
 1 Copyright © 2011 by ASME

Proceedings of the ASME 2011 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference

IDETC/CIE 2011

August 28-31, 2011, Washington, DC, USA

DETC2011-47291

TOWARDS ENABLING VISUAL DESIGN EXPLORATION INVOLVING MULTIPLE

ABSTRACTIONS OF DESIGN DESCRIPTIONS
Srikanth Devanathan

School of Mechanical Engineering
Purdue University

West Lafayette, IN 47907, USA

Karthik Ramani*
School of Mechanical Engineering

Purdue University
West Lafayette, IN 47907, USA

ABSTRACT
Designers use several visual tools for exploring and

understanding design problems and solutions. House of Quality

(HoQ), function-structure, Morphological matrices, concept

selection tables, 2D drawings are some of the visual tools and

representations used in mechanical design. In this article we

attempt to connect these visual tools and their underlying

models to support exploration in early design using a

representation called the working knowledge model (WKM).

We identify two key aspects in design that are important for

establishing such connections: different abstractions are used to

describe the same design element, and several alternatives are

considered during exploration. The constituent elements of the

visual tools such as engineering characteristics (ECs) in a HoQ

are described using classes of the information model. A simple

wiki-based implementation is described that allows the user to

tag the wiki text with WKM classes, which is then extracted to

populate a database. This information is used by visual tools

that can be embedded within a wiki page; the decisions taken by

the user using these visual tools are then incorporated back into

the WKM database and the wiki is updated if needed. A case

study of the design of an automotive flow control valve is

described to demonstrate the prototype.

1 INTRODUCTION
The design process is an iterative map from the

customer requirements to the final design of the product [1].

The engineering design process broadly follows the pattern of

(1) task clarification / specification development, (2) conceptual

design, (3) embodiment design, and (4) detailed design [1-7].

Conceptual design takes the statement of the problem and

generates solutions that are called schemes [2], or principle

solutions [6], or concepts. These concepts are elaborated and a

selection is made among them for further refinement at the end

of the embodiment design stage. The result is usually a set of

general drawings and there is a great deal of feedback from this

stage to the conceptual stage [2, 8]. During detailed design, a

large number of small decisions are made so that every detail of

the design is fixed before commencing production.

During such a design process, designers use several

techniques, methods and tools for problem understanding,

communication, exploration, and decision-making. Examples of

such techniques include: Theory of Inventive Problem Solving

(TRIZ), Quality Function Deployment (QFD), functional

reasoning, sketching and optimization. These techniques make

use of ―visual‖ representation of design information (or

knowledge) such as the House of Quality (HoQ) for QFD,

function-structure diagrams for functional reasoning, or Pareto

plots in optimization to focus the designer‘s attention on a

particular aspect of the design. Such visualizations not only

represent information about the design, but also the formulation

of the simplified design problem being solved. According to

Ullman [9], such simple design problems can be classified as

(a) selection design, (b) configuration design, (c) parametric

design, (d) redesign, and (e) original design. Computational

approaches such as case-based reasoning, function-means (F/M)

synthesis, simulation-based design and techniques based on

constraint processing have been developed for modeling and

supporting such problem-solving activities in early phases of

the design.

Through an informal survey of several practicing

engineers who were members of the Purdue Product Lifecycle

Management (PLM) Center, we observed that these tools are

not being used together during early design in a computational

setting. Although interoperability issues among Computer-

Aided Design (CAD) and Computer-Aided Engineering (CAE)

tools are well known in PLM literature (see for example, [10,

11]), connections among ―visual‖ tools and design problems are

not available to the best of our knowledge.

In practice, design is an iterative process where these

tools are used multiple times during a single design. More

importantly, each of the design support tools mentioned above

deals with a specific subset of the design problem, at a specific

level of abstraction. Designers take decisions based on

* Author of correspondence; Phone: (765) 494-5725, Fax (765) 494-0539, Email: ramani@purdue.edu

 2 Copyright © 2011 by ASME

information presented through such visual tools. Stjernfelt

argues that in design ―…the fact that the diagram displays the

interrelation between the parts of the object it depicts is what

facilitates its use in reasoning and thought processes, thus

taking the concept of sign far from the idea of simple coding

and decoding and to the epistemological issues of the

acquisition of knowledge through signs‖ [13].

Our goal is to study the connection of information

among different visual tools in the design process as well as

between known problem formulations. This involves using a

representation that accommodates different levels of abstraction

of the various aspects of design. In the current work, we focus

on the early stages of mechanical design process, i.e. from

specification development until embodiment design. The

contents of the visual tool (or the design problem) expressed

using the elements of a single design model provides a

mechanism for connecting such tools.

In this paper, we extend the NIST Core Product Model

(CPM) [10] to handle additional aspects such as numerical

constraints and mappings between descriptions of different

abstractions, to introduce the working knowledge model

(WKM). We describe the meaning of working knowledge, as

we define it, in Section 2. Section 3 provides a brief overview

of some of the visual tools used in design. A review of existing

design knowledge and information models is provided in

Section 4. A small subset of concepts described in existing

literature is considered within WKM (Section 5). In Section 5

we also map the elements of the WKM onto the elements of the

visual tools so as to facilitate bidirectional exchange of data

between a design tool and WKM. Section 6 describes a

prototype implementation where a Wiki is used in conjunction

with WKM to capture, store and present design information

visually; an example of a coolant valve design to illustrate the

use of WKM along with visual tools is also described in Section

6. Discussion and conclusion are presented in Sections 7 and 8

respectively.

2 WORKING KNOWLEDGE IN DESIGN
In general, there are two common views about the nature of

knowledge in general: structural view- knowledge as the content

of a representation, and functional-knowledge as the capability

to solve problems [14]. Restricting to design, Klein [15]

identifies three main categories of design knowledge: (1)

general domain knowledge, (2) case-specific object level

knowledge, and (3) problem solving & control knowledge. In

this view, general domain knowledge includes knowledge

describing the relations between function, behavior, structure;

case-specific knowledge consists of requirements and (possibly

partial) design descriptions. During the design process, the

domain knowledge of the designer engineers can be assumed to

change little in comparison to case-specific knowledge [15]. In

this work, we further restrict ourselves the ―working‖ aspect of

the design knowledge, i.e., only that which is known about the

current design and can be expressed explicitly.

Figure 1. Concepts and relationships in the working knowledge

model.

Working knowledge, as we define it, is the collection of

design representations and their relationships accumulated from

the commencement of the design process. Specifically, working

knowledge consists of (Figure 1):

(1) Knowledge about requirements, objectives, and constraints

that the design should satisfy. Requirement is a documented

need that should be satisfied by the product. Objectives are the

set of wants that the product should excel at. Constraints are

restrictions on the product.

(2) Knowledge about function, form and behavior of the

product being designed. Function is the activity or task that the

design should perform. Behavior is the activity or task that the

product performs in reality. Form is the structure of the product

and may include geometry.

(3) Relationship between representations:

(a) The alternatives of entities that exist at each stage in the

design process (expressed explicitly by the designer). For

example, a function can be realized by several alternative

embodiments; alternative requirements may be available at the

initial stages of design; or even alternate representations may be

available to describe a product‘s geometry. Additionally,

alternative designs may be carried forward simultaneously

during the design process.

(b) Representation of these entities in different levels of

abstraction [16]. Examples for the different levels of abstraction

for constraints, behavior, form and function are shown in Table

1. For example, relationships among parameters can be

represented qualitatively (as in the roof of the house of quality,

for example) or as analytical equations or using simulation

models or even surrogate-models generated using simulation

data. Similarly, geometry can be described as sketches, 2D

drawings, or 3D models.

(c) And the sequence of changes (edits) made to the design,

typically called version information.

Entities such as requirements, functions, from, and

behavior can be captured using the Core Product Model (CPM)

[10]. Additionally Product Data Management (PDM) systems

capture version information. Even though design process is a

refinement of abstract representations even for a particular

design description such as behavior [9, 17], existing models do

not capture the relationships among abstractions. In this paper,

we extend the classes in CPM to capture relationship

information; these relationships are useful when design

information is accessed for exploration using visual tools.

 3 Copyright © 2011 by ASME

3 VISUAL TOOLS USED IN EARLY DESIGN
An important purpose of the working knowledge model is

to enable iterative early design and acquire design knowledge

through means of various visual tools. Table 2 (adapted from

Hubka and Eder [18]) lists the different visual representations

that are used in early design. In this work, we have implemented

the following visual tools presented in [9,18,19]: Function-

Structure diagrams, Morphological Matrix, House of Quality

and a tool to author 2D drawings. Apart from these, we also

include the SysML requirements and parametric diagrams due

of a lack of equivalent visual representations for requirements

and parametric equations.

Quality Function Deployment (QFD) [7] has become a

widely accepted method for engineering design in industry and

software programs for computer support of this method are

available. The main visual model of the QFD method, the

House of Quality (HoQ) [20] can be used very flexibly and it

can capture various aspects of the working knowledge. The

version of the HoQ that is used often relates customer

requirements (―Voice of the customer‖) in the interrelations

matrix to the engineering characteristics. HoQ can also be used

to model objectives, constraints, a relative ranking of

requirements, and qualitative relationships among engineering

characteristics and compare alternative or competing designs. In

the version of HoQ presented in [9], engineering characteristics

are quantitative properties of the design, i.e. the parameters of

that design.

Knowledge about Function is often visualized in

hierarchical or procedural function structure diagrams [3]. The

hierarchical function structure diagram displays the functions

that are to be performed by the system along with the sub-

functions that are needed to achieve the overall function. The

procedural function structure diagram is used to describe the

sequence in which these functions are performed and the flow

associated with each sub-function.

The morphological matrix [18, 19, 59] is a systematic

method to combine solution principles based on the function

decomposition. Here, the several possible ―means‖ or ―solution

principles‖ are listed by the designer for each function that the

system needs to perform. This work assumes that the designer

provides the necessary information although it is conceivable

that the various ―means‖ or ―solution principles‖ are populated

from a database based on the function similar to the approach in

[21] and [22].

Computer based tools for modeling product geometries

deal with entities (like lines, arcs, surfaces etc.) and constraints

(such as tangency, collinear, angle etc.) between these entities.

The Systems Modeling Language SysML [23] is a

graphical modeling language that was developed to support

systems engineering processes. The SysML Requirement

Diagram is used for representing the relationships among

various requirements for the design.

Table 2. Visual tools used during the design process.

Table 1. Levels of abstraction of design entities.

DESIGN

ENTITY

LEVEL OF ABSTRACTION

ABSTRACT
 CONCRETE

Geometry

Line diagrams Rough

sketches

2D Drawings 3D CAD Models Detailed manufacturing drawings

Function/

Behavior

Qualitative descriptions Charts and tables Detailed Simulation

―converts electrical energy to

mechanical energy‖

To
rq

u
e

Speed

Constraint /

Analytical

relationship

Qualitative relationships Simple analytical relationships Surrogate models Detailed analysis/Simulation

l 
 & h 



(read as  decreases

monotonically with h)

 

Wl
2

8Eh

Response surfaces,

Neural networks, etc.

Attributes/

Parameters

Qualitative Order of magnitude Fuzzy Intervals Quantitative

[V] = + V~101 medium V [10,15]V  V=12

Objective
Qualitative words Quantitative

Should be responsive m a x V

Material
Generic class Material class Specific material

Metal Aluminum AlZnCuMg1.5

Design

Description

Solution principle Concept Individual artifact

―Convert electrical energy to

mechanical energy‖

A ―motor‖

 (,)

12

[0,1000]

f V s

V

s

 



 …

A specific stepper motor model ―NEMA 17

S91‖

 4 Copyright © 2011 by ASME

4 BRIEF REVIEW OF COMPUTER REPRESENTATIONS

OF DESIGN INFORMATION
Several models have been developed for capturing design

information and knowledge as well as for supporting various

types of problems encountered during design. It is not the intent

of this paper to provide an exhaustive survey of such models

but to provide a sampling of such representations. We restrict

our scope to models represent the design information for

documentation, knowledge capture and search. The working

knowledge model is extended from one such representation.

Research in analogy based design synthesis support, such

as those based on case-based reasoning (see for example, [24])

are the earliest efforts in developing product knowledge models.

Notably, the models presented in KRITIK [25] and KRITIK2

[26], use Structure-Behavior-Function (SBF) formalism to

represent the structure of the product, its behavior based on the

structure and the function achieved through those behaviors.

Another case-based-design tool CADAT [4] uses an AND/OR

tree representation of design to support design decomposition.

A comprehensive review of such systems can be found in [27].

Design catalogs have also been proposed (see for example,

[28]) that contain objects, solutions or operations, allowing

designers to explore variants [29]. Active catalogs (see for

example, [30]) have been developed for selecting and

evaluating electromechanical components and sub-systems.

In the context of information modeling in design,

researchers at National Institute for Standards and Technology

(NIST) provide the most comprehensive modeling framework

up to date for representing ‗Artifacts‘. Sudarsan et al. [31]

present the Core Product Model (CPM) and its extensions such

as the Open Assembly Model (OAM) and Design-Analysis

Integration Model (DAIM). The core product model focuses on

artifact representation including function, form, behavior and

material, physical and function decomposition, and

relationships among these concepts [10]. The CPM also allows

modeling other aspects such as rationale, requirements and

product families. Xue et al. [32] introduce the concept of

‗worlds‘ in capturing the operations performed on the product

knowledge model during the design process as a part of an

evolutionary design database. CPM forms the underlying

product knowledge model, but is extended to include (1)

arithmetic and temporal constraints, (2) tasks, and (3) attribute.

The design repository hosted at Oregon State University [12] is

based on a model that is similar to CPM but provides a

documented interface to enter and retrieve product information

using web forms or external applications. The ISO 10303

standard [33], also known as STEP, provides a detailed

mechanism for specifying product data throughout the lifecycle

in a implementation neutral fashion to enable file and data

exchange between various applications used ding the design

process such as Computer Aided Design, Computer Aided

Manufacturing and Product Data Management systems.

Models and modeling languages have been developed for

formally specifying the knowledge associated with systems

design such as the Systems Modeling Language (SysML),

which is based on the Unified Modeling Language (UML) [34,

35]. Apart from modifying existing diagrams from UML

(Activity, Block Definition and Internal Block Diagrams)

SysML also introduces new diagrams to model systems

knowledge (Requirements and Parametric diagrams). Although

SysML is powerful in expressing the result of a design activity,

it does suffer from several weaknesses [36], most importantly

lacking the ability to capture interconnections among diagrams.

Klein [15] presents a knowledge model as a part of the

Methodology and tools Oriented to Knowledge-based

engineering Applications (MOKA) that also uses UML-like

formalisms to allow designers document explicit design

knowledge. The MOKA language supports multiple views of

the design such as geometric view, structural-view and

kinematics-view. MOKA provides the ability to model

constraints, illustrations, activity, rules, entities as well as

products, design process and rationale. Like SysML, MOKA is

a diagrammatic representation available to a knowledge

engineer to express explicit design knowledge. They are not

connected to existing visual representations used in design

practice.

Tamburuni [41] presents an Analyzable Product Model

(APM) that provides semantics for mapping geometry

definitions and a generic description of analysis models.

Depending upon the application, the model allows selection of

the appropriate analysis model to support design; also, changes

to the form can be propagated to analysis models that are

coupled in order to maintain consistency within the design.

In the context of configuration design of complex products,

Feldkamp et al. [39] have proposed a method and software tool,

 5 Copyright © 2011 by ASME

called System Design for Reuse (SyDeR), that combines

structural model, a taxonomy based library of solutions, and,

constraint propagation techniques. The notion of ports is used to

encapsulate and model the hierarchical nature of the system

being designed, and importantly, to keep track of alternatives

solutions available for configuration.

There are several specialized models (such as for

generative design) and other abstract representations (such as

MOKA and SysML) for modeling design knowledge. On one

end specialized models allow computational support but the

concepts used in such models are not shared among other

models; whereas on the other end, abstract languages may allow

rich representations at the cost of useful computational support.

Even among somewhat generic models, there is ambiguity

in definition of the modeling concepts. For example in the NIST

Core Product Model [31, 32], on which the WKM is based,

Artifact represents the actual artifact being designed. An artifact

is composed of other artifacts leading to a natural extension of

an assembly model. Although this modeling approach is

sufficient for describing the final outcome of the design process,

or, an intermediate description of a single design that is created

as a succession of design operations, several representations are

used during design to describe the same artifact. There is no

clear definition of an artifact in literature when early stages of

design are considered. That is, is solution principle [3], or

scheme [2], or concept [21], or configuration [39], an artifact?

They all describe the design at different levels of abstraction,

but identifying a given description as an idea or concept or

embodiment is subjective in nature. In this work, we overcome

the ambiguous meaning by creating the notions of Design

Model and Instance (both are extensions of the Artifact class in

CPM). A design model can represent the design at any stage in

the design process whereas an instance is a notional

representation that is assembled from information available in

the lowest level of abstraction, i.e. as precise as possible.

Maeda et al. [59] propose a framework to organize and

acquire knowledge using visual representations. This work

(similar to Electronic Design Notebook [60]) parses an arbitrary

graph drawn by the designer expressing design knowledge in

the form of decision tables and decision trees. Reich [14]

presents a Computational QFD (CQFD) tool that uses a graph-

based modeling environment to allow users to create diagrams

such as affinity diagram, relation diagram and House of Quality;

the graph model underneath these diagrams is used to maintain

consistency between them. As far as we are aware, Design

Scribe [60] is the only work that attempts to integrate some of

the visual tools used in mechanical design; even in this case, a

very specialized model is used to capture rationale using the

House of Quality. Compared to these and similar approaches,

the objective of this work is to enable sharing of design

information (say, in different levels of abstraction) between the

visual tools.

5 INFORMATION MODEL

5.1 Basic design elements in the model

Figures 2 and 3 show the elements of the working

WorkingKnowledge DesignModel

DesignModelTrace

VisualTool

VisualToolTrace

1

VisualTools

*

1

DesignModels

*

source

1

target 11

DesignModelRelations

*

1

VisualToolDependancies

*

source1

target

1

dependsOn

Figure 2. UML representation of the working knowledge model.

DesignModel

Instance

+subStructureOf

0..1

+subStructure 0..* Attribute

Constraint

Text : String

CPM2::Function

+functionOf 1

+hasFunctions

1..*

CPM2::Form

Objective

Value

Domain
hasValue

Requirement

0..*

0..*

0..*

0..*

chosenFrom

hasDomain

0..*
«metaclass»

AbstractableProperty

«extends»

«extends»

CPM2::Behavior

0..*

«extends»

CPM2::Geometry

CPM2::Artifact

Figure 3. UML representation of DesignModel (Classes from CPM2 are also shown).

 6 Copyright © 2011 by ASME

knowledge that are considered in this implementation along

with the relevant classes from the CPM2 (the second version of

CPM [44]).

A Design Model is the primary concept of the working

knowledge model. A DesignModel represents the product being

designed at a particular point in time in an appropriate

abstraction. More specifically, a DesignModel is a placeholder

for the final Instance of the product.

The dichotomy between a DesignModel and Instance is

useful when configuration design is being performed. For

example, in design of an industrial truss where the individual

beams are selected from a catalog as shown in Figure 4, the

DesignModel of the structure consists of other DesignModels

for each beam and for each connector. The DesignModel for the

beam can be instantiated using any of the pre-defined sections

available in the catalog. Similarly, each DesignModel of the

connector can be instantiated using those available in the

catalog, each of which is an Instance. An instance of the overall

DesignModel (i.e., the industrial structure) is created once an

appropriate instance for each ―beam‖ and ―connector‖ is

selected.

Figure 4: An example to illustrate the ―substitute‖ relationship

(Adapted from [59]).

Apart from catalog components, however, the distinction

between a DesignModel and Instance cannot be clearly

established. Moreover, several descriptions of the same design

can be generated during product development depending upon

the intended use as discussed in Section 4.3; manufacturing

drawings, for example, are generated based on the designed

geometry and provide additional process related information.

To overcome the ambiguous definition, we consider an Instance

to be a notional idea that is assembled from information

available in the lowest level of abstraction (i.e., as precise as

possible).

Structurally, a DesignModel (and Instance) can be

composed of other DesignModels or Instances; Instances can

only be composed of other Instances as illustrated in Figure 4. A

DesignModel also consists of Attributes, Constraints,

Geometries and Objectives. A DesignModel is associated with

Requirements, Functions and Behaviors.

A design model consists of several Attributes that describe

the model. Attribute describes the characteristic property of an

artifact [45]. Parameters
1
 form an important specialization of

an attribute that takes numerical values (Figure 5). ―Color‖ is an

example for Attribute while ―Cost‖, ―Weight‖ and ―Length‖ are

examples for Parameter (which is a sub-class of Attribute). A

Domain can be defined for a Parameter from which a Value is

1 There is confusion in literature as to what the difference between a

variable and a parameter is [46]. Variable seems to be a problem specific term,

whereas a parameter can denote any numerical attribute of a product.

chosen. The set consisting of ―blue‖, ―red‖, ―green‖, and

―white‖ is an example for categorical domain of the attribute

‗Color‘; [-1.5,-1]U[1,1.5] is an example for IntervalDomain

which is a union of AtomicDomains. Objectives are association

of an Attribute along with a qualifier (min, max or target). A

Parameter-Value pair can be designated as a Target.

Requirements represent the explicit conditions that final

design should satisfy and are stated by the stakeholders in the

design. These stakeholders include customers (e.g. ‗should

provide a particular functionality‘), end users, manufacturers

(e.g. ‗should be manufacturable with the available resources‘)

and design engineers themselves. Although requirements are

described textually, we assume that the designer translates them

into functional requirements, constraints and objectives during

the course of the design process.

Constraints represent the computer-verifiable expressions

associated with the design. Weilinga [46] differentiates

constraints from requirements based on the ―tone‖, i.e., positive

or negative. Requirements are associated with a positive tone

that represents what is needed from a design. Constraints, on the

other hand, are associated with a negative tone and represent

what is possible with the design. Constraints, in general, restrict

the choice available to the designer [47]. However, in this work

we do not use ―tone‖ to differentiate between constraint and

requirement because of its subjective nature. Instead, we use

‗the ability of a computer system to interpret‘ as the criteria; this

is because any constraint (in the sense of ref. [46]) that is not

traced to the customer can be ascribed to requirements from any

of the stakeholders including designers and manufacturers. For

example, even constraints arising out of physical phenomenon,

such as ‗stress<yield_strength‘ can be traced to a requirement

‗should not fail‘. In other words, constraints can also be

described as the mathematical translation of stakeholder

requirements. Qualitative, Analytical and Geometric constraints

can be represented in the current version of WKM (Figure 6).

QualitativeConstraint in WKM captures positive and negative

relationships between attributes (including parameters);

AnalyticalConstraint captures algebraic and numerical

relationships between parameters. GeometricConstraint

captures the relationships between geometric entities in a

drawing.

A design model can be associated with a collection of

Geometry descriptions. In this version of the working

knowledge model, geometry can be described as a Sketch, 2D

Drawings or 3D_Models. Each 2D drawing consists of

geometric entities (Points, Lines, Arcs, Circles, etc.) and

geometric relationships between these entities. These geometric

relationships may involve Parameters. The Sketch and

3D_Model classes in this implementation of WKM merely store

a link to an external file.

5.2 Capturing relationships in WKM

The current version of WKM accommodates five types of

operations with the design elements presented earlier. These

are: (1) Edit, (2) Combine, (3) Set-up substitution relationships,

(4) Refine, and its inverse, (5) Abstract.

 7 Copyright © 2011 by ASME

1. Editing, the simplest operation, involves changing the

design model by adding, removing and modifying its

constituent elements. For example, the designer may add a new

requirement, change a constraint or remove a geometric feature

from the design.

2. Combine is the operation where portions of more than

one design models are used to create a new design model, such

as those seen in conceptual design activities. For example, the

best aspects of concept A and concept B can be combined to

create a new concept C that is significantly different from both

A and B. The combine operation is not illustrated in the

example described in this paper.

3. Setting up substitution relationships involves

enumerating an equivalence class of objects and identifying

common elements among the members of that set, possibly by

means of an exemplar. The equivalence class then signifies the

alternatives based on relevant criteria. At a later stage in the

design process, when a substitute is chosen, Edit operation is

used to create a new design model using that substitution. For

example several ‗Means‘ that are specified for a particular

function in a morphological matrix form an equivalence class.

The set of individual motors in a catalog and a common

geometry model are another example for the equivalence class

and their exemplar. Yet another example can involve

descriptions of a set of designs using ‗ports‘ such as models

presented in [39] and [41]. Equivalence among design element

descriptions is also captured in WKM. For example, a

geometric constraint can be converted into an analytical

relationship to be solved by a numerical solver. Extending the

idea further (although not implemented here), different formats

for representing 3D models can be thought of as another

equivalence class. Visual tools such as Morphological Matrices

can create the equivalence class for substitution where each

combination of means results in a different DesignModel; all

these DesignModels are potential designs that could satisfy the

requirements.

4. Refinement is the operation where an abstract

representation is made more concrete. For example, the

designer may refine a 2D drawing into a 3D CAD model.

Although each class in WKM can be refined, DesignModel and

Requirement are the important classes that are refined. For

example, a DesignModel for a ―Flow Control Valve‖ can be

refined to a ―Solenoid valve‖ which is further refined to a ―12V

DC Solenoid operated spool valve‖. Similarly, a behavior

model involving simple algebraic equations can be refined into

a finite element analysis model.

5. Abstraction operation is the inverse of refinement. This

operation is necessary for iterative design exploration where a

design model (concept or idea etc.) is elaborated and the

knowledge gained is taken back as abstractions and commence

the next iteration. Although abstracting design models is a

manual activity, some of the abstraction operations such as

converting an analytical model to a quantitative model can be

automated.

The Trace relationship defined in CPM2 is extended in

WKM for capturing the above relationships. We further extend

the Trace association into DesignModelTrace, GeometryTrace,

ConstraintTrace, AttributeTrace, RequirementTrace,

ObjectiveTrace corresponding to each class in WKM.

Geometry, constraint and attribute traces consist of the type of

operation and a set of <source,target> pairs indicating that the

target is obtained from the source entity after the relevant

operation is performed. A DesignModelTrace is composed of

GeometryTrace, ConstraintTrace and AttributeTrace mimicking

the composition of the DesignModel class.

Abstraction is supported in WKM by two metaclasses:

AbstractableProperty, and AbstractionCreator. An

AbstractableProperty signifies any of the following classes and

their sub-classes: Behavior, Constraint and Geometry. For

example, complex analysis and simulation models may be

abstracted as analytical relationships using response surface

approximations; analytical relationships can be abstracted

further as qualitative relationships [36]. Figure 6 shows the

different abstractions that are considered in the present

implementation of the WKM.

5.3 Connecting visual tools to WKM

The elements of the HoQ can be mapped to WKM classes

as shown in Figure 7. For example, engineering characteristics

(as defined in [9]) correspond to Parameters in WKM. The

parameters in the design are candidates for being included in

Figure 6. Abstractions in WKM (abstractions of Behavior is not shown but is similar to Constraint).

 8 Copyright © 2011 by ASME

the HoQ as ECs; the ECs that are added to the HoQ are then

added to the WKM as Parameters. The Constraints and Targets

are set on Attributes within the HoQ. The WKM can be edited

though the HoQ using these mappings.

Figure 8 describes the function structure diagram and the

morphological matrix using WKM elements. Each Function can

be hierarchically decomposed into its sub-function and a

DesignModel can perform many functions.

Figure 9 describes the content of the SysML Parametric

and Requirements diagrams using the elements of the WKM.

The XML schema for representing SysML models is described

in the STEP application protocol AP233 [48]. Parametric

diagram can be used to describe Attributes and mathematical

relations between these attributes that form the (equality)

Constraints within WKM. Internal Block Diagrams are similar

to class diagrams in UML2 [49] and are used to represent the

structure of DesignModel.

The geometry of a DesignModel is described by a

collection of drawings. A geometric parameter can be shared

between multiple drawings. A Drawing is a collection of

geometric entities, variable & constraints defined between these

entities. For example, points, lines, arcs, and circles are

geometric entities. The geometric constraints such as

coincidence, parallel, perpendicular, fix and angle determine the

topology of the drawing.

6 IMPLEMENTATION AND CASE-STUDY EXAMPLE
A wiki-based prototype was implemented to evaluate the

working knowledge model. Wikis are freely-editable collections

of web pages, exhibiting potential for a flexible documentation

and communication tool for collaborative design tasks as well

as support for team design thinking early in the design process

[53]. Wikis store versions of each page along with the edits

made to the page. They also allow the user to store, retrieve and

manage versions of files. The content of a wiki page is stored in

a database and each page can be created dynamically from its

content. A wiki installation also includes a parser that can be

extended for custom applications such as the current prototype

named ―DesignWiki‖. The WMK classes were translated as

database tables and stored in a MySQL database [63] that is

shared with the wiki.

The role of the wiki in the prototype is to document known

facts and assumptions whereas visual tools embedded within the

wiki page support exploration. The annotated text in the wiki

page is parsed to populate the WKM data model that is

accessed by any visual tool used in the design; any new

knowledge generated or added through the visual tool updates

Figure 7. A typical HoQ (from [9]) and corresponding classes in WKM; the contents of the Relationship matrix are Trace

relationships from Requirements to Constraints and Objectives (not shown).

Function 1

Subfunction 1.1
Subfunction 1.2

Subsubfunction 1.2.1

Function 2

Subfunction 2.1
…

…

Design 1

Function –
component
relationshipFu

n
ct

io
n

s

Components

Design Model

realizedBy1

performsFunction1..*

Function

1
subfunction 0..*

(a) Hierarchical function structure (b) Function-component matrix (c) WK Model description

Figure 8. Model of hierarchical function structure and function component matrix using WKM elements.

Design Model

EqualityConstraint

Attribute

Behavior

BehaviorModel

OperatingState

Constraint

Requirement

DesignModel

Function

Constraint

Relationship

Refine

satisfies

 (a) (b)

Figure 9. Partial descriptions of SysML (a) Parametric diagram and (b) Requirements diagram using WKM elements.

 9 Copyright © 2011 by ASME

the WKM and creates a new version of the wiki page that

reflects the change. This process is explained below.

Figure 10 shows the schematic of the prototype

implementation. The customized media-wiki [63] serves at the

documentation front-end for design knowledge. The user can

annotate the wiki page with WKM classes that is then parsed

and stored in the database. The WKM data is accessed and

edited using SQL commands by visual tools and other wiki

pages. Visual tools were implemented as JAVA applets and can

be embedded within each wiki page using special extensions to

the media-wiki syntax. The visual tools embedded in the wiki

page can also be used to modify WKM objects. Depending

upon the operation performed within the visual tool, the user

may create new WKM objects or edit information contain

within these objects. New versions for wiki pages referencing

these objects are created automatically to reflect changed made

using the visual tool. Wikis, by default, provide versioning

ability and the built-in version management system is exploited

in this implementation to support ―edit‖ operations discussed in

section 5.2.

The following visual tools have been implemented in JAVA

as applets and can be embedded within any wiki-page

corresponding to a DesignModel: (1) House of Quality, (2)

Hierarchical function diagram, (3) Morphological Matrix, and

(4) A tool that displays analytical relationships between

parameters of the design in a manner similar to the SysML

Parametric diagram.

Apart from the above tools, a simple editor was also used

to create 2D drawings; Topcased [50], an open source SysML

authoring tool was used to view and edit SysML requirement

diagrams. A commercial tool Isight [58] was used to create

abstractions of analytical models from simulation codes. The

contents of the drawing file is also parsed to identify geometric

constraints; these constraints are automatically converted into

analytical constrains by another tool. The file-management

ability of the wiki was used to store, parse, generate and retrieve

the files needed for these external tools.

Each page in the wiki can represent a WKM class and a

wiki page can reference WKM class objects within the text.

Table 5 lists a limited set of tags and attributes corresponding to

each class in WKM. These tags are used to both define as well

as reference WKM objects. Tags can also be nested within each

other.

Figure 10. The system uses the mappings defined in section 5.3

to populate the visual tools and transfer the decisions back

to the working knowledge model.

Engine Pump

Flow control
valve

Heat Exchanger 1
(Radiator)

Heat Exchanger 2
(CAC)

Bypass

Coolant flow

Figure 11. Schematic of automotive engine cooling system.

Figure 13. The SysML drawing is generated automatically and

be downloaded from the wiki. The modified SysML file

when uploaded is parsed and WKM is updated.

Figure 12. An example of creating the wiki-page for a ―Flow

Control Valve‖.

 10 Copyright © 2011 by ASME

We illustrate the use of WKM and the wiki in supporting

design through visual tools by means of a flow-control valve

that is used in an automotive cooling circuit. Figure 11 shows a

schematic of automotive engine cooling system. A centrifugal

pump driven by the engine circulates the coolant fluid through

the heat exchanger called Charge Air Cooler (CAC) where the

heat from the supercharged air is transferred to the coolant. The

hot coolant is passed through a second heat exchanger (radiator)

where the heat from the coolant is transferred to the

environment. Varying the rate coolant flowing through the

radiator controls the temperature of the supercharged air. The

amount of coolant flowing through the radiator is varied by

means of a flow control valve as shown. This valve is operated

using a pulse-width modulated (PWM) signal. The system

consists of four main sub-systems: 2-way valve, the radiator, the

engine and the pump.

The design of the flow-control valve used in the cooling

system follows a design process where the initial requirements

are available in the form of a document. This document is used

to create the initial wiki page as shown in Figure 12 a. The

special tag
<WKMClass type=”DesignModel” name=”FlowControlValve”>

in line 1 indicates that this page describes a DesignModel

called ―FlowControlValve‖. The text in lines 7-20 lists the

annotated requirements on the flow control valve. Requirement

―Response Time‖ in lines 14-16 illustrates how other tags such

as ―Constraint‖ and ―Parameter‖ can be embedded within the

―Requirement‖ tag. When the user completes editing this page,

links to the list of attributes, functions, requirements,

constraints, objectives, geometry, and the latest instance are

added automatically to the header of the wiki-page as shown in

Figure 12 b.

The user can view the requirements by clicking the

―Requirements‖ link at top of the wiki page (Figure 12 b). This

link opens a dynamically-generated page

―FlowControlValveRequirements‖ that lists the requirements of

the flow control valve and also allows the user to download the

―sysml‖ and ―sysmldi‖ files (Figure 13) that are used by

Topcased (Figure 14). The user adds additional requirements

(―Continuous operation‖, ―Tolerate contaminants‖ and ―Easy to

control‖) using Topcased and uploads the newer version to the

wiki. The system automatically parses the ―sysml‖ file and

updates the working knowledge model.

The user then revisits the ―FlowContolValve‖ page and

adds the following lines to the end of the text:
==House of Quality==

<visualtool type=”HOQ”/>

This command adds the House of Quality visual tool to the

page. Figure 15 shows the screenshot of the wiki page after the

user has added ―Engineering Characteristics‖ i.e. Parameters to

the model. Note that the newly added requirements are also

listed in the HoQ. The user also sets targets or adds constraints

to the parameters using this tool. Once the house of quality has

been edited, a new version of the wiki page is automatically

created by the visual tool to capture the edit operation. We note

that the user has also set Objectives and Constraints on the

design.

Figure 14. The requirements for the flow control valve are

depicted as a SysML requirements diagram using Topcased.

Figure 15. Screenshot of the HoQ tool.

The user then clicks the ―Functions‖ link at the top of the

wiki page (Figure 12 b). This link opens another dynamically

generated page that lists the functions of the flow control valve

and includes the Hierarchical Function Structure widget as

shown in Figure 16. The user manually adds the sub functions

such as ―Allow Flow‖, ―Restrict Flow‖ and ―Generate opening

force‖ as shown in Figure 16. Similar to the house of quality

tool, the hierarchical function structure tool also creates a new

version of the wiki page ―FlowControlValveFunctions‖ to

capture this edit operation.

Upon re-visiting the ―FlowControlValve‖ page, the user

adds the following lines to the end of the text:
==Morphological matrix==

<visualtool type=”MorphologicalMatrix”/> This command

adds the Morphological matrix visual tool to the page. Figure

17 shows the screenshot of the wiki page after the user has

manually added the means of a ―Solenoid‖, ―Motor‖, ―Spool

 11 Copyright © 2011 by ASME

Valve‖, ―Butterfly Valve‖ and ―Spring‖. These DesignModels

were created separately in the wiki with their sketch and

analytical behavior model (equations). The Morphological

matrix tool only shows the sketch and name of these ―means‖.

The user creates two DesignModels using the Morphological

Matrix, one called ―SolenoidValve‖ (that uses a solenoid, a

spool valve and a spring) and another called

―MotorButterflyValve‖(that uses a motor to actuate a butterfly

valve). A new wiki page for each DesignModel is created

automatically; a category called

―FlowControlValveInstancesRefinements‖ is created in the wiki

and the new wiki pages are added to this category. The user can

access these DesignModels by clicking the

―Instance/Refinements‖ link at the top of the page (Figure 12

b). This link opens the page shown in Figure 18 which lists all

the DesignModels in the category

―FlowControlValveInstancesRefinements‖, thereby allowing the

user to navigate to these designs.

Figure 16. Screenshot of the page

―FlowControlValveFunctions‖ showing the hierarchical

function structure visual tool.

Clicking the ―Behaviors‖ link on top of the

―SolenoidValve‖ page (Figure 19) opens the

―SolenoidValveBehaviors‖ page as shown in Figure 20. In this

version of the prototype, SemanticBehaviorModel, although not

created for the SolenoidValve example, are listed as plain text

when available.

Having created an analytical model for the solenoid valve,

the user now adds the house of quality visual tool to the

―SolenoidValve‖ page (Figure 23). This house of quality visual

not only contains the requirements and engineering

characteristics that were defined for the ―FlowControlValve‖,

but also includes the qualitative relationships that were

abstracted from the analytical behavior models. These

relationships were abstracted from geometric as well as

analytical relationships that were added using other tools. This

demonstrates how different representations of the same design

description element (relationship, here) are used in design; and

more importantly, how they can be supported for iterative

design exploration.

Figure 17. Screenshot of the morphological matrix tool

embedded within the wiki page.

Figure 18. Clicking the ―Instance/Refinement‖ link in the

―FlowControlValve‖ wiki page allows the user to navigate to

other DesignModels.

Figure 19: The wiki page created by after using the

Morphological Matrix tool

 12 Copyright © 2011 by ASME

Figure 20. The behavior models for the solenoid valve are

shown in the wiki page.

Figure 21. The roof of HoQ after abstracting the analytical

constraints into qualitative relationships.

Figure 24. The optimization problem is formulated for the

SolenoidValve design.

7 DISCUSSION
The DesignModel of the Solenoid valve, at this stage in

design, contained the parameters, analytical equations,

parameter definitions, as well as constraints and objectives. It

was therefore deemed natural to allow the user to setup and run

an optimization problem using this information. A separate tool

was implemented that collates parameters, equations,

constraints and objective definitions and creates an Isight [58]

optimization model shown in Figure 22. In the current

implementation, all the parameters and equations were added to

the Isight model for optimization; the Isight model had to be

manually edited to remove unnecessary variables, constraints

and equations. The use of the optimization model is to suggest

that the information available in WKM can be used to formulate

known problems in design. Future work will include extensions

to other design problems such as configuration design.

The working knowledge model and the prototype described

in this paper is part of an ongoing effort to create a tool that can

be used by designers at least by students in an education setting.

Based on the effort in developing the case study the following

observations can be made:

1. The wiki provides an accessible medium for storing

WKM data. The set of features provided by a wiki are sufficient

to allow the user to tag portions of the text to acquire WKM

data.

2. The ability to embed visual tools directly in a wiki

page allows the page to behave as a ―live‖ design document

collating all related information as well as allowing the user to

explore the design using visual tools.

3. The process of manually tagging the wiki text is

laborious and prone to error. In general, the wiki syntax can

obfuscate the text [54]. In order for the prototype to be useful to

designers, a What You See Is What You Get (WYSIWYG)

editor is needed.

4. Visual tools such as the Morphological Matrix,

automatically create wiki pages with important tags and

statements. These statements and tags are visible to the user

when the page is edited and are prone to deletion. In the current

implementation, it is difficult to rectify such deletions without

special scripting.

5. A typical installation of Mediawiki caches each page in

the database to be delivered when the page is requested; this

behavior is efficient when the pages are assumed to change little

with time, as in an encyclopedia. However, in the current

implementation, since the design information changes

frequently we disabled the caching ability so that changes made

in other related pages are reflected when the page is loaded. The

process to generate the page consumes processing time on the

wiki server and is therefore not scalable with users.

6. Another important aspect of such design support tools

is restricting the wiki pages accessible to users. Although the

wiki provides the ability to manage user access, certain

operations such as creating wiki pages that were performed by

visual tools required administrative privileges not available to

all users; we therefore had to ensure all users had administrative

privileges. This is a serious security concern that will have to be

 13 Copyright © 2011 by ASME

addressed in future before being made available to general

users.

7. The number of visual tools implemented in this

prototype is limited. Other visual representations such as

Technical process diagrams and concept selection tables need to

be implemented for the prototype to be effective. The visual

tools were implemented in the prototype to merely demonstrate

the feasibility of using WKM to transfer from one tool to the

other. Identifying and implementing the effective set of visual

tools that are optimal for a particular design is beyond the scope

of the current work.

8 CONCLUSIONS
Mechanical design is a complex iterative and cognitively

challenging activity. Designers reduce this complexity by

focusing on a narrow aspect of the design problem using visual

tools. Such diagrams reduce the cognitive load on the designer

to understand the relationships between the diagram entities.

Design can also be characterized as a divergent-convergent

exploration process. The key aspects of such a design

exploration process are the reasoning about alternatives and

describing these alternatives at different levels of abstraction.

In this article, an information-model to support such a

design process is presented. This model, called the working

knowledge model defines a minimal ontology that is needed to

capture the relationships and describe both the product

knowledge as well as the model of several visual tools. This

model was developed by identifying a minimal set of design

knowledge concepts that are required to describe the set of

visual tools used in early phases of mechanical design. A wiki-

based prototype system was implemented to demonstrate the

connection among visual tools to the working knowledge model

and thereby support early design exploration. A sketch-based

design exploration tool was also implemented based on the

working knowledge model to support embodiment design

exploration. The geometric constraints and the analytical

constraints that were added to the design were abstracted as

qualitative relationship thereby allowing exploration at different

levels of abstractions.

ACKNOWLEDGMENTS
Devanathan acknowledges the support provided by Purdue

Discovery Park Center for Advanced Manufacturing (CAM)

during initial stages of the work presented

REFERENCES
[1] N. P. Suh, Axiomatic Design: Advances and Applications,

Oxford University Press, New York, USA, 2001.

[2] M. J. French, Conceptual Design for Engineers,

Butterworth, London, 1985.

[3] G. Pahl, and W. Beitz, Engineering Design: A systematic

approach, Second ed., Springer, 1999.

[4] D. Braha, and O. Maimon, A Mathematical Theory of

Design: Foundations, Algorithms and Applications vol. 17,

Kluwer Academic Publishers, Dordrecht, The Netherlands,

1998.

[5] J. S. Gero, and T. McNeil, An Approach to the Analysis of

Design Protocols, Design Studies, vol. 19, (1998), pp. 21-

61.

[6] G. Pahl, and W. Beitz, Engineering Design: A Systematic

Approach, Springer, 1996.

[7] G. E. Dieter, Engineering Design: A Materials and

Processing Approach, 3 ed., McGraw Hill, New York, USA,

1999.

[8] N. Cross, Engineering Design Methods: Strategies for

Product Design, John Wiley & Sons Litd., West Sussex,

England, 2000.

[9] D. G. Ullman, The Mechanical Design Process, Third ed.,

McGraw-Hill, 2003.

[10] S. Rachuri, Y.-H. Han, S. Foufou, S. C. Feng, U. Roy, F.

Wang, R. D. Sriram and K. W. Lyons, A Model for

Capturing Product Assembly Information, ASME Journal of

Computing and Information Science in Engineering, vol. 6,

(2006), pp. 11-21.

[11] S. Szykman, S. J. Fenves, S. B. Shooter and W. Keirouz, A

foundation for interoperability in next-generation product

development systems, Computer Aided Design, vol. 33,

(2001), pp. 545-559.

[12] M. R. Bohm, R. B. Stone, T. W. Simpson and E. D. Steva,

Introduction of a data schema to support a design repository,

Computer Aided Design, vol. 40, (2008), pp. 801-811.

[13] F. Stjernfelt, Diagrammatology an investigation on the

borderlines of phenomenology, ontology, and semiotics,

Springer, Dordrecht, 2007.

[14] Y. Reich, "Synthesis and theory of knowledge: general

design theory as a theory of knowledge, and its implication

to design," in Engineering design synthesis, A. Chakrabarti,

Ed., ed London: Springer-Verlag, 2002.

[15] R. Klein, "Knowledge modelling in design–the MOKA

framework," in Artificial Intelligence in Design'00,

Dordrecht, 2000, pp. 77-102.

[16] S. Devanathan, C. Sauter, A. Albers and K. Ramani, "A

Working Knowledge Model for Supporting Early Design

Through Visual Tools," in 17th International Conference on

Engineering Design (ICED'09), Stanford, CA, 2009, pp.

299-310.

[17] V. Goel, Sketches of thought: a study of the role of

sketching in design problem-solving and its implications for

the computational theory of the mind, University of

California at Berkeley, Berkeley, CA, USA, 1991.

[18] V. Hubka, W. E. Eder, Design Science: Introduction to the

Needs, Scope and Organization of Organization of

Engineering Design Knowledge, second ed., Springer, 1996.

[19] K. Otto, K. Wood, Product design: techniques in reverse

engineering and new product development, Prentice Hall,

Upper Saddle River, NJ, 2001.

[20] J. R. Hauser, D. Clausing, The House of Quality, Harvard

Business Review, (1988), pp. 63-73.

[21] S. Wilhelms, Function- and constraint-based conceptual

design support using easily exchangeable, reusable principle

solution elements, Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, vol. 19, (2005), pp.

201-219.

 14 Copyright © 2011 by ASME

[22] B. O'Sullivan, "Constraint-Aided Conceptual Design," Ph.

D. thesis, Department of Computer Science, University

College Cork, Cork, Ireland, 1999.

[23] http://www.omg.org/cgi-bin/apps/doc?formal/07-09-

01.pdf. (2007, June). OMG SysML Specification v 1.0.

Available: http://www.omg.org/cgi-bin/apps/doc?formal/07-

09-01.pdf

[24] M. L. Maher, M. B. Balachandran and D. M. Zhang, Case-

based reasoning in design, Lawrence Erlbaum Associates,

Mahwah, NJ, USA, 1995.

[25] A. K. Goel, S. R. Bhatta and E. Stroulia, "Kritik: An Early

Case-Based Design System," in Issues and Applications of

Case-Based Reasoning in Design, M. L. Maher P. Pu, Eds.,

ed Mahwah, NJ: Erlbaum, 1997, pp. 87-132.

[26] A. K. Goel and S. R. Bhatta, Use of design patterns in

analogy-based design,, Advanced Engineering Informatics,

vol. 18, (2004), pp. 85-94.

[27] J. E. Fowler, "Variant Design for Mechanical Artifacts - A

State of the Art Survey," National Institute of Standards and

Technology, Gaithersburg, MD 208991993.

[28] H. J. Franke, S. Loffler and M. Deimel, "Increasing the

efficiency of design catalogs by using modern data

processing technologies," in International Design

Conference, Dubrovnik, 2004, pp. 853-858.

[29] K. Roth, "Design Catalogues and their usage," in

Engineeriing Design Synthesis, A. Chakrabarti, Ed., ed

London: Springer-Verlag London Limited, 2002.

[30] J. Kim, P. Will, S. R. Ling and B. Neches, Knowledge-rich

catalog services for engineering design, Artificial

Intelligence for Engineering Design, Analysis and

Manufacturing, vol. 17, (2003), pp. 349-366.

[31] R. Sudarsan, S. J. Fenves, R. D. Sriram and F. Wang, A

product information modeling framework for product

lifecycle management, Computer-Aided Design, (2005), pp.

1-13.

[32] D. Xue, H. Yang and Y. L. Tu, Modeling of Evolutionary

Design Database, Journal of computing and information

science in engineering, vol. 6, (2006), pp. 22-32.

[33] International Standards Organization, ISO 10303 -

Automation systems and integration — Product data

representation and exchange .

[34] R. S. Peak, R. M. Burkhart, S. A. Friedenthal, M. W.

Wilson, M. Bajaj and I. Kim, "Simulation-Based Design

Using SysML—Part 1: A Parametrics Primer," presented at

the INCOSE International Symposium, San Diego, 2007.

[35] R. S. Peak, R. M. Burkhart, S. A. Friedenthal, M. W.

Wilson, M. Bajaj and I. Kim, "Simulation-Based Design

Using SysML—Part 2: Celebrating Diversity by Example,"

presented at the INCOSE International Symposium, San

Diego, 2007.

[36] K. Fogarty, M. Austin, "System Modeling and Traceability

Applications of the Higraph Formalism," University of

Maryland, College Park, MD. ISR Technical Report 2007-

21, 2007.

[37] R. D. Sriram, Intelligent systems for engineering: a

knowledge based approach, Springer-Verlag London

Limited, London, 1997.

[38] R. H. Bracewell, and J. E. E. Sharpe, Functional

Description Used in Computer Support for Qualitative

Scheme Generation - Schemebuilder, Artificial Intelligence

for Engineering Design, Analysis and Manufacturing, vol.

10, (1996), pp. 333-346.

[39] F. Feldkamp, M. Heinrich and K. D. Meyer-Gramann,

SyDeR—System design for reusability, Artificial

Intelligence for Engineering Design, Analysis and

Manufacturing, vol. 12, (1998), pp. 373-382.

[40] H. Leemhuis, R. Baumann, U. Kaufmann, F. Swoboda, T.

Kuhn and R. Zbigniew, "Function oriented product

modeling based on feature technology and integrated

constraint management," in Proc. 11th Symp. Product Data

Technology, Sandhurst, UK, 2002.

[41] D. R. Tamburini, "The Analyzable Product Model

Representation to Support Design-Analysis Integration,"

Ph. D., Georgia Institute of Technology, Atlanta, Georgia,

1999.

[42] F. Andersson, K. Sutinen and J. Malmqvist, "Product

Model for Requirements and Design Concept Management:

Representing Design Alternatives and Rationale," presented

at the International Conference on Systems Engineering,

SE-412 96 Göteborg, Sweden, 2003.

[43] S. R. Bradley and A. M. Agogino, Design capture and

information management for concurrent design,

International Journal of System Automation: Research and

Application (SARA), vol. 1, (1991),

[44] S. J. Fenves, S. Foufou, C. Bock and R. D. Sriram, CPM2:

A core Model for Product Data, Journal of computing and

information science in engineering, vol. 8, (2008), p.

014501.

[45] A. Messac and W. Chen, The Engineering Design

Discipline: Is its Confounding Lexicon Hindering its

Evolution?, Journal of Engineering Evaluation and Cost

Analysis, Decision-Based Design: Status & Promise, vol. 3,

(2000), pp. 67-83.

[46] B. J. Wielinga and J. M. AkkermansA. T. Schreiber, "A

Formal Analysis of Parametric Design Problem Solving," in

In Proceedings of the 9th Banff Knowledge Acquisition

Workshop (KAW-95), ed, 1995.

[47] U. Roy, N. Pramanik, R. Sudarsan, R. D. Sriram and K. W.

Lyons, Function-to-form mapping: model, representation

and applications in design synthesis, Computer-Aided

Design, vol. 33, (2001), pp. 699-719.

[48] www.ap233.org, STEP System Engineering Project,

accessed February 2011.

[49] www.uml.org. Object Management Group, accessed

February 2011.

[50] www.topcased.org, TopCased Editor, accessed February

2011.

[51] www.jgraph.com, JGraph Library, accessed February 2011.

[52] C. M. Hoffmann, Summary of basic 2D constraint solving,

Int. J. Product Lifecycle Management, vol. 1, (2006), pp.

143-149.

[53] C.J. Walthall, S. Devanathan, K. Ramani, E.D. Hirleman,

L.G. Kisselburgh and M.C.Yang, ―Evaluating wikis as a

communicative medium for collaboration with co-located

http://www.ap233.org/
http://www.topcased.org/
http://www.jgraph.com/

 15 Copyright © 2011 by ASME

and distributed design teams,‖ ASME J. Mech. Des. (2011),

in press.

[54] C.J. Walthall, S. Devanathan, T. Deigendisch, C.Sauter,

A.Albers and K.Ramani, ―Survey of wikis as a design

support tool‖, in 17th International Conference on

Engineering Design (ICED'09), Stanford, CA, 2009.

[55] C.J. Walthall, S. Devanathan, L.G. Kisselburgh, K. Ramani

and E.D. Hirleman, ―A framework for evaluating wikis as a

medium for communication within engineering design

teams,‖ ASME International Design Engineering Technical

Conferences IDETC/CIE 2009, San Diego, CA, 2009.

[56] http://www.simulia.com/products/isight.html

[57] N. Titus and K. Ramani, ―Design space exploration using

constraint satisfaction,‖ Nineteenth International Joint

Conference on Artificial Intelligence IJCAI, July-August

2005, pp. 31-37.

[58] F. Zwicky, Discovery, Invention, Research through the

morphological approach, MacMillan, New York (1969).

[59] Y. Maeda, Y., Koseki, Y. Koike and M. Tanaka, ―Design

knowledge organization and acquisition through visual

representation,‖in Knowledge Intensive CAD volume 1, T.

Tomiyama, M. Mantyla, S. Funger eds, Chapman & Hall,

New York, NY (1996).

[60] F. Lakin, J. Wambaugh, L. Leifer, D.M. Cannon and C.

Sivard, ―The electronic design notebook: Performing

medium and processing medium,‖ Visual Computer, vol. 5,

pp. 214-226, (1989).

[61] www.mediawiki.org, Mediawiki, accessed February 2011.

