Efficient Execution of Recursive Programs
on Commodity Vector Hardware

Abstract

The pursuit of computational efficiency has led to the pro-
liferation of throughput-oriented hardware, from GPUs to
increasingly-wide vector units on commodity processors
and accelerators. This hardware is designed to efficiently
execute data-parallel computations in a vectorized manner.
However, many algorithms are more naturally expressed as
divide-and-conquer, recursive, task-parallel computations;
in the absence of data parallelism, it seems that such algo-
rithms are not well-suited to throughput-oriented architec-
tures. This paper presents a set of novel code transformations
that expose the data-parallelism latent in recursive, task-
parallel programs. These transformations facilitate straight-
forward vectorization of task-parallel programs on commod-
ity hardware. We also present scheduling policies that main-
tain high utilization of vector resources while limiting space
usage. Across several task-parallel benchmarks, we demon-
strate both efficient vector resource utilization and substan-
tial speedup on chips using Intel’s SSE4.2 vector units as
well as accelerators using Intel’s AVX512 units.

1. Introduction

As energy efficiency and power consumption become in-
creasingly relevant issues for processor and accelerator de-
signers, hardware resources for parallelism are being shifted
from general-purpose multicores to throughput-oriented
computing, with GPUs, accelerators like Intel’s Xeon Phi,
and increasingly-wide SIMD units on commodity proces-
sors providing efficient, vector-based parallel computation.
In fact, because SIMD extensions on commodity processors
tend to require relatively little extra hardware, executing a
SIMD instruction is essentially “free” from a power perspec-
tive, making vectorization an attractive option.

Vector designs are well-suited to executing data-parallel
algorithms, where the same computation is performed on
each of a series of data items, and modern vectorizing com-
pilers do a reasonable job of finding parallelism in simple,
data-parallel loops and mapping that parallelism to vec-
tor units on general-purpose processors [Nuzman and Zaks
2008; Maleki et al. 2011], and programming models like
CUDA and OpenCL simplify the task of mapping data-
parallel computations to vector hardware on GPUs [NVIDIA;
Stone et al. 2010]. Unfortunately, many algorithms are more
naturally expressed as divide-and-conquer, recursive, fask-
parallel computations. Such programs do not naturally de-
compose into data-parallel representations—there are no
dense, vectorizable loops—and hence it seems that existing
vector hardware is a poor target for such programs.

1 void foo(int x)

2 if (isBase(x))

3 baseCase ()

4 else

5 11 = inductiveWorkl (x) //11 = x/2
6 spawn foo(ll)

7 12 = inductiveWork2 (12) //12 = x/2
3 spawn foo(12)

(a) Simple recursive code. spawn creates new tasks

foo(8)

foo(4) Q

foo(2)

foo(2)

"o
.

(b) Computation tree. Black boxes are baseCase computations,
dark grey boxes are inductiveWorkl computations and light
grey boxes are inductiveWork2 computations

Figure 1: Recursive, task-parallel code and computation tree

To address this shortcoming, there have been many pro-
posals to map coarse-grained tasks to commodity GPUs [Tzeng
et al. 2010; Aila and Laine 2009] or to modify GPU hard-
ware to better accommodate recursive parallelism with fine-
grained tasks [Orr et al. 2014; Steffen and Zambreno 2010;
Huo et al. 2013]. In this paper, we consider the problem of
effectively mapping fine-grained, recursive, parallel appli-
cations to commodity vector units. Addressing this problem
would allow programmers to adopt a standard, task-parallel
programming model and easily adapt existing applications
to leverage the otherwise unused computational resources
that exist on most general processors as well as in newer
accelerators like Intel’s Xeon Phi.

This paper focuses on exploiting vector parallelism on a
single core. We propose code transformations that restruc-
ture recursive, task-parallel applications to expose their la-
tent data-parallelism that allows for efficient vectorization.
A typical divide-and-conquer application can be thought of
as a computation tree, with each interior node in the com-
putation tree representing work done prior to making a re-
cursive call, children of a node in the tree representing the

work done during each recursive call, and leaf nodes repre-
senting work done during the base case. Figure 1 shows an
abstract recursive code—the paper’s running example—and
its associated computation tree. An execution of the appli-
cation is equivalent to a valid walk of the tree. In particular,
the normal sequential execution of this computation can be
represented by a depth-first walk of the tree.

Contributions: The key contributions of this paper are code
transformations that create a tree-walk that can be efficiently
vectorized. The transformations handle three important is-
sues: (1) Expose data-parallel computation by performing a
breadth-first expansion of the computation tree; (2) Reduce
the amount of space used and the number of cache misses by
switching to depth-first execution when enough parallelism
has been generated; (3) When irregularities in the computa-
tion tree cause reduction in available parallelism, regenerate
parallel work using re-expansion. In addition, we develop
block management schemes, including a novel stream com-
paction algorithm to ensure that parallel work and data ac-
cesses remain structured for efficient SIMDization.

In our experimental evaluation, we find that our tech-
niques can find vectorization opportunities in all the bench-
marks considered, ranging from small microbenchmarks to
larger kernels. On two hardware platforms, an Intel Xeon
E5 with the SSE4.2 instruction set and an Intel Xeon Phi
with the AVXS512 instruction set, we obtain up to 12.23x
speedup. We further find that our scheduling policy is effec-
tive at maintaining high SIMD utilization while bounding
space usage and incurring relatively low overheads. Overall,
this paper presents the first set of techniques for mapping
general, recursive task-parallel programs to commodity vec-
tor hardware. Our approach allows programmers to lever-
age the “free” execution resources available in SIMD units
even for programs that do not appear to be amenable to data-
parallel vectorization.

2. Preliminaries

Specifying recursive, task-parallel programs: This paper
targets the vector parallelization of recursive, task-parallel
applications. To clarify the types of applications we trans-
form and parallelize, we consider a language for specifying
recursive, task-parallel programs, as defined in Figure 2. The
language is a variant on Cilk [Blumofe et al. 1995; Frigo
et al. 1998]. We emphasize that this language is meant to
clarify the types of programs we tackle; in our implementa-
tions, we transform and evaluate programs written in C that
conform to the restrictions of this language.

A k-ary recursive method evaluates a conditional (which
may be a boolean expression or a function returning a
boolean) to decide whether to execute the base case or the
inductive case. The base case is used to produce computation
results. Base case statements can assign expression results to
local variables (note that expressions can be arbitrary, state-
less, non-recursive functions) or perform reductions over
one of a set of reducer objects [Frigo et al. 2009]—these

v €Z [Values)
a €{a1,az,...ar} [Arguments]
Le{l,la,... } [Locals]
re{ri,ra,...} [Reducers)

Ou=<|>|=|#|2|<
b € BEzprs :=true | false | e®e | fy(e1,e2,...)

e€ Exprs i=wv | L | a | fu(er,e2,...)
sp € BaseStmts ::=
s; € IndStmts ::
m € MethodBody ::= if b then s;, else s;

sp;sp | L:=e | reduce(r,e)

Figure 2: Language for recursive, task-parallel methods

associative, commutative updates to global state are used in
lieu of return values. Note that this means that the execu-
tion of multiple base-case tasks can be readily parallelized.
While the use of reduction objects instead of return values
may seem limiting, we have found that many recursive ap-
plications can be written in this manner.

The inductive case can perform additional computations
and make recursive calls using the spawn command, which
binds expression values to the arguments of the subsequent
recursive invocation. As in Cilk, spawned methods can be
executed in parallel with (and are assumed to be independent
of) any subsequent work in the spawning method; this is the
source of task parallelism in our language.'

There is an implicit synchronization at the end of each
method: all spawned (callee) methods must return before
their parent (caller) method can return. Unlike in Cilk, our
language does not have an explicit sync keyword. No ad-
ditional work can be performed after spawned tasks “rejoin”
execution. All computations expressed in our language can
be viewed as computation trees: spawns create children of
the current task, and base case computations, which perform
no spawns, are leaves of the computation tree.

In terms of our language description, Figure 1(a) can be
interpreted as follows. foo defines the recursive method.
isBase () performs some computation to decide whether
to perform the base case, which is defined by baseCase ().
If isBase () returns false, inductiveWorkl () and
inductiveWork?2 () perform the necessary computa-
tions to set up two spawns of recursive tasks. While the
running example only has two children tasks, in general, any
number of child tasks can be spawned in the inductive case.

Strawman vectorization: To grasp the difficulties involved
in vectorizing a recursive application described in our lan-
guage, it is helpful to understand why the obvious solu-
tion will not work. Consider executing a task-parallel pro-
gram written in our specification language using a traditional
multicore, work-stealing runtime, as used by Cilk [Blumofe
et al. 1995; Frigo et al. 1998; Danaher et al. 2006]. In a

'We only consider self-recursive programs in this paper for simplicity; this
is not a fundamental limitation of our technique.

return | s;;s; | L:=e | spawn(er,ea,...,ex)

Cilk-style work-stealing runtime, a computation tree is run
in parallel using a “work-first” scheduling policy [Frigo et al.
1998], where a thread executes a computation tree depth-first
— when a thread spawns a task, it immediately executes the
spawned task and places the executing task’s “continuation”
(the remaining work of the function) in a local pool. Other
threads that need work may steal continuations to execute
the remainder of the computation. In the absence of work
stealing (i.e., if every thread has sufficient work), this policy
results in each thread executing a subtree of the computation
tree in a depth-first manner.

One obvious approach to vectorization is to map this
basic execution strategy to vector units: at a high level, a
thread can be assigned to each SIMD lane of a vector unit,
and each thread picks a node in the computation tree and
executes it in a vector-parallel manner with (some) other
nodes in the computation tree, and then proceeds to the next
node in a depth-first manner.

Implementing this strategy on SIMD units is extremely
difficult: because each “thread” executes a different portion
of the computation tree, the threads’ stacks grow and shrink
at different times. All of this stack management must be
done manually, as all the SIMD lanes are under the con-
trol of a single, actual thread, necessarily incurring extra
overhead. Moreover, performing the stack management in
a vector-friendly manner is impossible: because the stacks
diverge, storing/loading data from each thread’s stack will
require scatter and gather operations, which perform poorly
on vector units designed for packed loads and stores.

3. From Task Parallelism to Data Parallelism

This section overviews how a recursive, task-parallel pro-
gram can be transformed to enable vector-parallel execu-
tion. Rather than implementing our schedulers as runtime
components separate from the task-parallel application, as in
traditional multicore implementations, our approach to vec-
torization uses code transformations that integrate schedul-
ing decisions into the (transformed) application code. That
is, we transform the application code to produce particu-
lar execution schedules. We choose this approach to facili-
tate vectorizing fine-grained tasks. The overheads of runtime
scheduling are tolerable when parallelism can be achieved
by threads that each run large numbers of tasks indepen-
dently. However, exploiting vector hardware requires fine-
grained parallelism: operations must be grouped together at
the granularity of individual instructions to be vectorized.
The key insight behind our vectorization strategy is
that through careful code transformations, recursive, task-
parallel algorithms can be transformed into blocked recur-
sive algorithms, which group together multiple tasks in the
original computation tree into blocks that can be efficiently
executed in a vectorized manner with low overhead. These
transformations have two effects: (i) by building these com-
putation blocks out of tasks in the tree that are all at the
same depth, our transformations avoid the stack manage-
ment pitfalls that compromise the naive solution described

previously; and (ii) by creating blocks out of individual fine-

grained tasks, our transformations enable the instruction-by-

instruction grouping necessary for vectorized execution.
Our vectorization strategy consists of three components:

1. We transform the original recursive, task-parallel code
into blocked code that executes the computation tree
level-by-level in breadth-first manner. Breadth-first ex-
pansion exposes opportunities for parallelism, the blocked
structure of the code enables vectorization, and the level-
by-level strategy ensures that the stack frames necessary
for vectorized computation can be organized to support
vectorized memory operations.

2. A pure breadth-first execution can consume large amounts
of space (proportional to the width of the computation
tree) and lead to a large number of cache misses due to
decreased locality. Therefore, we produce a second trans-
formed version of the code that implements a blocked
depth-first execution schedule that essentially spawns
“threads” for each task in a block of tasks. Each thread
explores its portion of the computation tree in a depth-
first manner, and the threads execute in lockstep, each
taking identical paths through their respective compu-
tation subtrees. By executing in a depth-first manner,
the amount of storage required for saving state is pro-
portional to the depth of the tree, and by executing in
lockstep, each “thread” is kept at the same depth of the
tree as the other threads in the block, simplifying stack
management.

3. Since some branches of the computation tree are shal-
lower than others, some threads may “die out” early, re-
ducing SIMD utilization. To ameliorate this, we design
a re-expansion mechanism that toggles between breadth-
first execution to generate more parallel work and depth-
first execution to control space usage.

4. Transformations and Scheduling

This section describes the three techniques discussed in Sec-
tion 3 in more detail. We focus primarily on the code trans-
formations necessary to achieve particular scheduling poli-
cies. The details of how this transformed code can be effi-
ciently vectorized are in Section 5.

4.1 Breadth-first execution to extract data parallelism

Our first transformation produces a breadth-first, level-by-
level traversal of the computation tree to generate large
blocks of work that can be readily vectorized. Figure 3 shows
the transformed code for the code example in Figure 1(a).
The essential idea of the transformation is that each in-
vocation of bfs_foo executes all of the instances of foo
in a given level of the tree before proceeding to the next
level of the tree. Each task instance is assigned to a Thread
structure, which contains the information that would be in
the stack frame for that task instance (specifically, any argu-
ments to the task). A ThreadBlock contains threads for
each task at a given level of the computation tree. bfs_foo

1 void bfs_foo(ThreadBlock tb)
2 ThreadBlock next
3 foreach (Thread t : tb)

4 if (isBase(t.x))

5 baseCase ()

6 else

7 11 = inductiveWorkl (t.x)
8 next.add (new Thread(11))
9 12 = inductiveWork2 (t.x)
10 next.add (new Thread(12))

11 bfs_foo (next)

Figure 3: Breadth-first version of code in Figure 1(a)

is initially called with a thread block containing a single
thread whose x field is set to the original parameter to foo.

The transformed code is straightforward. At each spawn
directive, rather than invoking the next method, the code cre-
ates an additional thread for the next task, with the appropri-
ate arguments, and places it into the next thread block for
the next level of the computation tree. Once all of the com-
putation at the current level of the tree has been completed,
the transformed code invokes bfs_foo on next, moving
to the next level of the computation tree.

This transformation has several effects. First, consider the
loop in line 3 in Figure 3. This is a dense loop over a vector
(of Threads). Through a combination of loop distribution,
inlining, if-conversion, and other standard compiler transfor-
mations, this loop can be transformed into a series of dense
loops over individual instructions, which can then be readily
vectorized. Note that the order in which tasks at a given level
are executed can change after loop distribution: for instance,
all the left children of the current level can be added to the
next thread block before all the right children. This reorder-
ing is (a) still compatible with the parallel semantics of our
language; and (b) potentially beneficial to vectorization, as
in many task-parallel applications, left children behave simi-
larly and right children behave similarly. The most challeng-
ing task in vectorization is vectorizing the addition of new
Threads to the next block in lines 8 and 10. Section 5
describes a general stream compaction mechanism that can
manage the blocks in an efficient, vectorized manner.

The second effect of this transformation is that it quickly
generates substantial amounts of parallel work. Although
the initial thread block has but one thread in it, at each
level, the block gets larger, creating additional parallel work.
While this feature is beneficial for keeping the vector units
busy and maintaining high utilization, for large computation
trees, the size of these blocks can get prohibitive; the total
amount of state that must be tracked can get as large as
the width of the computation tree. Moreover, as the thread
blocks get larger, the code begins to suffer from poor cache
performance: by the time execution moves to the next level
of the computation tree, the Threads added to the next
thread block will have been evicted from cache.

4.2 Depth-first execution to limit space usage

To overcome the space explosion incurred by the breadth-
first execution strategy, we make the following observation.
Suppose we stop the controlled breadth-first execution af-

ter a certain level, and let each thread in the resulting thread
block execute its computation subtree to completion, as in
Figure 4(a). In other words, after some number of rounds
of running bfs_foo, we invoked dfs_foo instead. Each
thread at the level where breadth-first execution is stopped
thus executes its computation subtree in a depth-first man-
ner by invoking the original recursive code. This execution
strategy no longer increases space usage exponentially. In
particular, if there are T threads in the thread block when
dfs_foo is invoked, and the depth of the computation tree
is D, the space usage is O(T' D).

The downside to this execution strategy is that the loop
in line 2 of Figure 4(a) is not as easily vectorizable as
the dense loop in Figure 3. While the loop is still dense,
traditional techniques for vectorizing dense loops do not
handle recursive methods. So have we merely saved space
at the expense of losing vectorization?

In recent work, Jo and Kulkarni [2011] proposed a com-
piler transformation called point blocking that targets re-
peated recursive traversals of trees. In particular, for code
that performs multiple recursive traversals of a tree in par-
allel, point blocking transforms the code so that multiple
traversal threads are blocked together, and the blocks of
threads traverse the tree in lockstep. For applications such as
Barnes-hut, when multiple traversals are performed in lock-
step, each thread in the block operates on the same part of
the tree structure in close succession, leading to improved
locality. Jo et al. [2013] later observed that the code struc-
ture generated by point blocking made such tree traversal
codes amenable to vectorization.

The key insight for our transformation is that when a
block of threads traversing the computation tree each exe-
cute their subtrees to completion, they are performing re-
peated recursive traversals not of a literal tree (as in Jo and
Kulkarni’s work), but of an abstract computation tree. While
each thread does not “traverse” (execute) exactly the same
computation tree, they each dynamically unfold their com-
putation tree by executing the same code. This the same as
each thread traversing a single tree, but performing slightly
different work at each node in the tree. Point blocking can
be directly applied to the code in Figure 4(a) to produce a
new, blocked depth-first execution where all the threads in
the block execute their computation trees in lockstep.

Figure 4(b) shows the result of applying point blocking
to the depth-first code. The key to the transformation is that
rather than creating a single thread block for the next level
of computation, a separate thread block is created for each
spawn directive in the code. Then the depth-first version
of the code is called for each thread block in succession, so
every thread executes its left subtree (to completion) before
executing its right subtree. Figure 4(c) shows the order of
computation imposed by the transformation after the first
two levels of the computation tree are executed in a breadth-
first manner. Just as in the breadth-first code, all the threads
in a thread block are at the same level of the tree. Unlike
breadth-first code, the thread blocks for the next level of the

1 void blocked_foo(ThreadBlock tb)

ThreadBlock left ,

1 void dfs_foo (ThreadBlock tb)

foreach (Thread t : tb)
if (isBase(t.x))

if (isBase(t.x))

2
3
4
5 baseCase ()
6
7
8

4 baseCase () else

5 else 11 =
6 11 = inductiveWorkl (t.x)

7 foo(11)

8 12 = inductiveWork2 (t.x) 9 12 =
9 foo (12) 10

(a) Depth-first execution after breadth-

. 11
first execution

12

blocked_foo (left)
blocked_foo (right)

(b) Blocked depth-first execution

foreach (Thread t :

right
tb)

inductiveWorkl1 (t.x)
left.add(new Thread(11))

inductiveWork2 (t.x)
right.add (new Thread(12))

foo(2)

RIKIREK

(c) Schedule of computation for blocked code after first
two levels have been executed in breadth-first manner.
Leaf nodes with the same label are executed as part of
the same block.

Figure 4: Depth-first version and computation schedule

Figure 5: Computation after partial breadth-first execution

tree can have no more threads than the thread block at the
current level; therefore, space usage is contained.

The transformed code can be vectorized in the same
way as the breadth-first code. As in the breadth-first code,
the depth-first code naturally groups together correspond-
ing children with each other; each thread block for the next
level only contains children from one spawn directive. Be-
cause different spawns in a task often behave differently,
this scheduling strategy promotes similarity of tasks that are
vectorized together, reducing vector divergence.

There is a downside to blocked depth-first execution:
threads can only be executed in parallel if they both visit
the “same” node in their computation tree (in other words,
if the computation trees overlap). If one thread in a block
executes its base case while the other threads continue re-
cursing, the size of the next level block will be smaller. If
a block becomes too small, there may no longer be enough
threads in the block to keep all the SIMD lanes in a vec-
tor unit occupied, resulting in underutilization and lost par-
allelization opportunities. For instance, consider the stylized
computation tree in Figure 5, with the dashed triangles repre-
senting the rest of the tree. If breadth-first expansion has exe-
cuted the black nodes of the computation tree, there are now
four threads ready to execute the grey portions of the tree.
Blocked depth-first execution will cause the four threads to
execute their code in lockstep. However, threads 1 and 4 in
Figure 5 have left-biased computation trees, while 2 and 3
have right-biased subtrees. While threads 1 and 4 execute
their left subtrees, 2 and 3 must sit idle. With only two active
threads in a thread block, we cannot fully utilize even 4-way
vector. The next section describes a scheduling policy that
can address this underutilization.

1 void bfs_foo(ThreadBlock tb)
2 ThreadBlock next

3 foreach (Thread t : tb)

4 /% same as foreach in Figure 3 lines 4—10x/
5 if (next.size() < max_block_size)

6 bfs_foo (next)

7 else

8 blocked_foo (next)

10
1
12
13
14
15
16
17
18
19
20
21

void blocked_foo (ThreadBlock tb)
ThreadBlock left , right
foreach (Thread t : tb)
/% same as foreach in Figure 4(b) lines 4—10 =/
if (left.size() > reexpansion_threshold)
blocked_foo (left)
else
bfs_foo(left)
if (right.size() > reexpansion_threshold)
blocked_foo (right)
else
bfs_foo (right)

Figure 6: Re-expansion pseudocode

4.3 Re-expansion to improve utilization

We propose a scheduling strategy called re-expansion to
mitigate the under-utilization that can arise due to lack of
overlap between different threads’ computation trees. Essen-
tially, re-expansion toggles back and forth between breadth-
first execution and depth-first execution: the former to gener-
ate work when thread block sizes get too small, the latter to
execute work in bounded space when thread block sizes get
too large. For example, if re-expansion were applied to the
computation tree of Figure 5, then after threads 2 and 3 drop
out of the left portion of the depth-first computation, threads
1 and 4 can switch back to breadth-first execution, gener-
ating more work to run in parallel. Intuitively, re-expansion
looks for more parallel work in the subtrees of the “live”
threads during depth-first execution.

Implementing re-expansion is straightforward: because
both the breadth-first code and the blocked depth-first code
take thread blocks as arguments, each can call the other
to switch execution strategies. Figure 6 shows how re-
expansion can be integrated into the transformed code.

Re-expansion requires two thresholds, amax block_size

that triggers depth-first execution when the blocks are get-
ting too big, and a reexpansion_threshold that trig-
gers breadth-first execution when there is too little parallel
work. These thresholds are application-specific, as they are

governed by the structure of the computation tree. To set
these thresholds, we pick a target space utilization, T},
(i.e., the maximum number of threads we want active at a
time), and determine the expansion factor, e, of an appli-
cation (the maximum number of spawns in a task). We set
bothmax_block_sizeand reexpansion_threshold
t0 Tynaz /€, O that after one round of breadth-first execution
we cannot create more than 715,,,, threads.

5. Effective SIMD Implementation

The discussion so far has focused on maximizing opportu-
nities for vectorization by exposing the data parallelism la-
tent in recursive-parallel programs. In this section, we dis-
cuss the mechanisms employed to translate this opportunity
into actual performance. This involves replacing operations
on individual threads with operations that span the entire
thread block, maximizing the use of vector instructions in
place of scalar instructions, and improving the data and op-
eration structures to enable vectorized execution. We note
how each aspect of a function body—stack management,
base case check, base case and recursive execution—can be
optimized. We present the implementation details in terms
of our running example.

Optimized stack operations: Performing a blocked depth-
first recursive call or a breadth-first re-expansion allows the
stack operations of individual threads to be optimized. We
exploit the fact that all recursive calls invoke the same func-
tion, merging the stack frames of individual threads into a
thread block, which is allocated and deallocated with a con-
stant number of instructions. The stack management over-
head thus reduces with increase in block size. Within each
thread block, all instances of individual data elements across
all stack frames are stored contiguously. This structure-of-
arrays layout lets us avoid expensive scatter/gather opera-
tions and simply replace the scalar stores and loads in indi-
vidual threads with the corresponding vector instructions.

Vectorizing operations: The first operation a task performs
is to check whether to execute the base case or the recur-
sive case. This operation, denoted by isBase (), is per-
formed by all threads and can be readily vectorized. The
code is transformed into an iterative loop that performs the
isBase () computation across all threads in a block. This
loop is then vectorized by the compiler. In general, we use
the compiler’s vectorization support where possible, and in-
troduce explicit vector instructions only where necessary.
This way, we rely on the compiler to manage register allo-
cation, scalar optimizations, and choose appropriate instruc-
tion sequences.

The result of executing 1 sBase () is a vector of boolean
flags (characters or bits depending on the instruction set) that
denotes whether the branch is to be taken by each thread.
The base and recursive cases in the different threads can
now be executed using vector instructions in which elements
of the vector are masked using the boolean flags. However,
this would significantly complicate vector code generation.

Not all scalar instructions have masked vector equivalent in-
structions. In addition, such masked execution significantly
degrades vector utilization and thus performance.

Stream compaction: Utilization can be improved by parti-
tioning the threads into groups that perform identical actions.
All threads performing the base case need to be separated
from those performing the recursive case. Once grouped, the
threads performing the same action, be it base or recursive
case, can be vectorized without masking. For breadth-first
re-expansion, it is also beneficial to sort the recursive calls
based on their sibling position: the number of recursive calls
that precede a given invocation. The ordering of the recursive
calls is ensured during breadth-first expansion by enqueuing
the i-th recursive call by all threads before any (i + 1)-th
calls. Grouping the threads into those executing base case
and recursive case is performed using stream compaction:

1 foreach (Thread t : tb)

2 if (t.isBase) baseCase.add(t)

3 else recursiveCase.add(t)

4 //vectorized execution of baseCase threads

s //vectorized execution of recursiveCase threads

The most efficient approach to vectorizing the stream
compaction operation—the foreach loop in the above code
snippet—depends on the instruction set and space require-
ments. We now discuss how the stream compaction oper-
ation can be vectorized on the Xeon E5 (SSE4.2) and the
Xeon Phi (AVX512). The Xeon ES5 supports the shuffle in-
struction that can perform an in-place permutation of the
contents of a vector register. Stream compaction corresponds
to a permutation that gathers the threads taking the same
branch path. This shuffle operation can be encoded as:

1 pos=0
2 shuffleOp = Thread[tb.size ()]

3 foreach (Thread t : tb)
4 if (t.isBase) shuffleOp[pos++] = t

We further optimize this loop by pre-computing the
shuffleOp value for all possible boolean vectors into a
shuffle table. For a vector width—-the number of elements
can be processed by a single vector instruction—t, there are
2t possible entries in the shuffle table. Stream compaction
now involves one lookup into this table to determine the
desired shuffle and executing the vector shuffle instruction.
While efficient in time, the space overhead of the shuffle
table is exponential in the vector width. We address this by
computing the shuffle to be performed using a smaller shuf-
fle table and a multi-pass algorithm. This is conceptually
similar to factorization-based implementations of various
permutation operations [Eklundh 1972; Puschel et al. 2005].

Let us consider the compaction of a vector X into another
vector Y, denoted by compact(X|[0 : N] — Y0 : N]) We
observe that this can be factorized as:

compact(X[0: m] — Y[0: nnz(X[0 : m])]);
compact(X[m +1: N| = Y[nnz(X[0: m]) + 1 : N])

where nnz(X|a : b]) is the number of predicates of interest
(e.g., the number of non-zeroes) in vector X between posi-

tions a and b. In addition to the shuffle table, we pre-compute
and store the nnz() function into an advance table, denoting
how far the position of the next compaction needs to be ad-
vanced. Note that the table size is exponential in the vector
width, while the factorized compaction requires number of
instructions linear in the number of factorization steps. For
example, we can reduce the size of the shuffle tables by a fac-
tor of 256 (from 2'° to 28) by using an 8-way table instead
of a 16-way tables. This incurs only a few additional instruc-
tions rather than 16 that would be required by a sequential
compaction. As vector width increases, as can be expected
on future systems targeting energy-efficient performance im-
provements, the benefits from this approach improve further.

The current generation Xeon Phi does not have a vector
shuffle instruction. However, it has a masked scatter opera-
tion that can store a subset of the elements in the vector into
memory. We observe that the mask for the scatter operation
can be computed as an exclusive prefix sum. An exclusive
prefix sum of a zgctor X into vector Y is defined as:

<

Y[i] = Z(X[j] should be compacted 7 1 : 0)

As in the casejog the shuffle table, we store the prefix-sum
function into a table; the prefix sum computation can be
factorized when combined with the advance table. Thus the
space overhead can be reduced at the expense of a few addi-
tional instructions to compute the masked scatter instruction.
Therefore for both Xeon ES and Xeon Phi, we can perform
stream compaction in a vectorized fashion with low space
and time overhead.

6. Evaluation

We now empirically evaluate the performance of our tech-
niques across eight recursive benchmarks. We note that vec-
torization of recursive benchmarks introduces overheads of
various kinds. The data-parallel rather than strict depth-first
execution can increase register pressure as well as the cache
footprint of each function invocation. As the block size gets
larger, the footprint can exceed the cache sizes, degrad-
ing cache locality. Stream compaction incurs table lookup
costs, additional instructions, and memory operations that
introduce additional overheads. In addition, the benefits of
vectorization are limited by both the availability of enough
concurrency (for instance, due to the presence of scaler in-
structions that are not effectively vectorized by the compiler
across threads) and the ability of the blocked depth-first and
breadth-first schemes to expose this concurrency in the form
of data parallelism. This section shows that the vectorization
gains from our techniques outweigh the overheads, across
most of our benchmarks.

6.1 Evaluation platform and benchmarks

We evaluate our transformations on the Intel E5-2670 and
the Intel Xeon Phi. The ES5 is a 8-core 2.6GHz Sandy Bridge
processor with 32KB L1 cache per core, 20MB last-level

Benchmark Problem #levels #tasks Time (s)
E5 Phi
knapsack long 31 2.15B 8.7 83.5
fib 45 45 3.67B 9.0 84.3
parentheses 19 37 485B 105 69.9
nqueens 13 14 59.8M 4.9 48.2
graphcol 3(38-64) 39 424M 309 4176
uts 20 1572 136K 214 1645
binomial C(36,13) 36 4.62B 8.3 74.1
minmax 4x4 13 242B 18.1 1208

Table 1: Benchmarks. All benchmarks use 16-wide vector
operations, except knapsack and UTS on the Xeon ES, which
employ 8-wide and 4-wide vector operations, respectively.

cache, and 128-bit SSE 4.2 instruction set?. The Xeon Phi is
a61-core SE10P co-processor running at 1.1GHz with 32KB
L1 cache and 512KB L2 cache per core, supporting 512-
bit AVXS512 instructions. All benchmarks were compiled
with Intel icc-13.3.163 compiler and —03. The Xeon Phi
experiments were conducted in the native mode with —mmic
option. Recall that our focus is single-core vectorization: all
of our experiments use a single core of the target platform.?

We evaluated our technique on the eight benchmarks,

ranging from microbenchmarks to larger kernels: (i) knapsack,

which computes the optimal solution to the knapsack prob-
lem [Cilk]*; (i) £ib, which Computes the 45-th Fibonacci
number [Cilk]; (iii) parentheses, which computes the
number of well-formed parentheses string combinations
with 19 parentheses; (iv) nqueens, which counts the num-
ber of valid solutions to the 13-queens problems [Barcelona
OpenMP Task Suite (BOTS)]; (v) graphcol, which counts
the number of valid ways of coloring a 38-node, 64-edge
graph with 3 colors [Huo et al. 2013]; (vi) ut s, which counts
the number of nodes in a probabilistic binomial tree [Olivier
et al. 2007]; (vii) binomial, which recursively computes
the combination 36C3 [Huo et al. 2013]; and (viii) minmax,
a min-max search for tic-tac-toe on a 4 x 4 board.

Table 1 characterizes the benchmarks and their sequen-
tial execution time. We present speedups relative to these se-
quential times in the rest of the evaluation. We use the small-
est data type possible without loss of generality to maximize
vector width (e.g., we define n in £ib as a char on ES due
to the exponential nature of the computation). On the Phi, we
use the int data type for all benchmarks, because the IMCI
instruction set does not support shorter data types well.

Figure 7 characterizes the structure of each benchmark’s
computation tree. Because binomial and minmax have
similar trees to £ib and nqueens, respectively, their char-

2 We do not use AVX, as it does not support shuffle instructions

3 In addition to pure SIMD execution, we have modified our transformations
to be compatible with standard, Cilk-style multicore parallelism, letting
other workers steal entire blocks of work during depth-first execution.
This extension is not a contribution of this work, but Appendix C in the
supplemental material presents preliminary results demonstrating that our
SIMDization approach is complementary to multicore parallelism.

4 We use the ‘long’ input without pruning to ensure determinism.

Benchmark Xeon E5

Xeon Phi

Breadth-first No Re-expansion

Re-expansion

Breadth-first No Re-expansion Re-expansion

only speedup Block Speedup Block Speedup only speedup Block Speedup Block Speedup
knapsack 1.17 212 1.90 ol 1.91 OOM 28 5.23 28 5.10
fib 1.67 2% 1.99 29 2.03 0.65 210 3.07 29 3.50
parentheses 1.23 o4 1.84 o1l 1.85 OOM 29 1.32 29 1.39
nqueens 438 223 5.10 215 6.33 0.83 222 1.18 212 2.96
graphcol 1.08 221 2.99 28 8.95 0.79 22! 1.88 28 12.23
uts 1.68 o4 1.69 o4 1.68 1.0 o4 2.05 o4 2.05
binomial 1.14 218 1.38 218 1.39 OOM 2! 1.76 29 1.99
minmax 0.83 220 1.79 210 2.17 OOM 213 0.61° 28 0.931
Geometric mean 1.44 2.13 2.58 0.81 1.78 2.76

* Performance is close to that for 22 block size T The poor performance of minmax is due to excessive cache misses in the Xeon Phi’s small cache; if the
cache is warmed up for the kernel computation, we can achieve a speedup of 1.09 without reexpansion and and 1.49 with (not counting the warmup).
Table 2: Best block size and execution times for different vectorization strategies

10‘0 tasks —— 10‘0 1010
108 | baseCase 108 108
10° 1o / 10°
10 o0t 10
10? qo10? 102
10° d g0 4 o

0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 45 1

(a) knapsack (c) parentheses

i
0 5 10 15 20 25 30 35 40

10°

108 10*

tasks
P i o | baseCase
0 5 10 15 20 25 30 35 40 0 400 800

(e) graphcol (f) uts

0 2 4 6 8 10 12 14 1200 1600

(d) nqueens

Figure 7: Distribution of tasks in selected benchmarks. x-axis: recursion depth; y-axis: number of all and base case tasks

acteristics are described in Appendix A in the supplemental
material. For each benchmark, we show the number of lev-
els, the total number of tasks in each level, and the number
of tasks executing the base case in each level. knapsack
is a perfectly balanced tree with base case tasks only at
the last level. fib (binomial) and parentheses are
more unbalanced, with parentheses having some in-
termittent shallower branches. nqueens (minmax) has a
large number of leaves at almost all levels and a large fanout.
graphcol and ut s have a more uneven distribution of to-
tal tasks and leaves. ut s is a deep computation tree with the
fewest number of tasks in each level.

6.2 Overall speedup from blocked SIMD execution

Table 2 shows the overall speedup of our vectorized execu-
tion strategies on the ES and Xeon Phi architectures. Pure
breadth-first execution sometimes runs out of memory on
Xeon Phi, and provides poor performance in general. This
is due to the fact that it has poor cache performance due
to large block sizes. With our hybrid depth-first/breadth-
first strategy, without re-expansion, we achieve speedups of
1.38-5.10x (geometric mean of 2.13x) on the E5, and a
0.59-5.23x (geometric mean of 1.78x) on the Xeon Phi.
Adding re-expansion raises speedups to 1.39-8.95x (geo-
metric mean of 2.58x) on the E5 and 0.93-12.23x (geo-
metric mean of 2.76x) on the Xeon Phi. Using re-expansion
typically uses less space since it yields equivalent or better
speedups at smaller block sizes.

6.3 Understanding vectorized performance

We now explore the various factors that affect vectorized
performance in detail. As mentioned above, binomial and

minmax are structurally similar to fib and nqueens,
respectively, so we leave their detailed performance studies
to Appendix A in the supplemental material.

The most obvious parameter affecting the performance
is the size of the thread blocks used by our code transfor-
mations. Larger thread blocks clearly require more memory.
More importantly, though, thread block size determines the
fundamental tradeoff underlying our performance results.
Larger block sizes lead to more work that can be vectorized,
increasing SIMD utilization. However, large blocks suffer
from poor locality, increasing cache misses. To achieve good
performance, therefore, we want to achieve good SIMD uti-
lization with the smallest possible block size.

SIMD utilization: Figure 8 shows how SIMD utilization
changes with block size.> SIMD utilization is the percentage
of tasks that are executed as part of full SIMD blocks—other
tasks, which are part of the “epilog” of vectorized execution,
lead to idle SIMD lanes. Higher SIMD utilization means
more effective use of SIMD resources and, all else being
equal, better performance. SIMD utilization for a benchmark
is determined by vector width and block size, so for all
benchmarks except knapsack and uts, utilization with
respect to block size is the same for both platforms.

SIMD utilization increases rapidly with block size, and
for all benchmarks, with or without re-expansion. Given a
sufficiently large block, our transformations can achieve al-
most perfect utilization. Crucially, however, with re-expansion,
the block size required for perfect utilization shrinks on

3 In Figures 8-11, legends for knapsack apply to all graphs. “no reexp”
refers to vectorization without re-expansion, while “reexp” includes our re-
expansion technique.

100 %

100 %

100 %

80 % 80 % 80 %

60 % 60 % 60 %

40 % 40 %

40% 1 i no reexp
H reexp

! noreexp-phi -

reexp-phi

20 % 20 % 20 %

0%
20 25 210 215 220 225 230

(b) fib

0%20 25 210 215 220 225 230

(a) knapsack (c) parentheses

0%
20 25 210 215 220 225 230

100 %
80 %
60 %
40 %
20 %

0% .
20 25 210 215 220 225

100 % 100 %

80 % 80 %

60 % 60 %

40 % 40 %

20 % 20 %

0%20 22 ot 96 8 p10 512 pl4

(f) uts

25 210 215 220 225

(e) graphcol

0%
20
(d) nqueens

25% —

2%

25%

2% 2%

1.5% 1.5%

1% no reexp d1: 1%
nojreexp Ild; -
/reexp dt
J reexp fid_-+--o-

0.5% 0.5%

o
0 /020 25 210 215 220 225 230

(b) fib

0%
20 25 210 215 220 225 230

(a) knapsack (c) parentheses

0%
20 25 210 215 220 225 230

100 %

0.1

%

0.12%

0.1%
0.08 %
0.06 %
0.04 %
0.02% |

Figure 8: SIMD utilization. x-axis: block size; y-axis: percentage of tasks that can be vectorized

30 %
25 %
20 %
15%
10 %

5%

0% - .
20 92 p4 o6 o8 510,512,514

(f) uts

0% :
20 25 21 0 21 5 220 225

(e) graphcol

20 95 10 515 520 525

(d) nqueens

Figure 9: Xeon ES5 cache miss rate. x-axis: block size; y-axis: miss rate for level 1 (d1) and last level (11d) caches

2

2 24
16 2 1.6
12 16 12
1.2
08 08 08|
0.4 no reexp 0.4 £ 0.4 | 7
reexp e i

0
20 55 510 515 520 525 530

(a) knapsack (b) fib

(c) parentheses

0 ol
20 2% 210 218 20 9% %0 T o5 10 515 520 525 530

(SR SR N I]

20

9 2

8

7) 16

5 / Iy 12

4 : Vo

3 J : 08

2 __’__,_/\\ 0.4

: /

0 0
25 210 215 220 225 20 25 210 215 220 225 20 22 24 25 25 210 212 214
(d) nqueens (e) graphcol (f) uts

Figure 10: Xeon E5 speedup. x-axis: block size; y-axis: speedup relative to sequential baseline

, 6 . 2
10 K 135 10 #reexps M
6 exp factor = i
1. 5 [(o]
10 3 10 1.8
5
1.25
10 104 [
104 12 1.6
5 10% |
10 o 1.15 1.4
5 .
102 14 10 ¢
10’ 1.05 10' | H 1.2
10° N 1

|
0 5 10 15 20 25 30 35 40 45
(a) fib

0 5 10 15 20 25 30 35 40
(b) parentheses

10°

9 10* — 3

. ..

7 10° 25

6

5 102 . 2

4

3 10! 15

2

1 10° 1
0 5 10 15 0 5 10 15 20 25 30 35 40

(c) nqueens (d) graphcol

Figure 11: Benefits of re-expansion. x-axis: task level; left y-axis: number of re-expansions; right y-axis: factor of block size

improvement due to re-expansion

several benchmarks (notably, nqueens and graphcol).
To understand why, recall that without re-expansion, we
generate parallel work using breadth-first expansion only
at the beginning of the computation and the subsequent
blocked depth-first execution cannot generate additional par-
allel work. Therefore, to achieve high utilization, we must
generate a large amount of parallelism (large blocks) in the
first depth first expansion before we begin depth-first exe-
cution. Re-expansion’s ability to generate additional paral-
lelism later in execution lets it tolerate a smaller block size.
Re-expansion has little effect on utilization for some bench-
marks, notably knapsack, fib and parentheses. For
knapsack, re-expansion is never needed due to the per-
fectly balanced tree. The other two benchmarks have more
subtle behavior, which we investigate more carefully later.

ES cache efficiency and speedup: SIMD utilization only
affects the amount of work that can be vectorized; it is not
the only factor that affects performance. Another crucial fac-
tor, which militates against large blocks, is cache efficiency.
It is the interplay between utilization and efficiency that

determines speedup. We next investigate this behavior on
the E5 platform. Appendix B in the supplemental material
presents a similar investigation for the Xeon Phi.

Figure 9 shows both the L1 and last-level data cache
misses rates with varying block size, with and without re-
expansion. We see that as the block size grows, cache misses
increase. To understand why, note that all of the threads in a
thread block are accessed twice: once when they are added to
the thread block, and a second time when they are executed.
If the thread block is too large, the thread data will have been
evicted by the second access. Unsurprisingly, we see fairly
sharp discontinuities, representing cutoffs when blocks no
longer fit in cache. Different benchmarks have fairly differ-
ent cache behaviors, as they have different computational
patterns; some benchmarks like £ib do very little data ac-
cess, while others like nqueens and graphcol perform
lots of lookups. Nevertheless, the broad trend of increasing
cache misses with block size persists.

Our vectorization speedup is due to a combination of both
SIMD utilization and cache behavior. Figure 10 shows the

overall speedups of our techniques with varying block sizes.
For all the benchmarks except ut s, we see a consistent pat-
tern: speedup increases with block size as SIMD utilization
increases; then, at larger block sizes, cache misses begin
to dominate, while we encounter diminishing utilization re-
turns, causing speedups to drop.

These results demonstrate the key advantage of our re-
expansion scheduling strategy. By generating more work
throughout execution, re-expansion lets our transformed
code achieve high SIMD utilization with smaller block sizes,
letting us gain large benefits from vectorization before poor
cache performance drags down overall speedups. This effect
is most noticeable for nqueens and graphcol, where re-
expansion achieves near-perfect SIMD utilization at block
sizes small enough to avoid the cache-miss cliff, giving very
high speedups. Even for benchmarks where re-expansion
is not as critical, such as fib and parentheses, re-
expansion lets us achieve peak speedup at somewhat smaller
block sizes, reducing overall memory usage.

The exceptions to these trends are knapsack and uts.
The former does not benefit from re-expansion due to its
balanced computation tree; since threads never die out, the
block size never gets small enough to trigger re-expansion.
The latter has a relatively narrow computation tree and is
very unbalanced, and hence performs best when the block
size is large enough to obviate the need for ever doing depth-
first execution in the first place (2! threads).

Re-expansion benefit: We study the benefits from re-
expansion in exposing data parallelism in Figure 11. For
each level of the computation tree, the figure shows two
quantities: the number of re-expansions performed at that
level and the factor of increase in the number of tasks at
the next level due to re-expansion. Larger factors denote
greater benefit; a factor of 1 means that the block size did not
change after re-expansion. We do not show knapsack’s
and uts benchmarks since their execution never triggers
re-expansion. Among the other benchmarks, re-expansion
has limited benefit for fib and parentheses due to the
fact that these computation trees are also relatively balanced
and re-expansion is triggered fairly late, and does not gen-
erate much additional parallelism since the trees are not ex-
panding (getting wider) any more. Re-expansion is much
more useful in adapting to tree structures with base cases
intermingled with recursive tasks at shallower depths. We
observe this for nqueens and graphcol, which can get
re-expansion factors as high as 8 and 3, respectively.

Benefits from stream compaction: We evaluate the ben-
efits from stream compaction on two representative bench-
marks: £ib, one of the benchmarks with a small kernel,
and nqueens, which has a larger kernel. Figure 12 shows
the speedups achieved by the best block size configuration,
as compared to the sequential execution, when the stream
compaction is performed sequentially as compared to our
table-lookup based compaction. We see that the table-lookup
based compaction is faster in all cases, with significant im-

7
——e5sc

6 | D= e5nosc

g | === phisc
aQ = phi no sc
=]
<4
[
;’.)_3

2

1

0

fib nqueens

Figure 12: Speedup with and without stream compaction (sc)
on ES and Xeon Phi, normalized to sequential baseline

Sequential Vectorized
Benchmark Vect non-Vect Vect non-Vect Speedup
nqueens 0.94 0.06 0.06 0.03 10.74
graphcol 0.99 0.01 0.06 0.01 14.28
uts 0.81 0.19 0.20 0.20 2.50
minmax 0.62 0.38 0.04 0.25 3.48

Table 3: Estimated maximum vectorization speedup on E5

provements for smaller kernels. In fact, optimized stream
compaction is crucial to performance on the smaller kernels.
Even for benchmarks with larger kernels, we observe 5-10%
overall performance improvement. We observe similar be-
havior for the other benchmarks considered as well.

6.4 Opportunity analysis

Various factors preclude us from achieving the perfect
speedup (i.e., 16 for 16-way SIMD) from vectorization.
Here, we try to quantify the theoretically maximum achiev-
able speedup. Given that only the kernel computation is
vectorized, we compute the effect of Amdahl’s law due to
non-kernel overheads by looking at the number of kernel
and non-kernel instructions. While number of instructions
executed does not strictly determine performance, this op-
portunity study gives us some insight into vectorization po-
tential (assuming 1.0 CPI). Since it is difficult to isolate the
core computations in benchmarks with small tasks (fib,
parentheses, knapsack, and binomial), we focus
on the remaining benchmarks.

Table 3 shows the fraction of vectorizable and non-
vectorizable instructions for the remaining benchmarks.
The Sequential columns indicate that a significant fraction
of computation is vectorizable. In our modeled vectorized
code, we assume perfect speedup for the vectorizable in-
structions (column 4), reducing the instruction count by a
factor of the vector width. We profile the re-expansion ver-
sion of the code to account for changes in the number of non-
vectorizable instructions due to our transformations (column
5). Note that our transformations can occasionally reduce
the number of non-kernel instructions (e.g., nqueens and
minmax) due to the way they optimize stack management
operations. The modeled maximum speedup is the ratio of
the total number of dynamic instructions in the modeled vec-
torized version to the sequential versions. We see that even
with perfect vectorization, the anticipated speedup for uts
and minmax is only 2.5 and 3.48 respectively (due to the

large number of non-kernel instructions which are not vec-
torized). nqueens and graphcol fare better. Comparing
with Table 2, we see that our vectorized implementations
achieve a large fraction of this theoretical max speedup de-
spite suffering from overheads such as cache misses.

7. Related Work

Parallelism for multicores: Many modern programming
languages for multicores, such as as Cilk family [Blu-
mofe et al. 1995; Frigo et al. 1998; Danaher et al. 2006],
Thread Building Blocks [Reinders 2007], Task Parallel Li-
brary [TPL], OpenMP [OpenMP Architecture Review Board
2008], X10 [X10], allow programmers to express task paral-
lelism using constructs similar to our spawn directive. Two
important variants of work-stealing schedulers are relevant
to our work: As described in Section 2, the work-first strat-
egy [Frigo et al. 1998] is similar to our depth-first strategy—
when a processor spawns a task, it places the continuation
on its local pool (to be potentially stolen by other proces-
sors) and immediately starts executing the newly spawned
task. In contrast, the help-first strategy [Guo et al. 2009]
is similar to breadth-first execution—a processor places the
newly spawned task on its local pool and immediately ex-
ecutes the continuation. Guo et al. [2009] propose using
help-first scheduling to generate work quickly, and work-
first scheduling thereafter to bound space usage. This strat-
egy is somewhat similar to the execution strategy adopted
by our initial code transformations that begin with breadth-
first execution then switch to depth-first execution, though
a traditional work-stealing scheduler would not provide the
necessary structured execution for vectorization.

Parallelism for vector units/GPUs: Modern vectorizing
compilers attempt to automatically perform vectorization for
small loops in programs using a variety of techniques [Nuz-
man and Zaks 2008; Maleki et al. 2011]. However, they tend
to target programs written in a very structured, data-parallel
manner, and cannot handle even moderately complex pro-
grams [Maleki et al. 2011]. In more restricted domains, there
has been more success in SIMDizing programs through syn-
thesis [Barthe et al. 2013] and code generation from domain-
specific languages [Ren et al. 2013] and other restricted sets
of problems [Kim and Han 2012; Jo et al. 2013]; these ap-
proaches do not work for more general programs. Most work
in mapping complex applications to vector units has been
done by hand [Chhugani et al. 2012; Dammertz et al. 2008;
Havel and Herout 2010; Hernquist 1990; Kim et al. 2010].
GPUs offer a more programmable interface than vector
units on CPUs, but the most common programming models
for GPUs are fundamentally data-parallel [NVIDIA; Stone
etal. 2010]. In recent years, several attempts have been made
to take GPUs’ inherently data-parallel execution model and
adapt it to target task-parallel programs [Tzeng et al. 2010;
Aila and Laine 2009; Huo et al. 2013]. Perhaps most related
to our work, Orr et al. [2014] provide a hardware imple-
mentation of the channels model proposed by Gaster and

Howes [2012] and provide a mapping from simple Cilk-style
programs to their channels implementation. Interestingly,
the execution model imposed by channels on these programs
resembles the level-by-level breadth-first execution strategy
of our initial code transformation. To control space, they
propose another hardware modification that allows the ex-
ecution of one level of computation to be suspended—in
essence, only processing part of each level of the tree. An
interesting avenue of future work would be to compare Orr
et al.’s scheduling strategy with our proposed strategies.
The key distinctions between our work and this work on
GPUs are: (1) GPUs provide hardware support for gather
and scatter operations and execution masking, meaning that
GPU approaches do not need to consider data and compu-
tation organization as carefully, and (2) the only GPU im-
plementation that targets the similar fine-grained task paral-
lelism as our techniques requires custom hardware support,
and is not suitable for targeting commodity vector hardware.

Stream compaction for vectorization: Stream compaction
was first introduced as a general technique for managing
blocks of data operated on by vector operations by Ren et
al. [2013]; they performed stream compaction for four-wide
vector units, but did not describe a general approach for
arbitrary-length vectors. Mytkowicz et al. [2014] described
a general permutation strategy for block management. Per-
mutation is a generalization of stream compaction. However,
because stream compaction is a simpler problem, our algo-
rithm is more efficient since it is linear in the stream size
(rather than quadratic) and can trade-off between the size of
pre-computed tables and the number of lookups.

8. Conclusions

Vectorizing task-parallel programs requires solving several
critical challenges: finding data-parallelism for vectoriza-
tion; controlling space usage; and ensuring that SIMD units
stay fully utilized. We present code transformations and
scheduling strategies that address these problems, allowing
recursive, task-parallel programs to be mapped efficiently
to commodity vector hardware. Moreover, our stream com-
paction algorithm is applicable beyond our block manage-
ment code, and could be integrated in production compilers.

Our results represent a first cut at mapping task-parallel
programs to processors with SIMD units, and there are many
opportunities for improved performance. For example, the
next version of the Xeon Phi will support character-level
vector operations. With our general stream compaction im-
plementation, our scheme will automatically be able to take
advantage of the increased vector widths of new hardware.
Moreover, while our current results focus on improving
single-core performance by leveraging SIMD units, our pro-
gramming model is a standard task-parallel language. As
Appendix C shows, it is feasible to integrate multicore par-
allelism with traditional work-stealing and our SIMDization
technology. We plan to investigate this hybrid further in fu-
ture work.

References

T. Aila and S. Laine. Understanding the Efficiency of Ray Traver-
sal on GPUs. In Proceedings of the Conference on High Per-
formance Graphics 2009, HPG ’09, pages 145-149, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-603-8. . URL
http://doi.acm.org/10.1145/1572769.1572792.

Barcelona OpenMP Task Suite (BOTS). Barcelona OpenMP Task
Suite (BOTS). https://pm.bsc.es/projects/bots.

G. Barthe, J. M. Crespo, S. Gulwani, C. Kunz, and M. Marron.
From Relational Verification to SIMD Loop Synthesis. In Pro-
ceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13, pages 123—
134, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1922-
5. . URL http://doi.acm.org/10.1145/2442516.
2442529.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime
System. In Proceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP
’95, pages 207-216, New York, NY, USA, 1995. ACM. ISBN
0-89791-700-6. . URL http://doi.acm.org/10.1145/
209936.209958.

J. Chhugani, C. Kim, H. Shukla, J. Park, P. Dubey, J. Shalf, and
H. D. Simon. Billion-particle SIMD-friendly Two-point Cor-
relation on Large-scale HPC Cluster Systems. In SC, 2012.
ISBN 978-1-4673-0804-5. URL http://dl.acm.org/
citation.cfm?id=2388996.2388998.

Cilk. Cilk. http://supertech.csail.mit.edu/cilk/.

H. Dammertz, J. Hanika, and A. Keller. Shallow Bounding Vol-
ume Hierarchies for Fast SIMD Ray Tracing of Incoherent
Rays. In Proceedings of the Nineteenth Eurographics Con-
ference on Rendering, EGSR 08, pages 1225-1233, Aire-la-
Ville, Switzerland, Switzerland, 2008. Eurographics Associa-
tion. . URL http://dx.doi.org/10.1111/3.1467~
8659.2008.01261.x.

J. S. Danaher, L-T. A. Lee, and C. E. Leiserson. Programming
with Exceptions in JCilk. Sci. Comput. Program., 63(2):147—
171, Dec. 2006. ISSN 0167-6423. . URL http://dx.doi.
0rg/10.1016/j.scico.2006.05.008.

J. O. Eklundh. A Fast Computer Method for Matrix Transpos-
ing. IEEE Trans. Comput., 21(7):801-803, July 1972. ISSN
0018-9340. . URL http://dx.doi.org/10.1109/T-
C.1972.223584.

M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation
of the Cilk-5 Multithreaded Language. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation, PLDI ’98, pages 212-223, New
York, NY, USA, 1998. ACM. ISBN 0-89791-987-4. . URL
http://doi.acm.org/10.1145/277650.277725.

M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Re-
ducers and Other Cilk++ Hyperobjects. In Proceedings of the
Twenty-first Annual Symposium on Parallelism in Algorithms
and Architectures, SPAA °09, pages 79-90, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-606-9. . URL http:
//doi.acm.org/10.1145/1583991.1584017.

B. Gaster and L. Howes. Can GPGPU Programming Be Liberated

from the Data-Parallel Bottleneck? Computer, 45(8):42-52,
August 2012. ISSN 0018-9162. .

Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and Help-
first Scheduling Policies for Async-finish Task Parallelism. In
Parallel Distributed Processing, 2009. IPDPS 2009. IEEE In-
ternational Symposium on, pages 1-12, May 2009. .

J. Havel and A. Herout. Yet Faster Ray-Triangle Intersection (Us-
ing SSE4). IEEE Transactions on Visualization and Computer
Graphics, 16(3):434-438, May 2010. ISSN 1077-2626. . URL
http://dx.doi.org/10.1109/TVCG.2009.73.

L. Hernquist. Vectorization of Tree Traversals. J. Comput. Phys.,
87(1):137-147, Mar. 1990. ISSN 0021-9991. . URL http:
//dx.doi.org/10.1016/0021-9991(90)90230-X.

X. Huo, S. Krishnamoorthy, and G. Agrawal. Efficient Scheduling
of Recursive Control Flow on GPUs. In Proceedings of the
27th international ACM conference on International conference
on supercomputing, ICS *13, pages 409-420, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2130-3. . URL http:
//doi.acm.org/10.1145/2464996.2479870.

Y. Jo and M. Kulkarni. Enhancing Locality for Recursive Traver-
sals of Recursive Structures. In Proceedings of the 2011 ACM in-
ternational conference on Object oriented programming systems
languages and applications, OOPSLA ’11, pages 463482, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0940-0. . URL
http://doi.acm.org/10.1145/2048066.2048104.

Y. Jo, M. Goldfarb, and M. Kulkarni. Automatic Vectorization of
Tree Traversals. In Proceedings of the 22nd international con-
ference on Parallel architectures and compilation techniques,
PACT ’13, pages 363—-374, Piscataway, NJ, USA, 2013. IEEE
Press. ISBN 978-1-4799-1021-2. URL http://dl.acm.
org/citation.cfm?id=2523721.2523770.

C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. FAST:
Fast Architecture Sensitive Tree Search on Modern CPUs and
GPUs. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, pages 339—
350, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0032-
2. . URL http://doi.acm.org/10.1145/1807167.
1807206.

S. Kim and H. Han. Efficient SIMD Code Generation for Irregular
Kernels. In Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP
’12, pages 55-64, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1160-1. . URL http://doi.acm.org/10.1145/
2145816.2145824.

S. Maleki, Y. Gao, M. J. Garzardn, T. Wong, and D. A. Padua. An
Evaluation of Vectorizing Compilers. In Proceedings of the 2011
International Conference on Parallel Architectures and Compi-
lation Techniques, PACT 11, pages 372-382, Washington, DC,
USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4566-
0.. URL http://dx.doi.org/10.1109/PACT.2011.
68.

T. Mytkowicz, M. Musuvathi, and W. Schulte. Data-parallel Finite-
state Machines. In Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 529-542, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2305-5. . URL
http://doi.acm.org/10.1145/2541940.2541988.

D. Nuzman and A. Zaks. Outer-loop Vectorization: Revisited for
Short SIMD Architectures. In Proceedings of the 17th Inter-

national Conference on Parallel Architectures and Compilation
Techniques, PACT 08, pages 2—11, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-282-5. . URL http://doi.acm.
0org/10.1145/1454115.1454119.

NVIDIA. CUDA. http://www.nvidia.com/object/
cuda_home_new.html. URL http://www.nvidia.
com/object/cuda_home_new.html.

S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and
C.-W. Tseng. UTS: An Unbalanced Tree Search Benchmark. In
Proceedings of the 19th International Conference on Languages
and Compilers for Parallel Computing, LCPC’06, pages 235—
250, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-
3-540-72520-6. URL http://dl.acm.org/citation.
cfm?id=1757112.1757137.

OpenMP Architecture Review Board. OpenMP Specification and
Features. http://openmp.org/wp/, May 2008. URL
http://openmp.org/wp/openmp-specifications.

M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A.
Wood. Fine-grain Task Aggregation and Coordination on
GPUs. In Proceeding of the 41st Annual International Sym-
posium on Computer Architecuture, ISCA ’14, pages 181-192,
Piscataway, NJ, USA, 2014. IEEE Press. ISBN 978-1-4799-
4394-4. URL http://dl.acm.org/citation.cfm?
1d=2665671.2665701.

M. Puschel, J. M. Moura, J. R. Johnson, D. Padua, M. M. Veloso,
B. W. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
et al. SPIRAL: Code Generation for DSP Transforms. Proceed-
ings of the IEEE, 93(2):232-275, 2005.

J. Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-Core Processor Parallelism. O’Reilly, 2007.

B. Ren, T. Poutanen, T. Mytkowicz, W. Schulte, G. Agrawal, and
J. R. Larus. SIMD Parallelization of Applications that Traverse
Irregular Data Structures. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization
(CGO), CGO 13, pages 1-10, Washington, DC, USA, 2013.
IEEE Computer Society. ISBN 978-1-4673-5524-7. URL
http://dx.doi.org/10.1109/CG0.2013.6494989.

M. Steffen and J. Zambreno. Improving SIMT Efficiency of
Global Rendering Algorithms with Architectural Support for
Dynamic Micro-Kernels. In Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO ’43, pages 237-248, Washington, DC, USA, 2010.
IEEE Computer Society. ISBN 978-0-7695-4299-7. URL
http://dx.doi.org/10.1109/MICRO.2010.45.

J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems. [EEE
Des. Test, 12(3):66-73, May 2010. ISSN 0740-7475. . URL
http://dx.doi.org/10.1109/MCSE.2010.69.

TPL. The Task Parallel Library. http://msdn.microsoft.
com/en-us/magazine/ccl63340.aspx, Oct.
2007. URL http://msdn.microsoft.com/en-
us/magazine/ccl63340.aspx.

S. Tzeng, A. Patney, and J. D. Owens. Task Management for
Irregular-parallel Workloads on the GPU. In Proceedings of the
Conference on High Performance Graphics, HPG ’10, pages 29—
37, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurograph-
ics Association. URL http://dl.acm.org/citation.
cfm?id=1921479.1921485.

X10. The X10 Programming Language. www.research.ibm.
com/x10/, Mar. 2006. URL www.research.ibm.com/
x10/.

IPassing knowledge Exp(-:*rtI
1

Subject expertise? |

Relevant? =Uninteresting Compelling=
Sound? =Flawed Sound=
Accept? :NO Yes=
Strength of conviction? :A mbivalent Adamant=
Points for Points against

Questions for authors

Other notes

