
 1 Copyright © 2009 by ASME

Proceedings of the ASME 2009 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2009
August 30 - September 2, 2009, San Diego, CA, USA

DETC2009-87727

FEASY: A SKETCH-BASED INTERFACE INTEGRATING STRUCTURAL ANALYSIS IN EARLY
DESIGN

Sundar Murugappan
School of Mechanical Engineering

Karthik Ramani
∗∗∗∗

School of Mechanical Engineering,
School of Electrical and Computer Engineering (by courtesy)

Purdue University, West Lafayette, IN 47906, U.S.A.

∗ Professor and author of correspondence, Phone: (765) 427-7945, Email: ramani@purdue.edu.

ABSTRACT

The potential advantages of freehand sketches have been
widely recognized and exploited in many fields especially in
engineering design and analysis. This is mainly because the
freehand sketches are an efficient and natural way for users to
visually communicate ideas. However, due to a lack of
fundamental techniques for understanding them, sketch-based
interfaces have not yet evolved as the preferred computing
platform over traditional menu-based tools. In this paper, we
address the specific challenge of transforming informal and
ambiguous freehand inputs to more formalized and structured
representations. We present a domain- independent, multi-
stroke, multi- primitive beautification method which detects
and uses the spatial relationships implied in the sketches.
Spatial relationships are represented as geometric constraints
and satisfied by a geometric constraint solver. To demonstrate
the utility of this technique and also to build a natural working
environment for structural analysis in early design, we have
developed FEAsy (acronym for Finite Element Analysis made
easy) as shown in Fig. 1. This tool allows the users to
transform, simulate and analyze their finite element models
quickly and easily through freehand sketching, just as they
would draw on paper. Further, we have also developed simple,
domain specific rules-based algorithms for recognizing the
commonly used symbols and for understanding the different
contexts in finite element modeling. Finally, we illustrate the
proposed approach with a few examples.

KEYWORDS Sketch-based interfaces, beautification, CAD,
Finite Element Analysis

1 INTRODUCTION

Over the past few years, there has been increased interest
to support freehand sketching in user interfaces and tools for

Figure 1. THE FEASY INTERFACE SHOWING A HAND-
DRAWN SKETCH OF A 2D BRACKET EXAMPLE (TOP)
AND DEFORMATION RESULTS IN ANSYS (BOTTOM).

 2 Copyright © 2009 by ASME

various applications in diverse domains such as Computer
aided Design (CAD), simulation, computer animation and
software design. The main motivation is based on the fact that
freehand sketching is a natural, efficient and convenient way
to visually represent ideas. Also, as sketch-based interfaces
mimic the pen-paper paradigm of interaction, they provide a
host of advantages over the traditional windows, Icons, menus
and pointers (WIMP) style Graphical User Interfaces (GUI).
The users can seamlessly and directly interact with the
computer and require practically limited or almost no training,
whereas in menu based interfaces, the users are forced to learn
the system rather than the system having to learn the users’
intentions. Further, studies in cognitive science have shown
that sketching does not break the users thought process [1].
Due to this reason, sketches are particularly useful in early
stages of design where their fluidity and ease of construction
enable creativity and the rapid exploration of ideas [2].
Despite the potential benefits, sketch-based interfaces have not
yet evolved as the computing platform of choice. One of the
major requirements of such interfaces is the need for
fundamental techniques to transform the informal and
ambiguous freehand inputs to more formalized and structured
representations. Such a transformation is a crucial step in
sketch understanding, for assisting rapid creation and
evaluation of new ideas and also in reduction of the total time
and effort spent in creating drawings on a computer. This
process is termed as beautification. Another such challenge is
symbol recognition, the task of recognizing shapes and
symbols.

Two of the main challenges that have hindered the
development of a robust beautification system are:
Segmentation - identification of critical points on the strokes,
Recognition - classifying the segment between adjacent
critical points as low level- geometric primitives (like lines,
circles and arcs). Many of the current methods place many
constraints on how users must draw shapes. For a natural
sketch-based interface, there should not be any limitations on
the users drawing style or any dependency on how a particular
sketch is drawn (number or order of strokes or the number of
primitives in the stroke). In this paper, we present a domain-
independent, multi-stroke, multi-primitive beautification
method that allows the users to draw in an unrestricted fashion
and at the same time robustly copes with the imprecision and
variation in freehand input.

When beautification is done on per-stroke level, it is
termed as local. Local beautification often misses some
important global information in sketches such as the spatial
relationships between different primitives in a stroke and
between strokes. These spatial relationships are usually
represented as geometric constraints (like parallelism and
tangency). Cognitive studies show that users attend
preferentially to certain geometric features while drawing and
recognizing shapes. Pu et al [3] highlight the role of such
geometric constraints in beautification. Our method identifies
these spatial relationships and uses them to drive
beautification.

Further, to demonstrate the utility of this technique, we
have developed a sketch-based interface for static finite
element analysis. The primary rationale for the proposed tool
is that the contemporary software tools for Finite Element
Analysis (FEA) and simulation, like ANSYS

®
 and SIMULIA

®

have a steep learning curve. Even, to solve simple one (1D)
and two dimensional (2D) problems, the users have to follow a
very tedious process. Usually, a FEA problem can be broken
into four stages: 1) Initial setup which involves element and
material selection, description, 2) creating geometry, 3)
defining loading and boundary conditions and 4) meshing,
solving and visualization of results. Among these steps,
geometry creation and specifying load and boundary
conditions are the crucial and time consuming process for the
user. Also, users experience greater cognitive load causing
deterioration in speed, attention focus, meta-cognitive control,
correctness of problem solutions, and memory in using
traditional systems [4]. This sketch-based tool would allow the
users to create geometry as they would draw on paper with
minimal constraints imposed on them.

Table 1. THE LIST OF FINITE ELEMENT SYMBOLS
RECOGNIZED BY OUR SYSTEM

Fully Constrained

Roller

Moment

Dimension

(Length or Diameter)

Load (Force / pressure)

Dimension (Radius)

DescriptionSymbols

Also, it is more intuitive to specify loading and boundary
conditions through symbols and gestures as shown in Fig. 1
than through traditional menu-based input. Hence, we have
developed a domain-specific algorithm for recognizing
common symbols used in FEA. The various symbols
recognized are shown in Table 1. Our ultimate goal is to create
a unified framework for 1D and 2D finite element analysis
that integrates all the four stages in one platform. As one step
towards the goal, our system to date would allow the users to
set-up the problem up to the simulation stage (i.e., except
actual solving and visualization) as they would do on paper
naturally and intuitively. The system would then export the
model geometry, boundary conditions, loads, material and
element description and meshing parameters in a unified data
file as a set of commands (like a script) specific to the FEA
software. The users can then run this file to get the desired
results. A few examples explaining the procedure for ANSYS

 3 Copyright © 2009 by ASME

is shown in section 8. Similarly it can be extended to other
tools.

In addition to design, this tool can also be used in
engineering education. It can be used as a learning tool for
undergraduate students especially in mechanical and civil
engineering. The students can use this tool to quickly verify
answers to hand-worked problems and also in preliminary
stages of design projects to evaluate their ideas. This can also
be used as a potential tutoring tool for teaching assistants and
as a lecture-aid for instructors.
 The remainder of this paper is organized as follows.
Section 2 provides some background and related work. This is
followed by the description of the system in section 3. In
section 4, we present the beautification algorithm and in
section 5, the symbol recognition. Section 6 explains the
sketch interpretation followed by finite element integration in
section 7. Results and discussion are presented in section 8.
We conclude with the limitations of our current
implementation, ways to address them and future work in
section 9.

2 RELATED WORK
2.1 Beautification – Segmentation and Recognition

Much of the earlier work [5–8], assumed that each pen
stroke represented a single primitive such as a line segment or
a curve. Despite their simplicity, the strategy based on single
primitive/stroke usually results in a less natural interaction
because of the constraints imposed on the users drawing
freedom. For a natural freehand sketching interface, users
should be allowed to draw multiple primitives with a single
stroke and segmentation algorithm should take care of finding
the critical points. Taking advantage of the interactive nature
of sketching, Sezgin et al [9] and Calhoun et al [10] used the
pen-speed and curvature properties of the stroke to determine
the critical points. They found that it was natural to slow the
pen when making intentional discontinuities in the shape.
When a user is sketching at a constant speed, many
segmentation points will be missed due to this biased
assumption. Also, the speed data is dependent on recording the
sketching activity in real time. Kim and Kim [11] proposed
new metrics based on curvature - local convexity and local
monoticity for segmentation. Aaron et al [12] introduced an
effective method to find corners in polylines. Their method is
founded on a simple concept based on the length between two
points. They showed higher accuracy over [9] and [11]. Other
approaches to segmentation utilized artificial intelligence,
such as the template-based approach [13], conic section fitting
[2], and domain-specific knowledge [14]. Despite their
relative success in sketch segmentation, these are dependent
on various restrictive conditions. For example, a large number
of sketch examples are required for the purpose of training the
computer in the methods proposed in [2], otherwise, the
segmentation performance will be affected. Also, the variance
of freehand sketches makes it difficult to define unified
models or rules for sketch segmentation utilizing different
applications.

Recognition is usually performed at two levels: the
composite (higher) or symbol level and primitive (low) level.
Calhoun et al [10], Shpitalni et al [2] and Zhang et al [15] used
least-squares based method for recognition. In [16], Qin’s
classification was based on the curve’s linearity, convexity

and complexity. For a detailed description of different
techniques we refer to [17]. Our beautification method
improves upon the technique described in [12]. We address its
drawbacks i.e., recognizing corners at heavily obtuse angles.
Also, we identify arcs and circles in addition to only the line
segments. Further, our method can be easily extended to
support other geometric primitives like splines. We explain
our method in detail in section 4.3.

For symbol recognition, Fonseca et al. [18] developed an
online scribble recognizer called CALI. The recognition
algorithm uses Fuzzy Logic and geometric features, combined
with an extensible set of heuristics to classify scribbles. Since
their classification relies on aggregate features of the pen
strokes, it might be difficult to differentiate between similar
shapes. Kara et al. [19] described a hand-drawn symbol
recognizer based on a multi-layer image recognition scheme.
It can learn new symbol definitions from a single prototype
example and is insensitive to translation, rotation, and uniform
scaling. However, this method requires training and is
sensitive to non-uniform scaling. Veselova et al [20] used
results from perceptual studies to build a system capable of
learning descriptions of hand-drawn symbols which are
invariant to rotation and scaling. Accurately recognizing
symbols, independent of the domain is a challenging problem
itself and not the focus of this research. Hence, for our needs
to reliably recognize finite element domain specific symbols,
independent of translation, rotation and scaling, we developed
a rules-based approach using results from perceptual studies
like [20].

2.2 Sketch-based Interfaces
The emergence of pen-input devices like Tablet PCs,

large electronic Whiteboards and PDAs have led to demand
for sketch based interfaces in diverse applications [21] In
CAD based applications like [22] and [23], the user has to
draw objects in pieces, reducing the sense of natural sketching.
Our system allows drawing strokes with multiple primitives
without any restriction on the user. Sketch based interfaces
have also been used in early software design [24, 25]; user-
interface design [26]. Gesture- based systems have been
explored in 2D pen-based applications [27, 28] where input
strokes are converted or replaced with predefined primitives.
CALI [18] is an online recognition library of simple gestures
to create and edit 2D shapes for diagrams. ParSketch [29] is
sketch-based interface for editing 2D parametric geometry.
MathPad [30] is a tool for solving mathematics problems.
Kara et al developed a sketch-based system for vibratory
mechanical systems. STRAT [31] is a pen-based tool for
students to learn standard truss analysis. Hutchinson et al. [32]
developed a unified framework for finite element analysis.
They used an existing freehand sketch recognition interface.
However, the users still had to navigate through a lot of menus
to specify input. Also, the beautification method is not robust,
constraining the users’ drawing freedom. Moreover, the
system does not address the problems related to the ambiguous
nature of freehand input. We have developed methods for
resolving ambiguity through interaction, described in section
4.6. Krichoff’s pen [33] is a pen-based tutoring system that
teaches students to apply Kirchhoff’s voltage law and current
law.

 4 Copyright © 2009 by ASME

3 SYSTEM OVERVIEW
Freehand sketches are usually composed of a series of

strokes. A stroke is a set of temporally ordered sampling
points captured in a single sequence of pen-down, pen-move
and pen-up events [17]. Our sketch-based interface allows the
user to draw in a natural way just as they would do on paper.
The user can draw freely and there is no restriction on how a
particular shape or symbol is drawn and text is written. One of
the important challenges in such a sketch-based interface is to
robustly classify the pen-strokes as geometry, text and
gestures, which in itself an active area of research and not the
focus of this work. Lineogrammer [34] provides heuristics for
modelessly disambiguating between text, geometry elements
and command gestures. For example, to distinguish between
text and geometry, one of the criteria, they used is that the size
of text must be small (< 2 cm) and (or) the gap between
continuous strokes is less than 500ms. We use similar
heuristics to distinguish between hand-written text, gestures
and geometry elements. However, both the FEA problem’s
geometry and symbols are composed of low-level primitives
like lines and arcs. Also, to maintain the naturalness of the
interface, the stroke should be able to represent any number of
shape primitives connected together.

The symbols or geometry can be specified in a single
stroke or multiple strokes and there should be no requirements
that the parts of symbol/geometry be drawn in the same order.
Hence to accommodate these requirements and simplify
recognition, we ask the user to switch pen colors (i.e. switch
modes) while specifying geometry or symbols. Text can be
input in any mode. In addition to reducing ambiguity, multi-
color would provide visual clarity to the sketch drawn. The
low-level primitives recognized in the current implementation
of our system include lines, circles, and circular arcs.
 Sketches can be created in our system using any of a
variety of devices that closely mimic the pen-paper paradigm.
We use Wacom Cintiq 21UX digitizer with stylus, tablet-PCs
and a traditional mouse. Both Wacom and tablet PCs are
particularly suited to natural interaction, enabling the user to
sketch directly on a computer display. The system uses
Microsoft Tablet PC SDK to capture the user input strokes and
for handwriting recognition. The users can view their sketch
either as raw pen strokes and (or) as primitives.

An example of the sketching process is shown in Fig. 1.
The user starts sketching in ‘geometry’ mode and the input
stroke is first classified as text or geometry. If the system
classifies it as text, then the screen is updated with the
recognized text label. Or else, each input stroke is decomposed
into low-level geometric primitives with minimal error. The
system then identifies the spatial relationships between the
primitives. These relationships are represented as geometric
constraints which are then solved by a geometry constraint
solver. For this purpose, we have integrated LGS2D [35] in
our system. The output from the solver is the beautified
version of the input which is updated on the screen. The user
can continue sketching or switch modes. The strokes input in
‘symbol’ mode are processed similarly as in ‘geometry’ mode.

When the user selects the ‘Process’ button for
processing, the symbols are then sent to the ‘symbol
recognition’ module for recognition. Then, the symbols, text
and geometry are grouped and associated with each other for
correct interpretation of context.

For example in Fig. 2, the load (downward single-arrow
symbol) is associated with F=100 (text) and point P3 implying
that a force of 100 units in negative ‘y direction is applied at
P3. Similarly, the double-headed arrow is associated with 20
units and line L1 implying that a dimension constraint equal to
20 for length of L1 is added to the geometry and satisfied by
the geometry constraint solver. Once the sketch is complete
and processed, the user selects the ‘OUTPUT’ button, which
starts the ‘FE integration’ causing a dialog to pop-up, where
the user specifies the material properties, element description
and meshing parameters (if any). The user uses a scratching
gesture to indicate if the area needs to be meshed. When the
dialog is closed successfully, the sketch is exported as a
unified file suitable for import in ANSYS.

P
1

P
2

P
3

L
1

P
4

Figure 2. A FREEHAND SKETCH WITH THE PROBLEM

GEOMETRY (IN BLACK) AND SYMBOLS (IN RED)

Common interpretation errors can be easily corrected in

our system. Correction of errors in beautification is explained
in section 4.6. When a symbol is recognized incorrectly, the
user can explicitly mark it by holding down a button on the
stylus and circling it. A pop-up menu will open, where the
user can choose from a list of possible classifications. As the
FEA domain is small, the number of misclassifications will be
a minimum. When text is misinterpreted as geometry, drawing
a line across by holding a button on the stylus will change it to
text.

4 BEAUTIFICATION

Beautification aims at simplifying the input where the
various points of the strokes are interpreted and represented in
a more meaningful manner. Our approach to transforming the
input to formalized representations (i.e. beautification) is
based on the architecture shown in Fig. 3. There are five steps
in the pipeline namely - resampling, segmentation,
recognition, merging and geometry constraint solving. An
example of the user drawn freehand stroke is shown in Fig.
3(a). Figure 3(b) shows the raw points (blue circles) as
sampled by the hardware and Fig. 3(c), the uniformly spaced
points after resampling (green circles). The segmentation step
explained in section 4.2 identifies the critical points (red
circles) shown in Fig. 3(d). Then, the segments between the
adjacent critical points are recognized and fit with primitives
(Fig. 3(e)). The status of the freehand sketch after merging is
shown in Fig. 3(f) and finally the sketch is beautified
considering the geometric constraints (Fig. 3(g)). The various
steps are explained in detail in the following sections. For
simplicity, we limit the discussions to a single stroke in a
sketch. All the other strokes are processed similarly.

 5 Copyright © 2009 by ASME

4.1 Stroke Resampling

Freehand input is prone to contain some noise. Sezgin
[36] identified two main sources - imprecise motor control and
digitization. As the interface places no constraint on the users'
drawing freedom, we ignore the noise due to the slight tremble
of hand or poor drawing skills of the user. We consider the
input as it is and all input points are considered as genuine.
However, the sampling frequency of the mechanical hardware
coupled with the drawing speed of the user result in non-
uniform samples of the raw freehand input. To achieve
uniform sampling, we resample the points of the input stroke
such that they are evenly spaced. We used a fixed interspacing
distance, Id of 200 HIMETRIC units (1 HIMETRIC = 0.01mm
= 0.0378 pixels). The resampling algorithm discards any
sample within the Id of earlier samples and interpolates
between samples that are separated by more than Id. The start
and end points of the stroke are by default added to the
resampled set of points. Figure 3(c) shows the result of
resampling for the stroke (Fig 3a) using our method. Uniform
resampling is important for the segmentation algorithm to
work efficiently.

4.2 Segmentation
In our system, a single freehand stroke can represent any

number of primitives connected together. The task of
segmentation routine is to find those critical points that divide
the stroke into its constituent primitives. These critical points
are 'corners' of the piecewise linear strokes and also the places
where curve and line (curve) segments connect.

Our segmentation algorithm builds upon the approach
described in [12], which works well for strokes composed of
only line segments. One of the drawbacks of this method is
that the algorithm often misses identifying the corners at
heavily obtuse angles. We address this drawback and also
improve their algorithm to accommodate curves in addition to
line segments. We are interested in improving this algorithm
especially for its simplicity (easy to program) in

implementation, high efficiency and at the same time not
being computationally intensive.

θθ

Figure 4. CHORD ANGLE' COMPUTATION.

The likely critical points of the stroke are those indices
where the ‘chord angle’ is a local minimum, which is lesser
than a threshold, ’t’. Figure 4 shows the computation of the
chord angle. The blue circles represent the resampled points
and ‘θ’ represents the `chord angle’ computed using the
formula inset in the Fig. 4. To avoid the problem posed by
choosing a fixed threshold, we set the threshold to be equal to
the median of all the chord angle values. For the stroke in Fig.
3(a), the initial set of critical points obtained is shown in Fig.
3(d). By default, the start and end points of a stroke are
considered as critical points. Using a window of uniformly
spaced points to compute the curvature (chord angle),
smoothes out the noise, if any in the input stroke. The larger
the window, the larger the smoothing effect resulting in
missed critical points. Like [10], we found that setting the
window size w = 3 to be effective irrespective of the user or
the input device used.

Figure 3. BEAUTIFICATION OF A FREEHAND STROKE.

(a) (b) (c)
(d)

(e)(f)
(g)

 6 Copyright © 2009 by ASME

4.3 Recognition
The next task after segmentation is to classify and fit the

segments between adjacent critical points as low-level
geometric primitives. The current implementation of our
system recognizes lines, circular arcs and circles. The
recognition method is based on least squares analysis [37], but
the computation of parameters of best fit line and circular arc
differ from the traditional approach. Usually, the least square
fit of lines and arcs result in the end points of the primitives to
be moved to new location. For example see Fig. 5. To prevent
such discontinuities between adjacent primitives of the stroke,
we fix the endpoints of the primitives (as it is) of the original
segment and then perform the analysis. Figure 5(c) shows the
result of our recognition algorithm.

(a) (b) (c)
Figure 5. RECOGNITION OF SEGMENTS.

After finding the errors, the segment is typically
classified by the primitive that matches with the least error.
However, line segments can always be fit with high accuracy
as an arc with a very large radius. In such cases, if the arc
length is less than 15 degrees, we classify it as a line.
Similarly, an arc is classified as a circle if its arc length is
close to 2π.

4.4 Merging

The initial critical points set obtained through
segmentation routine may contain some false positives. The
merging procedure repeatedly merges adjacent segments, if
the fit for the merged segment is lower than a certain
threshold.

L1

L8

L5

L4

A1

A2

A3

A4

A5

Figure 6. THE MERGING ROUTINE.

For every i

th
segment, we try merging it with i-1

st
 and

i+1
st
 segment. Let these new segments be seg1 and seg2. The fit

errors for seg1 and seg2 are calculated according to section 4.3.
For the segment with least error among seg1 and seg2, merging
occurs if and only if the error is less than the sum of the

corresponding errors of the original segments. For example in
Fig. 6, the two lines (L4 and L5) are merged into an arc (A4)
and the three arcs (A1, A2 and A3) yield one arc (A5).

4.5 Geometry Constraint Solving
Pu and Ramani highlight the importance of geometric

constraints in beautification in [3]. Geometric constraints are
widely used and an integral part in many design related
applications, such as drawing programs, CAD tools and
graphical user interfaces [3].

Table 2. IMPLICIT GEOMETRIC CONSTRAINTS
INFERRED FOR BEAUTIFICATION

 Point Line Arc (Circle)

Point
Coincidence
Horizontal Alignment
Vertical Alignment

Point on Line
Coincidence
Point on Arc
(Circle)

Line Point on Line
Parallel
Perpendicular
Collinear

Tangency

Arc
(Circle)

Coincidence
Point on Arc (Circle)

Tangency
Tangency
Concentricity

In current drawing systems, specifying geometric

constraints is a difficult, time consuming and a tedious task.
Also, the users need to undergo prior training before using the
system. Novice users must be made aware of geometric
constraints and how these can be used to create what they
want. To reduce this cognitive overload and to effectively
support the use of geometric constraints in freehand sketching,
the system infers and satisfies the constraints automatically
without much intervention from user. Geometric constraints
are usually classified as either (1) explicit constraints, which
refer to the constraints that are explicitly specified by the user
such as dimensions - distance between a point and a line or
angle between two lines, (2) implicit constraints, which refer
to the constraints that are inherently present in the sketch such
as concentricity and tangency. It is natural for users to express
geometric constraints implicitly when they are sketching.
Table 2 lists the the different constraints inferred in our
system.

4.6 Resolving ambiguities with Interaction
Any recognition system is not devoid of ambiguities. Our

system provides the interface to correct the errors through
simple interactions. Errors in segmentation include missed and
unnecessary critical points. In our system, when the user taps
on or near a critical point with the stylus (or left click using a
mouse), the system first removes that critical point and the
corresponding two primitives that share this point. This results
in an unrecognized segment which is then classified and refit.
The user can also add a segmentation point in a similar
manner. The nearest point on the stroke to the clicked location
is used as the input point where the existing primitive is
broken into two primitives. However, the start and end points
of a stroke cannot be removed by clicking unless the stroke

 7 Copyright © 2009 by ASME

represents an arc. In such a case, clicking on one of the end
points, converts the arc to a circle.

Errors in recognition correspond to primitive
misclassification. An input stroke drawn by holding down a
button on the stylus (or both left and right mouse button
together) is recognized as a pulling gesture. The primitive that
is closest to the starting point of this gesture is the one to be
pulled and accordingly its classification is altered i.e. if the
primitive was a line, it is refit as a circular arc and vice versa.
This gesture does nothing for a circle because a line (circle)
can never be misinterpreted as a circle (line) and moreover
adding a critical point to a circle breaks it into two arcs.
Additionally, the user can erase a primitive, a stroke or a part
of stroke using the eraser end of the stylus, just as using a
pencil eraser.

5 SYMBOL RECOGNITION

The strokes classified as symbols are first simplified and
represented as low-level geometric primitives by the
beautification module. This simplification helps in reducing
the variability that may exist in comparison to correctly
identify complex symbols. The symbols drawn in finite
element domain, both in academia and research have well-
defined and standardized forms. The list of symbols
commonly used in finite element domain (i.e. for loading and
boundary conditions) is shown along with other symbols
recognized in our system in Table 1.

Table 3. THE DIFFERENT VARIATIONS OF (A)
‘ROLLER’ AND (B) FULLY CONSTRAINED SYMBOLS.

Fully Constrained

Roller(a)

(b)

On quick observation, one can see that almost all of the

symbols are comprised of either lines and (or) circles and only
the ‘Moment’ symbol consists of an arc. The various symbols
are configurations of these low-level primitives. Also, some
symbols like ‘Roller’ have different variations (Table. 3a),
where there is a difference in the number of circles drawn. A
good symbol recognition algorithm must account for these
variations. Though these symbols seem different, there are
certain distinct properties for each symbol or group of symbols
that are different from other symbols (or groups). For
example, in Table 3, the ‘fully constrained’ symbol is different
from ‘roller’ symbol, as it can be distinguished with the
presence of circles. In this case, the number of circles does not
matter in differentiating between them. We have created
similar heuristic based rules to recognize different symbols.
The reason behind using such an approach is that the number
of symbols in this set is finite and each symbol has some
distinct properties that can be used to differentiate from the

other symbols in spite of the possible variations. Also, there is
no training required.

6 SKETCH INTERPRETATION
The sketch is interpreted after beautification and symbol

recognition. Generally, users draw related objects in such a
way that they are closer to each other. We use this observation
to associate and group objects to provide context. For
example, in Fig. 8(a), the ‘load’ symbol, ‘F=1000’ and the top
middle node combine together to imply the meaning that a
load of 1000 units is applied on the node (point) in negative y-
direction. The various context observed in finite element
analysis can be classified into three categories, namely
Loading Conditions, Boundary Conditions and Geometric
constraints. Accordingly, the various symbols (Table 1) fall
into these categories. We use this classification information
and spatial proximity reasoning to create rules for
understanding the different contexts in the sketch. Applied
loads in the system are either point-loads or uniform loads
which can be both forces and pressure (depending on the
problem). The magnitude and direction of the loads are
determined from the text and direction of arrow. When there is
only one load symbol detected, it refers to a point-load and the
detected load is applied to the nearest point (node) in the
geometry. If a pattern of load symbols is inferred next to hand
written text, then the closest starting and end points of the
arrows are found and the system searches for a nearest
primitive on the geometry and applies to it. The types of
boundary conditions are either fully constrained or constrained
in only one direction (specified with a roller symbol). The
specific direction i.e., x- or y- direction is determined from the
orientation of the symbol, for example, like the pattern of
circles in the roller symbol. Like loads, boundary conditions
can be applied either to a single point or a primitive. Finally,
the interpreted dimensional constraints are satisfied by the
solver and the sketch gets updated accordingly.

7 FE INTEGRATION

When the user presses the ‘Output’ button, the system
shows a dialog box, where the user enters the material
information, element type and description, and mesh size for
finite element analysis. Finite element solvers like ANSYS do
not require any units, but assume that the input is consistent.
Our system also behaves along the similar lines. Hence, it is
on the part of the user to make sure that the input units are
consistent. Our current implementation of the system supports
two types of elements which are commonly used in structural
and static finite element analysis. They are 1) Two
dimensional- spar element, a uni-axial tension-compression
element with two degrees of freedom at each node, i.e.,
translations in the nodal x- and y-directions. This element is
used for modeling trusses. The equivalent element in ANSYS
is LINK1, 2) Two dimensional structural solid element, for
modeling solid structures. The equivalent element in ANSYS
is PLANE42. The element can be used as a plane stress, plane
strain or an axisymmetric element. The element is defined by
four nodes having two degrees of freedom at each node:
translations in the nodal x and y directions. The element
properties include Young’s modules ε, and Poisson’s ratio ν,
as well as geometric information, such as cross-sectional area.
Specifying the mesh size is optional and it is enabled only for

 8 Copyright © 2009 by ASME

structural solid elements. Similarly, the users can also specify
what results they wish see after the analysis, like for example
the displacement sum of nodal solution. Currently, the system
allows the users to choose from von misses stress, reaction
forces and deflections. On closing this dialog successfully, the
system exports the input i.e., model geometry, boundary
conditions, loads, material, element and meshing information
to a unified file specific for ANSYS. This file can then be run
in ANSYS to yield the desired results.

8 RESULTS AND DISCUSSION

In this section, we present some examples generated
using our system. First, we show a simple example of a two
dimensional cantilever beam with a point-load applied at its
end to illustrate the sketching process. The user starts by
sketching a rectangle with one input stroke in geometry mode
as shown in Fig. 7(a). When the user lifts the pen, the system
beautifies the input and the result is shown in Fig. 7(b). Then,
the user switches to ‘symbol’ mode to specify the boundary
conditions, loads and dimensions. On pressing the ‘process’
button, the system processes the input and the result is shown
in Fig. 7(c). The user can repeat this process to make changes
or can proceed further. When the user presses the ‘output’
button, the system opens the integration dialog. The user can
choose from a library of materials or modify existing material
or specify new properties. For this problem, the user chose
steel with ε = 30e6 and ν = 0.3. Similarly, the element type
(PLANE 42) and other parameters are input. On closing the
dialog, the system exports the input as a set of commands
specific to ANSYS shown in Fig. 7(e). The result
(displacement vector sum plot) obtained on running this file in
ANSYS is shown in Fig. 7(d). This model is an ideal example
for students to start learning finite element analysis.

Figure 1 shows an example of a three dimensional
bracket, modeled as a two–dimensional problem with uniform
thickness = 0.5 inches. The initial freehand sketch (without
beautified geometry) and the final ANSYS output are shown
at the top and bottom of Fig.1 respectively.

To illustrate an example with two-dimensional spar
element (LINK1), a truss problem is presented. Figure 8
shows the freehand sketch, output command file and the
generated results in ANSYS. (The dimensions are not shown
explicitly to avoid cluttering the scene). As this model does
not require any area meshing, the geometry is modeled as a set
of nodes and elements between them instead of key points and
lines. The material properties used are the same as the
cantilever beam with the input cross-sectional area = 0.5 sq.
inches.

9 CONCLUSION

In this paper, we addressed the specific challenge of
transforming ambiguous and informal freehand input to more
formalized representations i.e., beautification. In this paper,
we addressed the specific challenge of transforming
ambiguous and informal freehand input to more formalized
representations i.e., beautification. To this extent, we created a
beautification method that is not domain specific, supports
multi-primitives like lines, arcs and circles, and considers the
spatial relationships implied in the freehand sketches.

FINISH

/CLEAR

/PREP7

MP,EX,1,30E6

ET,1,PLANE42

R,1,0.5,

K,1,0,0

K,2,10,0

K,3,10,2

K,4,0,10

L,1,2

L,2,3

L,3,4

L,4,1

AL,1,2,3,4

DL,4,,ALL,0

FK,3,FY,-100

ESIZE,0.5,0

AMESH,1

EPLOT

ALLSEL

FINISH

/SOLU

SOLVE

/POST1

PLNS,U,SUM

(a)

(b)

(c)

(d)

(e)

ANSYS commands

Figure 7. TWO DIMENSIONAL CANTILEVER BEAM
SUPPORTED BY A POINT LOAD - 100LBS AT THE END

FINISH

/CLEAR

/PREP7

ET,1,LINK1

R,1,0.5

MP,EX,1,30E6

N,1,6,0

N,2,18,0

N,3,0,8

N,4,12,8

N,5,24,8

E,1,2

E,1,3

E,1,4

E,2,4

E,2,5

E,3,4

E,4,5

D,5,ALL

D,2,UY

F,3,UY,-2000

F,4,UY,-1000

EPLOT

ALLSEL

FINISH

/SOLU

SOLVE

/POST1

PLNS,U,SUM

ANSYS commands

(a)

(b)
(c)

Figure 8. TRUSS ANALYSIS WITH TWO POINT LOADS
- 1000LBS AND 2000LBS.

 9 Copyright © 2009 by ASME

To demonstrate the utility of this method and also to
create a natural working environment for designers, we
developed FEAsy, a sketch-based interface that integrated
freehand sketching with finite element analysis. We showed
the capabilities of the system and also how this system can be
used to evaluate ideas especially in early design and also as a
potential learning tool for students. Most notably, all models
were created quickly and in a more natural manner just as one
would draw on paper. Anyone familiar with the finite element
analysis domain can learn the system quickly with very little
training. The current implementation of the system, exports
the model geometry, loading and boundary conditions into a
unified file that can be run in ANSYS to visualize results. Our
ultimate goal is to create a unified framework from sketching
to visualization of results. Hence, our immediate future work
is to integrate a finite element solver and provide visualization
capabilities in the system. Future improvements include
supporting other types of analysis (apart from structural) and
also to extend to three dimensions.

10 ACKNOWLEDGEMENTS
This material is based upon work supported by the

National Science Foundation Division of Information and
Intelligent Systems (NSF IIS) under Grant No. 0535156. This
work was done in collaboration with PARC (formerly Xerox
PARC). We would like to acknowledge Dr. Eric Saund for his
suggestions during this work. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

11 REFERENCES
[1] Davis, R., 2002. “Sketch understanding in design:

Overview of work at the MIT AI lab”. In Sketch
Understanding, Papers from the 2002 AAAI Spring
Symposium, AAAI Press, pp. 24–31.

[2] Shpitalni, M., and Lipson, H., 1997. “Classification of
sketch strokes and corner detection using conic sections
and adaptive clustering”. ASME Journal of Mechanical
Design, 119, pp. 131–135.

[3] Pu, J., and Ramani, K., 2007. “Implicit geometric
constraint detection in freehand sketches using relative
shape histogram”. In SBIM ’07: Proceedings of the 4th
Eurographics workshop on Sketch-based interfaces and
modeling, ACM, pp. 107–113.

[4] Oviatt, S., Arthur, A., and Cohen, J., 2006. “Quiet
interfaces that help students think”. In UIST ’06:
Proceedings of the 19th annual ACM symposium on
User interface software and technology, ACM, pp. 191–
200.

[5] Forbus, K. D., Lockwood, K., Klenk, M., Tomai, E., and
Usher, J., 2004. “Open-domain sketch understanding:
The nusketch approach”. In AAAI Fall Symposium on
Making Pen-based Interaction Intelligent and Natural,
October, AAAI Press, pp. 58–63.

[6] Igarashi, T., Kawachiya, S., Tanaka, H., and
Matsuoka,S.,1998. “Pegasus: a drawing system for rapid
geometric design”. In CHI ’98: CHI 98 conference
summary on Human factors in computing systems,
ACM, pp. 24–25.

[7] Landay, J. A., and Myers, B. A., 2001. “Sketching inter-
faces: Toward more human interface design”. Computer,
34(3), pp. 56–64.

[8] Lin, J., Newman, M. W., Hong, J. I., and Landay, J. A.,
2001. “Denim: an informal tool for early stage web site
design”. In CHI ’01: CHI ’01 extended abstracts on
Human factors in computing systems, ACM, pp. 205–
206.

[9] Sezgin, T. M., Stahovich, T., and Davis, R., 2001,
“Sketch based interfaces: early processing for sketch
understanding”. In PUI ’01: Proceedings of the 2001
workshop on Perceptive user interfaces, ACM, pp. 1–8.

[10] Calhoun, C., Stahovich, T. F., Kurtoglu, T., and Kara, L.
B., 2002. “Recognizing multi-stroke symbols”. In 2002
AAAI Spring Symposium - Sketch Understanding, (Palo
Alto CA, 2002, AAAI Press, pp. 15–23.

[11] Kim, D.H, Kim, M.-J., 2006. “A curvature estimation for
pen input segmentation in sketch-based modeling”.
Computer-Aided Design, 38(3), March, pp. 238–248.

[12] Wolin, A, Eoff, B.D., Hammond. T.A, 2008.
“Shortstraw: A simple and effective corner finder for
polylines”. In Proceedings of Eurographics 2008 -
Sketch-Based Interfaces and Modeling (SBIM).

[13] Hse, H., Shilman,M., and Newton, A. R., 2004. “Robust
sketched symbol fragmentation using templates”. In IUI
’04: Proceedings of the 9th international conference on
Intelligent user interfaces, ACM, pp. 156–160.

[14] Leslie Gennari, Levent Burak Kara, T. F. S. K. S., 2005.
“Combining geometry and domain knowledge to
interpret hand-drawn diagrams”. Computers & Graphics,
29(4), August, pp. 547–562.

[15] Zhang, X., Song, J., Dai, G., and Lyu, M., 2006.
“Extraction of line segments and circular arcs from
freehand strokes based on segmental homogeneity
features”. Systems, Man, and Cybernetics, Part B, IEEE
Transactions on, 36(2), April, pp. 300–311.

[16] Qin, S. F., Wright, D. K., and Jordanov, I. N., 2001.
“On-line segmentation of freehand sketches by
knowledge-based nonlinear thresholding operations”.
Pattern Recognition, 34(10), pp. 1885–1893.

[17] Wenyin, L., 2003. “On-line graphics recognition: State-
of-the-art”. In GREC, pp. 291–304.

[18] Fonseca, M. J., and Jorge, J. A., 2001. “Experimental
evaluation of an on-line scribble recognizer”. Pattern
Recogn. Lett., 22(12), pp. 1311–1319.

[19] Kara, L. B., and Stahovich, T. F., 2005. “An image-
based, trainable symbol recognizer for hand-drawn
sketches”. Computers & Graphics, 29(4), pp. 501 – 517.

[20] Veselova, O., and Davis, R., 2006. “Perceptually based
learning of shape descriptions for sketch recognition”. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses,
ACM, p. 28.

[21] Plimmer, B., and Grundy, J., 2005. “Beautifying
sketching-based design tool content: issues and
experiences”. In AUIC ’05: Proceedings of the Sixth
Australasian conference on User interface, Australian
Computer Society, Inc., pp. 31–38.

[22] Eggli,L., ChingYao,H., Bruderlin,B., and Elber, G.,
February 1997. “Inferring 3d models from freehand
sketches and constraints”.Computer-Aided Design, 29,
pp. 101–112(12).

 10 Copyright © 2009 by ASME

[23] Zeleznik, R. C., Herndon, K. P., and Hughes, J. F., 1996.
“Sketch: an interface for sketching 3d scenes”. In
SIGGRAPH ’96: Proceedings of the 23rd annual
conference on Computer graphics and interactive
techniques, ACM, pp. 163–170.

[24] Damm, C. H., Hansen, K. M., and Thomsen, M., 2000.
“Tool support for cooperative object-oriented design:
gesture based modelling on an electronic whiteboard”. In
CHI ’00: Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM, pp. 518–
525.

[25] Chen, Q., Grundy, J., and Hosking, J., 2003. “An e-
whiteboard application to support early design-stage
sketching of uml diagrams”. In HCC ’03: Proceedings of
the 2003 IEEE Symposium on Human Centric
Computing Languages and Environments, IEEE
Computer Society, pp. 219–226.

[26] Plimmer, B., and Apperley, M., 2004. “Interacting with
sketched interface designs: an evaluation study”. In CHI
’04: CHI ’04 extended abstracts on Human factors in
computing systems, ACM, pp. 1337–1340.

[27] Gross, M. D., and Do, E. Y.-L., 1996. “Ambiguous
intentions: a paper-like interface for creative design”. In
UIST ’96: Proceedings of the 9th annual ACM
symposium on User interface software and technology,
ACM, pp. 183–192.

[28] Landay, J. A., andMyers, B. A., 1995. “Interactive
sketching for the early stages of user interface design”.
In CHI ’95: Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM
Press/Addison-Wesley Publishing Co., pp. 43–50.

[29] Naya, F., Contero, M., Aleixos, N., and Company, P.,
2007. “Parsketch: A sketch-based interface for a 2d
parametric geometry editor.”. In HCI (2), J. A. Jacko,
ed., Vol. 4551 of Lecture Notes in Computer Science,
Springer, pp. 115–124.

[30] Laviola, J. J., and Zeleznik, R. C., 2006. “Mathpad2: a
system for the creation and exploration of mathematical
sketches”. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Courses, ACM.

[31] Peschel, J., and Hammond, T., 2008. “Strat: A sketched-
truss recognition and analysis tool”. In Proceedings of
the Fourteenth International Conference on Distributed
Multimedia Systems.

[32] Hutchinson, T. C., Kuester, F., and Phair, M. E., 2007.
“Sketching finite-element models within a unified two-
dimensional framework”, Journal of Computing in Civil
Engineering, 21(3), pp. 175–186.

[33] de Silva, R., Bischel, D. T., Lee,W., Peterson, E. J.,
Calfee, R. C., and Stahovich, T. F., 2007. “Kirchhoff’s
pen: a pen-based circuit analysis tutor”. In SBIM ’07:
Proceedings of the 4th Eurographics workshop on
Sketch-based interfaces and modeling, ACM, pp. 75–82.

[34] Zeleznik, R. C., Bragdon, A., Liu, C.-C., and Forsberg,
A.,2008. “Lineogrammer: creating diagrams by
drawing”. In UIST ’08: Proceedings of the 21st annual
ACMsymposium on User interface software and
technology, ACM, pp. 161–170.

[35] Ledas Ltd, http://www.ledas.com/products/lgs2d/,
accessed on feb 25th 2009.

[36] Sezgin, T. M., and Davis, R., 2006. “Scale-space based
feature point detection for digital ink”. In SIGGRAPH
’06: ACM SIGGRAPH 2006 Courses, ACM, p. 29.

[37] Chen, K.-Z., Zhang, X.-W., Ou, Z.-Y., Feng, X.-A.,
January 2003.“Recognition of digital curves scanned
from paper drawings using genetic algorithms”. Pattern
Recognition, 36, pp. 123–130(8).

