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Abstract

Recent developments in acquisition techniques are re-
sulting in a very rapid growth of the number of available
three dimensional (3D) models across areas as diverse as
engineering, medicine and biology. It is therefore of great
interest to develop the efficient shape retrieval engines that,
given a query object, return similar 3D objects. The perfor-
mance of a shape retrieval engine is ultimately determined
by the quality and characteristics of the shape descriptor
used for shape representation. In this paper, we develop
a novel shape descriptor, called temperature distribution
(TD) descriptor, which is capable of exploring the intrin-
sic geometric features on the shape. It intuitively interprets
the shape in an isometrically-invariant, shape-aware, noise
and small topological changes insensitive way. TD descrip-
tor is driven by by heat kernel. The TD descriptor under-
stands the shape by evaluating the surface temperature dis-
tribution evolution with time after applying unit heat at each
vertex. The TD descriptor is represented in a concise form
of a one dimensional (1D) histogram, and captures enough
information to robustly handle the shape matching and re-
trieval process. Experimental results demonstrate the effec-
tiveness of TD descriptor within applications of 3D shape
matching and searching for the models at different poses
and various noise levels.

1. Introduction
1.1. Background

With the advancement in data acquisition techniques, we
have observed an exponential increase in the 3D meshed
surface models across a variety of fields, such as engineer-
ing, entertainment and medical imaging [28, 24, 20, 10, 9,

, 13,22, 14,27, 6, 1]. Although shape retrieval has been
studied extensively, new capability of descriptors we have
identified, such as awareness, intrinsic is less developed.
To better understand the shape, a shape descriptor should
have as many of the following properties as possible: 1)
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shape-awareness: capture all possible shape information of
the meshed surface as opposed to those in the local regions,
2) isometrically-invariant: consistent representation along
isometric transformations of the meshed surface , 3) insen-
sitivity to both topological and numerical noise such as con-
sistent behavior even with topological short-circuits and nu-
merical noises, 4) a compact representation for fast and ef-
fective shape matching.

1.2. Review of Related works

The shape descriptor for similarity measurements and
matching between shapes has been extensively studied
across areas as diverse as computer vision, robotics, struc-
tural biology and others [34, 17, 12, 36, 30]. We mainly re-
view the related works that partly address the new emerging
requirements for an robust shape descriptor. For a review
of earlier shape descriptors, we refer the reader to [24] for
D2 shape distribution, [12] for statistical moments of the
model, [36, 29] for Fourier descriptor, [7] for Light Field
Descriptor, [18] for Eigenvalue Descriptor (EVD) and [21]
for harmonic-based methods for rotation invariant descrip-
tors, [31, 33, 8] for methods of structure extraction based
on graphs. Although these shape descriptors can represent
the shape effectively, they are either sensitive to non-rigid
transformation or topological changes, or computationally
inefficient.

To be invariant to the isometric transformation, a widely
used strategy is to represent the shape through the local geo-
metric features. The shapes are matched based on the local
descriptors, such as spin images, or the distribution of lo-
cal geometric features, such as histograms [19, 16, 15, 23].
These shape descriptors are able to consistently describe de-
formable shapes, however they are sensitive to local geo-
metric noise and are not able to provide a good picture of
the overall shape. In addition, some of these descriptors
require large amounts of space to store all of the local de-
scriptors in order to facilitate a global shape matching. One
of the representative works is the pose oblivious signature
based on the local diameter of a 3D shape in the neighbor-
hood of each vertex. However, because of the dependence
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of the local geometric features, the signature is sensitive to
perturbation of local geometric features, for example small
bumps on the surface and numerical noise.

The latest efforts to circumvent the problem of a robust
shape signature are diffusion based approaches [32, 5, 28,

]. The concept is first presented by recently proposed
shape signature, global point signature (GPS). It shows
that the eigenfunctions of the Laplace-Beltrami operator
are able to robustly characterize the point on meshed sur-
face. Through GPS, each vertex is represented by a high-
dimensional vector with its components of scaled eigen-
functions of the Laplace-Beltrami operator evaluated at the
vertex. GPS gains its advantage by discarding the use of
geodesic distances or any of its variation but the eigen-
values and eigenfunctions of the Laplace-Beltrami. An-
other concise and provable signature is heat kernel signa-
ture (HKS). The HKS has gained attention because of the
concise form and other properties. HKS is invariant to iso-
metric deformations, insensitive to the small perturbations
of the surface, and especially a multi-scale interpretation
of the shape. Both GPS and HKS are point based signa-
tures, which characterizes each vertex on the meshed sur-
face using a vector. However, the authors in [32, 28] did not
demonstrate how to retrieve shapes using HKS and GPS,
although they allude to the future potentials in shape re-
trieval applications. Shape google proposed in [25] devel-
ops a shape retrieval strategy based on HKS.

1.3. Temperature Distribution Descriptor

We introduce TD descriptor based on the evaluation of
temperature distribution after applying a unit heat at each
vertex. Every vertex on the meshed surface is assigned a
value that measures the average temperature of all of the
vertices on the meshed surface after applying a unit heat
on that vertex. TD descriptor is built in the form of a one
dimensional histogram from the distribution of the average
temperature values. TD naturally inherits the properties of
the heat kernel. Figure 1 illustrates the pipeline of comput-
ing the TD descriptor for a 3D horse model. There are three
main steps included in the flowchart. 1) Obtaining point
temperature distribution for every vertex on the meshed sur-
face: a unit heat is applied on one vertex of the 3D meshed
surface and the temperature distribution is recorded. This

10

Centaur

LJA
hdl
T N

v | ik
zaUJL
am ik

Vlctorla

Figure 2. Comparison of TD and D2 descriptors for shapes with
pose changes.

is repeated for every vertex of the mesh; 2) Computing the
average temperature distribution: the value of the average
temperature is first computed for each vertex and all of these
values together produce the average temperature distribu-
tion for the whole model; 3) Building temperature distri-
bution (TD) descriptor: build a one dimensional histogram
based on the average temperature distribution.

In addition, Figure 2 displays comparisons of TD de-
scriptor for deformable 3D models across different cate-
gories with different poses. This figure is an overall presen-
tation of our shape descriptor and its performance on de-
formed models. TD descriptor describes each 3D model
in a concise form of 1D histogram as shown in the fig-
ure. Within the same category, we can find that the TD de-
scriptors of the deformable models are consistent with pose
changes. Across different categories, TD descriptor differ-
entiates the models from each category. For comparison, the
shape distribution (D2) is displayed on the right of the TD
descriptor. We can find that D2 has difficulty in maintaining



consistency with pose changes. The detailed analysis of the
Figure 2 will be presented in the experiment section. The
contribution of this work is centered on the development
of a novel intrinsic shape descriptor and the corresponding
shape retrieval scheme for efficient and effective 3D shape
retrieval.

2. Methods
2.1. Heat Kernel

The heat kernel H;(z,y) measures the amount of the
heat that passes from the vertex z to any other vertex y
within a certain amount of time. Since heat kernel aggre-
gates heat flow through all possible flowing paths between
two vertices on the meshed surface, it can capture much of
the structure encapsulated by the meshed surface. If a ver-
tex has more paths to other vertices, the heat flows faster
across the manifold. Consequently, the average tempera-
ture is higher when the heat is applied at vertices with a
large number of paths to other vertices. The 3D model is
represented as a graph G = (V, E, W), where V is the set
of vertices, F is the set of edges and W is the weigh value
for each edge. The widely used cotangent weight for the
edges is adopted in our work [28]. The heat flow across the
surface is governed by the heat equation u(z,t), where x
denotes one vertex on the meshed surface and ¢ denotes the
time after the application of unit heat. The heat kernel pro-
vides the fundamental solution of the heat equation, which
is closely associated with Laplace-Beltrami operator by:

OH,
% LH,; (D
where H; denotes the heat kernel, L denotes the Laplace-
Beltrami and ¢ denotes time. The heat kernel can be further
expressed as the eigenfunction expansion by the Laplace-
Beltrami described below.

H, = eap(—tL) @)

By the Spectral Theorem, the heat kernel can be further
expressed as follows:

Hy(w,y) = Z e M pi(x)pi(y) 3)

where \; is the ¢y, eigenvalue of the Laplacian, ¢; is
the 74, eigenfunction, and = and y denotes vertex x and y
respectively.

2.2. Proposed shape descriptor
2.2.1 Average temperature function

The average temperature at a vertex on the surface is de-
fined according to the point temperature distribution after
the application of a unit heat at this vertex. The average
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Figure 3. Illustration of point temperature distribution and average
temperature.

temperature function is derived from heat kernel and de-
fined in Eq. 3 for each vertex. Figure 3 illustrates the point
temperature distribution after applying a unit heat on a ver-
tex (on the body of the horse and marked by a red ball).
Figure 3(A) and (B) display the same horse model, and (C)
display a horse model with pose change. The color denotes
its the temperature value which is mapped with a colorbar
on the right. For a vertex on the shape, the closer the color
is to red, the higher temperature value is, while the closer
the color is to the blue, the lower the temperature value is.
The heat is applied on the different vertices on Figure 3(A)
and (B), and corresponding vertices of horse models in Fig-
ure 3(B) and (C). In (A) and (B), we can see that the point
temperature distribution varies because of applications of
heat at different places. The point temperature distribution
is consistent in (B) and (C) even with the pose change. The
normalized average temperatures, which are listed under the
red balls, are numerically distinct for (A) and (B) and con-
sistent for (B) and (C). Note that, the average temperature
is normalized to [0 1]. It is easy to find that point tempera-
ture distribution is invariant to pose changes, and the aver-
age temperature for the corresponding vertices are therefore
highly consistent with pose changes. We define the Average
temperature function as follows:
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where AV G (z) denotes the average temperature for ver-
tex x, and (x, y) denote the vertex x and y on the meshed
surface respectively, ¢ denotes the heat dissipating time and
N is the total number of vertices. The parameter ¢ is often
chosen empirically [11]. In our work, we choose a rela-
tively smaller ¢ to preserve a higher resolution version of
the original surface [35].

The definition of average temperature (AVG) function



is invariant to isometric transformation and robust against
topological changes and local numerical noise. In addition,
the average temperature function naturally evaluates the in-
fluence of a vertex, which means, how important the ver-
tex is among all of the vertices. This is because the higher
the average temperature, the faster the heat flows across the
meshed surface, therefore, the more influential the vertex
is. The influence of a vertex is critical for the definition of a
shape descriptor, which is normally used to weight the his-
togram. For example, the authors [15] define the influence
as the area of the triangles surrounding a vertex divided by
the whole surface area, and then use the influence to weight
the shape descriptor.

2.2.2 Temperature Distribution Descriptor

The average temperature function is able to robustly char-
acterize the vertices on the meshed surface. However, each
vertex from the model is described by an average temper-
ature value, which requires large amount of storage space
for a large model (over 20K vertices) and large database.
In addition, the retrieval in 3D database would be compu-
tationally expensive and inefficient. To effectively retrieve
the 3D model from a large database, we need to develop
shape descriptors that can convert the set of average tem-
perature values to a compact and concise representation of
the entire 3D model. That is, as we will demonstrate fur-
ther, the whole 3D model can indeed be described by a suc-
cinct representation. A solution for this conversion is ob-
tained by approximating the probability density function of
the values. For example, shape distribution is built based
on the distribution of the distance values between two ran-
dom points on the surface (D2) or a point to the centroid
of the model (D1) [24]. The pose-oblivious shape signature
is built based on the distribution of the local diameters on
the surface [15]. We adopt the similar strategy to develop
our shape descriptor. TD descriptor is built based on the
distribution of the values of average temperature for all of
the vertices on the meshed surface. As average temperature
naturally integrates the influence of each vertex, there is no
need to weight the value of the average temperature based
on the influence like weight scheme presented in [15].

2.3. Relationship among existing approaches

We briefly review the relationship among the existing ap-
proaches which are developed based on the eigensystem of
Laplace-Beltrami operator. The given heat kernel has the
following eigen-decomposition:

Hy(z,y) =Y e Mi(x)di(y) ©)
i=0

where ¢; and \; are the ¢, eigenfunction and eigenvalue
of Laplace-Beltrami operator, respectively.
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Global point signature The global point signature (GPS)
is defined as:

P1(z) Pa(z) ¢i(z)
N

GPS is a global point signature and invariant to isometric
deformation of the shape. The global representation of the
shape is useful for shape matching and global intrinsic sym-
metry detection [26, 28].

GPS(z) = (

) (6)

Heat kernel signature Heat kernel signature is defined
as:

HKSy(z) = Hy(z, )
="M 6i()oix)
i=0

(7

HKS is a point signature and also captures the intrinsic
geometry of the shape. In addition, it is able to represent the
shape in a multi-scale way, which is able to detect partial
symmetries or to perform partial matching [11, 32].

Diffusion distance The diffusion distance is defined be-
low:

D}(z,y) = Hy(x,x) + Hy(y,y) — 2Hy(z,y)
= Z e M (i) — di(y))®

®)

Diffusion distance is a distance metric between a pair of
vertices on a meshed surface. It is also a multi-scale repre-
sentation metric and has been used in [10] for the hierarchal
segmentation of the articulated shapes.

Note that all of GPS, HKS, Diffusion distance and TD
are able to intrinsically describe the 3D shape in the manner
of shape-awareness, isometrically-invariant and insensitiv-
ity to both topological and numerical noise. The distinct
feature of the TD descriptor over GPS and HKS is that TD
is a concise and succinct form of the representation for a
whole shape while GPS and HKS are point based signature
for describing the individual vertex on the shape.

3. Experimental Results

We carried out two experiments for shape matching and
retrieval and assessed TD’s performance from the experi-
mental results. The models used in the experiments were
chosen from the following database:TOSCA 3D database
[9, 3, 2, 4]. We define a universal time unit 7 = 0.01 for the
computation of TD descriptor. In all of the following tests,
807 is used to compute the TD descriptor of models (¢ in
Eq. 4).
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Figure 4. TD descriptor for shape matching for deformed and
noisy models.

3.1. Shape Matching Performance

The shape matching is the first step of database retrieval
of 3D model. A good shape descriptor should be able to
consistently represent the 3D model with pose changes,
topological changes, and noise corruption. We assess the
performance of TD descriptor from these three aspects.

Consistency over articulated bodies In this test, we test
the performance of TD descriptor on the deformed shape
models. We choose three ‘Centaur’ models, three ‘Victoria’
models and three “Wolf” models with different poses. We
compare the TD descriptor with a classical descriptor, the
shape distribution (D2). The comparison results are shown
in Figure 2. We can see from the figure that TD descriptor is
able to consistently represent the shapes with pose changes.
In addition, as indicated in the figure, ‘Victoria’ model 3
has both hands crossed and touching the chest. This test
on three ‘Victoria’ models demonstrate another attractive
property for TD descriptor of being insensitive to topologi-
cal noise (short-circuit touching) besides of pose oblivious
property. Furthermore, an interesting observation from the
comparison is that TD descriptor includes much richer in-
formation than D2. Compared to D2, TD has more features
as shown in Figure 2 that there are about three major peaks
in the TD descriptor while D2 is mostly centralized in the
one major peak. This makes TD descriptor not only consis-
tent in representing the shapes in the same category but also
distinctly describes the shapes across different categories. It
is important for a shape descriptor to have both capabilities
for effective database retrieval. The test demonstrates that
TD descriptor performs well on consistent representation on
the articulated shapes.

Resistance to noise In this test, we will demonstrate that
TD descriptor is robust to numerical noise. We experi-
ment by perturbing the vertices of the original model by
various levels of numerical noise. The numerical noise, a
3-dimensional vector, is randomly generated from a mul-

13

tivariate normal distribution, which can be written in the
following notation.

Noise ~ N3(u, NR * X) )
where i = [E[X1], E[X2], ..., E[X}]] is the 3-dimensional
mean vector (the coordinates of all vertices) and ¥ =
[Cov[X;, X;]]i=1,2,... kij=1,2,...,k (the 3 X 3 covariance ma-
trix for all vertices ), and N R denotes the ratio between the
variance of noise and variance of original signal (coordi-
nates of the vertices).

In Figure 4, Lioness 2 is the original model and Lioness 3
is a noise corrupted version of Lioness 2. We are interested
in the consistency of TD descriptor between the clean and
noisy models. In the noisy model Lioness 3 (NR 0.001),
geometric features of the original model have moderately
deteriorated. As indicated by the results in Figure 4, at mod-
erate level of noise, TD descriptors for the clean and noisy
models (plotted with red and green curve respectively) align
reasonably well. If the descriptors heavily rely on the local
geometric features, they would be overwhelmed by the ge-
ometric corruption due to the noise. The test demonstrates
that TD descriptor is resistant to noise.

3.2. 3D Shape Retrieval Performance

To further investigate the effectiveness, we test the TD
descriptor on a benchmark dataset of 3D models extracted
from TOSCA 3D database. We design two tests for the
verification. In the first test, we compute the TD descrip-
tor on the clean 3D models. In the second test, we com-
pute the TD descriptor on the 3D models whose vertices are
perturbed with different levels of numerical noise. Before
searching, we pre-calculate shape descriptors of all queries
in the database and stored them as index files. Therefore,
every shape is transformed to a compact 1D vector (e.g. 128
dimension). With this new form of representation, shape
retrieval becomes extremely fast since only the distances
among 1D vectors need to be compared. We use L2 norm
to compute the distance between two TD descriptors.

We compare TD with two competitive shape descriptors
in the retrieval test: Eigenvalue descriptor (EVD) which is
a state of the art spectral technique for articulated shape
retrieval, and a classical rigid shape descriptor, D2. The
TOSCA database is a collection of 3D nonrigid shapes in a
variety of poses. The 3D shapes are divided into different
groups. The models from the same group are basically the
same type of objects but with different poses (see Figure 5
for examples of models in different groups). To prepare the
noisy database, we corrupt the original model at two differ-
ent noise levels (NR=0.001 and NR=0.008). Figure 7 illus-
trates an example of the original model (sitting dog) and its
noisy versions (NR 0.001 and NR 0.008).
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Figure 6. Illustration of distance matrix.

3.2.1 3D retrieval on clean model

In the experiment, we first compute the distance for every
pair of the models in the dataset, and then rank the distance
value for each query model. The precision and recall for
every query model is recorded then averaged to generate
the final precision and recall curve. We compare the re-
trieval performance between TD, EVD and D2 descriptors.
The retrieval results are plotted in Figure 7. The red plots
in Figure (A), (B) and (C) are the precision-recall curves
for TD, EVD and D2 for clean models, respectively. A
perfect search retrieves all relevant objects consistently at
each recall level, generating a horizontal line at precision
equal to 1.0. However, practically, the precision decreases
with the increasing recall. The closer the curve tends to the
horizontal line at precision equal to 1.0, the better the re-
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Figure 7. Shape retrieval result for both clean and noisy models.

trieval method. Therefore, based on the comparison of the
three curves, TD descriptor performs better than both EVD
and D2 shape descriptor since the precision-recall curves
for EVD and D2 methods drops faster.

To further investigate the retrieval results, we select one
query model from each group and show the corresponding
retrieval result (see Figure 5). We only list the top five
retrieval results with incorrect retrieval boxed in red. All
models are colored according to the values of the average
temperature. It can be observed that the color distribution
remains consistent within each group. TD descriptor fails
to differentiate part of the models from groups ‘David’ and
‘Michael’ (represented by query models in the third and
sixth row, respectively), which results in the incorrect re-
trievals in the third row and the sixth row. However, we find
that shapes from these two groups are really similar and thus
are difficult to be distinguished from each other even by hu-
man observation. In addition, because there are only three
models in group “Wolf’, two models from group ‘Cat’ are
returned in the top five retrieval list by our method. This is
interesting as we can visually see that the shape of wolf and
cat are similar to each other in this database.

Furthermore, results in Figure 5 can be confirmed by the
pairwise distance matrix for all models (see Figure 6). The
distance is mapped by color. The more similar two shapes
are, the smaller the distance is, and the redder the color is.
It is clearly observed that diagonal areas are closer to red
because distances among the models from the same groups
tend to be smaller. The red off-diagonal areas are interesting
as they indicate the overlapping of the models across differ-
ent groups. The red overlapping area for groups ‘David’
and ‘Michael’ explains the retrieval results in Figure 5, as it
indicates the shapes are geometrically similar to each other
in these two groups.

3.2.2 3D retrieval on noisy model

To further demonstrate the performance of the TD descrip-
tor, we design three retrieval tests on noisy models and com-



pare the results to EVD and D2 descriptor results. In the
first test, test data consists of the original models and the
noisy models with NR equal to 0.001. In the second test,
test data consists of the original models and the noisy mod-
els with NR equal to 0.008. In the third test, we mix all of
the three sets of models above. A sitting dog in Figure 7
is used to illustrate the noise effect. Precision-recall curves
are produced using the same setting in the tests above. All
precision-recall curves are plotted in Figure 7 with different
colors. In Figure 7(A), we find that the retrieval perfor-
mance of the TD descriptor is slightly affected by moder-
ate noise corruption. The performance of TD descriptor re-
mains reasonable even when NR increases to 0.008, which
is in fact worse than the noise levels in real scenario. The
performance of TD is compared to EVD and D2 descrip-
tors. It is not surprising that D2 fails to have a reasonable
retrieval performance because it is a rigid shape descriptor
and sensitive both isometric transformation and numerical
noise. Although EVD gives a reasonable retrieval perfor-
mance, it performs worse than TD at different levels of the
noises.

4. Discussion and Conclusions

The data-richness of 3D models urges us to focus on ro-
bust and intelligent model analysis and understanding. We
develop a previously undescribed shape descriptor that as-
sists shape matching and retrieval. TD descriptor demon-
strates its performance in various tests for matching and
retrieving 3D shapes with deformation, topological short-
circuits and numerical noises. The tolerance to noise is
highlighted by the experiments in the paper. One of the
critical properties for TD descriptor that has not been fully
discussed in the experiment is the heat dissipating time (¢
in Eq.4) which is crucial to determine how locally or glob-
ally the geometric structure is exploited. In our current im-
plementation of TD descriptor, a relatively smaller scale
is used to preserve a higher resolution version of original
shape. In the future work, We will carry out the sensitivity
analysis to find how the TD descriptor correlates to the time
scale and then develop the algorithms to determine which
time is the optimal time to describe the shape. On the other
hand, we will explore the multi-scale properties of TD de-
scriptor for shape matching by varying the heat dissipating
time across the meshed surface. In addition, we will test on
more datasets (SHREC) to evaluate the performance of our
descriptor and add more comparisons to other methods for
example, ShapeGoogle [25].
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