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ABSTRACT 

The potential advantages of freehand sketches have been 
widely recognized and exploited in many fields especially in 
engineering design and analysis. This is mainly because the 
freehand sketches are an efficient and natural way for users to 
visually communicate ideas. However, due to a lack of 
fundamental techniques for understanding them, sketch-based 
interfaces have not yet evolved as the preferred computing 
platform over traditional menu-based tools. In this paper, we 
address the specific challenge of transforming informal and 
ambiguous freehand inputs to more formalized and structured 
representations. We present a domain- independent, multi- 
stroke, multi- primitive beautification method which detects 
and uses the spatial relationships implied in the sketches. 
Spatial relationships are represented as geometric constraints 
and satisfied by a geometric constraint solver. To demonstrate 
the utility of this technique and also to build a natural working 
environment for structural analysis in early design, we have 
developed FEAsy (acronym for Finite Element Analysis made 
easy) as shown in Fig. 1. This tool allows the users to 
transform, simulate and analyze their finite element models 
quickly and easily through freehand sketching, just as they 
would draw on paper. Further, we have also developed simple, 
domain specific rules-based algorithms for recognizing the 
commonly used symbols and for understanding the different 
contexts in finite element modeling. Finally, we illustrate the 
proposed approach with a few examples. 
 
KEYWORDS Sketch-based interfaces, beautification, CAD, 
Finite Element Analysis 
 

1 INTRODUCTION 

Over the past few years, there has been increased interest 
to support freehand sketching in user interfaces and tools for  

 

 
Figure 1. THE FEASY INTERFACE SHOWING A HAND-
DRAWN SKETCH OF A 2D BRACKET EXAMPLE (TOP) 
AND DEFORMATION RESULTS IN ANSYS (BOTTOM). 
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various applications in diverse domains such as Computer 
aided Design (CAD), simulation, computer animation and 
software design. The main motivation is based on the fact that 
freehand sketching is a natural, efficient and convenient way 
to visually represent ideas. Also, as sketch-based interfaces 
mimic the pen-paper paradigm of interaction, they provide a 
host of advantages over the traditional windows, Icons, menus 
and pointers (WIMP) style Graphical User Interfaces (GUI). 
The users can seamlessly and directly interact with the 
computer and require practically limited or almost no training, 
whereas in menu based interfaces, the users are forced to learn 
the system rather than the system having to learn the users’ 
intentions. Further, studies in cognitive science have shown 
that sketching does not break the users thought process [1]. 
Due to this reason, sketches are particularly useful in early 
stages of design where their fluidity and ease of construction 
enable creativity and the rapid exploration of ideas [2]. 
Despite the potential benefits, sketch-based interfaces have not 
yet evolved as the computing platform of choice. One of the 
major requirements of such interfaces is the need for 
fundamental techniques to transform the informal and 
ambiguous freehand inputs to more formalized and structured 
representations. Such a transformation is a crucial step in 
sketch understanding, for assisting rapid creation and 
evaluation of new ideas and also in reduction of the total time 
and effort spent in creating drawings on a computer. This 
process is termed as beautification. Another such challenge is 
symbol recognition, the task of recognizing shapes and 
symbols. 

Two of the main challenges that have hindered the 
development of a robust beautification system are: 
Segmentation - identification of critical points on the strokes, 
Recognition - classifying the segment between adjacent 
critical points as low level- geometric primitives (like lines, 
circles and arcs). Many of the current methods place many 
constraints on how users must draw shapes. For a natural 
sketch-based interface, there should not be any limitations on 
the users drawing style or any dependency on how a particular 
sketch is drawn (number or order of strokes or the number of 
primitives in the stroke).  In this paper, we present a domain-
independent, multi-stroke, multi-primitive beautification 
method that allows the users to draw in an unrestricted fashion 
and at the same time robustly copes with the imprecision and 
variation in freehand input.  

When beautification is done on per-stroke level, it is 
termed as local. Local beautification often misses some 
important global information in sketches such as the spatial 
relationships between different primitives in a stroke and 
between strokes. These spatial relationships are usually 
represented as geometric constraints (like parallelism and 
tangency). Cognitive studies show that users attend 
preferentially to certain geometric features while drawing and 
recognizing shapes. Pu et al [3] highlight the role of such 
geometric constraints in beautification. Our method identifies 
these spatial relationships and uses them to drive 
beautification.   

Further, to demonstrate the utility of this technique, we 
have developed a sketch-based interface for static finite 
element analysis. The primary rationale for the proposed tool 
is that the contemporary software tools for Finite Element 
Analysis (FEA) and simulation, like ANSYS

®
 and SIMULIA

®
 

have a steep learning curve. Even, to solve simple one (1D) 
and two dimensional (2D) problems, the users have to follow a 
very tedious process. Usually, a FEA problem can be broken 
into four stages: 1) Initial setup which involves element and 
material selection, description, 2) creating geometry, 3) 
defining loading and boundary conditions and 4) meshing, 
solving and visualization of results. Among these steps, 
geometry creation and specifying load and boundary 
conditions are the crucial and time consuming process for the 
user. Also, users experience greater cognitive load causing 
deterioration in speed, attention focus, meta-cognitive control, 
correctness of problem solutions, and memory in using 
traditional systems [4]. This sketch-based tool would allow the 
users to create geometry as they would draw on paper with 
minimal constraints imposed on them. 
  
 

Table 1. THE LIST OF FINITE ELEMENT SYMBOLS 
RECOGNIZED BY OUR SYSTEM 

 
 

Fully Constrained

Roller

Moment

Dimension 

(Length or Diameter)

Load (Force / pressure)

Dimension (Radius)

DescriptionSymbols

 
 
 

Also, it is more intuitive to specify loading and boundary 
conditions through symbols and gestures as shown in Fig. 1 
than through traditional menu-based input. Hence, we have 
developed a domain-specific algorithm for recognizing 
common symbols used in FEA. The various symbols 
recognized are shown in Table 1. Our ultimate goal is to create 
a unified framework for 1D and 2D finite element analysis 
that integrates all the four stages in one platform. As one step 
towards the goal, our system to date would allow the users to 
set-up the problem up to the simulation stage (i.e., except 
actual solving and visualization) as they would do on paper 
naturally and intuitively. The system would then export the 
model geometry, boundary conditions, loads, material and 
element description and meshing parameters in a unified data 
file as a set of commands (like a script) specific to the FEA 
software. The users can then run this file to get the desired 
results. A few examples explaining the procedure for ANSYS 
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is shown in section 8. Similarly it can be extended to other 
tools. 

In addition to design, this tool can also be used in 
engineering education. It can be used as a learning tool for 
undergraduate students especially in mechanical and civil 
engineering. The students can use this tool to quickly verify 
answers to hand-worked problems and also in preliminary 
stages of design projects to evaluate their ideas. This can also 
be used as a potential tutoring tool for teaching assistants and 
as a lecture-aid for instructors.  
 The remainder of this paper is organized as follows. 
Section 2 provides some background and related work. This is 
followed by the description of the system in section 3. In 
section 4, we present the beautification algorithm and in 
section 5, the symbol recognition. Section 6 explains the 
sketch interpretation followed by finite element integration in 
section 7. Results and discussion are presented in section 8. 
We conclude with the limitations of our current 
implementation, ways to address them and future work in 
section 9. 

 
2  RELATED WORK 
2.1  Beautification – Segmentation and Recognition 

Much of the earlier work [5–8], assumed that each pen 
stroke represented a single primitive such as a line segment or 
a curve. Despite their simplicity, the strategy based on single 
primitive/stroke usually results in a less natural interaction 
because of the constraints imposed on the users drawing 
freedom. For a natural freehand sketching interface, users 
should be allowed to draw multiple primitives with a single 
stroke and segmentation algorithm should take care of finding 
the critical points. Taking advantage of the interactive nature 
of sketching, Sezgin et al [9] and Calhoun et al [10] used the 
pen-speed and curvature properties of the stroke to determine 
the critical points. They found that it was natural to slow the 
pen when making intentional discontinuities in the shape. 
When a user is sketching at a constant speed, many 
segmentation points will be missed due to this biased 
assumption. Also, the speed data is dependent on recording the 
sketching activity in real time. Kim and Kim [11] proposed 
new metrics based on curvature - local convexity and local 
monoticity for segmentation. Aaron et al [12] introduced an 
effective method to find corners in polylines. Their method is 
founded on a simple concept based on the length between two 
points. They showed higher accuracy over [9] and [11]. Other 
approaches to segmentation utilized artificial intelligence, 
such as the template-based approach [13], conic section fitting 
[2], and domain-specific knowledge [14]. Despite their 
relative success in sketch segmentation, these are dependent 
on various restrictive conditions. For example, a large number 
of sketch examples are required for the purpose of training the 
computer in the methods proposed in [2], otherwise, the 
segmentation performance will be affected. Also, the variance 
of freehand sketches makes it difficult to define unified 
models or rules for sketch segmentation utilizing different 
applications.  

Recognition is usually performed at two levels: the 
composite (higher) or symbol level and primitive (low) level. 
Calhoun et al [10], Shpitalni et al [2] and Zhang et al [15] used 
least-squares based method for recognition. In [16], Qin’s 
classification was based on the curve’s linearity, convexity 

and complexity. For a detailed description of different 
techniques we refer to [17]. Our beautification method 
improves upon the technique described in [12]. We address its 
drawbacks i.e., recognizing corners at heavily obtuse angles. 
Also, we identify arcs and circles in addition to only the line 
segments. Further, our method can be easily extended to 
support other geometric primitives like splines. We explain 
our method in detail in section 4.3. 

For symbol recognition, Fonseca et al. [18] developed an 
online scribble recognizer called CALI. The recognition 
algorithm uses Fuzzy Logic and geometric features, combined 
with an extensible set of heuristics to classify scribbles.  Since 
their classification relies on aggregate features of the pen 
strokes, it might be difficult to differentiate between similar 
shapes.  Kara et al. [19] described a hand-drawn symbol 
recognizer based on a multi-layer image recognition scheme. 
It can learn new symbol definitions from a single prototype 
example and is insensitive to translation, rotation, and uniform 
scaling.  However, this method requires training and is 
sensitive to non-uniform scaling. Veselova et al [20] used 
results from perceptual studies to build a system capable of 
learning descriptions of hand-drawn symbols which are 
invariant to rotation and scaling. Accurately recognizing 
symbols, independent of the domain is a challenging problem 
itself and not the focus of this research. Hence, for our needs 
to reliably recognize finite element domain specific symbols, 
independent of translation, rotation and scaling, we developed 
a rules-based approach using results from perceptual studies 
like [20].  
 

2.2  Sketch-based Interfaces 
The emergence of pen-input devices like Tablet PCs, 

large electronic Whiteboards and PDAs have led to demand 
for sketch based interfaces in diverse applications [21] In 
CAD based applications like [22] and [23], the user has to 
draw objects in pieces, reducing the sense of natural sketching. 
Our system allows drawing strokes with multiple primitives 
without any restriction on the user. Sketch based interfaces 
have also been used in early software design [24, 25]; user-
interface design [26]. Gesture- based systems have been 
explored in 2D pen-based applications [27, 28] where input 
strokes are converted or replaced with predefined primitives. 
CALI [18] is an online recognition library of simple gestures 
to create and edit 2D shapes for diagrams. ParSketch [29] is 
sketch-based interface for editing 2D parametric geometry. 
MathPad [30] is a tool for solving mathematics problems. 
Kara et al developed a sketch-based system for vibratory 
mechanical systems. STRAT [31] is a pen-based tool for 
students to learn standard truss analysis. Hutchinson et al. [32] 
developed a unified framework for finite element analysis. 
They used an existing freehand sketch recognition interface. 
However, the users still had to navigate through a lot of menus 
to specify input.  Also, the beautification method is not robust, 
constraining the users’ drawing freedom.  Moreover, the 
system does not address the problems related to the ambiguous 
nature of freehand input.  We have developed methods for 
resolving ambiguity through interaction, described in section 
4.6.  Krichoff’s pen [33] is a pen-based tutoring system that 
teaches students to apply Kirchhoff’s voltage law and current 
law. 
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3  SYSTEM OVERVIEW 
Freehand sketches are usually composed of a series of 

strokes. A stroke is a set of temporally ordered sampling 
points captured in a single sequence of pen-down, pen-move 
and pen-up events [17]. Our sketch-based interface allows the 
user to draw in a natural way just as they would do on paper. 
The user can draw freely and there is no restriction on how a 
particular shape or symbol is drawn and text is written. One of 
the important challenges in such a sketch-based interface is to 
robustly classify the pen-strokes as geometry, text and 
gestures, which in itself an active area of research and not the 
focus of this work. Lineogrammer [34] provides heuristics for 
modelessly disambiguating between text, geometry elements 
and command gestures. For example, to distinguish between 
text and geometry, one of the criteria, they used is that the size 
of text must be small (< 2 cm) and (or) the gap between 
continuous strokes is less than 500ms. We use similar 
heuristics to distinguish between hand-written text, gestures 
and geometry elements. However, both the FEA problem’s 
geometry and symbols are composed of low-level primitives 
like lines and arcs. Also, to maintain the naturalness of the 
interface, the stroke should be able to represent any number of 
shape primitives connected together.  

The symbols or geometry can be specified in a single 
stroke or multiple strokes and there should be no requirements 
that the parts of symbol/geometry be drawn in the same order. 
Hence to accommodate these requirements and simplify 
recognition, we ask the user to switch pen colors (i.e. switch 
modes) while specifying geometry or symbols. Text can be 
input in any mode. In addition to reducing ambiguity, multi-
color would provide visual clarity to the sketch drawn. The 
low-level primitives recognized in the current implementation 
of our system include lines, circles, and circular arcs. 
 Sketches can be created in our system using any of a 
variety of devices that closely mimic the pen-paper paradigm. 
We use Wacom Cintiq 21UX digitizer with stylus, tablet-PCs 
and a traditional mouse. Both Wacom and tablet PCs are 
particularly suited to natural interaction, enabling the user to 
sketch directly on a computer display. The system uses 
Microsoft Tablet PC SDK to capture the user input strokes and 
for handwriting recognition. The users can view their sketch 
either as raw pen strokes and (or) as primitives.  

An example of the sketching process is shown in Fig. 1. 
The user starts sketching in ‘geometry’ mode and the input 
stroke is first classified as text or geometry. If the system 
classifies it as text, then the screen is updated with the 
recognized text label. Or else, each input stroke is decomposed 
into low-level geometric primitives with minimal error. The 
system then identifies the spatial relationships between the 
primitives. These relationships are represented as geometric 
constraints which are then solved by a geometry constraint 
solver. For this purpose, we have integrated LGS2D [35] in 
our system. The output from the solver is the beautified 
version of the input which is updated on the screen. The user 
can continue sketching or switch modes. The strokes input in 
‘symbol’ mode are processed similarly as in ‘geometry’ mode.  

When the user selects the ‘Process’ button for 
processing, the symbols are then sent to the ‘symbol 
recognition’ module for recognition. Then, the symbols, text 
and geometry are grouped and associated with each other for 
correct interpretation of context.  

For example in Fig. 2, the load (downward single-arrow 
symbol) is associated with F=100 (text) and point P3 implying 
that a force of 100 units in negative ‘y direction is applied at 
P3. Similarly, the double-headed arrow is associated with 20 
units and line L1 implying that a dimension constraint equal to 
20 for length of L1 is added to the geometry and satisfied by 
the geometry constraint solver. Once the sketch is complete 
and processed, the user selects the ‘OUTPUT’ button, which 
starts the ‘FE integration’ causing a dialog to pop-up, where 
the user specifies the material properties, element description 
and meshing parameters (if any). The user uses a scratching 
gesture to indicate if the area needs to be meshed. When the 
dialog is closed successfully, the sketch is exported as a 
unified file suitable for import in ANSYS.  
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Figure 2. A FREEHAND SKETCH WITH THE PROBLEM 

GEOMETRY (IN BLACK) AND SYMBOLS (IN RED) 
 
 
Common interpretation errors can be easily corrected in 

our system. Correction of errors in beautification is explained 
in section 4.6. When a symbol is recognized incorrectly, the 
user can explicitly mark it by holding down a button on the 
stylus and circling it. A pop-up menu will open, where the 
user can choose from a list of possible classifications. As the 
FEA domain is small, the number of misclassifications will be 
a minimum. When text is misinterpreted as geometry, drawing 
a line across by holding a button on the stylus will change it to 
text.  
 
4 BEAUTIFICATION 

Beautification aims at simplifying the input where the 
various points of the strokes are interpreted and represented in 
a more meaningful manner. Our approach to transforming the 
input to formalized representations (i.e. beautification) is 
based on the architecture shown in Fig. 3. There are five steps 
in the pipeline namely - resampling, segmentation, 
recognition, merging and geometry constraint solving. An 
example of the user drawn freehand stroke is shown in Fig. 
3(a). Figure 3(b) shows the raw points (blue circles) as 
sampled by the hardware and Fig. 3(c), the uniformly spaced 
points after resampling (green circles). The segmentation step 
explained in section 4.2 identifies the critical points (red 
circles) shown in Fig. 3(d). Then, the segments between the 
adjacent critical points are recognized and fit with primitives 
(Fig. 3(e)). The status of the freehand sketch after merging is 
shown in Fig. 3(f) and finally the sketch is beautified 
considering the geometric constraints (Fig. 3(g)). The various 
steps are explained in detail in the following sections. For 
simplicity, we limit the discussions to a single stroke in a 
sketch. All the other strokes are processed similarly. 
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4.1  Stroke Resampling 

Freehand input is prone to contain some noise. Sezgin 
[36] identified two main sources - imprecise motor control and 
digitization. As the interface places no constraint on the users' 
drawing freedom, we ignore the noise due to the slight tremble 
of hand or poor drawing skills of the user. We consider the 
input as it is and all input points are considered as genuine. 
However, the sampling frequency of the mechanical hardware 
coupled with the drawing speed of the user result in non-
uniform samples of the raw freehand input. To achieve 
uniform sampling, we resample the points of the input stroke 
such that they are evenly spaced. We used a fixed interspacing 
distance, Id of 200 HIMETRIC units (1 HIMETRIC = 0.01mm 
= 0.0378 pixels). The resampling algorithm discards any 
sample within the Id of earlier samples and interpolates 
between samples that are separated by more than Id. The start 
and end points of the stroke are by default added to the 
resampled set of points. Figure 3(c) shows the result of 
resampling for the stroke (Fig 3a) using our method. Uniform 
resampling is important for the segmentation algorithm to 
work efficiently. 
 

4.2  Segmentation 
In our system, a single freehand stroke can represent any 

number of primitives connected together. The task of 
segmentation routine is to find those critical points that divide 
the stroke into its constituent primitives. These critical points 
are 'corners' of the piecewise linear strokes and also the places 
where curve and line (curve) segments connect.  

Our segmentation algorithm builds upon the approach 
described in [12], which works well for strokes composed of 
only line segments. One of the drawbacks of this method is 
that the algorithm often misses identifying the corners at 
heavily obtuse angles. We address this drawback and also 
improve their algorithm to accommodate curves in addition to 
line segments. We are interested in improving this algorithm 
especially for its simplicity (easy to program) in  

 
implementation, high efficiency and at the same time not 
being computationally intensive. 
 
 
 

θθ

 
 

 
Figure 4. CHORD ANGLE' COMPUTATION.  

 
 

The likely critical points of the stroke are those indices 
where the ‘chord angle’ is a local minimum, which is lesser 
than a threshold, ’t’. Figure 4 shows the computation of the 
chord angle. The blue circles represent the resampled points 
and ‘θ’ represents the `chord angle’ computed using the 
formula inset in the Fig. 4. To avoid the problem posed by 
choosing a fixed threshold, we set the threshold to be equal to 
the median of all the chord angle values. For the stroke in Fig. 
3(a), the initial set of critical points obtained is shown in Fig. 
3(d). By default, the start and end points of a stroke are 
considered as critical points. Using a window of uniformly 
spaced points to compute the curvature (chord angle), 
smoothes out the noise, if any in the input stroke. The larger 
the window, the larger the smoothing effect resulting in 
missed critical points. Like [10], we found that setting the 
window size w = 3 to be effective irrespective of the user or 
the input device used. 

 
 

 

Figure 3. BEAUTIFICATION OF A FREEHAND STROKE.                                                            
 

(a) (b) (c)
(d)

(e)(f)
(g)
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4.3  Recognition  
The next task after segmentation is to classify and fit the 

segments between adjacent critical points as low-level 
geometric primitives. The current implementation of our 
system recognizes lines, circular arcs and circles. The 
recognition method is based on least squares analysis [37], but 
the computation of parameters of best fit line and circular arc 
differ from the traditional approach. Usually, the least square 
fit of lines and arcs result in the end points of the primitives to 
be moved to new location. For example see Fig. 5. To prevent 
such discontinuities between adjacent primitives of the stroke, 
we fix the endpoints of the primitives (as it is) of the original 
segment and then perform the analysis. Figure 5(c) shows the 
result of our recognition algorithm. 

 
 

(a) (b) (c)  
Figure 5. RECOGNITION OF SEGMENTS. 

 
 

After finding the errors, the segment is typically 
classified by the primitive that matches with the least error. 
However, line segments can always be fit with high accuracy 
as an arc with a very large radius. In such cases, if the arc 
length is less than 15 degrees, we classify it as a line. 
Similarly, an arc is classified as a circle if its arc length is 
close to 2π. 
 
4.4  Merging 

The initial critical points set obtained through 
segmentation routine may contain some false positives. The 
merging procedure repeatedly merges adjacent segments, if 
the fit for the merged segment is lower than a certain 
threshold. 

 

L1

L8

L5

L4

A1

A2

A3

A4

A5

 
 

Figure 6. THE MERGING ROUTINE. 
 

 
For every i

th 
segment, we try merging it with i-1

st
 and 

i+1
st
 segment. Let these new segments be seg1 and seg2. The fit 

errors for seg1 and seg2 are calculated according to section 4.3. 
For the segment with least error among seg1 and seg2, merging 
occurs if and only if the error is less than the sum of the 

corresponding errors of the original segments. For example in 
Fig. 6, the two lines (L4 and L5) are merged into an arc (A4) 
and the three arcs (A1, A2 and A3) yield one arc (A5). 
 

4.5 Geometry Constraint Solving 
Pu and Ramani highlight the importance of geometric 

constraints in beautification in [3]. Geometric constraints are 
widely used and an integral part in many design related 
applications, such as drawing programs, CAD tools and 
graphical user interfaces [3].  
 
 

Table 2. IMPLICIT GEOMETRIC CONSTRAINTS 
INFERRED FOR BEAUTIFICATION 

  

 Point Line Arc (Circle) 

Point 
Coincidence 
Horizontal Alignment 
Vertical Alignment 

Point on Line 
Coincidence 
Point on Arc 
(Circle) 

Line Point on Line 
Parallel 
Perpendicular  
Collinear 

Tangency 

Arc 
(Circle) 

Coincidence 
Point on Arc (Circle) 

Tangency 
Tangency 
Concentricity 

 

 
In current drawing systems, specifying geometric 

constraints is a difficult, time consuming and a tedious task. 
Also, the users need to undergo prior training before using the 
system. Novice users must be made aware of geometric 
constraints and how these can be used to create what they 
want. To reduce this cognitive overload and to effectively 
support the use of geometric constraints in freehand sketching, 
the system infers and satisfies the constraints automatically 
without much intervention from user. Geometric constraints 
are usually classified as either (1) explicit constraints, which 
refer to the constraints that are explicitly specified by the user 
such as dimensions - distance between a point and a line or 
angle between two lines, (2) implicit constraints, which refer 
to the constraints that are inherently present in the sketch such 
as concentricity and tangency. It is natural for users to express 
geometric constraints implicitly when they are sketching. 
Table 2 lists the the different constraints inferred in our 
system.  
 

4.6  Resolving ambiguities with Interaction 
Any recognition system is not devoid of ambiguities. Our 

system provides the interface to correct the errors through 
simple interactions. Errors in segmentation include missed and 
unnecessary critical points. In our system, when the user taps 
on or near a critical point with the stylus (or left click using a 
mouse), the system first removes that critical point and the 
corresponding two primitives that share this point. This results 
in an unrecognized segment which is then classified and refit. 
The user can also add a segmentation point in a similar 
manner. The nearest point on the stroke to the clicked location 
is used as the input point where the existing primitive is 
broken into two primitives. However, the start and end points 
of a stroke cannot be removed by clicking unless the stroke 
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represents an arc. In such a case, clicking on one of the end 
points, converts the arc to a circle. 

Errors in recognition correspond to primitive 
misclassification. An input stroke drawn by holding down a 
button on the stylus (or both left and right mouse button 
together) is recognized as a pulling gesture. The primitive that 
is closest to the starting point of this gesture is the one to be 
pulled and accordingly its classification is altered i.e. if the 
primitive was a line, it is refit as a circular arc and vice versa. 
This gesture does nothing for a circle because a line (circle) 
can never be misinterpreted as a circle (line) and moreover 
adding a critical point to a circle breaks it into two arcs. 
Additionally, the user can erase a primitive, a stroke or a part 
of stroke using the eraser end of the stylus, just as using a 
pencil eraser. 
 

5 SYMBOL RECOGNITION 

The strokes classified as symbols are first simplified and 
represented as low-level geometric primitives by the 
beautification module. This simplification helps in reducing 
the variability that may exist in comparison to correctly 
identify complex symbols. The symbols drawn in finite 
element domain, both in academia and research have well- 
defined and standardized forms. The list of symbols 
commonly used in finite element domain (i.e. for loading and 
boundary conditions) is shown along with other symbols 
recognized in our system in Table 1.  

 
 

Table 3. THE DIFFERENT VARIATIONS OF (A) 
‘ROLLER’ AND (B) FULLY CONSTRAINED SYMBOLS. 

 

Fully Constrained

Roller(a)

(b)

 
 
 
On quick observation, one can see that almost all of the 

symbols are comprised of either lines and (or) circles and only 
the ‘Moment’ symbol consists of an arc. The various symbols 
are configurations of these low-level primitives. Also, some 
symbols like ‘Roller’ have different variations (Table. 3a), 
where there is a difference in the number of circles drawn. A 
good symbol recognition algorithm must account for these 
variations. Though these symbols seem different, there are 
certain distinct properties for each symbol or group of symbols 
that are different from other symbols (or groups). For 
example, in Table 3, the ‘fully constrained’ symbol is different 
from ‘roller’ symbol, as it can be distinguished with the 
presence of circles. In this case, the number of circles does not 
matter in differentiating between them. We have created 
similar heuristic based rules to recognize different symbols. 
The reason behind using such an approach is that the number 
of symbols in this set is finite and each symbol has some 
distinct properties that can be used to differentiate from the 

other symbols in spite of the possible variations. Also, there is 
no training required. 
 

6  SKETCH INTERPRETATION 
The sketch is interpreted after beautification and symbol 

recognition. Generally, users draw related objects in such a 
way that they are closer to each other. We use this observation 
to associate and group objects to provide context. For 
example, in Fig. 8(a), the ‘load’ symbol, ‘F=1000’ and the top 
middle node combine together to imply the meaning that a 
load of 1000 units is applied on the node (point) in negative y-
direction. The various context observed in finite element 
analysis can be classified into three categories, namely 
Loading Conditions, Boundary Conditions and Geometric 
constraints. Accordingly, the various symbols (Table 1) fall 
into these categories. We use this classification information 
and spatial proximity reasoning to create rules for 
understanding the different contexts in the sketch. Applied 
loads in the system are either point-loads or uniform loads 
which can be both forces and pressure (depending on the 
problem). The magnitude and direction of the loads are 
determined from the text and direction of arrow. When there is 
only one load symbol detected, it refers to a point-load and the 
detected load is applied to the nearest point (node) in the 
geometry. If a pattern of load symbols is inferred next to hand 
written text, then the closest starting and end points of the 
arrows are found and the system searches for a nearest 
primitive on the geometry and applies to it. The types of 
boundary conditions are either fully constrained or constrained 
in only one direction (specified with a roller symbol). The 
specific direction i.e., x- or y- direction is determined from the 
orientation of the symbol, for example, like the pattern of 
circles in the roller symbol. Like loads, boundary conditions 
can be applied either to a single point or a primitive. Finally, 
the interpreted dimensional constraints are satisfied by the 
solver and the sketch gets updated accordingly. 
 

7  FE INTEGRATION 

When the user presses the ‘Output’ button, the system 
shows a dialog box, where the user enters the material 
information, element type and description, and mesh size for 
finite element analysis. Finite element solvers like ANSYS do 
not require any units, but assume that the input is consistent. 
Our system also behaves along the similar lines. Hence, it is 
on the part of the user to make sure that the input units are 
consistent. Our current implementation of the system supports 
two types of elements which are commonly used in structural 
and static finite element analysis. They are 1) Two 
dimensional- spar element, a uni-axial tension-compression 
element with two degrees of freedom at each node, i.e., 
translations in the nodal x- and y-directions. This element is 
used for modeling trusses. The equivalent element in ANSYS 
is LINK1, 2) Two dimensional structural solid element, for 
modeling solid structures. The equivalent element in ANSYS 
is PLANE42. The element can be used as a plane stress, plane 
strain or an axisymmetric element. The element is defined by 
four nodes having two degrees of freedom at each node: 
translations in the nodal x and y directions. The element 
properties include Young’s modules ε, and Poisson’s ratio ν, 
as well as geometric information, such as cross-sectional area. 
Specifying the mesh size is optional and it is enabled only for 
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structural solid elements. Similarly, the users can also specify 
what results they wish see after the analysis, like for example 
the displacement sum of nodal solution. Currently, the system 
allows the users to choose from von misses stress, reaction 
forces and deflections. On closing this dialog successfully, the 
system exports the input i.e., model geometry, boundary 
conditions, loads, material, element and meshing information 
to a unified file specific for ANSYS. This file can then be run 
in ANSYS to yield the desired results.  
 

8  RESULTS AND DISCUSSION 

In this section, we present some examples generated 
using our system. First, we show a simple example of a two 
dimensional cantilever beam with a point-load applied at its 
end to illustrate the sketching process. The user starts by 
sketching a rectangle with one input stroke in geometry mode 
as shown in Fig. 7(a). When the user lifts the pen, the system 
beautifies the input and the result is shown in Fig. 7(b). Then, 
the user switches to ‘symbol’ mode to specify the boundary 
conditions, loads and dimensions. On pressing the ‘process’ 
button, the system processes the input and the result is shown 
in Fig. 7(c). The user can repeat this process to make changes 
or can proceed further. When the user presses the ‘output’ 
button, the system opens the integration dialog. The user can 
choose from a library of materials or modify existing material 
or specify new properties. For this problem, the user chose 
steel with ε = 30e6 and ν = 0.3. Similarly, the element type 
(PLANE 42) and other parameters are input. On closing the 
dialog, the system exports the input as a set of commands 
specific to ANSYS shown in Fig. 7(e). The result 
(displacement vector sum plot) obtained on running this file in 
ANSYS is shown in Fig. 7(d). This model is an ideal example 
for students to start learning finite element analysis.  

Figure 1 shows an example of a three dimensional 
bracket, modeled as a two–dimensional problem with uniform 
thickness = 0.5 inches. The initial freehand sketch (without 
beautified geometry) and the final ANSYS output are shown 
at the top and bottom of Fig.1 respectively. 

To illustrate an example with two-dimensional spar 
element (LINK1), a truss problem is presented. Figure 8 
shows the freehand sketch, output command file and the 
generated results in ANSYS. (The dimensions are not shown 
explicitly to avoid cluttering the scene). As this model does 
not require any area meshing, the geometry is modeled as a set 
of nodes and elements between them instead of key points and 
lines. The material properties used are the same as the 
cantilever beam with the input cross-sectional area = 0.5 sq. 
inches. 
 
9 CONCLUSION 

In this paper, we addressed the specific challenge of 
transforming ambiguous and informal freehand input to more 
formalized representations i.e., beautification. In this paper, 
we addressed the specific challenge of transforming 
ambiguous and informal freehand input to more formalized 
representations i.e., beautification. To this extent, we created a 
beautification method that is not domain specific, supports 
multi-primitives like lines, arcs and circles, and considers the 
spatial relationships implied in the freehand sketches. 
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To demonstrate the utility of this method and also to 
create a natural working environment for designers, we 
developed FEAsy, a sketch-based interface that integrated 
freehand sketching with finite element analysis. We showed 
the capabilities of the system and also how this system can be 
used to evaluate ideas especially in early design and also as a 
potential learning tool for students. Most notably, all models 
were created quickly and in a more natural manner just as one 
would draw on paper. Anyone familiar with the finite element 
analysis domain can learn the system quickly with very little 
training. The current implementation of the system, exports 
the model geometry, loading and boundary conditions into a 
unified file that can be run in ANSYS to visualize results. Our 
ultimate goal is to create a unified framework from sketching 
to visualization of results. Hence, our immediate future work 
is to integrate a finite element solver and provide visualization 
capabilities in the system. Future improvements include 
supporting other types of analysis (apart from structural) and 
also to extend to three dimensions.  
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