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Abstract

The pursuit of computational efficiency has led to the pro-

liferation of throughput-oriented hardware, from GPUs to

increasingly-wide vector units on commodity processors

and accelerators. This hardware is designed to efficiently

execute data-parallel computations in a vectorized manner.

However, many algorithms are more naturally expressed as

divide-and-conquer, recursive, task-parallel computations;

in the absence of data parallelism, it seems that such algo-

rithms are not well-suited to throughput-oriented architec-

tures. This paper presents a set of novel code transformations

that expose the data-parallelism latent in recursive, task-

parallel programs. These transformations facilitate straight-

forward vectorization of task-parallel programs on commod-

ity hardware. We also present scheduling policies that main-

tain high utilization of vector resources while limiting space

usage. Across several task-parallel benchmarks, we demon-

strate both efficient vector resource utilization and substan-

tial speedup on chips using Intel’s SSE4.2 vector units as

well as accelerators using Intel’s AVX512 units.

1. Introduction

As energy efficiency and power consumption become in-

creasingly relevant issues for processor and accelerator de-

signers, hardware resources for parallelism are being shifted

from general-purpose multicores to throughput-oriented

computing, with GPUs, accelerators like Intel’s Xeon Phi,

and increasingly-wide SIMD units on commodity proces-

sors providing efficient, vector-based parallel computation.

In fact, because SIMD extensions on commodity processors

tend to require relatively little extra hardware, executing a

SIMD instruction is essentially “free” from a power perspec-

tive, making vectorization an attractive option.

Vector designs are well-suited to executing data-parallel

algorithms, where the same computation is performed on

each of a series of data items, and modern vectorizing com-

pilers do a reasonable job of finding parallelism in simple,

data-parallel loops and mapping that parallelism to vec-

tor units on general-purpose processors [Nuzman and Zaks

2008; Maleki et al. 2011], and programming models like

CUDA and OpenCL simplify the task of mapping data-

parallel computations to vector hardware on GPUs [NVIDIA;

Stone et al. 2010]. Unfortunately, many algorithms are more

naturally expressed as divide-and-conquer, recursive, task-

parallel computations. Such programs do not naturally de-

compose into data-parallel representations—there are no

dense, vectorizable loops—and hence it seems that existing

vector hardware is a poor target for such programs.

1 void foo ( i n t x )

2 i f ( i s B a s e ( x ) )

3 baseCase ( )

4 e l s e

5 l 1 = i n d u c t i v e W o r k 1 ( x ) / / l 1 = x / 2

6 spawn foo ( l 1 )

7 l 2 = i n d u c t i v e W o r k 2 ( l 2 ) / / l 2 = x / 2

8 spawn foo ( l 2 )

(a) Simple recursive code. spawn creates new tasks

foo(8)

foo(4)

foo(4)

foo(2)

foo(2) foo(2)

foo(2)

(b) Computation tree. Black boxes are baseCase computations,

dark grey boxes are inductiveWork1 computations and light

grey boxes are inductiveWork2 computations

Figure 1: Recursive, task-parallel code and computation tree

To address this shortcoming, there have been many pro-

posals to map coarse-grained tasks to commodity GPUs [Tzeng

et al. 2010; Aila and Laine 2009] or to modify GPU hard-

ware to better accommodate recursive parallelism with fine-

grained tasks [Orr et al. 2014; Steffen and Zambreno 2010;

Huo et al. 2013]. In this paper, we consider the problem of

effectively mapping fine-grained, recursive, parallel appli-

cations to commodity vector units. Addressing this problem

would allow programmers to adopt a standard, task-parallel

programming model and easily adapt existing applications

to leverage the otherwise unused computational resources

that exist on most general processors as well as in newer

accelerators like Intel’s Xeon Phi.

This paper focuses on exploiting vector parallelism on a

single core. We propose code transformations that restruc-

ture recursive, task-parallel applications to expose their la-

tent data-parallelism that allows for efficient vectorization.

A typical divide-and-conquer application can be thought of

as a computation tree, with each interior node in the com-

putation tree representing work done prior to making a re-

cursive call, children of a node in the tree representing the
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work done during each recursive call, and leaf nodes repre-

senting work done during the base case. Figure 1 shows an

abstract recursive code—the paper’s running example—and

its associated computation tree. An execution of the appli-

cation is equivalent to a valid walk of the tree. In particular,

the normal sequential execution of this computation can be

represented by a depth-first walk of the tree.

Contributions: The key contributions of this paper are code

transformations that create a tree-walk that can be efficiently

vectorized. The transformations handle three important is-

sues: (1) Expose data-parallel computation by performing a

breadth-first expansion of the computation tree; (2) Reduce

the amount of space used and the number of cache misses by

switching to depth-first execution when enough parallelism

has been generated; (3) When irregularities in the computa-

tion tree cause reduction in available parallelism, regenerate

parallel work using re-expansion. In addition, we develop

block management schemes, including a novel stream com-

paction algorithm to ensure that parallel work and data ac-

cesses remain structured for efficient SIMDization.

In our experimental evaluation, we find that our tech-

niques can find vectorization opportunities in all the bench-

marks considered, ranging from small microbenchmarks to

larger kernels. On two hardware platforms, an Intel Xeon

E5 with the SSE4.2 instruction set and an Intel Xeon Phi

with the AVX512 instruction set, we obtain up to 12.23×

speedup. We further find that our scheduling policy is effec-

tive at maintaining high SIMD utilization while bounding

space usage and incurring relatively low overheads. Overall,

this paper presents the first set of techniques for mapping

general, recursive task-parallel programs to commodity vec-

tor hardware. Our approach allows programmers to lever-

age the “free” execution resources available in SIMD units

even for programs that do not appear to be amenable to data-

parallel vectorization.

2. Preliminaries

Specifying recursive, task-parallel programs: This paper

targets the vector parallelization of recursive, task-parallel

applications. To clarify the types of applications we trans-

form and parallelize, we consider a language for specifying

recursive, task-parallel programs, as defined in Figure 2. The

language is a variant on Cilk [Blumofe et al. 1995; Frigo

et al. 1998]. We emphasize that this language is meant to

clarify the types of programs we tackle; in our implementa-

tions, we transform and evaluate programs written in C that

conform to the restrictions of this language.

A k-ary recursive method evaluates a conditional (which

may be a boolean expression or a function returning a

boolean) to decide whether to execute the base case or the

inductive case. The base case is used to produce computation

results. Base case statements can assign expression results to

local variables (note that expressions can be arbitrary, state-

less, non-recursive functions) or perform reductions over

one of a set of reducer objects [Frigo et al. 2009]—these

v 2Z [Values]

a 2{a1, a2, . . . ak} [Arguments]

l 2{l1, l2, . . . } [Locals]

r 2{r1, r2, . . . } [Reducers]

" ::=< | > | = | 6= | ≥ | 

b 2 BExprs ::= true | false | e" e | fb(e1, e2, . . .)

e 2 Exprs ::= v | l | a | fv(e1, e2, . . .)

sb 2 BaseStmts ::= sb; sb | l := e | reduce(r, e)

si 2 IndStmts ::= return | si; si | l := e | spawn(e1, e2, . . . , ek)

m 2 MethodBody ::= if b then sb else si

Figure 2: Language for recursive, task-parallel methods

associative, commutative updates to global state are used in

lieu of return values. Note that this means that the execu-

tion of multiple base-case tasks can be readily parallelized.

While the use of reduction objects instead of return values

may seem limiting, we have found that many recursive ap-

plications can be written in this manner.

The inductive case can perform additional computations

and make recursive calls using the spawn command, which

binds expression values to the arguments of the subsequent

recursive invocation. As in Cilk, spawned methods can be

executed in parallel with (and are assumed to be independent

of) any subsequent work in the spawning method; this is the

source of task parallelism in our language.1

There is an implicit synchronization at the end of each

method: all spawned (callee) methods must return before

their parent (caller) method can return. Unlike in Cilk, our

language does not have an explicit sync keyword. No ad-

ditional work can be performed after spawned tasks “rejoin”

execution. All computations expressed in our language can

be viewed as computation trees: spawns create children of

the current task, and base case computations, which perform

no spawns, are leaves of the computation tree.

In terms of our language description, Figure 1(a) can be

interpreted as follows. foo defines the recursive method.

isBase() performs some computation to decide whether

to perform the base case, which is defined by baseCase().

If isBase() returns false, inductiveWork1() and

inductiveWork2() perform the necessary computa-

tions to set up two spawns of recursive tasks. While the

running example only has two children tasks, in general, any

number of child tasks can be spawned in the inductive case.

Strawman vectorization: To grasp the difficulties involved

in vectorizing a recursive application described in our lan-

guage, it is helpful to understand why the obvious solu-

tion will not work. Consider executing a task-parallel pro-

gram written in our specification language using a traditional

multicore, work-stealing runtime, as used by Cilk [Blumofe

et al. 1995; Frigo et al. 1998; Danaher et al. 2006]. In a

1 We only consider self-recursive programs in this paper for simplicity; this

is not a fundamental limitation of our technique.

2
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Cilk-style work-stealing runtime, a computation tree is run

in parallel using a “work-first” scheduling policy [Frigo et al.

1998], where a thread executes a computation tree depth-first

— when a thread spawns a task, it immediately executes the

spawned task and places the executing task’s “continuation”

(the remaining work of the function) in a local pool. Other

threads that need work may steal continuations to execute

the remainder of the computation. In the absence of work

stealing (i.e., if every thread has sufficient work), this policy

results in each thread executing a subtree of the computation

tree in a depth-first manner.

One obvious approach to vectorization is to map this

basic execution strategy to vector units: at a high level, a

thread can be assigned to each SIMD lane of a vector unit,

and each thread picks a node in the computation tree and

executes it in a vector-parallel manner with (some) other

nodes in the computation tree, and then proceeds to the next

node in a depth-first manner.

Implementing this strategy on SIMD units is extremely

difficult: because each “thread” executes a different portion

of the computation tree, the threads’ stacks grow and shrink

at different times. All of this stack management must be

done manually, as all the SIMD lanes are under the con-

trol of a single, actual thread, necessarily incurring extra

overhead. Moreover, performing the stack management in

a vector-friendly manner is impossible: because the stacks

diverge, storing/loading data from each thread’s stack will

require scatter and gather operations, which perform poorly

on vector units designed for packed loads and stores.

3. From Task Parallelism to Data Parallelism

This section overviews how a recursive, task-parallel pro-

gram can be transformed to enable vector-parallel execu-

tion. Rather than implementing our schedulers as runtime

components separate from the task-parallel application, as in

traditional multicore implementations, our approach to vec-

torization uses code transformations that integrate schedul-

ing decisions into the (transformed) application code. That

is, we transform the application code to produce particu-

lar execution schedules. We choose this approach to facili-

tate vectorizing fine-grained tasks. The overheads of runtime

scheduling are tolerable when parallelism can be achieved

by threads that each run large numbers of tasks indepen-

dently. However, exploiting vector hardware requires fine-

grained parallelism: operations must be grouped together at

the granularity of individual instructions to be vectorized.

The key insight behind our vectorization strategy is

that through careful code transformations, recursive, task-

parallel algorithms can be transformed into blocked recur-

sive algorithms, which group together multiple tasks in the

original computation tree into blocks that can be efficiently

executed in a vectorized manner with low overhead. These

transformations have two effects: (i) by building these com-

putation blocks out of tasks in the tree that are all at the

same depth, our transformations avoid the stack manage-

ment pitfalls that compromise the naı̈ve solution described

previously; and (ii) by creating blocks out of individual fine-

grained tasks, our transformations enable the instruction-by-

instruction grouping necessary for vectorized execution.

Our vectorization strategy consists of three components:

1. We transform the original recursive, task-parallel code

into blocked code that executes the computation tree

level-by-level in breadth-first manner. Breadth-first ex-

pansion exposes opportunities for parallelism, the blocked

structure of the code enables vectorization, and the level-

by-level strategy ensures that the stack frames necessary

for vectorized computation can be organized to support

vectorized memory operations.

2. A pure breadth-first execution can consume large amounts

of space (proportional to the width of the computation

tree) and lead to a large number of cache misses due to

decreased locality. Therefore, we produce a second trans-

formed version of the code that implements a blocked

depth-first execution schedule that essentially spawns

“threads” for each task in a block of tasks. Each thread

explores its portion of the computation tree in a depth-

first manner, and the threads execute in lockstep, each

taking identical paths through their respective compu-

tation subtrees. By executing in a depth-first manner,

the amount of storage required for saving state is pro-

portional to the depth of the tree, and by executing in

lockstep, each “thread” is kept at the same depth of the

tree as the other threads in the block, simplifying stack

management.

3. Since some branches of the computation tree are shal-

lower than others, some threads may “die out” early, re-

ducing SIMD utilization. To ameliorate this, we design

a re-expansion mechanism that toggles between breadth-

first execution to generate more parallel work and depth-

first execution to control space usage.

4. Transformations and Scheduling

This section describes the three techniques discussed in Sec-

tion 3 in more detail. We focus primarily on the code trans-

formations necessary to achieve particular scheduling poli-

cies. The details of how this transformed code can be effi-

ciently vectorized are in Section 5.

4.1 Breadth-first execution to extract data parallelism

Our first transformation produces a breadth-first, level-by-

level traversal of the computation tree to generate large

blocks of work that can be readily vectorized. Figure 3 shows

the transformed code for the code example in Figure 1(a).

The essential idea of the transformation is that each in-

vocation of bfs foo executes all of the instances of foo

in a given level of the tree before proceeding to the next

level of the tree. Each task instance is assigned to a Thread

structure, which contains the information that would be in

the stack frame for that task instance (specifically, any argu-

ments to the task). A ThreadBlock contains threads for

each task at a given level of the computation tree. bfs foo

3
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1 void b f s f o o ( ThreadBlock t b )

2 ThreadBlock n e x t

3 foreach ( Thread t : t b )

4 i f ( i s B a s e ( t . x ) )

5 baseCase ( )

6 e l s e

7 l 1 = i n d u c t i v e W o r k 1 ( t . x )

8 n e x t . add ( new Thread ( l 1 ) )

9 l 2 = i n d u c t i v e W o r k 2 ( t . x )

10 n e x t . add ( new Thread ( l 2 ) )

11 b f s f o o ( n e x t )

Figure 3: Breadth-first version of code in Figure 1(a)

is initially called with a thread block containing a single

thread whose x field is set to the original parameter to foo.

The transformed code is straightforward. At each spawn

directive, rather than invoking the next method, the code cre-

ates an additional thread for the next task, with the appropri-

ate arguments, and places it into the next thread block for

the next level of the computation tree. Once all of the com-

putation at the current level of the tree has been completed,

the transformed code invokes bfs foo on next, moving

to the next level of the computation tree.

This transformation has several effects. First, consider the

loop in line 3 in Figure 3. This is a dense loop over a vector

(of Threads). Through a combination of loop distribution,

inlining, if-conversion, and other standard compiler transfor-

mations, this loop can be transformed into a series of dense

loops over individual instructions, which can then be readily

vectorized. Note that the order in which tasks at a given level

are executed can change after loop distribution: for instance,

all the left children of the current level can be added to the

next thread block before all the right children. This reorder-

ing is (a) still compatible with the parallel semantics of our

language; and (b) potentially beneficial to vectorization, as

in many task-parallel applications, left children behave simi-

larly and right children behave similarly. The most challeng-

ing task in vectorization is vectorizing the addition of new

Threads to the next block in lines 8 and 10. Section 5

describes a general stream compaction mechanism that can

manage the blocks in an efficient, vectorized manner.

The second effect of this transformation is that it quickly

generates substantial amounts of parallel work. Although

the initial thread block has but one thread in it, at each

level, the block gets larger, creating additional parallel work.

While this feature is beneficial for keeping the vector units

busy and maintaining high utilization, for large computation

trees, the size of these blocks can get prohibitive; the total

amount of state that must be tracked can get as large as

the width of the computation tree. Moreover, as the thread

blocks get larger, the code begins to suffer from poor cache

performance: by the time execution moves to the next level

of the computation tree, the Threads added to the next

thread block will have been evicted from cache.

4.2 Depth-first execution to limit space usage

To overcome the space explosion incurred by the breadth-

first execution strategy, we make the following observation.

Suppose we stop the controlled breadth-first execution af-

ter a certain level, and let each thread in the resulting thread

block execute its computation subtree to completion, as in

Figure 4(a). In other words, after some number of rounds

of running bfs foo, we invoked dfs foo instead. Each

thread at the level where breadth-first execution is stopped

thus executes its computation subtree in a depth-first man-

ner by invoking the original recursive code. This execution

strategy no longer increases space usage exponentially. In

particular, if there are T threads in the thread block when

dfs foo is invoked, and the depth of the computation tree

is D, the space usage is O(TD).
The downside to this execution strategy is that the loop

in line 2 of Figure 4(a) is not as easily vectorizable as

the dense loop in Figure 3. While the loop is still dense,

traditional techniques for vectorizing dense loops do not

handle recursive methods. So have we merely saved space

at the expense of losing vectorization?

In recent work, Jo and Kulkarni [2011] proposed a com-

piler transformation called point blocking that targets re-

peated recursive traversals of trees. In particular, for code

that performs multiple recursive traversals of a tree in par-

allel, point blocking transforms the code so that multiple

traversal threads are blocked together, and the blocks of

threads traverse the tree in lockstep. For applications such as

Barnes-hut, when multiple traversals are performed in lock-

step, each thread in the block operates on the same part of

the tree structure in close succession, leading to improved

locality. Jo et al. [2013] later observed that the code struc-

ture generated by point blocking made such tree traversal

codes amenable to vectorization.

The key insight for our transformation is that when a

block of threads traversing the computation tree each exe-

cute their subtrees to completion, they are performing re-

peated recursive traversals not of a literal tree (as in Jo and

Kulkarni’s work), but of an abstract computation tree. While

each thread does not “traverse” (execute) exactly the same

computation tree, they each dynamically unfold their com-

putation tree by executing the same code. This the same as

each thread traversing a single tree, but performing slightly

different work at each node in the tree. Point blocking can

be directly applied to the code in Figure 4(a) to produce a

new, blocked depth-first execution where all the threads in

the block execute their computation trees in lockstep.

Figure 4(b) shows the result of applying point blocking

to the depth-first code. The key to the transformation is that

rather than creating a single thread block for the next level

of computation, a separate thread block is created for each

spawn directive in the code. Then the depth-first version

of the code is called for each thread block in succession, so

every thread executes its left subtree (to completion) before

executing its right subtree. Figure 4(c) shows the order of

computation imposed by the transformation after the first

two levels of the computation tree are executed in a breadth-

first manner. Just as in the breadth-first code, all the threads

in a thread block are at the same level of the tree. Unlike

breadth-first code, the thread blocks for the next level of the

4
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1 void d f s f o o ( ThreadBlock t b )

2 foreach ( Thread t : t b )

3 i f ( i s B a s e ( t . x ) )

4 baseCase ( )

5 e l s e

6 l 1 = i n d u c t i v e W o r k 1 ( t . x )

7 foo ( l 1 )

8 l 2 = i n d u c t i v e W o r k 2 ( t . x )

9 foo ( l 2 )

(a) Depth-first execution after breadth-

first execution

1 void b l o c k e d f o o ( ThreadBlock t b )

2 ThreadBlock l e f t , r i g h t

3 foreach ( Thread t : t b )

4 i f ( i s B a s e ( t . x ) )

5 baseCase ( )

6 e l s e

7 l 1 = i n d u c t i v e W o r k 1 ( t . x )

8 l e f t . add ( new Thread ( l 1 ) )

9 l 2 = i n d u c t i v e W o r k 2 ( t . x )

10 r i g h t . add ( new Thread ( l 2 ) )

11 b l o c k e d f o o ( l e f t )

12 b l o c k e d f o o ( r i g h t )

(b) Blocked depth-first execution

A

foo(2) foo(2) foo(2) foo(2)

A B A B B A B

(c) Schedule of computation for blocked code after first

two levels have been executed in breadth-first manner.

Leaf nodes with the same label are executed as part of

the same block.

Figure 4: Depth-first version and computation schedule

1 2 3 4

Figure 5: Computation after partial breadth-first execution

tree can have no more threads than the thread block at the

current level; therefore, space usage is contained.

The transformed code can be vectorized in the same

way as the breadth-first code. As in the breadth-first code,

the depth-first code naturally groups together correspond-

ing children with each other; each thread block for the next

level only contains children from one spawn directive. Be-

cause different spawns in a task often behave differently,

this scheduling strategy promotes similarity of tasks that are

vectorized together, reducing vector divergence.

There is a downside to blocked depth-first execution:

threads can only be executed in parallel if they both visit

the “same” node in their computation tree (in other words,

if the computation trees overlap). If one thread in a block

executes its base case while the other threads continue re-

cursing, the size of the next level block will be smaller. If

a block becomes too small, there may no longer be enough

threads in the block to keep all the SIMD lanes in a vec-

tor unit occupied, resulting in underutilization and lost par-

allelization opportunities. For instance, consider the stylized

computation tree in Figure 5, with the dashed triangles repre-

senting the rest of the tree. If breadth-first expansion has exe-

cuted the black nodes of the computation tree, there are now

four threads ready to execute the grey portions of the tree.

Blocked depth-first execution will cause the four threads to

execute their code in lockstep. However, threads 1 and 4 in

Figure 5 have left-biased computation trees, while 2 and 3

have right-biased subtrees. While threads 1 and 4 execute

their left subtrees, 2 and 3 must sit idle. With only two active

threads in a thread block, we cannot fully utilize even 4-way

vector. The next section describes a scheduling policy that

can address this underutilization.

1 void b f s f o o ( ThreadBlock t b )

2 ThreadBlock n e x t

3 foreach ( Thread t : t b )

4 /∗ same as f o r e a c h i n F i g ur e 3 l i n e s 4−10∗ /

5 i f ( n e x t . s i z e ( ) < m a x b l o c k s i z e )

6 b f s f o o ( n e x t )

7 e l s e

8 b l o c k e d f o o ( n e x t )

10 void b l o c k e d f o o ( ThreadBlock t b )

11 ThreadBlock l e f t , r i g h t

12 foreach ( Thread t : t b )

13 /∗ same as f o r e a c h i n F i g ur e 4(b) l i n e s 4−10 ∗ /

14 i f ( l e f t . s i z e ( ) > r e e x p a n s i o n t h r e s h o l d )

15 b l o c k e d f o o ( l e f t )

16 e l s e

17 b f s f o o ( l e f t )

18 i f ( r i g h t . s i z e ( ) > r e e x p a n s i o n t h r e s h o l d )

19 b l o c k e d f o o ( r i g h t )

20 e l s e

21 b f s f o o ( r i g h t )

Figure 6: Re-expansion pseudocode

4.3 Re-expansion to improve utilization

We propose a scheduling strategy called re-expansion to

mitigate the under-utilization that can arise due to lack of

overlap between different threads’ computation trees. Essen-

tially, re-expansion toggles back and forth between breadth-

first execution and depth-first execution: the former to gener-

ate work when thread block sizes get too small, the latter to

execute work in bounded space when thread block sizes get

too large. For example, if re-expansion were applied to the

computation tree of Figure 5, then after threads 2 and 3 drop

out of the left portion of the depth-first computation, threads

1 and 4 can switch back to breadth-first execution, gener-

ating more work to run in parallel. Intuitively, re-expansion

looks for more parallel work in the subtrees of the “live”

threads during depth-first execution.

Implementing re-expansion is straightforward: because

both the breadth-first code and the blocked depth-first code

take thread blocks as arguments, each can call the other

to switch execution strategies. Figure 6 shows how re-

expansion can be integrated into the transformed code.

Re-expansion requires two thresholds, a max block size

that triggers depth-first execution when the blocks are get-

ting too big, and a reexpansion threshold that trig-

gers breadth-first execution when there is too little parallel

work. These thresholds are application-specific, as they are

5

CONFIDENTIAL
Submission to PLDI'15. Do not distribute. 252

Page 5 of 13



governed by the structure of the computation tree. To set

these thresholds, we pick a target space utilization, Tmax

(i.e., the maximum number of threads we want active at a

time), and determine the expansion factor, e, of an appli-

cation (the maximum number of spawns in a task). We set

both max block size and reexpansion threshold

to Tmax/e, so that after one round of breadth-first execution

we cannot create more than Tmax threads.

5. Effective SIMD Implementation

The discussion so far has focused on maximizing opportu-

nities for vectorization by exposing the data parallelism la-

tent in recursive-parallel programs. In this section, we dis-

cuss the mechanisms employed to translate this opportunity

into actual performance. This involves replacing operations

on individual threads with operations that span the entire

thread block, maximizing the use of vector instructions in

place of scalar instructions, and improving the data and op-

eration structures to enable vectorized execution. We note

how each aspect of a function body—stack management,

base case check, base case and recursive execution—can be

optimized. We present the implementation details in terms

of our running example.

Optimized stack operations: Performing a blocked depth-

first recursive call or a breadth-first re-expansion allows the

stack operations of individual threads to be optimized. We

exploit the fact that all recursive calls invoke the same func-

tion, merging the stack frames of individual threads into a

thread block, which is allocated and deallocated with a con-

stant number of instructions. The stack management over-

head thus reduces with increase in block size. Within each

thread block, all instances of individual data elements across

all stack frames are stored contiguously. This structure-of-

arrays layout lets us avoid expensive scatter/gather opera-

tions and simply replace the scalar stores and loads in indi-

vidual threads with the corresponding vector instructions.

Vectorizing operations: The first operation a task performs

is to check whether to execute the base case or the recur-

sive case. This operation, denoted by isBase(), is per-

formed by all threads and can be readily vectorized. The

code is transformed into an iterative loop that performs the

isBase() computation across all threads in a block. This

loop is then vectorized by the compiler. In general, we use

the compiler’s vectorization support where possible, and in-

troduce explicit vector instructions only where necessary.

This way, we rely on the compiler to manage register allo-

cation, scalar optimizations, and choose appropriate instruc-

tion sequences.

The result of executing isBase() is a vector of boolean

flags (characters or bits depending on the instruction set) that

denotes whether the branch is to be taken by each thread.

The base and recursive cases in the different threads can

now be executed using vector instructions in which elements

of the vector are masked using the boolean flags. However,

this would significantly complicate vector code generation.

Not all scalar instructions have masked vector equivalent in-

structions. In addition, such masked execution significantly

degrades vector utilization and thus performance.

Stream compaction: Utilization can be improved by parti-

tioning the threads into groups that perform identical actions.

All threads performing the base case need to be separated

from those performing the recursive case. Once grouped, the

threads performing the same action, be it base or recursive

case, can be vectorized without masking. For breadth-first

re-expansion, it is also beneficial to sort the recursive calls

based on their sibling position: the number of recursive calls

that precede a given invocation. The ordering of the recursive

calls is ensured during breadth-first expansion by enqueuing

the i-th recursive call by all threads before any (i + 1)-th
calls. Grouping the threads into those executing base case

and recursive case is performed using stream compaction:

1 foreach ( Thread t : t b )
2 i f ( t . i s B a s e ) baseCase . add ( t )
3 e l s e r e c u r s i v e C a s e . add ( t )
4 / / v e c t o r i z e d e x e c u t i o n o f baseCase t h r e a d s
5 / / v e c t o r i z e d e x e c u t i o n o f r e c u r s i v e C a s e t h r e a d s

The most efficient approach to vectorizing the stream

compaction operation—the foreach loop in the above code

snippet—depends on the instruction set and space require-

ments. We now discuss how the stream compaction oper-

ation can be vectorized on the Xeon E5 (SSE4.2) and the

Xeon Phi (AVX512). The Xeon E5 supports the shuffle in-

struction that can perform an in-place permutation of the

contents of a vector register. Stream compaction corresponds

to a permutation that gathers the threads taking the same

branch path. This shuffle operation can be encoded as:

1 pos =0
2 s h u f f l e O p = Thread [ t b . s i z e ( ) ]
3 foreach ( Thread t : t b )
4 i f ( t . i s B a s e ) s h u f f l e O p [ pos ++] = t

We further optimize this loop by pre-computing the

shuffleOp value for all possible boolean vectors into a

shuffle table. For a vector width—-the number of elements

can be processed by a single vector instruction—t, there are

2t possible entries in the shuffle table. Stream compaction

now involves one lookup into this table to determine the

desired shuffle and executing the vector shuffle instruction.

While efficient in time, the space overhead of the shuffle

table is exponential in the vector width. We address this by

computing the shuffle to be performed using a smaller shuf-

fle table and a multi-pass algorithm. This is conceptually

similar to factorization-based implementations of various

permutation operations [Eklundh 1972; Puschel et al. 2005].

Let us consider the compaction of a vector X into another

vector Y, denoted by compact(X[0 : N ] → Y [0 : N ]) We

observe that this can be factorized as:

compact(X[0 : m] → Y [0 : nnz(X[0 : m])]);

compact(X[m+ 1 : N ] → Y [nnz(X[0 : m]) + 1 : N ])

where nnz(X[a : b]) is the number of predicates of interest

(e.g., the number of non-zeroes) in vector X between posi-
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tions a and b. In addition to the shuffle table, we pre-compute

and store the nnz() function into an advance table, denoting

how far the position of the next compaction needs to be ad-

vanced. Note that the table size is exponential in the vector

width, while the factorized compaction requires number of

instructions linear in the number of factorization steps. For

example, we can reduce the size of the shuffle tables by a fac-

tor of 256 (from 216 to 28) by using an 8-way table instead

of a 16-way tables. This incurs only a few additional instruc-

tions rather than 16 that would be required by a sequential

compaction. As vector width increases, as can be expected

on future systems targeting energy-efficient performance im-

provements, the benefits from this approach improve further.

The current generation Xeon Phi does not have a vector

shuffle instruction. However, it has a masked scatter opera-

tion that can store a subset of the elements in the vector into

memory. We observe that the mask for the scatter operation

can be computed as an exclusive prefix sum. An exclusive

prefix sum of a vector X into vector Y is defined as:

Y [i] =

j<iX

j=0

(X[j] should be compacted ? 1 : 0)

As in the case of the shuffle table, we store the prefix-sum

function into a table; the prefix sum computation can be

factorized when combined with the advance table. Thus the

space overhead can be reduced at the expense of a few addi-

tional instructions to compute the masked scatter instruction.

Therefore for both Xeon E5 and Xeon Phi, we can perform

stream compaction in a vectorized fashion with low space

and time overhead.

6. Evaluation

We now empirically evaluate the performance of our tech-

niques across eight recursive benchmarks. We note that vec-

torization of recursive benchmarks introduces overheads of

various kinds. The data-parallel rather than strict depth-first

execution can increase register pressure as well as the cache

footprint of each function invocation. As the block size gets

larger, the footprint can exceed the cache sizes, degrad-

ing cache locality. Stream compaction incurs table lookup

costs, additional instructions, and memory operations that

introduce additional overheads. In addition, the benefits of

vectorization are limited by both the availability of enough

concurrency (for instance, due to the presence of scaler in-

structions that are not effectively vectorized by the compiler

across threads) and the ability of the blocked depth-first and

breadth-first schemes to expose this concurrency in the form

of data parallelism. This section shows that the vectorization

gains from our techniques outweigh the overheads, across

most of our benchmarks.

6.1 Evaluation platform and benchmarks

We evaluate our transformations on the Intel E5-2670 and

the Intel Xeon Phi. The E5 is a 8-core 2.6GHz Sandy Bridge

processor with 32KB L1 cache per core, 20MB last-level

Benchmark Problem #levels #tasks Time (s)

E5 Phi

knapsack long 31 2.15B 8.7 83.5

fib 45 45 3.67B 9.0 84.3

parentheses 19 37 4.85B 10.5 69.9

nqueens 13 14 59.8M 4.9 48.2

graphcol 3(38-64) 39 42.4M 30.9 417.6

uts 20 1572 136K 21.4 164.5

binomial C(36,13) 36 4.62B 8.3 74.1

minmax 4× 4 13 2.42B 18.1 120.8

Table 1: Benchmarks. All benchmarks use 16-wide vector

operations, except knapsack and UTS on the Xeon E5, which

employ 8-wide and 4-wide vector operations, respectively.

cache, and 128-bit SSE 4.2 instruction set2. The Xeon Phi is

a 61-core SE10P co-processor running at 1.1GHz with 32KB

L1 cache and 512KB L2 cache per core, supporting 512-

bit AVX512 instructions. All benchmarks were compiled

with Intel icc-13.3.163 compiler and -O3. The Xeon Phi

experiments were conducted in the native mode with -mmic

option. Recall that our focus is single-core vectorization: all

of our experiments use a single core of the target platform.3

We evaluated our technique on the eight benchmarks,

ranging from microbenchmarks to larger kernels: (i) knapsack,

which computes the optimal solution to the knapsack prob-

lem [Cilk]4; (ii) fib, which Computes the 45-th Fibonacci

number [Cilk]; (iii) parentheses, which computes the

number of well-formed parentheses string combinations

with 19 parentheses; (iv) nqueens, which counts the num-

ber of valid solutions to the 13-queens problems [Barcelona

OpenMP Task Suite (BOTS)]; (v) graphcol, which counts

the number of valid ways of coloring a 38-node, 64-edge

graph with 3 colors [Huo et al. 2013]; (vi) uts, which counts

the number of nodes in a probabilistic binomial tree [Olivier

et al. 2007]; (vii) binomial, which recursively computes

the combination 36C13 [Huo et al. 2013]; and (viii) minmax,

a min-max search for tic-tac-toe on a 4× 4 board.

Table 1 characterizes the benchmarks and their sequen-

tial execution time. We present speedups relative to these se-

quential times in the rest of the evaluation. We use the small-

est data type possible without loss of generality to maximize

vector width (e.g., we define n in fib as a char on E5 due

to the exponential nature of the computation). On the Phi, we

use the int data type for all benchmarks, because the IMCI

instruction set does not support shorter data types well.

Figure 7 characterizes the structure of each benchmark’s

computation tree. Because binomial and minmax have

similar trees to fib and nqueens, respectively, their char-

2 We do not use AVX, as it does not support shuffle instructions
3 In addition to pure SIMD execution, we have modified our transformations

to be compatible with standard, Cilk-style multicore parallelism, letting

other workers steal entire blocks of work during depth-first execution.

This extension is not a contribution of this work, but Appendix C in the

supplemental material presents preliminary results demonstrating that our

SIMDization approach is complementary to multicore parallelism.
4 We use the ‘long’ input without pruning to ensure determinism.
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Benchmark Xeon E5 Xeon Phi

Breadth-first No Re-expansion Re-expansion Breadth-first No Re-expansion Re-expansion

only speedup Block Speedup Block Speedup only speedup Block Speedup Block Speedup

knapsack 1.17 2
12 1.90 2

11 1.91 OOM 2
8 5.23 2

8 5.10

fib 1.67 2
18* 1.99 2

9 2.03 0.65 2
10 3.07 2

9 3.50

parentheses 1.23 2
14 1.84 2

11 1.85 OOM 2
9 1.32 2

9 1.39

nqueens 4.38 2
23 5.10 2

15 6.33 0.83 2
22 1.18 2

12 2.96

graphcol 1.08 2
21 2.99 2

8 8.95 0.79 2
21 1.88 2

8 12.23

uts 1.68 2
14 1.69 2

14 1.68 1.0 2
14 2.05 2

14 2.05

binomial 1.14 2
18 1.38 2

18 1.39 OOM 2
11 1.76 2

9 1.99

minmax 0.83 2
20 1.79 2

10 2.17 OOM 2
13 0.61†

2
8 0.93†

Geometric mean 1.44 2.13 2.58 0.81 1.78 2.76

* Performance is close to that for 29 block size † The poor performance of minmax is due to excessive cache misses in the Xeon Phi’s small cache; if the

cache is warmed up for the kernel computation, we can achieve a speedup of 1.09 without reexpansion and and 1.49 with (not counting the warmup).

Table 2: Best block size and execution times for different vectorization strategies
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Figure 7: Distribution of tasks in selected benchmarks. x-axis: recursion depth; y-axis: number of all and base case tasks

acteristics are described in Appendix A in the supplemental

material. For each benchmark, we show the number of lev-

els, the total number of tasks in each level, and the number

of tasks executing the base case in each level. knapsack

is a perfectly balanced tree with base case tasks only at

the last level. fib (binomial) and parentheses are

more unbalanced, with parentheses having some in-

termittent shallower branches. nqueens (minmax) has a

large number of leaves at almost all levels and a large fanout.

graphcol and uts have a more uneven distribution of to-

tal tasks and leaves. uts is a deep computation tree with the

fewest number of tasks in each level.

6.2 Overall speedup from blocked SIMD execution

Table 2 shows the overall speedup of our vectorized execu-

tion strategies on the E5 and Xeon Phi architectures. Pure

breadth-first execution sometimes runs out of memory on

Xeon Phi, and provides poor performance in general. This

is due to the fact that it has poor cache performance due

to large block sizes. With our hybrid depth-first/breadth-

first strategy, without re-expansion, we achieve speedups of

1.38–5.10× (geometric mean of 2.13×) on the E5, and a

0.59–5.23× (geometric mean of 1.78×) on the Xeon Phi.

Adding re-expansion raises speedups to 1.39–8.95× (geo-

metric mean of 2.58×) on the E5 and 0.93–12.23× (geo-

metric mean of 2.76×) on the Xeon Phi. Using re-expansion

typically uses less space since it yields equivalent or better

speedups at smaller block sizes.

6.3 Understanding vectorized performance

We now explore the various factors that affect vectorized

performance in detail. As mentioned above, binomial and

minmax are structurally similar to fib and nqueens,

respectively, so we leave their detailed performance studies

to Appendix A in the supplemental material.

The most obvious parameter affecting the performance

is the size of the thread blocks used by our code transfor-

mations. Larger thread blocks clearly require more memory.

More importantly, though, thread block size determines the

fundamental tradeoff underlying our performance results.

Larger block sizes lead to more work that can be vectorized,

increasing SIMD utilization. However, large blocks suffer

from poor locality, increasing cache misses. To achieve good

performance, therefore, we want to achieve good SIMD uti-

lization with the smallest possible block size.

SIMD utilization: Figure 8 shows how SIMD utilization

changes with block size.5 SIMD utilization is the percentage

of tasks that are executed as part of full SIMD blocks—other

tasks, which are part of the “epilog” of vectorized execution,

lead to idle SIMD lanes. Higher SIMD utilization means

more effective use of SIMD resources and, all else being

equal, better performance. SIMD utilization for a benchmark

is determined by vector width and block size, so for all

benchmarks except knapsack and uts, utilization with

respect to block size is the same for both platforms.

SIMD utilization increases rapidly with block size, and

for all benchmarks, with or without re-expansion. Given a

sufficiently large block, our transformations can achieve al-

most perfect utilization. Crucially, however, with re-expansion,

the block size required for perfect utilization shrinks on

5 In Figures 8–11, legends for knapsack apply to all graphs. “no reexp”

refers to vectorization without re-expansion, while “reexp” includes our re-

expansion technique.
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Figure 8: SIMD utilization. x-axis: block size; y-axis: percentage of tasks that can be vectorized
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Figure 9: Xeon E5 cache miss rate. x-axis: block size; y-axis: miss rate for level 1 (d1) and last level (lld) caches
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Figure 10: Xeon E5 speedup. x-axis: block size; y-axis: speedup relative to sequential baseline
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Figure 11: Benefits of re-expansion. x-axis: task level; left y-axis: number of re-expansions; right y-axis: factor of block size

improvement due to re-expansion

several benchmarks (notably, nqueens and graphcol).

To understand why, recall that without re-expansion, we

generate parallel work using breadth-first expansion only

at the beginning of the computation and the subsequent

blocked depth-first execution cannot generate additional par-

allel work. Therefore, to achieve high utilization, we must

generate a large amount of parallelism (large blocks) in the

first depth first expansion before we begin depth-first exe-

cution. Re-expansion’s ability to generate additional paral-

lelism later in execution lets it tolerate a smaller block size.

Re-expansion has little effect on utilization for some bench-

marks, notably knapsack, fib and parentheses. For

knapsack, re-expansion is never needed due to the per-

fectly balanced tree. The other two benchmarks have more

subtle behavior, which we investigate more carefully later.

E5 cache efficiency and speedup: SIMD utilization only

affects the amount of work that can be vectorized; it is not

the only factor that affects performance. Another crucial fac-

tor, which militates against large blocks, is cache efficiency.

It is the interplay between utilization and efficiency that

determines speedup. We next investigate this behavior on

the E5 platform. Appendix B in the supplemental material

presents a similar investigation for the Xeon Phi.

Figure 9 shows both the L1 and last-level data cache

misses rates with varying block size, with and without re-

expansion. We see that as the block size grows, cache misses

increase. To understand why, note that all of the threads in a

thread block are accessed twice: once when they are added to

the thread block, and a second time when they are executed.

If the thread block is too large, the thread data will have been

evicted by the second access. Unsurprisingly, we see fairly

sharp discontinuities, representing cutoffs when blocks no

longer fit in cache. Different benchmarks have fairly differ-

ent cache behaviors, as they have different computational

patterns; some benchmarks like fib do very little data ac-

cess, while others like nqueens and graphcol perform

lots of lookups. Nevertheless, the broad trend of increasing

cache misses with block size persists.

Our vectorization speedup is due to a combination of both

SIMD utilization and cache behavior. Figure 10 shows the
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overall speedups of our techniques with varying block sizes.

For all the benchmarks except uts, we see a consistent pat-

tern: speedup increases with block size as SIMD utilization

increases; then, at larger block sizes, cache misses begin

to dominate, while we encounter diminishing utilization re-

turns, causing speedups to drop.

These results demonstrate the key advantage of our re-

expansion scheduling strategy. By generating more work

throughout execution, re-expansion lets our transformed

code achieve high SIMD utilization with smaller block sizes,

letting us gain large benefits from vectorization before poor

cache performance drags down overall speedups. This effect

is most noticeable for nqueens and graphcol, where re-

expansion achieves near-perfect SIMD utilization at block

sizes small enough to avoid the cache-miss cliff, giving very

high speedups. Even for benchmarks where re-expansion

is not as critical, such as fib and parentheses, re-

expansion lets us achieve peak speedup at somewhat smaller

block sizes, reducing overall memory usage.

The exceptions to these trends are knapsack and uts.

The former does not benefit from re-expansion due to its

balanced computation tree; since threads never die out, the

block size never gets small enough to trigger re-expansion.

The latter has a relatively narrow computation tree and is

very unbalanced, and hence performs best when the block

size is large enough to obviate the need for ever doing depth-

first execution in the first place (214 threads).

Re-expansion benefit: We study the benefits from re-

expansion in exposing data parallelism in Figure 11. For

each level of the computation tree, the figure shows two

quantities: the number of re-expansions performed at that

level and the factor of increase in the number of tasks at

the next level due to re-expansion. Larger factors denote

greater benefit; a factor of 1 means that the block size did not

change after re-expansion. We do not show knapsack’s

and uts benchmarks since their execution never triggers

re-expansion. Among the other benchmarks, re-expansion

has limited benefit for fib and parentheses due to the

fact that these computation trees are also relatively balanced

and re-expansion is triggered fairly late, and does not gen-

erate much additional parallelism since the trees are not ex-

panding (getting wider) any more. Re-expansion is much

more useful in adapting to tree structures with base cases

intermingled with recursive tasks at shallower depths. We

observe this for nqueens and graphcol, which can get

re-expansion factors as high as 8 and 3, respectively.

Benefits from stream compaction: We evaluate the ben-

efits from stream compaction on two representative bench-

marks: fib, one of the benchmarks with a small kernel,

and nqueens, which has a larger kernel. Figure 12 shows

the speedups achieved by the best block size configuration,

as compared to the sequential execution, when the stream

compaction is performed sequentially as compared to our

table-lookup based compaction. We see that the table-lookup

based compaction is faster in all cases, with significant im-
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Figure 12: Speedup with and without stream compaction (sc)

on E5 and Xeon Phi, normalized to sequential baseline

Sequential Vectorized

Benchmark Vect non-Vect Vect non-Vect Speedup

nqueens 0.94 0.06 0.06 0.03 10.74

graphcol 0.99 0.01 0.06 0.01 14.28

uts 0.81 0.19 0.20 0.20 2.50

minmax 0.62 0.38 0.04 0.25 3.48

Table 3: Estimated maximum vectorization speedup on E5

provements for smaller kernels. In fact, optimized stream

compaction is crucial to performance on the smaller kernels.

Even for benchmarks with larger kernels, we observe 5–10%
overall performance improvement. We observe similar be-

havior for the other benchmarks considered as well.

6.4 Opportunity analysis

Various factors preclude us from achieving the perfect

speedup (i.e., 16 for 16-way SIMD) from vectorization.

Here, we try to quantify the theoretically maximum achiev-

able speedup. Given that only the kernel computation is

vectorized, we compute the effect of Amdahl’s law due to

non-kernel overheads by looking at the number of kernel

and non-kernel instructions. While number of instructions

executed does not strictly determine performance, this op-

portunity study gives us some insight into vectorization po-

tential (assuming 1.0 CPI). Since it is difficult to isolate the

core computations in benchmarks with small tasks (fib,

parentheses, knapsack, and binomial), we focus

on the remaining benchmarks.

Table 3 shows the fraction of vectorizable and non-

vectorizable instructions for the remaining benchmarks.

The Sequential columns indicate that a significant fraction

of computation is vectorizable. In our modeled vectorized

code, we assume perfect speedup for the vectorizable in-

structions (column 4), reducing the instruction count by a

factor of the vector width. We profile the re-expansion ver-

sion of the code to account for changes in the number of non-

vectorizable instructions due to our transformations (column

5). Note that our transformations can occasionally reduce

the number of non-kernel instructions (e.g., nqueens and

minmax) due to the way they optimize stack management

operations. The modeled maximum speedup is the ratio of

the total number of dynamic instructions in the modeled vec-

torized version to the sequential versions. We see that even

with perfect vectorization, the anticipated speedup for uts

and minmax is only 2.5 and 3.48 respectively (due to the
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large number of non-kernel instructions which are not vec-

torized). nqueens and graphcol fare better. Comparing

with Table 2, we see that our vectorized implementations

achieve a large fraction of this theoretical max speedup de-

spite suffering from overheads such as cache misses.

7. Related Work

Parallelism for multicores: Many modern programming

languages for multicores, such as as Cilk family [Blu-

mofe et al. 1995; Frigo et al. 1998; Danaher et al. 2006],

Thread Building Blocks [Reinders 2007], Task Parallel Li-

brary [TPL], OpenMP [OpenMP Architecture Review Board

2008], X10 [X10], allow programmers to express task paral-

lelism using constructs similar to our spawn directive. Two

important variants of work-stealing schedulers are relevant

to our work: As described in Section 2, the work-first strat-

egy [Frigo et al. 1998] is similar to our depth-first strategy—

when a processor spawns a task, it places the continuation

on its local pool (to be potentially stolen by other proces-

sors) and immediately starts executing the newly spawned

task. In contrast, the help-first strategy [Guo et al. 2009]

is similar to breadth-first execution—a processor places the

newly spawned task on its local pool and immediately ex-

ecutes the continuation. Guo et al. [2009] propose using

help-first scheduling to generate work quickly, and work-

first scheduling thereafter to bound space usage. This strat-

egy is somewhat similar to the execution strategy adopted

by our initial code transformations that begin with breadth-

first execution then switch to depth-first execution, though

a traditional work-stealing scheduler would not provide the

necessary structured execution for vectorization.

Parallelism for vector units/GPUs: Modern vectorizing

compilers attempt to automatically perform vectorization for

small loops in programs using a variety of techniques [Nuz-

man and Zaks 2008; Maleki et al. 2011]. However, they tend

to target programs written in a very structured, data-parallel

manner, and cannot handle even moderately complex pro-

grams [Maleki et al. 2011]. In more restricted domains, there

has been more success in SIMDizing programs through syn-

thesis [Barthe et al. 2013] and code generation from domain-

specific languages [Ren et al. 2013] and other restricted sets

of problems [Kim and Han 2012; Jo et al. 2013]; these ap-

proaches do not work for more general programs. Most work

in mapping complex applications to vector units has been

done by hand [Chhugani et al. 2012; Dammertz et al. 2008;

Havel and Herout 2010; Hernquist 1990; Kim et al. 2010].

GPUs offer a more programmable interface than vector

units on CPUs, but the most common programming models

for GPUs are fundamentally data-parallel [NVIDIA; Stone

et al. 2010]. In recent years, several attempts have been made

to take GPUs’ inherently data-parallel execution model and

adapt it to target task-parallel programs [Tzeng et al. 2010;

Aila and Laine 2009; Huo et al. 2013]. Perhaps most related

to our work, Orr et al. [2014] provide a hardware imple-

mentation of the channels model proposed by Gaster and

Howes [2012] and provide a mapping from simple Cilk-style

programs to their channels implementation. Interestingly,

the execution model imposed by channels on these programs

resembles the level-by-level breadth-first execution strategy

of our initial code transformation. To control space, they

propose another hardware modification that allows the ex-

ecution of one level of computation to be suspended—in

essence, only processing part of each level of the tree. An

interesting avenue of future work would be to compare Orr

et al.’s scheduling strategy with our proposed strategies.

The key distinctions between our work and this work on

GPUs are: (1) GPUs provide hardware support for gather

and scatter operations and execution masking, meaning that

GPU approaches do not need to consider data and compu-

tation organization as carefully, and (2) the only GPU im-

plementation that targets the similar fine-grained task paral-

lelism as our techniques requires custom hardware support,

and is not suitable for targeting commodity vector hardware.

Stream compaction for vectorization: Stream compaction

was first introduced as a general technique for managing

blocks of data operated on by vector operations by Ren et

al. [2013]; they performed stream compaction for four-wide

vector units, but did not describe a general approach for

arbitrary-length vectors. Mytkowicz et al. [2014] described

a general permutation strategy for block management. Per-

mutation is a generalization of stream compaction. However,

because stream compaction is a simpler problem, our algo-

rithm is more efficient since it is linear in the stream size

(rather than quadratic) and can trade-off between the size of

pre-computed tables and the number of lookups.

8. Conclusions

Vectorizing task-parallel programs requires solving several

critical challenges: finding data-parallelism for vectoriza-

tion; controlling space usage; and ensuring that SIMD units

stay fully utilized. We present code transformations and

scheduling strategies that address these problems, allowing

recursive, task-parallel programs to be mapped efficiently

to commodity vector hardware. Moreover, our stream com-

paction algorithm is applicable beyond our block manage-

ment code, and could be integrated in production compilers.

Our results represent a first cut at mapping task-parallel

programs to processors with SIMD units, and there are many

opportunities for improved performance. For example, the

next version of the Xeon Phi will support character-level

vector operations. With our general stream compaction im-

plementation, our scheme will automatically be able to take

advantage of the increased vector widths of new hardware.

Moreover, while our current results focus on improving

single-core performance by leveraging SIMD units, our pro-

gramming model is a standard task-parallel language. As

Appendix C shows, it is feasible to integrate multicore par-

allelism with traditional work-stealing and our SIMDization

technology. We plan to investigate this hybrid further in fu-

ture work.
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