerical 
solutions and suggests a new approach for improving 
accuracy. Concluding remarks and summary are pre- 
sented in the last section. 
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critically, let us first explore eq. (4) in further detail. 
Assume that the complete size range is divided into 
smaller size ranges and our interest lies in knowing 
the events responsible for changes in particle popula- 
tion for the ith size range. This information is con- 
tained in eq. (4) and can be represented easily through 
a graphical procedure, due to Bleck (1970). Figure 
1 shows such a representation for all the terms con- 
tained on the r.h.s, of eq. (4). Region A represents 
aggregation events leading to particle formation in 
the ith size range, as given by the first term; region 
B indicates death events due to aggregation of par- 
ticles in the ith size range with other particles includ- 
ing those in the same size range, as given by the 
second term; region C represents birth events due to 
the breakup of particles lying in the same or larger size 
ranges, as expressed by the third term; and region 
D shows death events due to the breakup of particles 

(4) in the ith size range, given by the last term in eq. (4). 
Figure 1 contains some overlapping zones, which in- 
dicate that some events contribute to the birth as well 
as the death of particles from the same size range. 
These events have been called as intra-interval, where- 
as the others are known as inter-interval in the exist- 
ing literature. The figure also shows that for a large 
discrete size range, intra-interval events can constitute 
a significant fraction of the total number of events 
affecting the particle population in it. 

An accurate determination of these events clearly 
requires a knowledge of n(v, t), thus leaving the set of 
equations (4) unclosed. A closed set of equations can 
however be obtained by representing the r.h.s, of eq. 
(4) in terms of N{s. There are two major approximate 
approaches to accomplish this: (i) application of the 
mean value theorem on frequency (to be called the 
M-I approach) and given as 

dv dv' n(v, t)n(v', t)Q(v, v') = Qi, kN~(t)Nk(t), 
i J vk 

2. PREVIOUS WORK 

A large variety of discretization techniques have 
been proposed in the literature to solve PBEs. These 
techniques aim at developing a set of self-contained 
equations from the set of equations (4) or a slight 
variation of it. In order to examine these techniques 

t We use the term "autonomy" of a set of equations to 
express the property of being closed in the set of unknowns 
(dependent variables). 

where Qt.k is 

O,.k = O ( x ,  x,); 

(6) 

vi~<xi~<vi+1, Vk~<Xk~<V~+I(7) 

and (ii) application of the mean value theorem on 
number density (to be called the M-II approach) and 
given as 

f d v f ~ + i d v ,  n (v , t )n (v , , t )Q(v ,v  ,) . . . .  
i k 

f .... f.., = ~ ( t ) N ( t )  dv dv 'Q(v,  v') (8) 
,J vi d vk 

where 

1 fi,+ i ~( t )  - - n(v, t)dv, (9) 
Ui+ i - -  /)i i 

and the term with a double integral on the r.h.s, of eq. 
(8) is assumed to be independent of time. Within the 
broad classification of these two approaches, various 
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Fig. 1. A graphical representation of birth and death events for a typical size range, as given by eq. (4). 
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techniques have been proposed in the literature to 
restore autonomy and are reviewed here in the rest of 
this section. 

Hidy and Brock (1970) used the M-I approach with 
a linear grid to restore autonomy for PBEs for ag- 
gregation alone. They considered particle population 
in a size range {vt, vi+l}  to be represented by size xi, 
defined as ix1. Their final equations are easily ob- 
tained by expressing number density as 

M 

n(v, t) = ~ NiS(v  - xi) (10) 
j = l  

and substituting for it in eq. (4). Thus, 

dNi 1 t- 1 u 
= -2j~=1NjNi-jQs.i-j - Ni~,=l ~ NjQi,j. (11) 

dt 
The variation of the #th moment can be obtained by 
substituting for n(v, t) in eq. (3) for aggregation terms 
alone, which gives 

dM, 
dt [x~ + x~ - (x~ + xs) ~] Qi, sNi(t)N fit). 

(12) 

Alternatively, the variation of the #th moment can be 
obtained by multiplying eq. (11) with x~' and summing 
it over all i. Thus, 

d Nix~ - -  = 

dt dt 

2~=1s=1 

(13) 

Equations (12) and (13) are exactly the same for all 
values of#. This indicates that the set of equations (11) 
can be used to obtain the discrete version of the 
moments equation for any/~. This of course is a desir- 
able property, and we propose to call it "internal 
consistency" of the discrete equations with regard to 
a specific moment, as it ensures that the determination 
of that particular moment from the size distribution 
obtained from the solution of the discrete equations is 
a consistent procedure. 

Thus, the discretization technique based on uni- 
form grid yields a set of equations which is internally 
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values of xx, the technique provides good resolution 
at the small size end, and yields extremely accurate 
solutions for the complete size distribution as well as 
its moments. The major disadvantage of this tech- 
nique, though, is that it requires a large number of size 
ranges to cover the entire size range with acceptable 
resolution, and therefore incurs very high computa- 
tional costs. 

Batterham et al. (1981) used the M-I approach with 
a geometric grid (v~+ x = 2v~) to reduce the number of 
equations needed to obtain numerical solutions of 
PBEs for pure aggregation. They considered the par- 
ticle population in discrete size ranges, { v, v~ + 1}, to be 
represented by particle sizes x~'s. The aggregation of 
these particles led to the formation of new particles 
lying on the boundaries of a size range. The authors 
divided such particles equally (mass) between the ad- 
joining size ranges. Also, the particles formed in a sub- 
size range, e.g. x~ to v~ + x for the ith size range, were 
assigned to x~ such that the mass was conserved. Their 
final equations, which incorporate intra- and inter- 
interval events, are 

dNi(t) 

dt 
= (3)Ni- l( t)Ni-2(t)Qi- , . i-2 

+ (¼)Ni(t)N~- l(t)Qi.i- l 

+ Ni -  l ( t )Ni-  l(t)Qi- 1.1-1 

i-2 
+ ~. (1 + 2J-i)Nj(t)N,(t)Qi, j 

j=l  
M 

-- ~, Ni(t)Nj(t)Qi.j - Ni(t)Ni(t)Qi, i. 
j=l 

(14) 

These equations conserve total mass (internal consist- 
ency with regard to first moment), but fail to yield the 
correct discrete equation for total numbers or any 
other moment [eq. (12)]. Besides these limitations, the 
authors have counted the aggregation of the equal 
size particles twice. Koh et al. (1987) have used the 
erroneous equations of Batterham et al. (1981), where- 
as Chen et al. (1990) have corrected for the double 
counting. 

Hounslow et al. (1988) have proposed a new dis- 
cretization technique using the M-I approach. They 
chose the same fixed grid as that of Batterham et al. 
(1981), but assumed the particles to be uniformly 
distributed in a size range and considered aggregation 
of particles in fractions of size ranges to form particles 
in size range {vi, vi+ 1}, also evident from Fig. 1. They 
identified four types of interactions that can change 
the total population in a size range and derived ex- 
pressions for each one of them separately. The set of 
equations derived thus was internally consistent with 
respect to only the zeroth moment of the distribution 
(total numbers) and did not conserve mass. The 
authors corrected for it by introducing a correction 
factor, which turns out to be independent of the 
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choice of the aggregation kernel. Their final set of 
equations is 

dNi(t) i-  2 
- - N i - l ( t )  ~ 2J-i+lQi-l . jNj( t )  

dt j=l 

+ ½ Qi - , . i - ,N2- , ( t )  

i--1 
--Ni(t)  ~ 2J-iQi.jNj(t) 

j = l  

M 

- - i i ( t )  ~ Q,.jNj(t), (15) 
j = l  

which is now internally consistent with regard to mass 
and total numbers. Since these equations cannot re- 
sult in the correct discrete equation for other mo- 
ments, it is to be expected that those moments and 
corresponding densities will not be predicted well 
(discussed further in Section 4.2.2). The technique is 
limited to a fixed and coarse geometric grid, and 
results in poor predictions at long times. 

Bleck (1970) seems to have been the first in the 
literature to suggest a geometric grid for the discretiz- 
ation of PBEs for aggregation. He proposed that if 
n(v, t) for a size range is taken to be equal to mass 
average density for the given size range, eq. (4) for 
aggregation alone can then be exactly reduced to the 
following by using M-II: 

t3 (n),  2 ( ~  J _ 

- ~ a,j~<n)j(n)k 
~t v L , - v {  j : ,  : 

--k~=l bik ( r l ) i (n )k ) .  (16) 

Coefficients aij k and bik a r e  given as 

a,jk=ff A Q ( ~ , x - ~ ) x d x d ¢ ,  iJk (17) 

b,k=ff.,O(x, Oxdxd¢. 
Areas Aok and Bik are shown graphically in Fig. 1. 
This method of restoring autonomy conserves only 
mass. The set of equations (16) does not reduce to 
a correct discrete equation for any other moment. In 
addition, the technique is computationally more ex- 
pensive due to the presence of double integrals. For  
a size-dependent kernel, the numerical results are not 
in good agreement with the analytical results even for 
a fine grid (vi+ 1 = 21/3vi). Nambiar et al. (1992) have 
recently extended Bleck's technique to pure breakup 
with the same limitations as those in the original 
technique. 

Gelbard et al. (1980) have proposed a similar tech- 
nique for pure aggregation. The authors have derived 
general conservation equations for property P~, de- 
fined as S~I ÷' yen(v, t)dr, by considering various types 
of aggregation events and then obtaining the corres- 
ponding kinetic coefficients. Alternatively, these 
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equations can be easily derived by discretizing 
a modified PBE, 

~p(v, t) f l  
dt = ½ v;r(v-v', v ')p(v-v' ,  t)p(v', t)dv' 

- p(v, t) v~r(v, v')p(v', t)dv' (18) 

where p(v, t) = v~n(v, t) and r(v, v') = Q(v, v')/v~v '~. 
The final set of discrete equations can be written as 

O(p),  1 ( ~_lk~.tCijk(P)j(p) k t~t vi + l -- ~ j = 

-- k=l ~' d ik (P) i (P )k )  (19) 

where coefficients Cog and d~k are given by similar 
definitions as in eq. (17). The discrete equations of 
these authors are internally consistent only with re- 
gard to the (th moment. Our predictions using this 
technique indicate that for ( = 0, as one would expect, 
the first moment of the distribution (mass) is not 
conserved and the results for number density also are 
not accurate (although the computation time is signif- 
icantly larger compared to the approaches based on 
M-I). Sastry and Gaschignard (1981) proposed two 
sets of equations, one for ( = 0 and the other for 
( = 1, using the M-II approach. These sets of equa- 
tions are coupled through the slope of the number 
density function in the discrete size range. The authors 
claim their results to be more accurate (although their 
plots do not extend to the region of eventual exponen- 
tial decay). Evaluation of a large number of double 
integrals increases the computational costs signifi- 
cantly. 

Landgrebe and Pratsinis (1990) have extended the 
technique proposed by Gelbard et al. (1980) to dis- 
cretize the discrete-continuous PBE for aggregation, 
proposed by Gelbard and Seinfeld (1979). They show 
that, in the limit of a very fine grid, the numerical 
results remain the same for ( = 0, 1 or 2. The authors 
report that for a relatively coarse grid (vi+~ = 1.5vi) 
the best results are obtained with ( = 2 (which does 
not preserve other moments), even though as much as 
10% mass is lost during the aggregation process. 

In a recent paper, Kostoglou and Karabelas (1994) 
have reviewed various techniques for solving PBEs 
for pure aggregation. In addition to presenting a gen- 
eral review of various techniques, the authors have 
tested four techniques for constant and sum kernels. 
Out of these techniques, the technique proposed by 
Marchal et al. (1988), which is based on M-I, does not 
preserve numbers and gives the worst performance. 
The technique proposed by Geibard et al. (1980), 
reviewed earlier in this section, offers the next best 
performance. Surprisingly, the technique proposed by 
Batterham et al. (1981) (also reviewed earlier), which 
does not preserve numbers and counts the aggrega- 
tion of the particles in the same size range twice, yields 
nearly as good a performance as the best choice, the 
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technique proposed by Hounslow et al. (1988). This 
appears to be due to the cancellation of errors. In 
a new situation, cancellation of errors may not always 
be guaranteed. 

From the foregoing survey of the use of discretiz- 
ation methods, the following conclusions emerge: 
(i) Techniques based on M-I have the merit of com- 
putational efficiency. (ii) Finer grids improve accu- 
racy of the solution. (iii) Procedures conserving both 
particle numbers and mass also improve accuracy. 

This paper presents an approach that substantially 
improves the effectiveness of discretization methods in 
various ways. First, it leaves open any two properties 
for exact preservation during aggregation or breakage 
depending on what moments of the population are 
desired accurately. Second, the coarseness of discretiz- 
ation may be varied depending on the distribution of 
the errors in number density. This ability to vary the 
discretization can be naturally exploited to deal with 
discrete-continuous formulations of population bal- 
ance. For example, in polymerization, the smaller 
polymers are purely discrete (in chain length) requir- 
ing a uniform discretization and the larger polymers 
may be approximated by continuous chain lengths 
requiring a suitably coarse discretization different 
from that of the smaller entities. Third, the method is 
free from ad hoc derivations and accommodates nat- 
urally diverse combinations of aggregation and 
breakage events. 

3. FORMULATON OF DISCRETE EQUATIONS 

Often the quantity of engineering interest is some 
integral property associated with the entire popula- 
tion that can be calculated as the sum of those at- 
tributed to individual particles. Consider, for example, 
property F(t) for the entire population, calculable 
from property f ( x )  of a single particle of volume x. 
The total property F(t) can then be obtained as 

fo o F(O = f (x)n(x, t)dx.  (20) 

Suppose further that the application concerned re- 
quires the precise evolution of F(t). Equation (20) 
shows that the most accurate way to calculate the 
evolution of property F(t) is to obtain the evolution of 
number density, n(x, t), which can also be used to 
obtain any other integral property. It is here that the 
techniques of the present paper become important. 
Our discrete formulation, instead, directly addresses 
how changes in certain desired properties Fl(t), F2(t), 
F3(t), ... are brought about by enforcing exact preser- 
vation of changes in properties f l (x) , f2(x), f3(x) . . . . .  
when particles break or aggregate with other par- 
ticles. In other words, the discrete equations are de- 
signed to produce the "correct" equation for the 
evolution of F(t). While earlier considerations were 
limited to total numbers and mass, the considerations 
here clearly represent generalizations. Although such 
generalizations may be obvious, it may not be as 
apparent that the attempt here is to focus on the most 

CES Sl:8-d 
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Fig. 2. A general grid which can be used with the proposed numerical technique. Here, vi = (xi- 1 + xi)/2. 

relevant calculations, i.e. estimation of F,(t), F2(t), 

F,(t), . . . without resorting to the “overkill” of accu- 
rately estimating the original number density function 
or any other (less relevant) property derived from it. 
Discretization, particularly in its coarse version, is 
a conscious approximation which, in stressing accu- 
racy on some properties in the interest of the applica- 
tion, must necessarily relax on others. 

The foregoing discussion focuses on the applica- 
tions that require the evolution of some integral prop- 
erties for the entire population. There are other ap- 
plications where, in addition to integral properties, 
accurate information is also needed on how these 
properties are distributed in the particle volume 
space. This may best be obtained through number 
density, n(x, t) , as the relevant distribution functions, 
[fi(x)n(x, t)], [fi(x)n(x, t)], . . . , can now be cal- 
culated. The prediction of n(x, t) is computation inten- 
sive. Moreover, the estimates of n(x, t) in the size 
range that contributes substantially to an integral 
property (e.g. higher moments) will have to be very 
accurate, although for total numbers such accuracies 
in n(x, t) may be meaningless and also very difficult to 
obtain. In most applications, we, however, require 
only total estimates of these properties for various size 
ranges of interest (i.e. total number of particles in each 
section), and it is for such applications that the tech- 
niques of the present paper again become important. 
Our discrete formulation alleviates the problem of 
estimating n(x, t) very accurately for higher moments 
by directly addressing the evolution of Ft.&t), total 
i(x) property for section k, through exact preservation 
of changes in these properties, when the particles 
break up and aggregate. As pointed out earlier, the 
formulation stresses on accurate estimation of the 
quantities of interest while relaxing on other less 
needed quantities. The idea here is to pick out accu- 
rate solutions for the quantities of interest without 
having to solve for the complete number density 
(which contains more information than needed). 

It may appear that the total integral property can 
be predicted accurately only if its distribution in par- 
ticle volume space is also predicted accurately. This is 
not true as many distributions can correspond to the 
same integral property. A coarse discretization yields 
good results for the integral property, even though the 
distribution of this property may be in small error 
with the actual distribution. An accurate prediction of 
the distribution of integral properties thus calls for 
a flexible technique that can be used with a variety of 
grids: coarse or fine; uniform, geometric or nonregular 
(arbitrary). 

The numerical technique proposed here divides the 
entire size range into small sections. The size range 
contained between two sizes Vi and vi+ I is called the 
ith section. The particle population in this size range 
is represented by a size Xi (also called grid point), such 
that vi < xi < Di+l. A typical grid along with its repre- 
sentative volumes (grid points) is shown in Fig. 2. 
Unlike the grids proposed in the past, which are either 
uniform or a fixed geometric type (Vi+ i = 2ur), the grid 
proposed here can not only be of geometric type with 
varying coarseness, but it can also have a more gen- 
eral and flexible pattern, fine in some size ranges and 
coarse elsewhere. Such grids are later shown to be 
quite useful for improving the accuracy and also 
adapting to special situations, e.g. solution of 
discrete-continuous PBEs for polymerization- 
depolymerization and other similar problems. The 
method of restoring autonomy is based on M-I as it 
does not require the evaluation of any double inte- 
grals and is computationally very efficient. 

3.1. Representation of breakup and aggregation events 
The focus of the present technique is a nonuniform 

grid, as it allows a large size range to be covered with 
a small number of sections and yet offers good resolu- 
tion. Since the particle populations in various size 
ranges are assumed to exist only at corresponding 
representative sizes, aggregation or breakage of 
particles of these sizes can result in the formation 
of new particles whose sizes do not match with 
any of the representative sizes. Such particles 
need to be represented through the chosen repre- 
sentative sizes, for which there are a variety of ways, 
however. 

Let us, for example, consider aggregation of two 
particles of sizes Xj and xk. In general, aggregation can 
be defined as change in property f(x) from 
f(Xj) + f (xk) to f (Xi + xk), where f (x) is an extensive 
property, obtainable from x, the size of a particle. In 
the framework of purely discrete populations and 
uniform grid (Xi = ixi), the size of a new aggregate 
always exactly matches with one of the xi’s. Thus, for 
this discretization, changes in any property f(x) cor- 
responding to the aggregation of two particles are 
exactly preserved. 

If the changes in an arbitrary property f (x), due to 
aggregation of particles, are exactly preserved in the 
representation of these events in the equations for 
NXt)‘s, it can be shown that the set of equations for 
Ndt)‘s then remains internally consistent with regard 
to the corresponding property F(t) [eq. (20)] of the 
size distribution. It is for this reason that the uniform 
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discretization provides internal consistency with 
regard to all the moments, as noted in Section 2. 

If the size of the new particle does not match with 
any of the representative sizes, many possibilities exist 
with regard to its representation. We propose that, 
instead of an ad hoc representation, the particle 
should be assigned to the nearby representative sizes 
such that the changes in properties ]'l(x), 
f2(x), f3(x) . . . .  due to aggregation or breakage events 
are exactly preserved in equations for N~(t)'s. The final 
set of equations for N~(t)'s will then yield the correct 
discrete equations for the evolution of Fl(t), 
F2(t), F3(t), ... and will allow their prediction from 
the size distribution in a consistent manner. 

For the purpose of illustration, let us consider an 
example where our interest is in predicting the evolu- 
tion of the second moment of the distribution. Imag- 
ine that a particle of size v (x~ < v <x~+l) is 
formed due to breakage or aggregation of other 
particles. As stated earlier, to predict the second 
moment of the distribution in a consistent manner, 
this particle of size v should be represented through 
populations at sizes x~ or/and Xi+l in such a 
way that the change in the corresponding property for 
the second moment, which is v 2 - x j2 _ x 2, is exactly 
preserved. More simply, the reassigned particles 
should have second moment equal to v 2. Formation 
of (v/x~) 2 particles of size x~ or (v/x~+ 1) 2 particles of 
size x~+ 1, both preserve the desired property. Clearly, 
at least one more property should be preserved to 
uniquely specify an aggregation or breakage event. In 
the present work, therefore, we will provide for the 
exact preservation of two properties, the minimum 
required. 

Yet another point that needs clarification before 
formulation of the discrete equations is undertaken 
concerns intra- and inter-interval events. Unlike pre- 
vious works, in the present paper, distinction between 
the two types of events is unnecessary for the follow- 
ing reasons. First, all possible events that lead to the 
formation of new particles in a discrete size range will 
be considered as birth terms. Second, all possible 
events that lead to the loss of a particle from a given 
population will be considered as loss terms. Thus, the 
intra-interval events that result in the birth as well as 
the loss of particles from the same size range will be 
considered twice, but they will be treated like inter- 
interval events eliminating the need for special consid- 
erations for intra-interval events. This simplifies the 
derivation as well as the implementation of the dis- 
crete equations quite substantially. 

3.2. Strategy for conserving two properties 
When a new particle, formed either due to breakup 

or aggregation, has its size corresponding to a repre- 
sentative size, all the properties associated with it are 
naturally preserved. However, when such a situation 
does not exist, we propose that the particle be as- 
signed to the adjoining representative volumes such 
that two prechosen properties of interest are exactly 
preserved. Thus, the formation of a particle of size v in 
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size range {xi, x~+ 1}, due to breakup or aggregation, is 
represented by assigning fractions a(v,x~) and 
b(v, xi+ 1) to particle populations at x~ and x~+ 1, re- 
spectively. For the conservation of two general prop- 
ertiesfl (v) andf2(v), these fractions satisfy the follow- 
ing equations: 

a(v, xi)fx (xl) + b(v, xi+ 1)fl (xi+ 1) = f l  (~)) 

a(v, xi)fa(xi) + b(v, xi+ ,)f2(xi+ ,) =f2(v). 
(21) 

Although these equations can be generalized for the 
preservation of four properties by assigning a particle 
of size v to populations at xl-a, xi, xi+ 1 and x~ + 2, in 
the present paper, we will focus on exact preservation 
of only two power-law properties, x ~ and x v. 

It is clear from these equations that for preservation 
of two properties, the particle population at xi gets net 
particles assigned to it for every new particle that is 
born in the size range {x~_ 1, xi+ 1}. Using this simple 
technique for handling new particles, we will 
now derive discrete equations for breakage and 
aggregation. 

3.3. Breakage 
Birth term: In the light of the discussion pre- 

sented in the previous section, the birth term due to 
particle breakage [third term on the r.h.s, of eq. (4)] 
given by 

Rnb = dv fl(v, v')F(v')n(v', t)dv' (22) 
d V l  d V  

is modified to 

R,b = a(v, xi)dt~ fl(t;, v')F(v')n(v')dv' 
i 

+ b(v, xi)dv fl(v, v')F(v')n(v')dr'.  
i 1 

(23) 

Since the particle population is assumed to be concen- 
trated at representative sizes, x~'s, the number density 
n(v, t) can be expressed as 

M 

n(v, t) = ~ Nk(t)6(v -- Xk). (24) 
k = l  

Substituting for n(v, t) from eq. (24) in eq. (23), we 
obtain 

Ii 
i + I 

Rsb = ~ rkNk(t) a(v, xi)fl(v, xk)dv 
k>~i  i 

I x, + ~ Fkgk b(v, xi)fl(v, Xk)dV. (25) 
k>~i  d x i - t  

Substitution of a(v, xi) and b(v, xi) from solutions of 
sets of equations similar to that in eq. (21) simplifies 
eq. (25) to 

M 

RBb = E hi, kFRNk(t)" (26) 
k = i  
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Here, Fk is F(xk) and ni.k, interpreted as the contribu- 
tion to population at ith representative size due to the 
breakage of a particle of size Xk, is given as 

t , k . ~ i + l  - -  lS i ,  k X i +  ! I S i - , . k X i - 1  - -  D i _ l , k X i _  1 

n , . ~ =  ~ + l - x ~ L 1  + x~x>, - , ,~xL ,  
(27) 

where O~!k ) is given as 

x i + l • -'i, kU(O = veil(v, Xk) dr.  (28) 
i 

The exact preservation of numbers and mass is 
achieved by setting ( = 0, v = 1. For such a case, n,., is 
given by a simple form, 

I x i + l  X i +  1 - -  V 
ni.k . . . .  il(V, Xk)dV 

, ] x  i X i +  1 - -  X i  

I x, ~-x,-1 
+ - il(v, xk)dv. (29) 

~ x i -  1 x i  - -  X i -  1 

The first and second integral terms reduce to zero for 
i = k and i = 1, respectively. The integral terms ap- 
pearing in eqs (28) or (29) can be evaluated analyti- 
cally for a large class of il(v, v') functions. Otherwise, 
these one-dimensional integrals can be evaluated nu- 
merically at negligible computational cost. 

Death term: Substituting for n(v, t) from eq. (24) in 
the death term [last term in eq. (4)] given by 

fl 
i+ I 

Rob = F(v)n(v, t) dv (30) 
i 

we obtain 

Rob = EN,(t). (31) 

3.3.1. Discrete equations for  the pure breakup pro- 
cess. Substitution of eqs (26) and (31) in eq. (4) for 
terms corresponding to breakup alone results in the 
discretized version of PBE for pure breakup, and is 
given as 

dNi(t)  M 
dt  = ~ nckFkNk(t) -- ENi( t ) .  (32) 

k = i  

The set of equations (32) and the accompanying deri- 
vation indicate that the technique presented here is 
free from the form of the breakage function and also 
the choice of the grid. This allows a single technique to 
be used for binary, multiple or even the type of break- 
age proposed by Narsimhan et al. (1980) which allows 
for the formation of more daughter particles as the 
size of the parent particle increases. 

The final equations, obtained here, satisfy the well- 
known constraints too, e.g., for ( =  0, v = 1 and 
xt = 0, the following constraints are exactly satisfied. 

o:kil(v, xk)dv  = y(Xk) 

(33) 

f l  ~ vii(v, = xk. X k ) d V  

Here, ?(x~) is the average number of daughter particles 
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formed due to the breakage of a particle of size Xk. For  
other values of ( and v, similar constraints about 
higher moments are exactly satisfied. 

3.4. Aggregation 
Birth term: Similar to the birth term due to break- 

age, the birth term due to aggregation [first term on 
the r.h.s, of eq. (4)] given by 

.... fo RB. = dv n(v - v', On(d, t)Q(v - v', v ')dv'  
J vi 

(34) 

is also modified. The population at representative 
volume x~ gets a fractional particle for every particle 
that is born in size range (x.  x~+ 1) or (x~_ t, xi). For 
particles born in range (x~, xi+ 1), a(v, x~) particles are 
assigned to xi, and for those born in range (xi-  1, xi), 
b(v, xi) particles are assigned. The values of a(v, x3 
and b(v, x~) are given by the solutions of equations 
similar to those in eqs (21). Thus, the aggregation term 
RAb is modified to 

f?, i RAb = ½ a(v, xi)dv n(v - v', On(d,  t) 
~ J o  

x Q(v - v', v')dv' 

f) C + ½ b(v, xi)dv n(v - v', On(d, t) 
~-1 d o  

x Q(v - v', v ')dv' .  (35) 

Substituting for n(v, t) from eq. (24), and after some 
algebraic manipulations, we obtain 

j~>tc 
Rab = Y, (1 - ½ 6j.k)~lQj, kNj(t)Nk(t) 

j , k  
x l -  1 <~(xj+ xD  <~x~ + 1 

(36) 
where 

v v 
V X i +  , X i +  1 V 

, ..~..~ ---..-TZ77f-, x~ <~ v <<. xi÷ l 
~ X i X i +  1 - -  X i X i +  1 

(37) t/ 
/ v x i - 1  - v x ~ _  1 
" f ~ v • ¢ , x i - l < ~ v < ~ x ~  
L X i X  i _  1 - -  X i X i -  1 

and 

Qj.k = Q(xj ,  Xk). (38) 

For  preservation of numbers and mass, r/is given by 
the simple expressions 

I X i + I - v  X i ~ V ~ X i +  1 

X i + l  - - X  i 
r/ [ v - x i _ l  (39) 

~x-~-x--~_~' x,_, <.v~x, .  

Equation (36) applies for a general grid. Possible com- 
inations of classes j and k satisfying the consraint 
x~_ 1 <<. (xj + xk) <~ xi+ 1 are determined at the time of 
grid generation, which eliminates the need for check- 
ing the same inequalities in eq. (37) repeatedly as the 
computation proceeds. 
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Loss term: Substituting for n(v, t) from eq. (24) in 
the death term [fourth term on the r.h.s, of eq. (4)] 
given by 

RDo = n(v, t)dv n(v', t)Q(v, v')dv', (40) 
i 

we obtain 

M 

R m  = Ni(t) ~ Q,.kNk(t). (41) 
k=X 

3.4.1. Discrete equations for the pure aggregation 
process. The discrete equations for pure aggregation 
are obtained by substituting for the birth and the loss 
terms from eqs (36) and (41) in eq. (4) for aggregation 
terms alone. The final set of discrete equations is given 
a s  

dNi(t) 

dt 

j ~>k 

= ~, (1 - ½ 6j.k)qQj, kNj(t)Nk(t) 
j , k  

x i -  t <~(xj + xt)  ~<x i + 1 

M 

-- Ni(t) ~. Qi,kNk(t). (42) 
k = l  

The set of equations (42), like that for pure break- 
age, has been derived without any reference to the 
form of the aggregation kernel and the pattern of the 
grid, thus indicating that these equations are valid for 
various choices of the aggregation kernel and different 
grid patterns. 

The final equations obtained here offer interesting 
comparisons with the earlier techniques, reviewed in 
detail in Section 2. For a geometric grid (x~+ 1 = 2x~) 
and ~ = 0, v = 1, the set of equations (42) reduces 
exactly to that given by Hounslow et al. (1988), who 
derived their equations by following an entirely differ- 
ent set of arguments. Although the final equations are 
the same, the present technique offers numerous ad- 
vantages. Derivation of the final equations is quite 
simple. The technique can be used with a finer geo- 
metric grid of type x~+ t = sxi, s > 1, or other complex 
grids, e.g. the one shown in Fig. 2, without requiring 
a new derivation. Most importantly, it can preserve 
any two properties, not just mass and numbers. Later 
in Section 4.2.2, we will show that this has important 
implications. The set of equations in (42) also reduces 
to the set of discrete equations proposed by Hidy 
(1965) for uniform discretization, and possesses inter- 
nal consistency with regard to all the properties. In 
comparison with the technique proposed by Bleck 
(1970), which conserves only mass, and by Geibard et 
al. (1980), which preserves only one property, the 
present technique preserves two properties and is 
computationally more efficient as no double integrals 
need to be evaluated. 

An interesting application of an arbitrary grid, that 
the present technique offers, concerns the discretiz- 
ation of a discrete-continuous PBE proposed by Gel- 
bard and Seinfeld (1979). Landgrebe and Pratsinis 
(1990) discretized this equation using a lengthy and 
involved derivation with double integrals and conser- 
vation of only one property. In comparison, the pres- 
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ent technique, with a uniform grid at small size range 
and a geometric grid at large size range, addresses 
several important issues with the discrete-continuous 
PBE quite easily. A uniform grid at small sizes nat- 
urally reduces to purely discrete populations here and 
a geometric grid covers a long size range with a small 
number of equations, preserves two properties of the 
distribution, allows improvement in accuracy through 
manipulation of the grid and requires only reduced 
computational effort. 

3,5. Discretized equations for simultaneous breakup 
and aggregation 

The discretization techniques used for breakage 
and aggregation are based on a common strategy and 
involve the same variables Ni(t)'s, thereby allowing us 
to combine discrete equations for breakage and ag- 
gregation in a straightforward way to obtain discrete 
equations for simultaneous breakage and aggrega- 
tion. The final equations are 

dNi(t) j ~>k 
- ~ (1 - 122 ¢Sj, k)rlQj, kNj(t)Nk(t) 

dt j.k 
xi  - 1 ~ ( X j  + Xk) ~ X  i + 1 

M M 

- Ni(t) ~ Qi.kNk(t) + ~, ni,kFkNk(t) 
k = l  k = i  

- EN,(t) .  (43) 

The set of equations (43) has quite general applica- 
bility. Like the previous sets of equations for pure 
breakage and pure aggregation, these equations are 
valid for various functional forms for the breakage 
frequency, daughter particle size distribution function 
and aggregation kernel. If properties x ~ and x v are 
preserved in the derivation of the discrete equations 
for both breakage and aggregation terms, the final 
equations will be internally consistent with regard to 
the (th and vth moments of the size distribution. This 
enables their determination in a consistent manner. 
Thus, depending on the quantities of interest, the 
discretization technique can be adapted to yield im- 
proved results for the desired quantities. 

The use of a numerical technique is called for only 
when analytical solutions are not available. However, 
the numerical solutions need to be checked for con- 
vergence and accuracy before they can be accepted. 
This is easily accomplished by comparing the 
numerical results for two grids that differ only 
slightly. A numerical technique that uses a fixed grid 
(Hounslow et al., 1988) cannot be used for this pur- 
pose. In comparison, the present technique permits 
variations in the grid, thereby allowing the conver- 
gence and the accuracy of the numerical solutions to 
be tested easily. 

4.  N U M E R I C A L  R E S U L T S  

4.1. Pure breakage 
We consider two examples to illustrate the useful- 

ness of the technique developed here, uniform binary 
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breakup and multiple breakup. Let us set the quantit- 
ies of interest to be the integral property total number 
of particles and its distribution in terms of total num- 
bers in various size ranges along with total mass 
conservation. Thus, the choice of parameters reduces 
to ( -- 0 and v = 1. The complete analytical solutions 
for the evolution of number density for these cases 
have been provided by Ziff and McGrady (1985) and 
Ziff (1991), respectively. All the numerical results pre- 
sented in this section have been obtained for a geo- 
metric grid (xi+l = sxi) and a monodispersed initial 
condition. 

Figure 3(a) shows a comparison of the numerical 
and the analytical solutions for the variation of total 
number of particles for fl(v, v') = 2Iv' and F(v) = v 2. 
The figure shows that the predictions for N(t)/N(O) 
are in very good agreement with the analytical results, 
even though a very coarse grid (s = 3) has been used 
here. 

The corresponding predictions for size distribu- 
tions are shown in Fig. 3(b). Before we can compare 
these results with the analytical solutions, an explana- 
tion of the method of comparison is in order. As seen 
from the previous section, the present technique yields 
particle populations for various sections at their re- 
spective representative volumes. Since the section 
widths change with the type of grid used, a common 
basis for comparing the numerical and the analytical 
results has been provided through a comparison of 
the average densities. These densities have been plot- 
ted at xepresentative volumes or grid points (projec- 
tion of all the points for a simulation on abscissa 
indicates the type of grid used to obtain those results). 
The average number densities for the analytical solu- 
tions have been obtained for the finest grids as they 
are rather insensitive to the type of grid chosen. This 
strategy of comparing the numerical results has been 
followed throughout this work. We now go back to 
Fig. 3(b), which shows the numerical results for the 
complete size distributions for s -- 2 and 3, along with 
the analytical results. The figure shows that the nu- 
merical results for s = 3 are in good agreement with 
the analytical results for small as well as very large 
values of N(t)/N(O) (~300)  and as the grid is made 
finer (s = 2), the accuracy is further improved. It 
should be noted that the results have been compared 
on a log-log plot and the agreement such as the one 
shown here across many orders of magnitude is in- 
deed remarkable. 

A similar exercise has been carried out for multiple 
breakage. We have added to the level of difficulty here 
by choosing a situation where 33 daughter particles 
are produced due to the breakage of a single parent 
particle and number density approaches infinity as 
v ~ 0. Figures 4(a) and 4(b) show that even for this 
case, the total numbers as well as the complete size 
distributions are predicted very well for both short 
and long times. It should be noted that in this case, 
numerical results have been obtained by using even 
coarser grids (s = 3 and 4). Both of these examples 
illustrate that pure breakup problems can be handled 
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very well by the present technique, without even re- 
quiring a fine grid. 

4.2. Pure aggreqation 

4.2.1. Complete size distribution. Scott (1968) has 
presented analytical solutions for pure aggregation 
for three kernels (constant, sum and product) and 
various initial conditions. We have compared our 
numerical results with the analytical solutions for all 
the three kernels, and for the following initial condi- 
tion: 

n(v, O) = No exp . (44) 
/)o 

The numerical results have been obtained for the 
preservation of ( = 0 (numbers) and v = 1 (mass) us- 
ing geometric grids for three values of parameter s. 
The size of the smallest particle considered here is 
2000 times smaller than the initial average particle 
size. The number of particles and the fractional mass 
contained in particles smaller than this size is insigni- 
ficant and does not change the numerical results. The 
method of comparison here is the same as that used in 
the previous section. For ( = 0, v = 1 and s --- 2, as 
pointed out in Section 3.4, our equations become 
identical to those of Hounslow et al. (1988); therefore, 
the other results for smaller values of parameter s can 
be viewed as improvements over the results obtained 
by the technique proposed by Hounslow et al. (1988). 

Figure 5 shows the complete size distributions for 
the constant kernel at two degrees of aggregation 
[defined as N(t)/N(O)], and for three selections of grid 
parameter s (2, 1.5 and 1.25). The results have been 
plotted using a log-log scale to highlight the devi- 
ations from the analytical results in the size range 
where the number density decreases steeply. The use 
of a linear scale does not show such differences. The 
figure shows that for small to moderate particle size 
ranges, the numerical results are in excellent agree- 
ment with the analytical results even for the coarsest 
size grid. At large particle sizes, where number densit- 
ies are small, the numerical results are overpredicted 
for a coarse grid. The figure, however, shows that by 
using a finer grid, the variation of number density 
even in this size range is predicted very well. This is 
clearly shown by the very good agreement across 
many orders of magnitude for s = 1.25, both for low 
and high degrees of aggregation. It should be pointed 
out that for s = 1.5 (a moderate grid), the extent of 
overprediction is much smaller than that for s = 2, 
and for applications requiring accurate information 
only in the densely populated size ranges, such a grid 
may provide acceptable accuracy. Of course for high- 
er accuracy, a finer grid can always be used just by 
reducing the value of the s parameter. It is interesting 
to note that in comparison with pure breakup (for 
s = 4), the present example requires much finer grids 
(s = 1.25) to yield comparable accuracies. This issue is 
explored in detail in Section 4.4. 
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Figure 6 shows a similar comparison for the size- 
dependent sum kernel, Q(x , y )=  x + y, for three 
values of parameter s (2, 1.5 and 1.15). Once again the 
same features are seen. The agreement at small sizes is 
very good for all three values of s. For  s = 2, the 
numerical results for moderate size particles are 
underpredicted, and those for large sizes are signifi- 
cantly overpredicted. The use of finer grids (s = 1.5 
and 1.15), as the figure shows, improves the accuracy 
significantly in the moderate as well as the large size 
range. Although the sum and the constant kernels have 
similar features, there is one important difference. The 
extent of overprediction for the sum kernel in the large 
size range is significantly larger [at N(t)/N(O) = 0.039 
itself] than that for the constant kernel [at N(t)/N(O) 
as low as 8 x 10 -4] and increases with time. 

The results for a gelling-type kernel, Q(x, y) = xy, 
have been presented in Fig. 7 for the same values of 
parameter s as in Fig. 6. Like previous kernels, the 
agreement is good at small particle sizes for all grid 
selections, although for this kernel there is not much 
change in population in this size range. At moderate 
sizes, the coarse grid (s = 2) results in slight under- 
prediction which is easily improved by selecting 
a smaller grid (s = 1.5). For  large sizes, however, the 
coarse grid produces results which are not even in 
qualitative agreement with the analytical results even 

though the degree of aggregation is very low 
[N(t)/N(O) being 0.925 and 0.75-1. As the grid is made 
finer (s = 1.15), the predictions are improved signifi- 
cantly and the exponential tail is also predicted with 
improved accuracy. 

The results presented in this section can be sum- 
marized in the following way. The number densities 
for smaller particles are predicted quite accurately 
even with a coarse grid. In general, maximum devi- 
ations are encountered in large particle size ranges 
where the number density decreases very steeply (ex- 
ponentially). If the degree of homogeneity of the ag- 
gregation kernel is increased (zero for constant kernel, 
one for sum and two for product kernel), the devi- 
ations in this size range are increased, and as time 
progresses they continue to increase still further. The 
technique presented in this paper readily accommod- 
ates these issues by just reducing the grid parameter 
s which of course increases the computational costs. 
Although this option can be used to improve the 
accuracy of the numerical predictions to any desired 
degree, we shall address this issue again in Section 4.4 
to explore more efficient ways of accomplishing it. 

4.2.2. Prediction of second moment of  the distribu- 
tion. We now present some results to illustrate the 
usefulness of the concept of preservation of two 
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appropriate properties in the set of discretized equa- 
tions. We consider a simple case of pure aggregation 
and set the objective as prediction of variation of the 
second moment of the size distribution with time. 
From the applications viewpoint, the second moment 
of the distribution is proportional to the light 
scattered by particles in the Rayleigh limit. Figure 
8 shows the results for the desired quantity for the 
constant kernel and three combinations of two prop- 
erties that are preserved in the numerical technique: 
numbers and mass, mass and v 2, numbers and v 2 . The 
results presented here have been obtained by using 
a coarse grid s = 2, and thus, when numbers and mass 
are preserved, they become the same as those ob- 
tained from the technique of Hounslow et  al. (1988). 
A comparison of the numerical results (shown by 
points) with the analytical results (shown by solid line) 
indicates that the prediction of the second moment 
using a discretization technique that preserves num- 
bers and mass yields poor results. The combinations 
involving the preservation of v z and numbers result in 
loss of mass from the system and, although the prop- 
erty v 2 is preserved, the results are of poorer quality 
than those obtained for the preservation of numbers 
and mass. The results obtained for the preservation of 
mass and v 2 are the best among the three combina- 
tions considered here, and are extremely accurate. 

Very dramatic results are obtained for the size de- 
pendent sum kernel and are presented in Fig. 9. 
These results are obtained for the same coarse grid as 
mentioned earlier. The figure shows that the preserva- 
tion of numbers and mass results in more than an 
order of magnitude overprediction for the second 
moment, and are of the worst quality for the tt, ree 
combinations considered here. Similarly, the pre~ ~r- 
vation of numbers and property v z results in nearly an 
order of magnitude underprediction. In comparison, 
the results obtained by using the preservation of mass 
and property v 2, with the same coarse grid, s = 2, are 
once again extremely accurate. 

A technique based on the preservation of fixed 
properties like numbers and mass (Hounslow et  al., 

1988) can possibly predict such accurate results, but 
only with an extremely fine grid (s = 1.05), if allowed, 
incurring a much larger computational cost. These 
two examples clearly indicate that the flexibility of the 
present technique to conserve any two properties can 
be used to enormous advantage by making a 
correct choice for the properties that are preserved 
in the set of discrete equations. At this stage, 
it appears that mass conservation may always be 
imposed as a requirement for the discretized 
PBEs. However, further work is required to establish 
it unequivocally. 
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4.3. Simultaneous breakup and aggregation 
Blatz and Tobolsky (1945) have modeled the poly- 

merization process by considering that the reaction of 
two small polymers leads to the formation of a large 
polymer and the breakage of a bond in a large poly- 
mer chain results in the formation of small polymers. 
Their final equation for the population of n-mers, 
based on these considerations, is given as 

dNk(t) ks k- 1 oo 
= -  F, N,(t)N~_,(t) - kFV~(t)ylV,(t) 

dt 2 1 1 

- kb(k - 1)Nk(t) + 2k~ ~ Ni(t).  (45) 
k + l  

For a monomer unit (k = 1), birth due to polymeriz- 
ation and death due to depolymerization are set equal 
to zero. The authors have provided an analytical solu- 
tion for the set of equations (45) for an initial popula- 
tion of monomers. In the absence of an analytical 
solution (quite possible if the kemels are changed even 
slightly), one would need to solve a very large number 
of such equations (their numbers being equal to the 
degree of polymerization of the largest polymer, 
say 10,000) to arrive at the numerical solutions. 
In this section, we attempt to obtain a numerical 
solution for the population of monomers, dimers, 
trimers, etc. and also that of very large polymers by 

using as few as 40-50 equations. Let us proceed with 
the identification of the relevant kernels for this prob- 
lem, which are given as 

Q(v, v') = ky, F(v) = kb(v -- 1), 
(46) 

23(v -- iv.)  
fl(v,v') = , i =  1,2,3 . . . .  

( v ' -  1) 

v, is the volume of the monomer unit. Here ,a(v, v') is 
the Dirac delta type function because the general 
equation req. (45)1 is set in a strictly discrete frame- 
work. Since the populations of small polymers are of 
particular interest, we choose a special grid, such that 
xi = ixo in the small size range and x~+ 1 = sxi for the 
large size range. In this particular example, we have 
used 15 uniform size sections to cover the discrete 
population of mono, di, tri . . . . .  15-mers. The popula- 
tion of large polymers has been covered through 
a geometric grid. 

The numerical results for such a grid, and for the 
preservation of properties ~ = 0 and v = 1, are shown 
in Fig. 10. The lines show the analytical solutions at 
various times and the points represent the numerical 
solutions. The projection of all these points on the 
abscissa indicates the type of grid used here. The 
figure shows that the predictions of the transients as 
well as the steady-state distribution are extremely 
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good. Although the kernels used here are discontinu- 
ous and difficult to handle, the numerical technique 
has correctly predicted the population of monomers, 
dimers, trimers, etc., and also that of large polymers. 
The issue of accuracy with small number densities in 
the large size range, pointed out earlier in Sec- 
tion 4.2.1, persists here too. The accuracy can, how- 
ever, be improved by using a fine grid. 

This example shows that the present technique suc- 
cessfully applies even to a very difficult example of 
simultaneous aggregation and breakup. The tech- 
nique proposed here accomplishes this through its 
ability to extend itself to a general grid, adapted to 
suit a special situation - -  a uniform grid for small 
particles and a geometric grid for large particles. This 
example is also a good illustration of the applications 
of the discrete-continuous PBEs discussed earlier. 
The distribution of particles in these applications is 
such that, for small particle sizes, the continuum ap- 
proximation breaks down, e.g. the population of 
monomers, dimers, etc. needs to be considered separ- 
ately, and, for large particle sizes, the continuum ap- 
proximation holds and an n-mer-type description can 
require 10,000's of discrete equations to be solved. 

The present technique shows its ability to handle 
such situations very efficiently, offering enormous po- 
tential for solving problems associated with aerosol 

dynamics, polymerization and others where both fine 
resolution and long range are extremely important 
issues. The present technique also offers distinct ad- 
vantages over the technique proposed by Landgrebe 
and Pratsinis (1990) [an extension of Gelbard et  al. 
(1980)]. Their technique requires a large number of 
double integrals to be evaluated, and can preserve 
only one moment, which, as shown by Kostoglou and 
Karabelas (1994) for the technique proposed by Gel- 
bard et  al. (1980), does not yield good results for 
coarse discretization. 

4.4. Sources  o f  error in numerical  solut ions 
In comparison with pure breakup, the numerical 

results for pure aggregation are found to be in error 
with the corresponding analytical solutions. The size 
distributions for the latter are consistently overpredic- 
ted in the size range where number densities decrease 
steeply. As aggregation proceeds, the extent of relative 
overprediction increases and the size range in which 
overprediction occurs continues to shift to new popu- 
lations as they are born (in large particle size range). 
This feature is also common to the techniques pro- 
posed by Bleck et  al. (1970), Gelbard et  al. (1980) and 
Hounslow et  al. (1988). 

The inaccuracies in the numerical solutions have 
been considered to be due to the errors associated 
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with the discretization (similar to those associated 
with the evaluation of an integral by trapezoidal rule), 
and therefore the general strategy to improve the 
results is to use small discrete size ranges (equivalent 
to a small step size in integration) (Bleck, 1970; Land- 
grebe and Pratsinis, 1990). Although such a strategy 
definitely improves the numerical results, Figs 5-7 
point out that the errors for coarse discretization are 
mostly confined to the size range in which the number 
density falls very steeply. We shall call the steep vari- 
ation in number density as a front, and as can be seen 
from these figures the overprediction in this size range 
is because the front moves to larger sizes at a faster 
rate than its actual rate. In the rest of this section, we 
will investigate the reasons for this discrepancy. We 
hope that it will then suggest new ways of improving 
the accuracy of the numerical results. 

We begin with a simple example of aggregation of 
particles in a size range {vi, 2vi} with each other. Let 
us assume that the number density of particles in this 
size range is given as n(v) = 1/Vo e x p ( -  V/Vo), where 
Vo is a parameter. For  Vo >> vi, the number density in 
the size range considered here is nearly uniform, and 
for vi of the order Vo or more it decreases exponenti- 
ally. We now assume that the particles in this size 
range aggregate randomly (constant kernel). The 
number density of new particles, all of which lie in size 
range {2v~,4v~}, can be calculated analytically, and 
has been plotted in Figs 11 (a) and (b) for two values of 
parameter Vo, along with the number density of the 
aggregating particles. 

Before we interpret these results, let us also consider 
the discretized version of the same event. The discrete 
version considers this process as the aggregation of 
N~ particles of size x~, the representative size for size 
range {v~,2v~}, to form Ni/2 particles of size 
x~+l (=  2x~), the representative size for size range 
{2vl, 4vi}. A comparison of this representation with 
the actual process, as shown in Fig. l l(a) and (b), 
reveals that such a representation holds good only for 
uniform number density [-Fig. 11 (a)]. For exponential 
density, Fig. 11 (b) shows that almost all the particles 
lie on the lower boundary of the size range, before as 
well as after the aggregation. 

The discrete representation, on the other hand, ad- 
vances the new N j 2  particles to somewhere in the 
middle of the size range, resulting in an overprediction 
of the evolution. More importantly, if we had chosen 
a size dependent kernel, the discrete representation 
would have carried out the aggregation process at 
frequency q(xi, x~), rather than a more relevant fre- 
quency that would correspond to the most populated 
size ranges. It is now clear that for size-dependent 
frequencies, the stronger the dependence of the fre- 
quency on its arguments, the larger the extent of 
overprediction. Our numerical results in Figs 5-7 
clearly support this. As we go from constant to sum 
and product kernels, the degree of overprediction for 
the advancing front increases substantially. 

The problems involving pure aggregation always 
accompany an exponential tail or an advancing front, 
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even if the initial condition does not contain a front 
(van Dongen and Ernst, 1988). This indicates that the 
issue of overprediction will always be present with the 
discretized equations for pure aggregation, unless 
special efforts are made to prevent it. We propose two 
strategies to overcome this problem. 

The first strategy is based on the use of the present 
technique with a variable grid. The second strategy 
involves a completely new technique that is sensitive 
to the variation of number density in a size range. The 
latter technique addresses large variations in number 
density across a size range by handling the cases 
presented in Fig. 1 l(a) and (b) differently and appro- 
priately. In the present paper, we will confine our- 
selves to the first strategy. The second strategy involv- 
ing the new technique has been presented elsewhere 
(Kumar and Ramkrishna, 1996). 

5. SELECTIVE REFINING OF THE GRID 

The previous section shows that a large variation in 
number density across a section width causes the front 
to move at a faster rate than its true rate. A simple 
strategy to correct it will therefore consist of choosing 
the section widths such that the number density does 
not vary significantly over a section width. This is 
easily accomplished through a nonregular grid (nei- 
ther uniform nor geometric). The size range contain- 
ing steep variation of number density is represented 
by a fine grid, and the rest of it is covered through 
a coarse grid. 

The improvement brought about by this simple 
rearrangement of the grid points can be seen through 
a comparison of Figs 12(a) and (b). Figure 12(a) shows 
the numerical results for the sum kernel for ~ = 0 and 
v = 1, obtained by using a regular geometric grid with 
40 size ranges. Figure 12(b) shows the numerical re- 
sult for the same case, but obtained by using a non- 
regular grid which has been selectively refined in the 
large size range and made coarse in the small size 
range (projection of all the points on abscissa indi- 
cates the type of grid used here). These figures reveal 
that a simple alteration in the grid type, while keeping 
the total number of sections the same, has improved 
the accuracy substantially without changing the com- 
putation time. It should be pointed out that this 
selection of nonregular grid is by no means the best 
possible. In fact, this is one of the most simple-minded 
alterations and a careful selection of the grid can 
further increase the accuracy. A similar improvement 
in the accuracy with a regular geometric grid requires 
the number of sections to be doubled, thus increasing 
the computation time approximately by a factor of 
eight. 

As aggregation proceeds, the front (steep variation 
in number density) keeps advancing. Also, the popula- 
tion in the size range that initially contained the front 
evolves to contain relatively much less variation in 
number density. It would appear therefore that the 
computational effort can be further reduced by incor- 
porating the mechanisms which, depending on the 
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variation of number density across a size range, 
change the pattern of the grid such that the propaga- 
tion of error and the number of grid points are kept to 
a minimum. A fine grid, that no longer contains the 
front, can be changed to a coarse grid by assigning the 
populations at unwanted grid points to the neighbor- 
ing grid points that are to be retained. This is analog- 
ous to how we have earlier dealt with the new par- 
ticles that did not belong to any of the representative 
volumes. Thus, the fraction of the populations as- 
signed to each neighbor can be obtained from eqs (21). 
Of course, the same properties that were preserved for 
the new particles will have to be preserved for these 
populations as well. As the front moves to large sizes, 
new fine sections, initially with zero population, are 
added to increase the size range covered in the com- 
putations. 

These considerations may lead to the development 
of a very effective code that changes the grid auto- 
matically, adds a fine grid in the size range that 
contains the advancing front and changes the fine grid 
in the smaller size range to a coarse grid when a fine 
grid is no longer needed there. We are continuing with 
our efforts in this direction. 
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form and geometric grids show very good predictions 
right up to steady state. This example brings out the 
natural potential of the present technique to handle 
a whole new class of problems involving dis- 
crete-continuous PBEs in an efficient manner. 

Most interestingly, numerical results for the predic- 
tion of second moment for the constant as well as the 
sum kernel show that a proper choice of the proper- 
ties preserved in the set of discrete equations can 
result in substantial (more than an order of magni- 
tude) improvement in the accuracy of the numerical 
solution. This work shows such an improvement for 
a fairly coarse grid. 

Finally, it has been shown that the overprediction 
in the large size range is due to steeply varying density 
functions across a size range. The present work dem- 
onstrates that a selective refinement of the grid in the 
size range that contains steeply varying number 
densities and coarsening of the grid elsewhere can 
improve the accuracy of the numerical predictions 
for the same number of total discrete size ranges 
(same computation time). The concept of selectively 
refining the grid has been further developed to include 
a moving grid. 

6. CONCLUSIONS 

A new numerical technique to solve population a(v, xk) 
balance equations has been presented here. It focuses 
on accurate prediction of the quantities of interest, 
while relaxing it for other less important quantities. 
The quantities of interest are determined by the re- 
quirements of the application, and can be either inte- 
gral properties or the distribution of integral proper- f(v),J~(v) 
ties in terms of those for various size ranges. The 
discrete equations are designed to predict the desired F(t), Fi(t) 
quantities accurately through the simple idea that the 
representation of breakup or aggregation of particles kb 
should ensure exact preservation of the changes in the 
quantities of interest, kl  

The proposed technique offers a general grid that M 
can be effectively adapted to special situations includ- 
ing the ones that require a uniform grid in a certain M , ( t )  
size range and a nonuniform or geometric type grid 
elsewhere. Computationally, the technique presented n(v, t) de 
here is very efficient as it does not require the evalu- 
ation of any double integrals. ~(t) 

The technique has been tested for pure binary and 
multiple breakup with power-law breakage rates and (n)~(t)  
pure aggregation for the constant, sum and product 
kernels. In all cases, a comparison of the numerical 
and the analytical results shows that the agreement is ni.k 
very good. In comparison with pure breakup, the 
problems involving aggregation require a fine grid for 
comparable accuracies. This is because the number 
densities for the latter are overpredicted in the large N(t)  
particle size range. Nt(t)  

The technique has also been tested for simultaneous 
breakup and aggregation for a difficult case of polym- Q(v, v') 
erization and depolymerization reactions. The numer- Q~. 
ical results obtained by using a combination of uni- 

b(v, Xk + 1) 

NOTATION 

number of particles of size Xk assigned 
when a particle of size v, such that 
Xk <<. V <<. Xk + l , is formed 
number of particles of size Xk +1 as- 
signed when a particle of size v, such 
that Xk <~ V <~ Xk + 1, is formed 
monotonically increasing functions of 
particle size v 
integral properties defined as 
So f ( v )n (v ,  t)dv, S~ J~(v)n(v, t )dv 
a constant for breakage frequency 
r(v) = kb(v - Vo) 
aggregation frequency 
total number of sections used to rep- 
resent the total population 
/~th moments of the size distribution 
at time t 
number of particles in size range v to 
v + dr, at time t 

average number density of particles 
for the ith size range, at time t 
mass average number density for the 
ith size range at time t, defined as 
S~I +~ vnIe, t)de/S:i+~ e dv 
total number of particles assigned to 
representative volume x ,  when a par- 
ticle of size Xk breaks [given by 
eq. (27)] 
total number of particles at time t 
total number of particles in the ith size 
range at time t 
aggregation frequency 
aggregation frequency for sizes xi, x~, 
Q ( x .  x j) 

CES 51:8-K 
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birth term due to the aggregation of 
particles 
birth term due to the breakage of par- 
ticles 
death term due to the aggregation of 
particles 
death term due to the breakage of 
particles 
a parameter that defines the geomet- 
ric grid of the type xi+ ~ = sxi 
time 
particle volumes 
lower and upper boundaries for the 
ith section 
a parameter in eq. (44), equal to half 
the initial average volume 
representative volume for the ith size 
range, also the ith grid point 

number  of daughter particles formed 
in size range v to v + dv due to the 
breakage of a particle of size v' 
total number  of daughter particles 
formed as a result of the breakage of 
a particle of size v 
breakage frequency for a particle of 
size v 
defined as F(Xk) 
defined by eq. (37) 

REFERENCES 

Batterham, R. J., Hall, J. S. and Barton, G., 1981, Pelletizing 
kinetics and simulation of full scale bailing circuits, in 
Proceedings of the 3rd International Symposium on Ag- 
#lomeration, Nurnberg, W. Germany, p. A136. 

Blatz, P. J. and Tobolsky, A. V., 1945, Note on the kinetics of 
systems manifesting simultaneous polymerization- 
depolymerization phenomena. J. phys. Chem. 49, 
77-80. 

Bleck, R., 1970, A fast, approximate method for integrating 
the stochastic coalescence equation. J. Geophys. Res. 75, 
5165-5171. 

Chen, A. W., Fisher, R. R. and Berg, J. C., 1990, Simulation of 
particle size distribution in an aggregation-breakup pro- 
cess. Chem. En#ng Sci. 45, 3003-3006. 

Gelbard F. and Seinfeld, J. H., 1979, The general dynamic 
equation for aerosols. J. Colloid Interface Sci. 68, 363-382• 

Gelbard, F., Tambour, Y. and Seinfeld, J. H., 1980, Sectional 
representation of simulating aerosol dynamics. J. Colloid 
Interface Sci. 76, 541-556. 

Hidy, G. M., 1965, On the theory of the coagulation of 
noninteracting particles in Brownian motion• J. Colloid 
Interface Sci. 20, 123-144. 

Hounslow, M. J., Ryall, R. L. and Marshall, V. R., 1988, 
A discretized population balance for nucleation, growth 
and aggregation. A.I.Ch.E.J. 34, 1821-1832. 

Koh, P. T. L., Andrews, J. R. G. and Uhlherr, P. H. T., 1987, 
Modeling shear flocculation by population balances. 
Chem. Engng Sci. 42, 353-362. 

Kostoglou M. and Karabelas, A. J., 1994, Evaluation of zero 
order methods for simulating particle coagulation. J. Col- 
loid Interface Sci. 163, 420 431• 

Kumar, S. and Ramkrishna, D., 1996, On the solution of 
population balance equations by discretization-II. 
A moving pivot technique• Chem. En#ng Sci. 51, 
1333-1342. 

Landgrebe, J. D. and Pratsinis, S. E,  1990, A discrete sec- 
tional model for particulate production by gas phase 
chemical reaction and aerosol coagulation in the free 
molecular regime. J. Collmd Interface Sc~. 139, 63-86. 

Marchal, P., David, R., Klein, J. P. and Villermaux, J., 1988, 
Crystallization and precipitation engineering--I. 
An efficient method for solving population balances in 
crystallization with agglomeration. Chem. Engng Sci. 43, 
63 86. 

Nambiar, D. K. R•, Kumar, R. and Gandhi, K. S., 1992, 
A new model for the breakage frequency of drops in 
turbulent stirred dispersions, Chem. Engn# Sci. 47, 
2989-3002. 

Narsimhan, G., Ramkrishna, D. and Gupta, J. P., 1980, 
Analysis of drop size distributions in lean liquid-liquid 
dispersions, A•I.Ch.E.J. 26, 991-1000. 

Ramkrishna, D., 1985, The status of population balances. 
Rev. Chem. Enon# 3, 49-95. 

Sastry, K. V. S. and Gaschignard, P., 1981, Discretiz- 
ation procedure for the coalescence equation of 
particulate processes. Ind. Engng Chem. Fundam. 20, 
355-361. 

Scott, W. T., 1968, Analytical studies in cloud droplet coales- 
cence I. J. Atmos. Sci. 25, 54-65. 

van Dongen, P. G. J. and Ernst, M. H., 1988, Scaling solu- 
tions of Smoluchowski's coagulation equation. J. Statist. 
Phys. 50, 295-329. 

Ziff, R. M. and Mcgrady, E. D., 1985, The kinetics of cluster 
fragmentation and depolymerization. J. Phys. A: Math. 
Gen. 18, 3027-3037. 

Ziff, R. M., 1991, New solutions to the fragmentation equa- 
tion. J. Phys. A: Math. Gen. 24, 2821 2828. 


