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Abstract

3D mesh segmentation is a fundamental low-level task
with applications in areas as diverse as computer vision,
computer-aided design, bio-informatics, and 3D medical
imaging. A perceptually consistent mesh segmentation
(PCMS), as defined in this paper is one that satisfies 1) in-
variance to isometric transformation of the underlying sur-
face, 2) robust to the perturbations of the surface, 3) ro-
bustness to numerical noise on the surface, and 4) close
conformation to human perception. We exploit the intelli-
gence of the heat as a global structure-aware message on a
meshed surface and develop a robust PCMS scheme, called
Heat-Mapping based on the heat kernel. There are three
main steps in Heat-Mapping. First, the number of the seg-
ments is estimated based on the analysis of the behavior of
the Laplacian spectrum. Second, the heat center, which is
defined as the most representative vertex on each segment,
is discovered by a proposed heat center hunting algorithm.
Third, a heat center driven segmentation scheme reveals the
PCMS with a high consistency towards human perception.
Extensive experimental results on various types of models
verify the performance of Heat-Mapping with respect to the
consistent segmentation of articulated bodies, the topologi-
cal changes, and various levels of numerical noise.

1. Introduction
1.1. Background

In recent years, we have seen an explosive growth of the
available 3D model data across a variety of fields, such as
reverse engineering and 3D medical imaging, with the de-
velopment of the acquisition techniques [1, 23, 20, 16, 15, 8,

7, 5, 10, 18]. We are therefore faced with an ever-increasing
demand for approaches towards automatic model process-
ing, understanding and analysis. As a first important step of
mesh model processing, the segmentation of a model into
a small number of meaningful components is difficult. A
segmentation approach likely confronts the problems of 1)
isometrically-variant segmentation of the surface, 2) sensi-
tivity to topological perturbations of the surface, 3) sensitiv-
ity to numerical noise inherently embedded within observed
models, and 4) inconsistency with human understanding of
segmentation. We define a segmentation, which can ro-
bustly provide a solution to the above four challenges above,
as the perceptually consistent mesh segmentation (PCMS).
Over the past several years, the integrated characteristics
of PCMS has become more important for advanced mesh
processing and understanding as it provides more insights
into mesh models [8, 16, 23, 25]. PCMS facilitates the in-
terpretation of 3D surface meshes in terms of either a pure
geometric sense, semantic information or both through the
representation of an intrinsically hidden geometric structure
of the meshes. The intrinsic interpretation of the structure
is able to partition the objects into a number of functional
components in a way close to human understanding. Com-
pared to ongoing 3D segmentation, PCMS is much more
adequate to analyze the features of models, enabling di-
verse applications to modeling. This includes 3D shape (or
partial shape) matching, skeleton extraction, texture map-
ping, simplification, parameterization and shape retrieval
[7, 13, 8, 24].

1.2. Brief review of related works

Some studies have addressed how the mesh surface can
be decomposed into perceptually meaningful units in an au-
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tomatic or semi-automatic way [8, 16, 23, 25]. The out-
reaching goal of a robust PCMS is to perform it on a model
in an assumption free manner. While the previous ap-
proaches have shown the efficiency of addressing PCMS to
some extent, there are some common limitations that have
not been addressed for this challenging problem [8, 25, 9].
Here, we focus on the limitations arising from the depen-
dence of prior generic assumptions about the shape of the
3D object like the number of segments or choice of initial
seed points for segmentation or both. Mesh segmentation is
a classical problem in low-level vision tasks for multimedia
data processing. There is a great body of literature proposed
for segmenting meshes [7, 2, 8, 16, 23, 25]. As the focus of
this paper is characterization of PCMS, our scope of review
is limited to closely related works. The readers are referred
to [2, 7, 24, 19, 27, 21] about general mesh segmentation
approaches. The importance of the PCMS has been high-
lighted in some recent works [8, 16, 23, 25, 11] .

We roughly break the related works into two categories:
non-diffusion and diffusion-based segmentation. The non-
diffusion category [15] deals with segmentation using fea-
ture points and core extraction. The authors describe a pose
oblivious mesh segmentation with a hierarchical represen-
tation of the structure of an object. However, because the
feature points are sensitive to topological short-circuits and
high numerical noise, a satisfying segmentation can not be
easily obtained. The methods described in the later group
are more recent and are oriented towards PCMS. These
methods exploit the intrinsic structure by the diffusion met-
ric [23, 8, 16, 25, 22]. In [23], the authors propose a defor-
mation invariant representation of the surface using eigen-
functions and eigenvalues of the Laplace-Beltrami differ-
ential operator. They introduced a signature, named GPS,
which is then tested with deformed shapes to demonstrate
an impressive segmentation. However, the segmentation is
not the focus of that paper. The segmentation therefore is
simply achieved using Kmeans for grouping the points ac-
cording to their GPS. The fast mesh segmentation based on
random walks is proposed in [16]. The segmentation de-
scribed in [8] adapts the diffusion maps to aim at a hierar-
chical segmentation of articulated bodies. The method ef-
ficiently segments sequentially articulated bodies in a con-
sistent manner. A most recent work targeting PCMS is in-
troduced in [25]. The persistence-based clustering and heat
kernel signature are combined to offer a multi-scale isom-
etry invariant mesh segmentation. While the proposed ap-
proaches can address PCMS to some extent, challenges to
a robust PCMS method generally come from two sources:
the determination of the number of the reasonable segments
and the selection of initial seeds for clustering.

Figure 1. Illustration of PCMS and the performance of Heat-
Mapping.

1.3. Our solution to PCMS: HeatMapping

In this paper, we introduce a novel approach to ad-
dress perceptually consistent mesh segmentation by explor-
ing heat kernel featured space to which the geometric fea-
tures of the mesh are mapped. Along with our pipeline of
Heat-Mapping for a robust PCMS, we propose a new point-
based signature, named heat mean signature (HMS), the al-
gorithm for hunting the heat centers, and heat center driven
mesh segmentation approach. The HMS follows the similar
principle of heat kernel signature (HKS) [26], but interprets
the hidden features of mesh structure in a different way by
using a physics-based approach using a heat transfer anal-
ogy. The heat center is defined as the local maxima of the
HMS for all vertices on the surface. We develop a method to
locate the heat center based on a greedy algorithm. The heat
centers then further drive the mesh segmentation algorithm.
Figure 1 illustrates basic ideas about PCMS and the perfor-
mance of Heat-Mapping. This figure is an overall presen-
tation of the Heat-Mapping algorithm and its performance
on deformed models. Figure 1(A) displays a standing dog
and the segmentation of the dog is shown underneath. Fig-
ure 1(B) displays a sitting dog which is deformed from the
standing dog. The segmentation of the sitting dog is illus-
trated underneath. Figure 1(C) shows a noisy sitting dog
model and its segmentation.

The contributions of the paper are five-fold. First, we
define perceptually consistent mesh segmentation for low-
level vision tasks. Second, we develop the heat mean sig-
nature (HMS) for characterizing the vertices on a surface in
the heat kernel featured space. Third, a new approach for
locating heat centers on the surface based on the HMS for
the initialization of seeds to further guide mesh segmenta-
tion. Fourth, the heat center driven segmentation process
for a perceptually consistent segmentation is demonstrated.
Fifth, we develop a strategy for the estimation of the opti-
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mal number of the segments based on the observation of the
behavior of the Laplacian spectrum.

2. Methods
2.1. Heat Kernel

The heat kernel quantitatively encodes the heat flow
across a manifold M and is uniquely defined for any two
vertices i, j on the manifold [12, 3]. Suppose we apply a
unit amount of heat at the node i, and allow the heat flow on
the manifold across all of the edges. The speed of the diffu-
sion over manifold is determined by the pre-defined weights
amongst the edges. The value of heat kernel Ht(i, j) is the
amount of heat accumulated at j after time t. Since it aggre-
gates heat flow through all possible flowing paths between
two vertices on the mesh surface, the heat kernel captures
much of the structure behind the surface. If a vertex has a
number of paths to other vertices, the heat flows faster and
aggregates rapidly across the manifold. Consequently, the
average temperature is higher when the heat is applied at
vertices with a large number of paths to the other vertices.
The heat kernel can be approximated by the eigenfunction
expansion described below. The 3D model is represented as
a graph G = (V,E,W ), where V is the set of vertices, E
is a set of edges and W is the weight value for each edge.
The widely used cotangent weight for the edges is adopted
in our work [23] . The graph Laplacian determines the rate
of the heat-flow across the weighted graph with time. The
solution to the heat equation is found by exponentiating the
Laplacian eigensystem with time. The graph Laplacian is
defined as follows:

L = D −W (1)

where D is a diagonal degree matrix and its diagonal entries
are given by summation of the rows of W . The normalized
Laplacian is defined as follow:

L = D−1/2LD−1/2 (2)

Then the heat kernel can be defined by

Ht(i, j) =

|V |∑
k=1

exp(−λkt)φk(i)φk(j) (3)

Where λk is the kth eigenvalue of the Laplacian and φk is
the kth eigenfunction. The Ht(i, j) is defined as the heat
affinity Haf (i, j) between a pair of vertices which is a mea-
sure of heat transfer between node i and node j after time
t.

In addition, we define the heat coordinate to embed the
vertices of 3D model in Euclidean space.

Cor(i) = (e−λ1t/2φ1(i), e
−λ2t/2φ2(i), . . . , e

−λkt/2φk(i))
(4)

Figure 2. Illustration of Heat Mean Signature (HMS) of a human
hand model. Figure (A) displays the six segments of the hand.
Figure (B) illustrates the HMS distribution across the mesh surface
of a human hand model.

Where λk is the kth eigenvalue of the Laplacian, t denotes
the time of heat dissipating on the manifold and φk is the
kth eigenfunction. The heat coordinate is defined on an n
dimensional (less than the number of the data points) space.

2.2. Heat mean signature

We define a novel one point signature, heat mean sig-
nature (HMS), for quantitatively evaluating the temperature
distribution resulting from the heat flow process. The HMS
has the following formulation:

HMS(i) =
1

N

∑
j,j 6=i

Ht(i, j) (5)

where i and j denote the ith and jth vertex on the surface,
respectively and N is the total number of vertices.

HMS(i) can be physically interpreted as the average tem-
perature on the surface obtained by applying a unit amount
of heat on the vertex i and after a certain amount of time of
heat dissipation. The HMS has desirable properties which
make it powerful in the application of PCMS: 1) It is invari-
ant to near-isometric transformation of the 3D model, 2) It is
resistant to numerical and topological noise, 3) It faithfully
reflects the temperature distribution during the heat process.

2.2.1 Heat center and sink

For each segment, its heat center is defined as the vertex
with the highest value of HMS amongst all of its vertices.
The rest of the vertices of the segment are defined as the
heat sinks for that heat center. The heat center is formulated
as:

Hc = argmax
V ∈Vc

{HMS(V )} (6)
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Where Hc denotes the heat center for the segment C and
VC denotes the vertex set on C. HMS(V ) denotes the heat
mean signature for the vertex V . Figure 2(B) illustrates the
heat mean signature, heat centers, and heat sinks of a hu-
man hand model. The HMS is mapped on the surface with
the colormap: the higher the value of the HMS, the closer
the color is to red. The hand model is segmented into six
functional components (see Figure 2(A)). Each finger cor-
responds to one segment and the palm is partitioned as a
separate part. The detected heat centers are highlighted us-
ing red balls in the figure. It can be visually observed that
the heat centers are associated with the highest HMS within
their own segment. For example, there is a heat center lo-
cated at the tip of each finger in Figure 2(B). The color of
the heat sink is closer to the blue end of the colorbar, indi-
cating lower average temperatures.

2.3. HeatMapping Algorithm

2.3.1 Estimating number of heat centers

The estimation of the number of heat centers is equivalent
to the estimation of the number of the segments. Here, we
describe a simple approach based on the analysis of the be-
havior of the Laplacian spectrum. A similar observation is
mentioned in [17]. Let 0 = λ1<λ2...λn be the Laplacian
spectrum of the model, where λi is the ith eigenvalue and
Dif(i, j) = λj − λi. Then we have the following obser-
vation: The number i is likely to coincide with the num-
ber of components in a natural segmentation when there
is a dramatic increase in Dif(i, i + 1) for the first time.
We provide the following six segmentation experiments for
verifying the observation. We define the curve plotting the
eigenvalue versus the number of segmentations as an Eigen-
curve. Figure 3 displays six Eigen-curves for the segmenta-
tions of different models. The models used in this test are:
(A) Woman, (B) Octopus, (C) Glasses, (D) Hand, (E) Ant
and (F) Horse. The suggested number of segments is cir-
cled on the curve and pointed out by an arrow. As shown in
Eigen-curve plots, the suggested numbers of cluster are: 6,
9, 4, 6, 11 and 7, respectively.

2.3.2 Hunting Heat Centers

The heat kernel measures the heat affinity between any pair
of vertices on the surface. The heat affinity reflects how
heat flows across the surface by applying heat source at any
vertex. The efficiency of heat diffusion over the surface de-
pends on the vertices of applications of the heat. We are in-
terested in globally locating the optimal vertices (heat cen-
ters) of application of heat to obtain an efficient heat flow.
We develop an algorithm for globally hunting heat centers
as follows.

1. Let V be the set of the N vertices on a meshed surface

Figure 3. Eigen-curves for estimating perceptually consistent num-
ber of segmentations. Eigen-curves plot the relationship between
the eigenvalues and the number of segmentations. The first point
on the curve with rapid eigenvalue change suggests the number
of segments for perceptually consistent mesh segmentation. The
point highlighted in red circles on the curves suggest the number
of the segments for the models. We can see from the figure that
the suggested NS matches the natural number of the segmentation
by human perception. Note that, NS denotes number of segments.

M . We will find out the number of C heat centers
Hc on the surface. Let Sc be the set of vertices that
includes both the heat center Hc and its corresponding
heat sinks.

2. We define the diameter Dc of Sc as the largest value of
heat affinity for which all of the sinks in Sc have heat
affinity to Hc greater than Dc/2.

3. The diameter DM for all of vertices on M is defined
in Equation 7:

DM = min
c=1,...,C

Dc (7)

= min
c=1,...C

min
Vi∈Sc

(Haf (Vi,Hc))

where C denotes the number of the heat centers on
M , Hc denotes the heat center, Vi denotes ith ver-
tex denoting the heat sink for its own heat center,
Haf (Vi,Hc) denotes heat affinity between Vi and Hc

4. Given the number of heat centers, C, we maximize the
DM to guarantee that the heat affinities among the ver-
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tices are maximized. The heat center hunting problem
can be formulated as:

Hc = argmax
Hc

DM (8)

where Hc denotes the heat center, DM is a function of
Hc (see equation 7), and for each cluster Hc is sub-
jected to its defintion in equation 6.

The numerical implementation is described by the
pseudo code in Algorithm 1.

Algorithm 1 Heat-Mapping: Hunting Heat Centers
1: Given HMS for each vertex on M , the number of the

heat centers C, and the total number of N vertices. Vj

denotes the jth vertex
2: Select the vertex V1 = argmax

V ∈M
HMS(V )

3: Let g1 = V1 , G = G
⋃
g1. G is the set of heat centers.

4: for j = 1 to N do
5: B HeatAff is an array storing the heat affinity be-

tween all of the vertices to their own heat centers
6: HeatAff(Vj) = Haf (Vj , g1)
7: B S stores the labels for the vertices
8: S(Vj) = 1
9: end for

10: Vi = argmin
V ∈M

HeatAff(V )

11: for i = 2 to C do
12: B Initialize new heat center by the vertex with least

heat affinity to current heat centers
13: let gi = Vi, G = G

⋃
gi

14: for j = 1 to N do
15: B If a vertex is closer to the newly identified heat

center
16: if Haf (Vj , gi) ≥ HeatAff(Vj)
17: B Update the HeatAff array
18: HeatAff(Vj) = Haf (Vj , gi)
19: B Update the label
20: S(Vj) = i
21: B Find the vertex with largest HMS in the set of

vertices labeled with i
22: gi := argmax

V ∈{S(V ):S(V )=i}
HMS(V )

23: B Update heat center
24: G = G

⋃
gi

25: end for
26: end for
27: return G

2.3.3 Heat Center Driven Segmentation

The mesh segmentation can be treated as the process of
grouping similar vertices into geometrically meaningful
cliques. There have been a great number of clustering tech-
niques that have been proposed over the past decade [14].
We adopt one of the widely used unsupervised clustering
algorithm: Kmeans. Two known limitations of Kmeans
arise from its dependence on the number of the clusters and
the initialization of the seeds of clusters. We address those
two issues by developing a heat-center driven Kmeans (HC-
Kmeans), which gives a stable and efficient clustering pro-
cedure. The pseudo code for the algorithm is described in
Algorithm 2:

Algorithm 2 Heat-Mapping: Heat Center Driven Segmen-
tation

1: Given the heat coordinate Cor (see Equation 4) for
each vertex on M , the number of the heat centers C,
the total number of vertices N and set of the heat cen-
ters G discovered by Algorithm 1.

2: Let Corgi be the heat coordinate of the heat center gi
in G

3: B Initialize the seeds with heat centers
4: Cen(i) = Corgi
5: B Perform Kmeans by inputing the number of clusters

C, the heat coordinates Cor and the heat centers Cen.
Output Label indicates the cluster membership of each
vertex

6: Label = Kmeans(C,Cor, Cen)
7: Map the Label to each vertex on M
8: return Label

The HC-Kmeans will return a unique label for each ver-
tex so that the vertices can be grouped into different parti-
tions according to the unique label, thus, revealing the seg-
mentation of the model.

3. Experimental Results

3.1. Consistent segmentation of articulated bodies

In this experiment, we test the performance of Heat-
Mapping on the deformed shape models. We carry out two
sets of tests on the centaur model and the armadillo model.
The models used in the experiments were chosen from the
following databse: ISDB, Princeton Shape Benchmark for
3D Segmentation and TOSCA nonrigid world 3D database
[11, 7, 5, 4, 6].

Before the test of centaur model, we perform the seg-
mentation of complete human and horse models separately.
Then, we segment the centaur model with different poses.
This is because the centaur model can be viewed as a mix
of human upper body and horse lower body. It is of great
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interest to examine the segmentation consistency at differ-
ent model settings. The segmentation results are shown in
Figure 4). We can see from Figure 4(A) that both the human
model and horse model get segmented into seven functional
components. Figure 4(B) displays the segmentation results
for centaur models at different poses. There are two inter-
esting results based on the comparison of the segmentation
shown across Figure 4(A) and (B) and within Figure 4(B).
The first comparison indicates a consistent segmentation of
the components with common functions. For example, the
human head is partitioned out in both Figure 4(A) and (B),
and the same goes for the segmentation of the tail of the
horse. The second comparison indicates a consistent seg-
mentation of a model with different poses as seen in the
six different centaur models, which can be observed from
Figure 4(B). In the test of the armadillo model, we focus
on the consistent segmentation of incomplete models at dif-
ferent poses. In Figure 5(A), the main features (i.e. torso,
head, claws, legs and tail) of the armadillo are correctly ex-
tracted and segmenting consistency is also preserved across
models at four different poses. We are also interested in
the consistency of segmentation between complete and in-
complete models. Therefore, we apply Heat-Mapping on
the four incomplete armadillo models in this test. The re-
sults are shown on Figure 5(B). For example, there is an en-
tirely missing component from the original model, such as
missed left arm, right leg or tail. The comparison between
the segmentation in Figure 5(A) and (B) demonstrates the
consistency. The experiment on various articulated shapes
shows that the segmentation results obtained by our method
are both perceptually compliant and consistent throughout
the test.

3.2. Consistency over Topological change

In this test, we will verify the performance of our Heat-
Mapping on the segmentation of the models with topolog-
ical changes. Figure 6 displays four models among which
two models on the left serve as reference model in this ex-
periment. The models on the right have topological noise
introduced in different parts are compared with the refer-
ence model on the left. For example, the hand on the right
has two short links between fingers as indicated in the fig-
ure. The dog model on the right has a short link between
front two legs. Despite the topology changes, our segmen-
tation results are of high consistency. The experiments on
various topologically changing models shows that the seg-
mentation results from our method are perceptually consis-
tent and Heat-Mapping is insensitive to small topological
changes.

3.3. Resistance to noise

In this experiment, we will demonstrate that Heat-
Mapping is robust to numerical noise. The original model

is a human right hand model without noise. Our segmenta-
tion result correctly reveals individual fingers and the palm.
To investigate the robustness of our method against noise,
we further experimented by perturbing the vertices of the
original model using various levels of numerical noise. The
noise, a 3-dimensional random vector, is generated from a
multivariate normal distribution, which can be written using
the following notation

Noise ∼ N3(µ,NSR ∗ Σ) (9)

where µ = [E[X1], E[X2], ..., E[Xk]] is the 3-dimensional
mean vector (the coordinates of all of the vertices)and Σ =
[Cov[Xi, Xj ]]i=1,2,...,k;j=1,2,...,k (the 3× 3 covariance ma-
trix for all of the vertices ), and NSR denotes the ratio be-
tween the variance of noise and variance of the original sig-
nal (coordinates of the vertices).

We are interested in the consistency of segmentation at
different levels of noise. The results of the segmentation
of the human hand model at various noise levels are shown
on Figure 7. As indicated by the results in the Figure 7,
Heat-Mapping performs extremely well at moderate level
of noise (e.g. NSR less than 0.01). The segmentation is rea-
sonable even at the exaggerated noise level (e.g. NSR larger
than 0.05). As shown in the figure, consistent segmentations
are retained even at the noise level with NSR equal to 0.08.
We further increase the noise until Heat-Mapping fails to
obtain consistent segmentation. We find that Heat-Mapping
fails at noise levels of 0.100 where the geometry has been
severely deformed. However, in such conditions, correct
segmentation is extremely hard to achieve even based on
human perception.

4. Discussion and Conclusions
This paper develops a previously undescribed Heat-

Mapping framework that conforms to the perceptually con-
sistent understanding of the mesh models in a robust and
intelligent way. The Heat-Mapping exploits the intrinsic
structure, and therefore the segmentation result is tolerant
to different kinds of noise. In addition, Heat-Mapping seg-
ments the mesh model in an assumption free manner as
it can estimate the number of the segments of a model.
However, we note that Heat-Mapping should not be ap-
plied blindly to segmentation. One critical parameter for
the Heat-Mapping that has not been discussed in the ex-
periment is the heat dissipation time. The dissipation time
is crucial to indicate how locally or globally the geometric
structure is exploited. The larger the time, the more glob-
ally the structure is exploited. In the future, we will develop
a computational scheme to determine the optimal time to
describe the structure. However, based on the experiments,
the PCMS prefers to small time as the high resolution de-
tails are preserved at a small scale. The determination of
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Figure 4. Segmentation results on articulated models. Figure (A)
shows the segmentation of human and horse model. Figure (B)
displays segmentation results of centaur models with different ar-
ticulations.

Figure 5. Segmentation results on Armadillo models. Figure (A)
illustrates the segmentation result of various articulated Armadillo
models. Figure (B) shows the segmentation result on a set of in-
complete models which are the deformed version of models in Fig-
ure (A). The models in (B) correspond to its original model in (A)
but have some missing components such as the left arm, right leg
or the tail.

the threshold for the first turning point on the Eigen-curve

Figure 6. Segmentation result on models with small topological
noises induced. The figures on the left show the reference models
(a hand and a dog) and their segmentations using Heat-Mapping.
Small topological short-circuits are added into the models on the
right showing the segmentation of the models with topological
short-circuits.

Figure 7. Segmentation results on noise-corrupted models. The
top left model is the original human right hand model for refer-
ence. The verteices of other models are perturbed with different
levels of noise. Our method can work well on exaggerated levels
of noise (NSR=0.08). However Heat-Mapping fails at noise lev-
els with NSR equal to 0.100. At these noise levels, even human
perception has difficulty in segmenting the model. Note that the
value underneath each figure denotes NSR of the noise applied on
the model.

will be studied in the future. We will also investigate the
segmentation at different turning points on the Eigen-curve
for a hierarchical segmentation. In addition, the theoretical
proof for the estimation of the number of segments based
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on the Eigen-curve will be further explored.
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