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ABSTRACT 
Designers use several visual tools for exploring and 

understanding design problems and solutions. House of Quality 

(HoQ), function-structure, Morphological matrices, concept 

selection tables, 2D drawings are some of the visual tools and 

representations used in mechanical design. In this article we 

attempt to connect these visual tools and their underlying 

models to support exploration in early design using a 

representation called the working knowledge model (WKM). 

We identify two key aspects in design that are important for 

establishing such connections: different abstractions are used to 

describe the same design element, and several alternatives are 

considered during exploration. The constituent elements of the 

visual tools such as engineering characteristics (ECs) in a HoQ 

are described using classes of the information model. A simple 

wiki-based implementation is described that allows the user to 

tag the wiki text with WKM classes, which is then extracted to 

populate a database. This information is used by visual tools 

that can be embedded within a wiki page; the decisions taken by 

the user using these visual tools are then incorporated back into 

the WKM database and the wiki is updated if needed. A case 

study of the design of an automotive flow control valve is 

described to demonstrate the prototype. 

1 INTRODUCTION 
The design process is an iterative map from the 

customer requirements to the final design of the product [1]. 

The engineering design process broadly follows the pattern of 

(1) task clarification / specification development, (2) conceptual 

design, (3) embodiment design, and (4) detailed design [1-7]. 

Conceptual design takes the statement of the problem and 

generates solutions that are called schemes [2], or principle 

solutions [6], or concepts. These concepts are elaborated and a 

selection is made among them for further refinement at the end 

of the embodiment design stage. The result is usually a set of 

general drawings and there is a great deal of feedback from this 

stage to the conceptual stage [2, 8]. During detailed design, a 

large number of small decisions are made so that every detail of 

the design is fixed before commencing production.  

During such a design process, designers use several 

techniques, methods and tools for problem understanding, 

communication, exploration, and decision-making. Examples of 

such techniques include: Theory of Inventive Problem Solving 

(TRIZ), Quality Function Deployment (QFD), functional 

reasoning, sketching and optimization. These techniques make 

use of ―visual‖ representation of design information (or 

knowledge) such as the House of Quality (HoQ) for QFD, 

function-structure diagrams for functional reasoning, or Pareto 

plots in optimization to focus the designer‘s attention on a 

particular aspect of the design. Such visualizations not only 

represent information about the design, but also the formulation 

of the simplified design problem being solved. According to 

Ullman [9], such simple design problems can be classified as 

(a) selection design, (b) configuration design, (c) parametric 

design, (d) redesign, and (e) original design. Computational 

approaches such as case-based reasoning, function-means (F/M) 

synthesis, simulation-based design and techniques based on 

constraint processing have been developed for modeling and 

supporting such problem-solving activities in early phases of 

the design.  

Through an informal survey of several practicing 

engineers who were members of the Purdue Product Lifecycle 

Management (PLM) Center, we observed that these tools are 

not being used together during early design in a computational 

setting. Although interoperability issues among Computer-

Aided Design (CAD) and Computer-Aided Engineering (CAE) 

tools are well known in PLM literature (see for example, [10, 

11]), connections among ―visual‖ tools and design problems are 

not available to the best of our knowledge.  

In practice, design is an iterative process where these 

tools are used multiple times during a single design. More 

importantly, each of the design support tools mentioned above 

deals with a specific subset of the design problem, at a specific 

level of abstraction. Designers take decisions based on 
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information presented through such visual tools. Stjernfelt 

argues that in design ―…the fact that the diagram displays the 

interrelation between the parts of the object it depicts is what 

facilitates its use in reasoning and thought processes, thus 

taking the concept of sign far from the idea of simple coding 

and decoding and to the epistemological issues of the 

acquisition of knowledge through signs‖ [13].  

Our goal is to study the connection of information 

among different visual tools in the design process as well as 

between known problem formulations. This involves using a 

representation that accommodates different levels of abstraction 

of the various aspects of design. In the current work, we focus 

on the early stages of mechanical design process, i.e. from 

specification development until embodiment design. The 

contents of the visual tool (or the design problem) expressed 

using the elements of a single design model provides a 

mechanism for connecting such tools.  

In this paper, we extend the NIST Core Product Model 

(CPM) [10] to handle additional aspects such as numerical 

constraints and mappings between descriptions of different 

abstractions, to introduce the working knowledge model 

(WKM). We describe the meaning of working knowledge, as 

we define it, in Section 2. Section 3 provides a brief overview 

of some of the visual tools used in design. A review of existing 

design knowledge and information models is provided in 

Section 4. A small subset of concepts described in existing 

literature is considered within WKM (Section 5). In Section 5 

we also map the elements of the WKM onto the elements of the 

visual tools so as to facilitate bidirectional exchange of data 

between a design tool and WKM. Section 6 describes a 

prototype implementation where a Wiki is used in conjunction 

with WKM to capture, store and present design information 

visually; an example of a coolant valve design to illustrate the 

use of WKM along with visual tools is also described in Section 

6. Discussion and conclusion are presented in Sections 7 and 8 

respectively. 

2 WORKING KNOWLEDGE IN DESIGN 
In general, there are two common views about the nature of 

knowledge in general: structural view- knowledge as the content 

of a representation, and functional-knowledge as the capability 

to solve problems [14]. Restricting to design, Klein [15] 

identifies three main categories of design knowledge: (1) 

general domain knowledge, (2) case-specific object level 

knowledge, and (3) problem solving & control knowledge. In 

this view, general domain knowledge includes knowledge 

describing the relations between function, behavior, structure; 

case-specific knowledge consists of requirements and (possibly 

partial) design descriptions. During the design process, the 

domain knowledge of the designer engineers can be assumed to 

change little in comparison to case-specific knowledge [15]. In 

this work, we further restrict ourselves the ―working‖ aspect of 

the design knowledge, i.e., only that which is known about the 

current design and can be expressed explicitly.  

 

Figure 1. Concepts and relationships in the working knowledge 

model. 

Working knowledge, as we define it, is the collection of 

design representations and their relationships accumulated from 

the commencement of the design process. Specifically, working 

knowledge consists of (Figure 1): 

(1) Knowledge about requirements, objectives, and constraints 

that the design should satisfy. Requirement is a documented 

need that should be satisfied by the product. Objectives are the 

set of wants that the product should excel at. Constraints are 

restrictions on the product. 

(2) Knowledge about function, form and behavior of the 

product being designed. Function is the activity or task that the 

design should perform. Behavior is the activity or task that the 

product performs in reality. Form is the structure of the product 

and may include geometry. 

(3) Relationship between representations: 

(a) The alternatives of entities that exist at each stage in the 

design process (expressed explicitly by the designer). For 

example, a function can be realized by several alternative 

embodiments; alternative requirements may be available at the 

initial stages of design; or even alternate representations may be 

available to describe a product‘s geometry. Additionally, 

alternative designs may be carried forward simultaneously 

during the design process. 

(b) Representation of these entities in different levels of 

abstraction [16]. Examples for the different levels of abstraction 

for constraints, behavior, form and function are shown in Table 

1. For example, relationships among parameters can be 

represented qualitatively (as in the roof of the house of quality, 

for example) or as analytical equations or using simulation 

models or even surrogate-models generated using simulation 

data. Similarly, geometry can be described as sketches, 2D 

drawings, or 3D models.  

(c) And the sequence of changes (edits) made to the design, 

typically called version information. 

Entities such as requirements, functions, from, and 

behavior can be captured using the Core Product Model (CPM) 

[10]. Additionally Product Data Management (PDM) systems 

capture version information. Even though design process is a 

refinement of abstract representations even for a particular 

design description such as behavior [9, 17], existing models do 

not capture the relationships among abstractions. In this paper, 

we extend the classes in CPM to capture relationship 

information; these relationships are useful when design 

information is accessed for exploration using visual tools. 
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3 VISUAL TOOLS USED IN EARLY DESIGN 
An important purpose of the working knowledge model is 

to enable iterative early design and acquire design knowledge 

through means of various visual tools. Table 2 (adapted from 

Hubka and Eder [18]) lists the different visual representations 

that are used in early design. In this work, we have implemented 

the following visual tools presented in [9,18,19]: Function-

Structure diagrams, Morphological Matrix, House of Quality 

and a tool to author 2D drawings. Apart from these, we also 

include the SysML requirements and parametric diagrams due 

of a lack of equivalent visual representations for requirements 

and parametric equations.  

Quality Function Deployment (QFD) [7] has become a 

widely accepted method for engineering design in industry and 

software programs for computer support of this method are 

available. The main visual model of the QFD method, the 

House of Quality (HoQ) [20] can be used very flexibly and it 

can capture various aspects of the working knowledge. The 

version of the HoQ that is used often relates customer 

requirements (―Voice of the customer‖) in the interrelations 

matrix to the engineering characteristics. HoQ can also be used 

to model objectives, constraints, a relative ranking of 

requirements, and qualitative relationships among engineering 

characteristics and compare alternative or competing designs. In 

the version of HoQ presented in [9], engineering characteristics 

are quantitative properties of the design, i.e. the parameters of 

that design. 

Knowledge about Function is often visualized in 

hierarchical or procedural function structure diagrams [3]. The 

hierarchical function structure diagram displays the functions 

that are to be performed by the system along with the sub-

functions that are needed to achieve the overall function. The 

procedural function structure diagram is used to describe the 

sequence in which these functions are performed and the flow 

associated with each sub-function.  

The morphological matrix [18, 19, 59] is a systematic 

method to combine solution principles based on the function 

decomposition. Here, the several possible ―means‖ or ―solution 

principles‖ are listed by the designer for each function that the 

system needs to perform. This work assumes that the designer 

provides the necessary information although it is conceivable 

that the various ―means‖ or ―solution principles‖ are populated 

from a database based on the function similar to the approach in 

[21] and [22]. 

Computer based tools for modeling product geometries 

deal with entities (like lines, arcs, surfaces etc.) and constraints 

(such as tangency, collinear, angle etc.) between these entities.  

The Systems Modeling Language SysML [23] is a 

graphical modeling language that was developed to support 

systems engineering processes. The SysML Requirement 

Diagram is used for representing the relationships among 

various requirements for the design.  

Table 2. Visual tools used during the design process. 

Table 1. Levels of abstraction of design entities. 

DESIGN 

ENTITY 

LEVEL OF ABSTRACTION 
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4 BRIEF REVIEW OF COMPUTER REPRESENTATIONS 

OF DESIGN INFORMATION 
Several models have been developed for capturing design 

information and knowledge as well as for supporting various 

types of problems encountered during design. It is not the intent 

of this paper to provide an exhaustive survey of such models 

but to provide a sampling of such representations. We restrict 

our scope to models represent the design information for 

documentation, knowledge capture and search. The working 

knowledge model is extended from one such representation. 

Research in analogy based design synthesis support, such 

as those based on case-based reasoning (see for example, [24]) 

are the earliest efforts in developing product knowledge models. 

Notably, the models presented in KRITIK [25] and KRITIK2 

[26], use Structure-Behavior-Function (SBF) formalism to 

represent the structure of the product, its behavior based on the 

structure and the function achieved through those behaviors. 

Another case-based-design tool CADAT [4] uses an AND/OR 

tree representation of design to support design decomposition. 

A comprehensive review of such systems can be found in [27]. 

Design catalogs have also been proposed (see for example, 

[28]) that contain objects, solutions or operations, allowing 

designers to explore variants [29]. Active catalogs (see for 

example, [30]) have been developed for selecting and 

evaluating electromechanical components and sub-systems.  

In the context of information modeling in design, 

researchers at National Institute for Standards and Technology 

(NIST) provide the most comprehensive modeling framework 

up to date for representing ‗Artifacts‘. Sudarsan et al. [31] 

present the Core Product Model (CPM) and its extensions such 

as the Open Assembly Model (OAM) and Design-Analysis 

Integration Model (DAIM). The core product model focuses on 

artifact representation including function, form, behavior and 

material, physical and function decomposition, and 

relationships among these concepts [10]. The CPM also allows 

modeling other aspects such as rationale, requirements and 

product families. Xue et al. [32] introduce the concept of 

‗worlds‘ in capturing the operations performed on the product 

knowledge model during the design process as a part of an 

evolutionary design database. CPM forms the underlying 

product knowledge model, but is extended to include (1) 

arithmetic and temporal constraints, (2) tasks, and (3) attribute. 

The design repository hosted at Oregon State University [12] is 

based on a model that is similar to CPM but provides a 

documented interface to enter and retrieve product information 

using web forms or external applications. The ISO 10303 

standard [33], also known as STEP, provides a detailed 

mechanism for specifying product data throughout the lifecycle 

in a implementation neutral fashion to enable file and data 

exchange between various applications used ding the design 

process such as Computer Aided Design, Computer Aided 

Manufacturing and Product Data Management systems. 

Models and modeling languages have been developed for 

formally specifying the knowledge associated with systems 

design such as the Systems Modeling Language (SysML), 

which is based on the Unified Modeling Language (UML) [34, 

35]. Apart from modifying existing diagrams from UML 

(Activity, Block Definition and Internal Block Diagrams) 

SysML also introduces new diagrams to model systems 

knowledge (Requirements and Parametric diagrams). Although 

SysML is powerful in expressing the result of a design activity, 

it does suffer from several weaknesses [36], most importantly 

lacking the ability to capture interconnections among diagrams. 

Klein [15] presents a knowledge model as a part of the 

Methodology and tools Oriented to Knowledge-based 

engineering Applications (MOKA) that also uses UML-like 

formalisms to allow designers document explicit design 

knowledge. The MOKA language supports multiple views of 

the design such as geometric view, structural-view and 

kinematics-view. MOKA provides the ability to model 

constraints, illustrations, activity, rules, entities as well as 

products, design process and rationale. Like SysML, MOKA is 

a diagrammatic representation available to a knowledge 

engineer to express explicit design knowledge. They are not 

connected to existing visual representations used in design 

practice. 

Tamburuni [41] presents an Analyzable Product Model 

(APM) that provides semantics for mapping geometry 

definitions and a generic description of analysis models. 

Depending upon the application, the model allows selection of 

the appropriate analysis model to support design; also, changes 

to the form can be propagated to analysis models that are 

coupled in order to maintain consistency within the design. 

In the context of configuration design of complex products, 

Feldkamp et al. [39] have proposed a method and software tool, 
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called System Design for Reuse (SyDeR), that combines 

structural model, a taxonomy based library of solutions, and, 

constraint propagation techniques. The notion of ports is used to 

encapsulate and model the hierarchical nature of the system 

being designed, and importantly, to keep track of alternatives 

solutions available for configuration. 

There are several specialized models (such as for 

generative design) and other abstract representations (such as 

MOKA and SysML) for modeling design knowledge. On one 

end specialized models allow computational support but the 

concepts used in such models are not shared among other 

models; whereas on the other end, abstract languages may allow 

rich representations at the cost of useful computational support. 

Even among somewhat generic models, there is ambiguity 

in definition of the modeling concepts. For example in the NIST 

Core Product Model [31, 32], on which the WKM is based, 

Artifact represents the actual artifact being designed. An artifact 

is composed of other artifacts leading to a natural extension of 

an assembly model. Although this modeling approach is 

sufficient for describing the final outcome of the design process, 

or, an intermediate description of a single design that is created 

as a succession of design operations, several representations are 

used during design to describe the same artifact. There is no 

clear definition of an artifact in literature when early stages of 

design are considered. That is, is solution principle [3], or 

scheme [2], or concept [21], or configuration [39], an artifact? 

They all describe the design at different levels of abstraction, 

but identifying a given description as an idea or concept or 

embodiment is subjective in nature. In this work, we overcome 

the ambiguous meaning by creating the notions of Design 

Model and Instance (both are extensions of the Artifact class in 

CPM). A design model can represent the design at any stage in 

the design process whereas an instance is a notional 

representation that is assembled from information available in 

the lowest level of abstraction, i.e. as precise as possible. 

Maeda et al. [59] propose a framework to organize and 

acquire knowledge using visual representations. This work 

(similar to Electronic Design Notebook [60]) parses an arbitrary 

graph drawn by the designer expressing design knowledge in 

the form of decision tables and decision trees. Reich [14] 

presents a Computational QFD (CQFD) tool that uses a graph-

based modeling environment to allow users to create diagrams 

such as affinity diagram, relation diagram and House of Quality; 

the graph model underneath these diagrams is used to maintain 

consistency between them. As far as we are aware, Design 

Scribe [60] is the only work that attempts to integrate some of 

the visual tools used in mechanical design; even in this case, a 

very specialized model is used to capture rationale using the 

House of Quality. Compared to these and similar approaches, 

the objective of this work is to enable sharing of design 

information (say, in different levels of abstraction) between the 

visual tools.  

5 INFORMATION MODEL 

5.1 Basic design elements in the model 

Figures 2 and 3 show the elements of the working 

WorkingKnowledge DesignModel

DesignModelTrace

VisualTool

VisualToolTrace

1

VisualTools

*

1

DesignModels

*

source

1

target 11

DesignModelRelations

*

1

VisualToolDependancies

*

source1

target

1

dependsOn

 
Figure 2. UML representation of the working knowledge model. 

DesignModel

Instance

+subStructureOf

0..1

+subStructure 0..* Attribute

Constraint

Text : String

CPM2::Function

+functionOf 1

+hasFunctions

1..*

CPM2::Form

Objective

Value

Domain
hasValue

Requirement

0..*

0..*

0..*

0..*

chosenFrom

hasDomain

0..*
«metaclass»

AbstractableProperty

«extends»

«extends»

CPM2::Behavior

0..*

«extends»

CPM2::Geometry

CPM2::Artifact

 
Figure 3. UML representation of DesignModel (Classes from CPM2 are also shown). 



 6 Copyright © 2011 by ASME 

knowledge that are considered in this implementation along 

with the relevant classes from the CPM2 (the second version of 

CPM [44]).  

A Design Model is the primary concept of the working 

knowledge model. A DesignModel represents the product being 

designed at a particular point in time in an appropriate 

abstraction. More specifically, a DesignModel is a placeholder 

for the final Instance of the product.  

The dichotomy between a DesignModel and Instance is 

useful when configuration design is being performed. For 

example, in design of an industrial truss where the individual 

beams are selected from a catalog as shown in Figure 4, the 

DesignModel of the structure consists of other DesignModels 

for each beam and for each connector. The DesignModel for the 

beam can be instantiated using any of the pre-defined sections 

available in the catalog. Similarly, each DesignModel of the 

connector can be instantiated using those available in the 

catalog, each of which is an Instance. An instance of the overall 

DesignModel (i.e., the industrial structure) is created once an 

appropriate instance for each ―beam‖ and ―connector‖ is 

selected.  

 
Figure 4: An example to illustrate the ―substitute‖ relationship 

(Adapted from [59]). 

 

Apart from catalog components, however, the distinction 

between a DesignModel and Instance cannot be clearly 

established. Moreover, several descriptions of the same design 

can be generated during product development depending upon 

the intended use as discussed in Section 4.3; manufacturing 

drawings, for example, are generated based on the designed 

geometry and provide additional process related information. 

To overcome the ambiguous definition, we consider an Instance 

to be a notional idea that is assembled from information 

available in the lowest level of abstraction (i.e., as precise as 

possible). 

Structurally, a DesignModel (and Instance) can be 

composed of other DesignModels or Instances; Instances can 

only be composed of other Instances as illustrated in Figure 4. A 

DesignModel also consists of Attributes, Constraints, 

Geometries and Objectives. A DesignModel is associated with 

Requirements, Functions and Behaviors. 

A design model consists of several Attributes that describe 

the model. Attribute describes the characteristic property of an 

artifact [45]. Parameters
1
  form an important specialization of 

an attribute that takes numerical values (Figure 5). ―Color‖ is an 

example for Attribute while ―Cost‖, ―Weight‖ and ―Length‖ are 

examples for Parameter (which is a sub-class of Attribute). A 

Domain can be defined for a Parameter from which a Value is 

                                                           
1 There is confusion in literature as to what the difference between a 

variable and a parameter is [46]. Variable seems to be a problem specific term, 

whereas a parameter can denote any numerical attribute of a product. 

chosen. The set consisting of ―blue‖, ―red‖, ―green‖, and 

―white‖ is an example for categorical domain of the attribute 

‗Color‘; [-1.5,-1]U[1,1.5] is an example for IntervalDomain 

which is a union of AtomicDomains. Objectives are association 

of an Attribute along with a qualifier (min, max or target). A 

Parameter-Value pair can be designated as a Target. 

Requirements represent the explicit conditions that final 

design should satisfy and are stated by the stakeholders in the 

design. These stakeholders include customers (e.g. ‗should 

provide a particular functionality‘), end users, manufacturers 

(e.g. ‗should be manufacturable with the available resources‘) 

and design engineers themselves. Although requirements are 

described textually, we assume that the designer translates them 

into functional requirements, constraints and objectives during 

the course of the design process. 

Constraints represent the computer-verifiable expressions 

associated with the design. Weilinga [46] differentiates 

constraints from requirements based on the ―tone‖, i.e., positive 

or negative. Requirements are associated with a positive tone 

that represents what is needed from a design. Constraints, on the 

other hand, are associated with a negative tone and represent 

what is possible with the design. Constraints, in general, restrict 

the choice available to the designer [47]. However, in this work 

we do not use ―tone‖ to differentiate between constraint and 

requirement because of its subjective nature. Instead, we use 

‗the ability of a computer system to interpret‘ as the criteria; this 

is because any constraint (in the sense of ref. [46]) that is not 

traced to the customer can be ascribed to requirements from any 

of the stakeholders including designers and manufacturers. For 

example, even constraints arising out of physical phenomenon, 

such as ‗stress<yield_strength‘ can be traced to a requirement 

‗should not fail‘. In other words, constraints can also be 

described as the mathematical translation of stakeholder 

requirements. Qualitative, Analytical and Geometric constraints 

can be represented in the current version of WKM (Figure 6). 

QualitativeConstraint in WKM captures positive and negative 

relationships between attributes (including parameters); 

AnalyticalConstraint captures algebraic and numerical 

relationships between parameters. GeometricConstraint 

captures the relationships between geometric entities in a 

drawing. 

A design model can be associated with a collection of 

Geometry descriptions. In this version of the working 

knowledge model, geometry can be described as a Sketch, 2D 

Drawings or 3D_Models. Each 2D drawing consists of 

geometric entities (Points, Lines, Arcs, Circles, etc.) and 

geometric relationships between these entities. These geometric 

relationships may involve Parameters. The Sketch and 

3D_Model classes in this implementation of WKM merely store 

a link to an external file.  

 

 

5.2 Capturing relationships in WKM 

The current version of WKM accommodates five types of 

operations with the design elements presented earlier. These 

are: (1) Edit, (2) Combine, (3) Set-up substitution relationships, 

(4) Refine, and its inverse, (5) Abstract.  
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1. Editing, the simplest operation, involves changing the 

design model by adding, removing and modifying its 

constituent elements. For example, the designer may add a new 

requirement, change a constraint or remove a geometric feature 

from the design. 

2. Combine is the operation where portions of more than 

one design models are used to create a new design model, such 

as those seen in conceptual design activities. For example, the 

best aspects of concept A and concept B can be combined to 

create a new concept C that is significantly different from both 

A and B. The combine operation is not illustrated in the 

example described in this paper. 

3. Setting up substitution relationships involves 

enumerating an equivalence class of objects and identifying 

common elements among the members of that set, possibly by 

means of an exemplar. The equivalence class then signifies the 

alternatives based on relevant criteria. At a later stage in the 

design process, when a substitute is chosen, Edit operation is 

used to create a new design model using that substitution. For 

example several ‗Means‘ that are specified for a particular 

function in a morphological matrix form an equivalence class. 

The set of individual motors in a catalog and a common 

geometry model are another example for the equivalence class 

and their exemplar. Yet another example can involve 

descriptions of a set of designs using ‗ports‘ such as models 

presented in [39] and [41]. Equivalence among design element 

descriptions is also captured in WKM. For example, a 

geometric constraint can be converted into an analytical 

relationship to be solved by a numerical solver. Extending the 

idea further (although not implemented here), different formats 

for representing 3D models can be thought of as another 

equivalence class. Visual tools such as Morphological Matrices 

can create the equivalence class for substitution where each 

combination of means results in a different DesignModel; all 

these DesignModels are potential designs that could satisfy the 

requirements. 

4. Refinement is the operation where an abstract 

representation is made more concrete. For example, the 

designer may refine a 2D drawing into a 3D CAD model. 

Although each class in WKM can be refined, DesignModel and 

Requirement are the important classes that are refined. For 

example, a DesignModel for a ―Flow Control Valve‖ can be 

refined to a ―Solenoid valve‖ which is further refined to a ―12V 

DC Solenoid operated spool valve‖.  Similarly, a behavior 

model involving simple algebraic equations can be refined into 

a finite element analysis model. 

5. Abstraction operation is the inverse of refinement. This 

operation is necessary for iterative design exploration where a 

design model (concept or idea etc.) is elaborated and the 

knowledge gained is taken back as abstractions and commence 

the next iteration. Although abstracting design models is a 

manual activity, some of the abstraction operations such as 

converting an analytical model to a quantitative model can be 

automated. 

The Trace relationship defined in CPM2 is extended in 

WKM for capturing the above relationships. We further extend 

the Trace association into DesignModelTrace, GeometryTrace, 

ConstraintTrace, AttributeTrace, RequirementTrace, 

ObjectiveTrace corresponding to each class in WKM. 

Geometry, constraint and attribute traces consist of the type of 

operation and a set of <source,target> pairs indicating that the 

target is obtained from the source entity after the relevant 

operation is performed. A DesignModelTrace is composed of 

GeometryTrace, ConstraintTrace and AttributeTrace mimicking 

the composition of the DesignModel class. 

Abstraction is supported in WKM by two metaclasses: 

AbstractableProperty, and AbstractionCreator. An 

AbstractableProperty signifies any of the following classes and 

their sub-classes: Behavior, Constraint and Geometry. For 

example, complex analysis and simulation models may be 

abstracted as analytical relationships using response surface 

approximations; analytical relationships can be abstracted 

further as qualitative relationships [36]. Figure 6 shows the 

different abstractions that are considered in the present 

implementation of the WKM.  

5.3 Connecting visual tools to WKM 

The elements of the HoQ can be mapped to WKM classes 

as shown in Figure 7. For example, engineering characteristics 

(as defined in [9]) correspond to Parameters in WKM. The 

parameters in the design are candidates for being included in 

 
Figure 6. Abstractions in WKM (abstractions of Behavior is not shown but is similar to Constraint). 
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the HoQ as ECs; the ECs that are added to the HoQ are then 

added to the WKM as Parameters. The Constraints and Targets 

are set on Attributes within the HoQ. The WKM can be edited 

though the HoQ using these mappings. 

Figure 8 describes the function structure diagram and the 

morphological matrix using WKM elements. Each Function can 

be hierarchically decomposed into its sub-function and a 

DesignModel can perform many functions.  

Figure 9 describes the content of the SysML Parametric 

and Requirements diagrams using the elements of the WKM. 

The XML schema for representing SysML models is described 

in the STEP application protocol AP233 [48]. Parametric 

diagram can be used to describe Attributes and mathematical 

relations between these attributes that form the (equality) 

Constraints within WKM. Internal Block Diagrams are similar 

to class diagrams in UML2 [49] and are used to represent the 

structure of DesignModel. 

The geometry of a DesignModel is described by a 

collection of drawings. A geometric parameter can be shared 

between multiple drawings. A Drawing is a collection of 

geometric entities, variable & constraints defined between these 

entities. For example, points, lines, arcs, and circles are 

geometric entities. The geometric constraints such as 

coincidence, parallel, perpendicular, fix and angle determine the 

topology of the drawing. 

6 IMPLEMENTATION AND CASE-STUDY EXAMPLE 
A wiki-based prototype was implemented to evaluate the 

working knowledge model. Wikis are freely-editable collections 

of web pages, exhibiting potential for a flexible documentation 

and communication tool for collaborative design tasks as well 

as support for team design thinking early in the design process 

[53]. Wikis store versions of each page along with the edits 

made to the page. They also allow the user to store, retrieve and 

manage versions of files. The content of a wiki page is stored in 

a database and each page can be created dynamically from its 

content. A wiki installation also includes a parser that can be 

extended for custom applications such as the current prototype 

named ―DesignWiki‖. The WMK classes were translated as 

database tables and stored in a MySQL database [63] that is 

shared with the wiki. 

The role of the wiki in the prototype is to document known 

facts and assumptions whereas visual tools embedded within the 

wiki page support exploration. The annotated text in the wiki 

page is parsed to populate the WKM data model that is 

accessed by any visual tool used in the design; any new 

knowledge generated or added through the visual tool updates 

 
Figure 7. A typical HoQ (from [9]) and corresponding classes in WKM; the contents of the Relationship matrix are Trace 

relationships from Requirements to Constraints and Objectives (not shown). 
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Figure 8. Model of hierarchical function structure and function component matrix using WKM elements. 
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Figure 9. Partial descriptions of SysML (a) Parametric diagram and (b) Requirements diagram using WKM elements. 
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the WKM and creates a new version of the wiki page that 

reflects the change. This process is explained below. 

Figure 10 shows the schematic of the prototype 

implementation. The customized media-wiki [63] serves at the 

documentation front-end for design knowledge. The user can 

annotate the wiki page with WKM classes that is then parsed 

and stored in the database. The WKM data is accessed and 

edited using SQL commands by visual tools and other wiki 

pages. Visual tools were implemented as JAVA applets and can 

be embedded within each wiki page using special extensions to 

the media-wiki syntax. The visual tools embedded in the wiki 

page can also be used to modify WKM objects. Depending 

upon the operation performed within the visual tool, the user 

may create new WKM objects or edit information contain 

within these objects. New versions for wiki pages referencing 

these objects are created automatically to reflect changed made 

using the visual tool. Wikis, by default, provide versioning 

ability and the built-in version management system is exploited 

in this implementation to support ―edit‖ operations discussed in 

section 5.2. 

The following visual tools have been implemented in JAVA 

as applets and can be embedded within any wiki-page 

corresponding to a DesignModel: (1) House of Quality, (2) 

Hierarchical function diagram, (3) Morphological Matrix, and 

(4) A tool that displays analytical relationships between 

parameters of the design in a manner similar to the SysML 

Parametric diagram.  

Apart from the above tools, a simple editor was also used 

to create 2D drawings; Topcased [50], an open source SysML 

authoring tool was used to view and edit SysML requirement 

diagrams. A commercial tool Isight [58] was used to create 

abstractions of analytical models from simulation codes. The 

contents of the drawing file is also parsed to identify geometric 

constraints; these constraints are automatically converted into 

analytical constrains by another tool. The file-management 

ability of the wiki was used to store, parse, generate and retrieve 

the files needed for these external tools.  

Each page in the wiki can represent a WKM class and a 

wiki page can reference WKM class objects within the text. 

Table 5 lists a limited set of tags and attributes corresponding to 

each class in WKM. These tags are used to both define as well 

as reference WKM objects. Tags can also be nested within each 

other.  

 
Figure 10. The system uses the mappings defined in section 5.3 

to populate the visual tools and transfer the decisions back 

to the working knowledge model. 

Engine Pump

Flow control 
valve

Heat Exchanger 1
(Radiator)

Heat Exchanger 2
(CAC)

Bypass

Coolant flow
 

Figure 11. Schematic of automotive engine cooling system. 

 
Figure 13. The SysML drawing is generated automatically and 

be downloaded from the wiki. The modified SysML file 

when uploaded is parsed and WKM is updated. 

 
Figure 12. An example of creating the wiki-page for a ―Flow 

Control Valve‖.  
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We illustrate the use of WKM and the wiki in supporting 

design through visual tools by means of a flow-control valve 

that is used in an automotive cooling circuit. Figure 11 shows a 

schematic of automotive engine cooling system. A centrifugal 

pump driven by the engine circulates the coolant fluid through 

the heat exchanger called Charge Air Cooler (CAC) where the 

heat from the supercharged air is transferred to the coolant. The 

hot coolant is passed through a second heat exchanger (radiator) 

where the heat from the coolant is transferred to the 

environment. Varying the rate coolant flowing through the 

radiator controls the temperature of the supercharged air. The 

amount of coolant flowing through the radiator is varied by 

means of a flow control valve as shown. This valve is operated 

using a pulse-width modulated (PWM) signal. The system 

consists of four main sub-systems: 2-way valve, the radiator, the 

engine and the pump.  

The design of the flow-control valve used in the cooling 

system follows a design process where the initial requirements 

are available in the form of a document. This document is used 

to create the initial wiki page as shown in Figure 12 a. The 

special tag  
<WKMClass type=”DesignModel” name=”FlowControlValve”>   

in line 1 indicates that this page describes a DesignModel 

called ―FlowControlValve‖.  The text in lines 7-20 lists the 

annotated requirements on the flow control valve. Requirement 

―Response Time‖ in lines 14-16 illustrates how other tags such 

as ―Constraint‖ and ―Parameter‖ can be embedded within the 

―Requirement‖ tag. When the user completes editing this page, 

links to the list of attributes, functions, requirements, 

constraints, objectives, geometry, and the latest instance are 

added automatically to the header of the wiki-page as shown in 

Figure 12 b. 

The user can view the requirements by clicking the 

―Requirements‖ link at top of the wiki page (Figure 12 b). This 

link opens a dynamically-generated page 

―FlowControlValveRequirements‖ that lists the requirements of 

the flow control valve and also allows the user to download the 

―sysml‖ and ―sysmldi‖ files (Figure 13) that are used by 

Topcased (Figure 14). The user adds additional requirements 

(―Continuous operation‖, ―Tolerate contaminants‖ and ―Easy to 

control‖) using Topcased and uploads the newer version to the 

wiki. The system automatically parses the ―sysml‖ file and 

updates the working knowledge model. 

The user then revisits the ―FlowContolValve‖ page and 

adds the following lines to the end of the text: 
==House of Quality== 

<visualtool type=”HOQ”/> 

This command adds the House of Quality visual tool to the 

page. Figure 15 shows the screenshot of the wiki page after the 

user has added ―Engineering Characteristics‖ i.e. Parameters to 

the model. Note that the newly added requirements are also 

listed in the HoQ. The user also sets targets or adds constraints 

to the parameters using this tool. Once the house of quality has 

been edited, a new version of the wiki page is automatically 

created by the visual tool to capture the edit operation. We note 

that the user has also set Objectives and Constraints on the 

design. 

 
Figure 14. The requirements for the flow control valve are 

depicted as a SysML requirements diagram using Topcased. 

 
Figure 15. Screenshot of the HoQ tool. 

 

The user then clicks the ―Functions‖ link at the top of the 

wiki page (Figure 12 b). This link opens another dynamically 

generated page that lists the functions of the flow control valve 

and includes the Hierarchical Function Structure widget as 

shown in Figure 16. The user manually adds the sub functions 

such as ―Allow Flow‖, ―Restrict Flow‖ and ―Generate opening 

force‖ as shown in Figure 16. Similar to the house of quality 

tool, the hierarchical function structure tool also creates a new 

version of the wiki page ―FlowControlValveFunctions‖ to 

capture this edit operation. 

Upon re-visiting the ―FlowControlValve‖ page, the user 

adds the following lines to the end of the text: 
==Morphological matrix== 

<visualtool type=”MorphologicalMatrix”/> This command 

adds the Morphological matrix visual tool to the page. Figure 

17 shows the screenshot of the wiki page after the user has 

manually added the means of a ―Solenoid‖, ―Motor‖, ―Spool 
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Valve‖, ―Butterfly Valve‖ and ―Spring‖. These DesignModels 

were created separately in the wiki with their sketch and 

analytical behavior model (equations). The Morphological 

matrix tool only shows the sketch and name of these ―means‖. 

The user creates two DesignModels using the Morphological 

Matrix, one called ―SolenoidValve‖ (that uses a solenoid, a 

spool valve and a spring) and another called 

―MotorButterflyValve‖(that uses a motor to actuate a butterfly 

valve). A new wiki page for each DesignModel is created 

automatically; a category called 

―FlowControlValveInstancesRefinements‖ is created in the wiki 

and the new wiki pages are added to this category. The user can 

access these DesignModels by clicking the 

―Instance/Refinements‖ link at the top of the page (Figure 12 

b). This link opens the page shown in Figure 18 which lists all 

the DesignModels in the category 

―FlowControlValveInstancesRefinements‖, thereby allowing the 

user to navigate to these designs. 

 
Figure 16. Screenshot of the page 

―FlowControlValveFunctions‖ showing the hierarchical 

function structure visual tool. 

 

Clicking the ―Behaviors‖ link on top of the 

―SolenoidValve‖ page (Figure 19) opens the 

―SolenoidValveBehaviors‖ page as shown in Figure 20. In this 

version of the prototype, SemanticBehaviorModel, although not 

created for the SolenoidValve example, are listed as plain text 

when available.  

Having created an analytical model for the solenoid valve, 

the user now adds the house of quality visual tool to the 

―SolenoidValve‖ page (Figure 23). This house of quality visual 

not only contains the requirements and engineering 

characteristics that were defined for the ―FlowControlValve‖, 

but also includes the qualitative relationships that were 

abstracted from the analytical behavior models. These 

relationships were abstracted from geometric as well as 

analytical relationships that were added using other tools. This 

demonstrates how different representations of the same design 

description element (relationship, here) are used in design; and 

more importantly, how they can be supported for iterative 

design exploration.  

 
Figure 17. Screenshot of the morphological matrix tool 

embedded within the wiki page. 

Figure 18. Clicking the ―Instance/Refinement‖ link in the 

―FlowControlValve‖ wiki page allows the user to navigate to 

other DesignModels. 

 
Figure 19: The wiki page created by after using the 

Morphological Matrix tool 
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Figure 20. The behavior models for the solenoid valve are 

shown in the wiki page. 

 
Figure 21. The roof of HoQ after abstracting the analytical 

constraints into qualitative relationships. 

 
Figure 24. The optimization problem is formulated for the 

SolenoidValve design. 

7 DISCUSSION 
The DesignModel of the Solenoid valve, at this stage in 

design, contained the parameters, analytical equations, 

parameter definitions, as well as constraints and objectives. It 

was therefore deemed natural to allow the user to setup and run 

an optimization problem using this information. A separate tool 

was implemented that collates parameters, equations, 

constraints and objective definitions and creates an Isight [58] 

optimization model shown in Figure 22. In the current 

implementation, all the parameters and equations were added to 

the Isight model for optimization; the Isight model had to be 

manually edited to remove unnecessary variables, constraints 

and equations. The use of the optimization model is to suggest 

that the information available in WKM can be used to formulate 

known problems in design. Future work will include extensions 

to other design problems such as configuration design.  

The working knowledge model and the prototype described 

in this paper is part of an ongoing effort to create a tool that can 

be used by designers at least by students in an education setting. 

Based on the effort in developing the case study the following 

observations can be made: 

1. The wiki provides an accessible medium for storing 

WKM data. The set of features provided by a wiki are sufficient 

to allow the user to tag portions of the text to acquire WKM 

data. 

2. The ability to embed visual tools directly in a wiki 

page allows the page to behave as a ―live‖ design document 

collating all related information as well as allowing the user to 

explore the design using visual tools. 

3. The process of manually tagging the wiki text is 

laborious and prone to error. In general, the wiki syntax can 

obfuscate the text [54]. In order for the prototype to be useful to 

designers, a What You See Is What You Get (WYSIWYG) 

editor is needed.  

4. Visual tools such as the Morphological Matrix, 

automatically create wiki pages with important tags and 

statements. These statements and tags are visible to the user 

when the page is edited and are prone to deletion. In the current 

implementation, it is difficult to rectify such deletions without 

special scripting.  

5. A typical installation of Mediawiki caches each page in 

the database to be delivered when the page is requested; this 

behavior is efficient when the pages are assumed to change little 

with time, as in an encyclopedia. However, in the current 

implementation, since the design information changes 

frequently we disabled the caching ability so that changes made 

in other related pages are reflected when the page is loaded. The 

process to generate the page consumes processing time on the 

wiki server and is therefore not scalable with users. 

6. Another important aspect of such design support tools 

is restricting the wiki pages accessible to users. Although the 

wiki provides the ability to manage user access, certain 

operations such as creating wiki pages that were performed by 

visual tools required administrative privileges not available to 

all users; we therefore had to ensure all users had administrative 

privileges. This is a serious security concern that will have to be 
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addressed in future before being made available to general 

users. 

7. The number of visual tools implemented in this 

prototype is limited. Other visual representations such as 

Technical process diagrams and concept selection tables need to 

be implemented for the prototype to be effective. The visual 

tools were implemented in the prototype to merely demonstrate 

the feasibility of using WKM to transfer from one tool to the 

other. Identifying and implementing the effective set of visual 

tools that are optimal for a particular design is beyond the scope 

of the current work. 

8 CONCLUSIONS 
Mechanical design is a complex iterative and cognitively 

challenging activity. Designers reduce this complexity by 

focusing on a narrow aspect of the design problem using visual 

tools. Such diagrams reduce the cognitive load on the designer 

to understand the relationships between the diagram entities. 

Design can also be characterized as a divergent-convergent 

exploration process. The key aspects of such a design 

exploration process are the reasoning about alternatives and 

describing these alternatives at different levels of abstraction.  

In this article, an information-model to support such a 

design process is presented. This model, called the working 

knowledge model defines a minimal ontology that is needed to 

capture the relationships and describe both the product 

knowledge as well as the model of several visual tools. This 

model was developed by identifying a minimal set of design 

knowledge concepts that are required to describe the set of 

visual tools used in early phases of mechanical design. A wiki-

based prototype system was implemented to demonstrate the 

connection among visual tools to the working knowledge model 

and thereby support early design exploration. A sketch-based 

design exploration tool was also implemented based on the 

working knowledge model to support embodiment design 

exploration. The geometric constraints and the analytical 

constraints that were added to the design were abstracted as 

qualitative relationship thereby allowing exploration at different 

levels of abstractions. 
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