
Tree Dependence Analysis

Abstract
We develop a new framework for analyzing recursive meth-
ods that perform traversals over trees, called tree dependence
analysis. This analysis translates dependence analysis tech-
niques for regular programs to the irregular space, identify-
ing the structure of dependences within a recursive method
that traverses trees. We develop a dependence test that ex-
ploits the dependence structure of such programs, and can
prove that several locality- and parallelism-enhancing trans-
formations are legal. In addition, we extend our analysis with
a novel path-dependent, conditional analysis to refine the de-
pendence test and prove the legality of transformations for a
wider range of algorithms. We then use these analyses to
show that several common algorithms that manipulate trees
recursively are amenable to several locality- and parallelism-
enhancing transformations. This work shows that classical
dependence analysis techniques, which have largely been
confined to nested loops over array data structures, can be
extended and translated to work for complex, recursive pro-
grams that operate over pointer-based data structures.

1. Introduction
Many dependence analysis techniques have been developed
to determine when applying loop transformations—such
as loop interchange, fusion and tiling [Allen and Kennedy
2001]—to regular programs—array programs with affine
loop bounds and index expressions—is legal [Allen and
Kennedy 1984; Banerjee 1991; Bondhugula et al. 2008; Lam
et al. 1991; Pugh 1991; Wolf and Lam 1991; Wolfe 1989;
Feautrier 1992]. While there have been many attempts to ex-
tend these transformations to handle more sophisticated pro-
grams, including those that have non-affine loop bounds and
index expressions [van Engelen et al. 2004; Pugh and Won-
nacott 1996; Venkat et al. 2014], these tools have largely
been confined to array programs using nested loops.

In recent work, Jo and Kulkarni [2011] developed an opti-
mization called point blocking that performs loop tiling–like
transformations not on nested loops, but instead on repeated
recursive traversals of pointer-based tree structures. Point
blocking works by grouping together multiple traversals of
a tree into a block and performing a single traversal of the
tree. At each node of the tree, all traversals that must per-
form computation at that tree node do their work before the
block moves on to the next node of the tree. In essence, the
computations performed by multiple traversals are reordered
to promote locality in the tree.

Unfortunately, while this transformation resembles loop
tiling (see Section 2.2), existing dependence analyses cannot
be applied, as point blocking targets pointer-based, recursive
programs. Instead, Jo and Kulkarni establish the legality of
their transformations through a simple, sufficient condition:

t r e e = / ∗ b s t ∗ /
v a l s = / ∗ i n t s > 0 ∗ /
foreach ( i in v a l s )

r e c u r s e ( t r e e , i )

r e c u r s e ( n , i )
i f ( n . v a l = −1)

n . v a l = i ; re turn ;
i f ( n . v a l < i )

i f ( n . l = n u l l )
n . l = new node ;
n . l . v a l = −1;

r e c u r s e ( n . l , i )
e l s e

i f ( n . r = n u l l )
n . r = new node ;
n . r . v a l = −1;

r e c u r s e ( n . r , i )

(a) BST insertion code

foreach ( i [ ] in v a l s )
r e c u r s e ( t r e e , i [ ] )

r e c u r s e ( n , i [ ] )
/ / l [ ] , r [ ] = a r r a y s
i f i . s i z e = 0

re turn ;
foreach ( j in i )

i f ( n . v a l = −1)
n . v a l = j ; c o n t in u e ;

i f ( n . v a l < j )
i f ( n . l = n u l l )

n . l = new node ;
n . l . v a l = −1;

l [ ] . append ( j ) ;
e l s e

i f ( n . r = n u l l )
n . r = new node ;
n . r . v a l = −1;

r [ ] . append ( j ) ;

r e c u r s e ( n . l , l [ ] ) ;
r e c u r s e ( n . r , r [ ] ) ;

(b) Blocked BST code

Figure 1: BST insertion, unblocked and blocked

their transformations can be applied when the traversals over
the tree structure are independent of each other.

However, this sufficient condition misses many optimiza-
tion opportunities. Consider inserting a set of points into a
binary search tree, as shown in Figure 1(a). Point blocking
can be correctly applied to the code, as shown in Figure 1(b),
even though there is clearly a dependence from one traversal
to the next, as each insertion changes the tree. The reason
for this is that if multiple points in a block travel down the
same path of the tree, and the first point in the block inserts a
node into the tree, subsequent points in the block see the new
node that was inserted, as they would have in the original
code. The dependence is preserved! This pattern of behav-
ior is quite common, arising in top-down tree building algo-
rithms for building kd-trees and Barnes-Hut octtrees. Han-
dling such cases requires a more sophisticated notion of what
kinds of dependences preclude point blocking.

Contributions In this paper, we present a tree dependence
analysis, which provides a more sophisticated picture of the
dependences in a program. Analogously to array dependence
analyses, which allow complex loop transformations to be
performed even if there are loop-carried dependences, our
tree dependence analysis provides enough information to
allow restructuring transformations like point blocking to
be performed even in the presence of dependences between
traversals. The specific contributions we make are:
• A novel dependence test that can prove the legality of

point blocking even in the face of complex dependences
(Section 3), and a proof of the soundness of point block-
ing under this test.
• An analysis that applies our dependence test to tree-

traversal programs (Section 5). While shape analyses can
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often determine whether there are dependences between
accesses to recursive data structures, our analysis reveals
the structure of these dependences with respect to the
recursive control flow of the program.
• A refinement of our dependence analysis that uses path

conditions to prove that certain dependences that appear
to exist can never arise during an execution (Section 6).
• An experimental evaluation that shows our analysis en-

ables significant performance improvements from three
transformations: point blocking, traversal splicing [Jo
and Kulkarni 2012], and a transformation that automat-
ically derives parallel tree construction implementations
from their sequential specification.
This paper presents, to our knowledge, the first attempt

to lift the kinds of sophisticated dependence analysis tech-
niques developed for programs that loop over arrays to more
complex programs that manipulate pointer-based data struc-
tures, enabling a host of locality- and parallelism-enhancing
transformations to be applied to recursive tree programs.

2. Background and Motivation
This section discusses the theory of loop transformations for
array programs—specifically, interchange, which enables
tiling, and then summarizes recent work by Jo and Kulkarni
that develops analogous tiling transformations for trees.

2.1 Loop transformations for array programs

Perhaps the most popular locality-enhancing transforma-
tion for loops over arrays is loop tiling, which transforms
a double-nested loop into a triple- (or quadruple-) nested
loop [Lam et al. 1991] , as in the following abstract example:

for (i := 0; i < N; i ++)
for ( j := 0; j < N; j ++)

A[ f1(i)][ f2( j)] = . . .; . . . = A[g1(i)][g2( j)]

Becomes:

for (ii := 0; ii < N; ii += B)
for ( j := 0; j < N; j ++)
for (i := ii; i < ii + B; i ++)

A[ f1(i)][ f2( j)] = . . .; . . . = A[g1(i)][g2( j)]

The legality of tiling boils down to whether loop interchange
is legal [Wolfe 1989]; if the inner and outer loop of the above
example can be swapped, then loop tiling is legal.

Determining whether loop interchange is legal requires
understanding how interchange affects the behavior of the
loop. Conceptually, loop interchange is a rescheduling of
the loop iterations. The original loop consists of an iteration
space—dynamic instances of the loop body, each with a
different value of i and j—that is totally ordered: (i1, j1) ≺
(i2, j2)⇔ (i1 < i2)∨ ((i1 = i2)∧ ( j1 < j2)). Loop interchange
moves the j loop to the outside, producing a different total
ordering of the same iteration space: (i1, j1) ≺ (i2, j2) ⇔
( j1 < j2) ∨ (( j1 = j2) ∧ (i1 < i2)).

When is this rescheduling legal? Answering this ques-
tion requires understanding the dependence structure of the
loop [Allen and Kennedy 1984]. If, in the original schedule,
one iteration of the loop, (i1, j1), writes to a location that a
later iteration, (i2, j2) reads from, we must ensure that the
new schedule does not exchange the order of these two it-
erations, which would result in the second iteration reading
the wrong value. The following dependence test captures the
conditions under which loop interchange is legal.1

@ i1, i2, j1, j2 . f1(i1) = g1(i2) ∧ f2( j1) = g2( j2) ∧

(i1 < i2 ∧ j1 > j2)
(1)

The first line of the test captures whether a pair of iterations
access the same location, while the second line of the test
captures whether those iterations will execute in a different
order after interchange.

Sophisticated dependence analyses such as the Omega
test [Pugh 1991] and compilers such as PLuTo [Bondhugula
et al. 2008] use integer linear programming–based tech-
niques to prove that interchange is legal. These analyses rely
on the fact that in most array programs, the indexing expres-
sions f1, f2, g1, and g2 are affine, and hence amenable to ILP.
As a result, a long standing open problem has been whether
similar tiling techniques exist for non-affine, non-loop-based
programs, and how to prove their legality.

2.2 Loop transformations for trees
In recent work, Jo and Kulkarni [2011] developed a locality-
enhancing transformation called point blocking for programs
that repeatedly traverse tree data structures. Figure 2(b)
shows abstracted pseudocode capturing the general structure
of these algorithms. As each point traverses the same tree,
there is data reuse in the algorithm, and an opportunity to
exploit locality if multiple points’ operations on the same
data can be brought closer together.

The key insight behind point blocking is that the tree-
traversal algorithm can be abstracted as a loop nest, with the
point loop as the outer loop and the recursive traversal as the
inner “loop.” Each “iteration” in this abstraction consists of
the recursive method body being executed by a particular
point at a particular node of the tree; the recursion and
pointer-chasing merely serve to determine the order in which
the nodes are visited.

Figure 2(c) shows an example iteration space and total
order for a series of recursive traversals of the tree shown
in Figure 2(a). The x-axis represents the points that traverse
the tree, while the y-axis represents the nodes visited by the
point. Note that some of the iterations are greyed out, and
the traversal skips past them. A traversal may not visit the
entire tree—it may be truncated and skip visiting a subtree.

Given this iteration space abstraction, Jo and Kulkarni
describe a “loop interchange” transformation, with the total
order shown in Figure 2(e). This has an analogous reordering

1 In a full dependence test, there are additional constraints to ensure that
both iterations fall within the bounds of the loop nest; we ignore these
constraints for simplicity.
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(a) Example tree for traversal

t r e e = / ∗ t r e e r o o t ∗ /
p o i n t s = / ∗ p o i n t s ∗ /
foreach ( p in p o i n t s )

r e c u r s e ( t r e e , p )

r e c u r s e ( n , p )
i f t r u n c a t e ? ( n , p )

re turn ;
i f i s l e a f ? ( n )

re turn ;
/ ∗ do work ∗ /
r e c u r s e ( n . l e f t , p )
r e c u r s e ( n . r i g h t , p )

(b) Pseudocode for traversal
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(c) Iteration space before inter-
change/point blocking

t r e e = / ∗ t r e e r o o t ∗ /
p o i n t s = / ∗ p o i n t s ∗ /

/ / bp i s b l o c k o f p o i n t s
foreach ( bp in p o i n t s )

r e c u r s e ( t r e e , bp )

r e c u r s e ( n , bp )
i f i s e m p t y ? ( bp )

re turn ;
foreach ( p in bp )

i f t r u n c a t e ? ( n , p )
c o n t in u e ;

i f i s l e a f ? ( n )
c o n t in u e ;

/ ∗ do work ∗ /
/ / add t o n e x t b l o c k
nb . add ( p )

r e c u r s e ( n . l e f t , nb )
r e c u r s e ( n . r i g h t , nb )

(d) Blocked traversal
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(e) Iteration space after inter-
change/point blocking

Figure 2: Point blocking
effect as loop interchange in the regular iteration spaces
produced by array programs; in the interchanged code, every
point visits a particular node in the tree before moving on to
the next node in the tree. Point blocking is a combination
of strip mining the point loop (breaking the point loop into
a series of smaller loops that operate over subsets of points)
and then interchanging the inner point loop with the traversal
loop. This is a direct analog of strip mining + interchange, a
common technique for tiling array programs [Wolfe 1989].

Figure 2(d) shows the transformed code. Instead of the
recursive method operating on a single point, it operates on
blocks of points. After each point in the block interacts with a
particular node, the points that want to continue traversal are
added to a “next” block, which continues down the tree. If a
block is empty, that means no points want to visit a particular
node (or subtree), so the traversal is truncated.

“Multi callset” traversals In the examples of Figure 2,
there is a single linearization of the nodes of the tree, and
each point’s traversal is some subsequence of that lineariza-
tion. Hence, when points are placed into a block, the order

that the block traverses the tree is the same as the traversal
orders of any of the individual points. Jo and Kulkarni [2012]
call these “single callset” traversals. However, some al-
gorithms, such as nearest neighbor, have point-dependent
traversal orders: different points traverse the tree in differ-
ent orders; these are known as “multi callset” traversals. In
this paper, we only concern ourselves with single call set
traversal algorithms, as they are the only ones that admit a
sophisticated dependence test. Multi callset algorithms can
still be analyzed using a test for independence.

3. Point Blocking Legality
This section lays out a dependence test for point blocking.
For brevity, we use “iteration” to refer to the operation(s)
performed by a single point at a single tree node.

3.1 A conservative approach
Jo and Kulkarni [2011] noted that despite the rescheduling
imposed by point blocking, each point still traversed the tree
in the same order as before. Hence, any dependences carried
over the “traversal loop” but not over the “point loop” would
be preserved. Thus, they applied point blocking whenever
the enclosing point loop was parallelizable, ensuring that
any dependences were only carried across the traversal loop.
This criterion is too conservative. Not all point loop–carried
dependences are violated by point blocking, as in the BST-
insertion example from Figure 1.

3.2 A dependence test for point blocking
To develop a more accurate dependence test for tree codes,
we consider the two clauses of the dependence test for ar-
ray programs in Equation 1. The first clause picks out the
existence of iterations that have a dependence. If only that
clause were in the dependence test, then any loop-carried
dependence would preclude loop interchange. It is the sec-
ond clause of the test (on the second line) that provides the
precision: a loop carried dependence is only a problem if the
second iteration (i.e., the (i2, j2) iteration) encounters the de-
pendence earlier in the j loop than the first iteration.

The iteration space diagrams of Figures 2(c) and 2(e) give
us some insight into what an analogous dependence test for
point blocking might look like. Each “iteration” in a traversal
code is identified by a point/node pair: (p, n). Suppose there
is a dependence between the traversal executed by point p1
and a later point p2: p1 accesses a location in the tree when
it is visiting node n1, and p2 accesses the same location in
the tree when it is visiting node n2, with at least one of
the accesses being a write. This dependence is preserved by
point blocking if n2 is the same as n1 (both points are at the
same node when the dependence occurs) or n2 is later in the
traversal order than n1.

To formalize this dependence test, let us label each state-
ment that reads or writes a location in the recursive method
body as s1, s2, . . .. Because the particular location read or
written by a statement depends on where in the tree the re-
cursive method is, we specify the location being accessed by
statement i during iteration (p, n) as si(p, n).
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Making a recursive call requires accessing the arguments
to the recursive call. Because point blocking defers making
recursive calls until after all points in the block execute the
rest of the method body, it makes sense to treat the read(s)
performed as part of the method invocation as part of the
next iteration performed by the point. This is easily handled
by assuming there are dummy statements at the beginning of
the method body that read the arguments to the method.

Two dynamic statements, si(pi, ni) and s j(p j, n j) interfere
(written si(pi, ni) Z s j(p j, n j)) when they access the same
location and one of the statements is a write. Note that
just because a statement exists in a recursive method body
does not mean that every point will execute that statement
at every node of its traversal. We thus define an execution-
based interference operator, Ze, which adds the condition
that statement si executes when point pi is visiting node ni.

We can now define a dependence test under which point
blocking is legal; note the similarity to Equation 1:

@ pi, p j, ni, n j, si, s j . si(pi, ni) Ze s j(p j, n j) ∧

(pi ≺ p j ∧ ni � n j)
(2)

Theorem 1. If Equation 2 is satisfied for a recursive traver-
sal program, then applying point blocking to the program
will not break any dependences.

Proof. We proceed by contrapositive: we assume that apply-
ing point blocking to the program breaks dependences, and
show that therefore the dependence test must be violated.

For a dependence to be broken, one must exist in the
first place. Hence, let (pi, ni) and (p j, n j) be the two de-
pendent iterations, with (pi, ni) ≺ (p j, n j). We thus have
si(pi, ni) Ze s j(p j, n j). In the original program, a point’s
traversal is completed before moving on to the next point.
Hence, pi ≺ p j. Note that if, after applying point block-
ing, pi and p j are placed in different blocks, the dependence
will not be broken: the earlier block will complete its traver-
sal before the later block starts, preserving the ordering of
the iterations. Hence, pi and p j must be in the same block.
Further, for the dependence to be violated, we must have
(p j, n j) ≺ (pi, ni) after applying point blocking.

We have three possible cases for the ordering of ni and n j:
ni ≺ n j: In this case, ni appears before n j in the original

program’s traversal order. Recall that the block traverses
the tree in the same order as the original points would
have. Hence, the block will visit ni before it visits n j in
the transformed code, preserving the dependence.

ni = n j: In this case, the points access the same location
when they are at the same node in the tree. In the point
blocked code, each point in a block executes its entire
method body before moving on to the next point, so pi
performs its access before p j, preserving the dependence.

ni � n j: In this case, n j precedes ni in the traversal order, so
the block will visit n j before it visits ni, and (p j, n j) will
occur before (pi, ni), violating the dependence.
Since we began by assuming the dependence must be

violated, the third case must obtain. Hence, we have two

iterations, (pi, ni) and (p j, n j), and two statements si and
s j such that: si(pi, ni) Ze s j(p j, n j), pi ≺ p j and ni � n j,
violating the dependence test. �

DAG traversals Point blocking is applicable not only
to traversals of trees, but to traversals of any recursive
data structure, including DAGs and general graphs [Jo and
Kulkarni 2011]. We note that the dependence test in Equa-
tion 2 is still valid for traversals of non-tree data structures.
However, for DAGs and general graphs, the same node may
be visited by a traversal more than once, so the � relation
between nodes in a traversal no longer obeys any sort of
order. Because of the difficulty of determining the relation
between two nodes in a DAG or graph traversal, if our anal-
yses encounter a traversal of a data structure that cannot be
proven to be a tree, we revert to applying Jo and Kulkarni’s
independence test for legality.

3.3 Simplified dependence tests
The dependence test of Equation 2 is difficult to apply. First,
it can be hard to tell exactly when a statement might ex-
ecute, due to complex, data-dependent control flow in the
method body—not to mention that whether a particular itera-
tion executes in the first place often depends on the structure
of the tree, which is also input-dependent. Second, telling
whether one node of the tree precedes another in the traver-
sal order can also be tricky. We note, however, that we can
simplify the dependence test in various ways while preserv-
ing soundness, as long as the resulting dependence test is at
least as strong. In particular, the following dependence test
is stronger than that of Equation 2:
∀ pi, p j, ni, n j . (pi ≺ p j)→

(∃si, s j . si(pi, ni) Z∗ s j(p j, n j))→

(ni �a n j)
(3)

where Z∗ represents any interference test weaker than Ze,
and ni �a n j is the ancestry relationship, and is true iff
ni = n j or n j is a descendant of ni in the tree. Restated, the
dependence test says that the transformation is safe when,
for all iterations which are from two different points’ traver-
sals, if the two iterations interfere, the node where the earlier
point’s iteration occurs is an ancestor of the node where the
later point’s iteration occurs.

4. A Simple Language for Tree Traversals
To help formalize the discussion of our tree dependence
analysis, we present a simple language for writing recursive
tree traversal algorithms. Because our analysis concerns it-
self with the behavior of the recursive method itself, rather
than the code that invokes the method, the language is used
to describe the body of a recursive method that traverses a
tree, with arguments root and point, that define the node of
the tree being visited and the point performing the traversal,
respectively. The recursive method is initially invoked on the
root of the tree for each of a set of points.

The points that traverse the tree and the nodes that con-
stitute the tree are structures, consisting of a number of
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v ∈ Values ::= Z l ∈ Locations ::= L ∪ null

n ∈ NodeRefs ::= root | n1 | n2 | . . .

⊕ ::= + | − | × | ÷

� ::=< | > | = | , | ≥ | ≤

s ∈ Stmts ::= skip | return | s; s | c; return

| if bexp then s else s

| n := n | n := n. fr | n. fr := null | n. fr := alloc

| n. fp := e | point. fp := e

c ∈ Calls ::= recurse (root. fr ,point) | c; c

e ∈ Exprs ::= n. fp | point. fp | e ⊕ e | v

bexp ∈ BExprs ::= n. fr = null | n. fr , null | e � e

p ∈ Body ::= s; return

Figure 3: Language for defining recursive tree traversals

fields. Tree node structures have one or more primitive fields,
fp ∈ Fp (holding values at each tree node), and one or more
recursive fields, fr ∈ Fr (references to their children in the
tree), while point structures only have primitive fields.

4.1 Syntax and assumptions

Figure 3 describes the syntax of recursive methods that tra-
verse trees. Node references are local variables that can point
to different nodes in the tree. There is a distinguished node
reference, root, which names the reference passed in to the
recursive method. Finally, there is a distinguished variable,
point, that refers to the particular point structure passed in
to the recursive method. For a given traversal of the tree, this
point reference is fixed—the same reference is passed to all
recursive invocations.

We note a few features that simplify reasoning about
behavior. First, there are no loops in method bodies. Second,
once a path through the method body reaches the recursive
calls (c), it performs one or more recursive calls then returns,
ensuring that all tree traversals are pre-order.

Note that the only means of manipulating the tree struc-
ture in a recursive method is by nullifying a subtree (by set-
ting a recursive field to null), or by creating a fresh subtree
(by setting a recursive field to point to a new tree node us-
ing alloc). Hence, if the traversal is called on a tree, we can
be sure that after the traversal completes the resulting struc-
ture is still a tree. Proving that the initial structure is a tree
is beyond the scope of this paper; shape analysis techniques
can be used prior to our analyses to establish this fact. We
assume that programs never dereference null fields. We also
assume that programs initialize all fields of newly-allocated
tree nodes before accessing them. We also assume that any
local variable or node reference is only defined once along
any path through the program.

Finally, we assume that the recursive method bodies are
single callset (see Sections 2.2), ensuring a single, canonical
traversal order. More formally, each straight-line sequence
of recursive calls that occurs in the recursive method body
induces a partial order on the recursive fields of root. If all

of those partial orders are consistent with each other, the
program is single callset.

Example programs Figure 4 shows how a quadtree traver-
sal that occasionally updates a value at a node can be ex-
pressed in our simple language. Figure 5 shows how the BST
insertion example from Figure 1 can be expressed.

4.2 Concrete semantics

We define the semantics for programs written in our lan-
guage in terms of the semantics of a particular tree traversal
(i.e., the semantics of a single iteration of the frame pro-
gram’s loop). A traversal operates over a heap, h, that con-
tains a set of cells representing tree nodes. Each tree node’s
primitive fields map to values, while its recursive fields map
to other heap locations or null. A subset of the tree nodes are
linked together through their recursive fields to form a tree
rooted at tree in the frame program. The heap also contains
a finite set of point structures.

During the execution of a traversal, a store σ maps ref-
erences (including root and point) to heap locations. The
program state contains a return value, ρ, that tracks whether
the method is supposed to return. Hence, the evaluation rela-
tion for statements and calls is: 〈s, σ, h, ρ〉 → 〈σ′, h′, ρ′〉
and the evaluation relation for expressions is: 〈s, σ, h〉 → v.

For lack of space, we do not present the formal seman-
tics; they can be found in Appendix A of the supplemental
material. The semantics are straightforward, with variable
uses and definitions looking up heap locations in the store
and changing the mapping, respectively, and field derefer-
ences of points and nodes accessing the heap as expected.
The only non-standard aspect is the use of ρ: once an exe-
cution path encounters return, ρ is set to T, and subsequent
statements along the path do not modify the store or heap.

The state at the beginning of a traversal is determined by
the invocation of recurse by the frame program: 〈p, σ[root 7→
tree,point 7→ p], h, F〉, where p is a reference to the current
point performing the traversal, and root starts out mapped to
tree, the root of the tree structure (which resides in the heap).
We assume that the tree structure has been initialized prior to
beginning traversal. All other local variables are initialized
to 0 or null as appropriate.

5. Path-Insensitive Dependence Analysis
Our first approach to dependence testing is a path insensitive
analysis that assumes any statement in the method body
might execute. This analysis proceeds in three steps:

1. Extracting the rooted access paths by associating every
read and write to a field of a tree node in the method
body with a field that can be reached through a series of
field accesses starting from root.

2. Identifying conflicting access paths by determining whether,
for two access expressions, at least one of which is per-
forming a write, there exist two distinct nodes in the tree
where if the first access path were rooted at the first node,
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1. root.v := root.v + 1;
2. if point.v = root.v
3. return
4. else skip
5. if root.lea f = 1
6. return
7. else skip
8. recurse (root.c1,point); recurse (root.c2,point);
9. recurse (root.c3,point); recurse (root.c4,point); return

Figure 4: Recursive method body for quadtree traversal

1. if root.v = −1
2. root.v := point.v; return
3. else
4. if root.v < point.v
5. if root.l = null
6. root.l = alloc; n1 := root.l; n1.v := −1
7. else skip
8. recurse (root.l,point); return
9. else
10. if root.r = null
11. root.r = alloc; n1 := root.r; n1.v := −1
12. else skip
13. recurse (root.r,point); return

Figure 5: Recursive method body for BST insertion

and the second access path were rooted at the second, the
two paths would refer to the same node.

3. Determining whether any conflicting access paths imply
a possible dependence that precludes point blocking.

If step 3 yields no problematic accesses, then point blocking
is legal. We now describe each of these steps in more detail.

5.1 Collecting rooted access paths

First, reads and writes to tree nodes in the heap are trans-
formed into reads or writes of rooted access paths. Ac-
cess paths are elements of the regular set A = root(. fr)∗
and primitive access paths are members of the set Ap =

root(. fr)∗.( fp | ι). This lets us reason about the locations be-
ing read and written by the recursive method relative to the
current iteration (i.e., the current values of root and point).
The special field ι allows us to tell when the node itself is
being read to or written from. We only consider accesses to
tree nodes when looking for dependences. In our language,
the point structures and locals accessed by each traversal are
disjoint so cannot induce any cross-traversal dependences.

To collect the access paths, we define an abstract in-
terpretation [Cousot and Cousot 1977]. Intuitively, the ab-
stract interpretation executes every path through the recur-
sive method body, determining what (sets of) nodes each
node reference can refer to, and associating with each read
and write of a tree node field an access path starting from
root. The analysis is loosely based on Wiedermann and
Cook’s [2007] approach to identifying paths traversed in
object-relational databases.

The abstract store, σ̂, maps local variables, primitive
fields of point, and primitive access paths toP(Z∪{alloc,null}∪
⊥), where ⊥ represents unknown values; and maps root
and node references to sets of access paths, A ∈ P(A).
The program state consists of the abstract store, return flag

(as in the concrete semantics), and two access path sets,
πr, πw ∈ P(Ap), which collect access paths being read from
and written to, respectively.

The abstract semantics are given in Figure 6. The evalua-
tion relation for statements and calls is 〈s, σ̂, πr, πw, ρ〉 →
〈σ̂′, π′r, π

′
w, ρ

′〉, and the evaluation relation for expressions
is 〈e, σ̂〉 → 〈v̂, π〉. Note that expressions return a set of val-
ues, and can generate new access expressions; these expres-
sions are always reads, so the evaluation relation generates
only a single access path set. The initial abstract store maps
all locals, primitive fields and primitive access paths to {⊥},
and maps root to {root} and everything else to ∅. The initial
access path sets are πr = {root.ι} (recall that we assume that
root is read in every iteration) and πw = ∅.

Expressions (ALOAD-P, ALOAD-N) are handled as ex-
pected, with the only difference from the concrete semantics
being that they return a set of values instead of just one, and
that expressions that reference the tree (see ALOAD-N) can
add accesses to the access set. Binary operations yield the
result of applying the operation to all pairs of values from
the two operands’ value sets (with the operation yielding ⊥
if one of the values is ⊥).

We do not present the rules for skip and return, as they
simply pass through the abstract store, heap and access path
sets. The rules for sequencing of statements thread through
the access path sets and setting the return flag and skipping
over the execution of subsequent statements if necessary.
Interestingly, calls (recurse) are handled much like skip.
Even though a call reads an access path to make the recursive
call, that read is instead associated with the beginning of the
next iteration (see Section 3.2), and is captured by the initial
access path set of root.ι.

ADEF-L evaluates the expression, collecting any new ac-
cess paths that arise, and returning a set of values, which are
then mapped to the local variable being defined. ASTORE-
N, which provides the semantics for n. fp := e, shows an
example of adding new access paths. After looking up the
set of access paths that n is mapped to, for each such access
path a, we add a. fp to the set of written access paths. The
helper function mapall takes care of mapping each of the
primitive access paths accessed by n. fp to the result of eval-
uating e. ADEF-N adds a. fr.ι to the set of read access paths
for all a that n2 is mapped to.

AALLOC is interesting. It creates a new access path, indi-
cating that n. fr.ι has been written to. It only changes the store
by setting the special primitive field n. fr.ι to alloc. No other
access paths are changed. In essence, our abstract semantics
assume the tree structure itself already exists. Allocating a
new node does not add a new node to the tree. Instead, it just
writes to an existing node, as recorded by the access. The
assumption that programs initialize fields before accessing
them means that we do not have to worry about updating the
values of any other fields.2 A similar rule is used for null.

2 AALLOC introduces some inexactness to the set of accesses: if a new
node is allocated for an access path, old node references that have the same
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v̂ = σ̂(point. fp)

〈point. fp, σ̂〉 → 〈v̂, ∅〉
[ALOAD-P]

A = σ̂(n) v̂ = {σ̂(a. fp) | a ∈ A}

〈n. fp, σ̂〉 → 〈v̂, {a. fp | a ∈ A}〉
[ALOAD-N]

〈e1, σ̂〉 → 〈v̂1, π1〉 〈e2, σ̂〉 → 〈v̂2, π2〉 v̂ = v̂1⊕̂v̂2

〈e1 ⊕ e2, σ̂〉 → 〈v̂, π1 ∪ π2〉
[ABINOP]

〈e, σ̂〉 → 〈v̂, πe〉 A1 = σ̂(n) A2 = {a. fp | a ∈ A1}

〈n. fp := e, σ, πr, πw, F〉 → 〈σ̂[mapall(A, fp, v̂)], πr ∪ πe, πw ∪ A2, F〉
[ASTORE-N]

A1 = σ(n2) A2 = {a. fr | a ∈ A1}

〈n1 := n2. fr, σ̂, πr, πw, F〉 → 〈σ̂[n1 7→ A2], πr ∪ {a.ι | a ∈ A2}, πw, F〉
[ADEF-N]

A1 = σ(n) A2 = {a. fr | a ∈ A1}

〈n. fr := alloc, σ̂, πr, πw, F〉 → 〈σ̂, πr, πw ∪ {a.ι | a ∈ A2}, F〉
[AALLOC]

〈bexp, σ̂〉 → 〈v̂, πe〉 〈s1, σ̂, ∅, ∅, F〉 → 〈σ̂′, π′r, π
′
w, ρ

′〉 〈s2, σ̂, ∅, ∅, F〉 → 〈σ̂′′, π′′r , π
′′
w, ρ

′′〉

〈if bexp then s1 else s2, σ̂, πr, πw, F〉 → 〈σ̂′ t σ̂′′, πr ∪ π
′
r ∪ π

′′
r ∪ πe, πw ∪ π

′
w ∪ π

′′
w, ρ

′ ∧ ρ′′〉
[AIF]

Figure 6: Abstract semantics to collect access expressions

AIF, unsurprisingly, runs both branches of the if state-
ment, collecting the access paths from the boolean expres-
sion as well as both branches of the if statement. σ̂′ t σ̂′′

creates a new abstract store, where variable or access path
maps to the union of its mappings in σ̂′ and σ̂′′. Note, too,
that if both branches of the if statement call return, evaluat-
ing the if statement sets the return flag to true.

5.2 Identifying conflicting access expressions
After collecting the accesses for the recursive method, the
next step is to determine which accesses could result in
dependences—two accesses that touch the same location in
the tree, with at least one of them a write.

Definition 1. For a pair of accesses, root.α and root.β,
we say that the two access paths collide—written root.α ∼
root.β—if there exists a two nodes in a tree (of unbounded
size), n1 and n2 such that n1.α refers to the same location as
n2.β.

This definition lends itself to a straightforward approach
to finding access paths that collide. Suppose we consider the
access path pair root.α ∈ πw and root.β ∈ (πw ∪πr). Without
loss of generality, let α be the longer access path than β (i.e.,
it contains at least as many field dereferences). We then have
root.α ∼ root.β iff β is a suffix of α.

If β is not a suffix of α, then, because the access paths
traverse a tree, there is no way for the two to refer to the same
field. Conversely, if β is a suffix of α, then let γ be a sequence
of field accesses such that γ.β = α. Note that γ’s last field
access must be a recursive field (if β , α, otherwise γ = ε).
Then let n1 be an arbitrary node in the tree (for example, the
global root of the tree), and let n2 be the node at n1.γ. It is
clear that n1.α = n2.β.

If two access paths collide and one of them is a write,
then there is a potential dependence between them. We can
compute the set of such pairs, S ⊆ πw × (πw ∪ πr):

S = {(a, b) | a ∈ πw ∧ b ∈ (πw ∪ πr) ∧ a ∼ b}

access path will appear to access the new node as well. This does not affect
soundness, as it can only introduce additional dependences.

5.3 Applying the dependence test
After collecting the access paths, and identifying potential
dependences, the final step is to determine whether the con-
flicting access paths preclude point blocking.

Note that the access paths in S are relative to root, which
is the index identifier for the traversal “loop” in the ap-
plication. When iteration (p, n) executes a statement that
reads from access path root.α, the field in the tree being
read is n.α. For each pair of conflicting access paths in S ,
(root.α, root.β)3, we compute γ as described previously. Let
p1 and p2 be points such that p1 ≺ p2. For all nodes n, during
iteration (p1, n.γ), location n.γ.β may be accessed by some
statement s1, and during iteration (p2, n), location n.α may
be accessed by some statement s2. By the definition of con-
flicting accesses, we have s1(p1, n.γ) Z s2(p2, n).

By Equation 3, we see that for these potential depen-
dences not to preclude point blocking, we must have n.γ �a
n. We see that this can only be the case if γ = ε. By verifying
this condition for all pairs of conflicting access paths, we can
determine whether point blocking is legal.

5.4 Examples
Quadtree traversal Running the abstract interpretation
over the example from Figure 4 generates the following ac-
cess paths: πw = {root.v}, πr = {root.ι, root.v, root.lea f }.
There is one pair of conflicting access paths: (root.v, root.v).
For two points, p1 and p2, with p1 ≺ p2, iteration (p1, n)
writes to the same location that (p2, n) does. For this pair,
γ = ε, so the dependence does not preclude point block-
ing. In particular, if p1 and p2 are in the same block, p1
will perform its write before p2 does, just as in the original,
non-blocked code. Hence, despite the dependence between
traversals, point blocking is legal for this code.

BST insertion Running the analysis over the BST inser-
tion example from Figure 5 generates the following access
paths: πw = {root.v, root.l.ι, root.l.v, root.r.ι, root.r.v}, πr =

{root.ι, root.v, root.l.ι, root.r.ι}. Each access path in πw con-

3 Assume, without loss of generality, that β is a suffix of α.
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v ∈ Z b ∈ {T,F} a ∈ A ap ∈ Ap

E = ap | v | E ⊕ E

P = E � E | a.ι = null | a.ι , null

F = b | P | F ∧ F | F ∨ F

Figure 7: Logical fragment for path conditions

flicts with itself. But by the same analysis as in the quadtree
example, these conflicts do not preclude point blocking: they
all arise when different points are at the same node of the
tree. However, the access paths root.v ∈ πr and root.l.v ∈ πw
conflict with each other. Here, iteration (p1, n.l) reads from
the same location that iteration (p2, n) writes to. γ is l in
this case, so the potential dependence precludes point block-
ing. However, we know that point blocking is legal for this
code—our path-insensitive dependence analysis is too con-
servative. To develop a dependence analysis that correctly
handles this code, we must also consider the conditions un-
der which certain accesses happen.

6. Conditional Dependence Analysis
Even using the dependence test, the code in Figure 5 still
exhibits a problematic dependence. The dependence test of
the previous section assumes that all accesses in an iteration
will happen. Consider two points p1 and p2 with p1 ≺ p2,
and the tree in Figure 2(a). When point p1 is at node c, it
reads from c.v in line 1. That is the same field that point p2
could write to at node b in line 6, when it writes to root.l.v.

However, reads and writes performed during traversals
are not always unconditional in each iteration. It is often
the case that if a traversal performs a particular access,
other traversals cannot perform certain accesses: if itera-
tion (p1, c) reads from c.v, we see that iteration (p1, b) must
have established that b.l , null (as that is the only way for
recurse (b.l,point) to be called in line 8). Hence, when itera-
tion (p2, b) executes, it will not execute line 6, and the access
that causes the problematic dependence does not happen.

This section describes how we augment the dependence
analysis of the previous section to engage in this type of
reasoning on conditions. The key insight is that we can
determine the symbolic path conditions under which various
accesses might occur, relative to arbitrary nodes in the tree.
Given these conditions, we can prove that if the first of two
potentially conflicting accesses occurs, the second cannot.

6.1 Attaching conditions to access paths
The first step is to attach symbolic path conditions to each
access path that can occur in a program. A path condition is
some logical formula, φ ∈ (F∪E) produced from the logical
fragment given in Figure 7.

To track path conditions, we extend the abstract semantics
of the previous section. First, we extend access paths to be a
3-tuple of an access path, a formula in the logic, and a flag
that indicates whether the access path was a strong access.
If an access path was generated by a variable dereference
that only pointed to a single access path, the access path is
strong, and is amenable to strong updates.

Expressions now yield formulae (Φ ∈ P(F ∪ E)) in addi-
tion to sets of values (an expression can produce more than
one conditional formula because variables accessed in an ex-
pression may map to more than one access path). Statements
and expressions carry with them a condition, k, a predicate
defining when statement might execute. The conditions cap-
ture a precondition that holds before a basic block executes.
Hence, these conditions are updated when executing if state-
ments. Figure 8 shows the relevant portion of the extended
semantics. The evaluation relation for expressions is now
〈e, σ̂, k〉 → 〈v̂, πe, Φ〉 and the evaluation relation for state-
ments is now 〈s, σ̂, πr, πw, k, ρ〉 → 〈σ̂′, π′r, π

′
w, k′, ρ′〉.

The starting path condition for a program is T.
Expressions accessing fields generate atomic formulae

as expected. When an expression generates an access path,
the condition for the expression is attached to the access
path. We also check the cardinality of the access path set
in the store to determine whether the generated access path
is a strong access. Comparison operations produce a new
formula set from combining all pairs of formulae from its
operands’ formula sets (e.g., if one operand has the formu-
lae {point.x} and the other has the formulae {1, 2}, then com-
bining them with =̂ produces the formula set {point.x =

1,point.y = 2}). We do not show rules for most statements;
the only difference between these semantics and the seman-
tics in Figure 6 is that when an access occurs, the statement’s
condition is associated with the access path. The strong tag
is set, and a strong update performed on the abstract store, if
the access path refers to exactly one node.

The other key rules in the semantics are for if statements.
The formulae generated by the test condition are attached
to the true and false branches of the if statement. If the test
expression generates multiple formulae, the true branch is
taken if any of the formulae are true, while the false branch
is taken if any of the formulae are false; the conditions for the
two branches are assembled appropriately. Joining together
access paths (t) logically ors the conditions under which the
access paths occur, and logically ands the strong tag.

The path condition after the if statement executes is sub-
tle. It seems as though we should simply revert to the original
condition, k, after control has re-converged. However, along
one of the branches of the if statement, a write may have
happened that invalidated part of the path condition. Con-
sider if root.v = 0 then root.v := 1 else skip. After the
statement executes, we know that root.v , 0 ∨ root.v = 1.

The helper function munge(σ̂, k, πw) creates two formu-
lae: k1, which captures all possible values of access paths
that were definitely written along the branch (determined by
checking the strong tags); and k2, which removes from k con-
ditions that are invalidated by writes that may happen along
the branch. The function returns k1 ∧ k2, which amounts to
a postcondition for that branch of the if statement. The dis-
junction of the munged conditions from both branches of the
if statement yields the precondition for the following state-
ment. Note that if there are no writes along the branches,
then the resulting path condition will again be k.
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v̂ = σ̂(point. fp)

〈point. fp, σ̂, k〉 → 〈v̂, ∅, {point. fp}〉
[FLOAD-P]

A = σ̂(n) v̂ = {σ̂(a. fp) | a ∈ A}

〈n. fp, σ̂, k〉 → 〈v̂, {a. fp[k][|A| = 1] | a ∈ A}, {a. fp | a ∈ A}〉
[FLOAD-N]

〈e1, σ̂, k〉 → 〈v̂1, π1, Φ1〉 〈e2, σ̂, k〉 → 〈v̂2, π2, Φ2〉

〈e1 � e2, σ̂, k〉 → 〈{⊥}, π1 t π2, Φ1�̂Φ2〉
[FCMPOP]

〈bexp, σ̂, k〉 → 〈v̂, πe, Φ〉 ∀a[k∗][b∗] ∈ πw . @a[k][∗] ∈ πe

〈s1, σ̂, ∅, ∅, k ∧ (
∨
{φ | φ ∈ Φ}), F〉 → 〈σ̂′, π′r, π

′
w, k′, ρ′〉 〈s2, σ̂, ∅, ∅, k ∧ (

∨
{¬φ | φ ∈ Φ}), F〉 → 〈σ̂′′, π′′r , π

′′
w, k′′, ρ′′〉

kT = munge(σ̂′, k′, π′w) ∧ ¬ρ′ kF = munge(σ̂′′, k′′, π′′w) ∧ ¬ρ′′

〈if bexp then s1 else s2, σ̂, πr, πw, k, F〉 → 〈σ̂′ t σ̂′′, πr t π
′
r t π

′′
r t πe, πw t π

′
w t π

′′
w, kT ∨ kF , ρ

′ ∧ ρ′′〉
[FIF1]

〈bexp, σ̂, k〉 → 〈v̂, πe, Φ〉 FIF1 does not apply
〈s1, σ̂, ∅, ∅, k, F〉 → 〈σ̂′, π′r, π

′
w, k′, ρ′〉 〈s2, σ̂, ∅, ∅, k, F〉 → 〈σ̂′′, π′′r , π

′′
w, k′′, ρ′′〉

〈if bexp then s1 else s2, σ̂, πr, πw, k, F〉 → 〈σ̂′ t σ̂′′, πr t π
′
r t π

′′
r t πe, πw t π

′
w t π

′′
w, k, ρ′ ∧ ρ′′〉

[FIF2]

Figure 8: Abstract semantics to collect conditional access expressions

πw = {root.v [root.v = −1],

root.l.ι [root.v , −1 ∧ root.v < point.v ∧ root.l.ι = null],

root.l.v [root.v , −1 ∧ root.v < point.v ∧ root.l.ι = null],

root.r.ι [root.v , −1 ∧ root.v ≥ point.v ∧ root.r.ι = null],

root.r.v [root.v , −1 ∧ root.v ≥ point.v ∧ root.r.ι = null]}

πr = {root [T], root.v [T],

root.l.ι [root.v , −1 ∧ root.v < point.v],

root.r.ι [root.v , −1 ∧ root.v ≥ point.v]}

Figure 9: Conditional access paths in BST insertion

This treatment of if statements only occurs if the condi-
tion of the if statement accesses portions of the tree that have
not yet been written (see the second premise of FIF1); other-
wise, we pass no conditional information along branches of
the if statement (FIF2). Figure 9 shows the results of running
this analysis on our BST-insertion example (we elide the tag
for strong accesses for brevity).

We can perform a very similar analysis (not shown, for
lack of space) to determine under which conditions recursive
calls are made. The only difference is that we also munge
the path condition prior to making the recursive call, to
produce a precondition for the call. In essence, the condition
we attach to the recursive call is a statement about the state
of the tree when the call is made. For example, the condition
for the recursive call in line 8 of Figure 5 is:

root.v , −1 ∧ (root.v < point.v) ∧

((root.l.ι = alloc ∧ root.l.v = −1) ∨ root.l.ι , null)

6.2 Using conditions to disprove dependences
Suppose we have a potential dependence between two ac-
cesses (root.α[φα], root.β[φβ]) where α = γ.β. The depen-
dence that appears to preclude point blocking arises when
(p1, n.γ) executes access path root.β, and (p2, n) executes
access path root.α. The formulae φα and φβ indicate the con-
ditions under which the two accesses occur. If we can show
that whenever φβ is true during iteration (p1, n.γ), φα will not
be true during iteration (p2, n), then the dependence cannot
arise. The procedure for doing this proceeds as follows:

1. First, we construct a more precise condition for access
root.β. In particular, φβ is a formula in terms of access
paths rooted at root, which must be bound to the dynamic
iteration instance. This is easily accomplished by substi-
tuting n.γ for root to create φ′β. We then substitute n for
root to create φ′α and query an SMT solver to determine
φ′β is incompatible with φ′α. If so, we move to step 3.

2. φ′β being compatible with φ′α does not mean that both ac-
cesses will happen. φ′β was computed with a starting path
condition of T . To make the condition more precise, we
propagate the conditions of the previous iteration down
to (p1, n.γ). Define δ such that δ. fr = γ. If we substitute
n.δ for the path conditions associated with all recursive
calls recurse (root. fr,point), we gain information about
the state of the tree during iteration (p1, n.δ), immediately
before making a recursive call to start iteration (p1, n.γ).
The disjunction of all such recursive conditions (call this
φδ) is a sound approximation of the state of the tree be-
fore (p1, n.γ) executes. Essentially, we inline one instance
of the recursive method. We then re-run the abstract in-
terpretation with an initial condition of φδ, generating a
stronger condition under which access root.β occurs.
We repeat this “inlining” process, backing up one itera-
tion at a time, until we reach iteration (p1, n). We cannot
inline beyond this point—n could be the global root of the
tree, and hence there is no earlier iteration in the traversal.
In practice, potentially-dependent iterations are nearby in
the tree, so we need only inline one or two times.
After performing this inlining, we have a much stronger
path condition, φ′β, for the problematic access. We can
then query the SMT solver once again to determine
whether the path conditions are incompatible. If they are
not, then we declare this dependence a true conflict, and
fail the overall dependence test.

3. If φ′α is incompatible with φ′β, we have determined that
whatever computation p1 performs during its traversal
prevents p2 from performing the access root.α. It is pos-
sible, however, for a traversal in between p1 and p2 to
“reactivate” p2’s bad access. Thus, we must ensure that
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no other accesses can affect the path condition φ′α that
prevents p2 from performing the bad access. We look for
any access paths in πw that collide with any access paths
in φ′α; these writes affect the path condition, and hence if
some iteration performs the write, it may cause the bad
access to occur. We use the same conditional dependence
test to ensure that those accesses cannot happen. Note
that any access path that appears in φ′α must also appear
in πr. Hence, there are a bounded number of access paths
to consider and the number of tests is finite.

6.3 Example
Consider the conflicting access paths (root.v[T], root.l.v[root.v ,
−1∧ root.v < point.v∧ root.l.ι = null]). These access paths
preclude point blocking if iteration (p1, n.l) performs the first
access and iteration (p2, n) performs the second access. We
substitute n.l and n for the conditions to generate: φ′β = T
and φ′α = n.v , −1 ∧ n.v < n.v ∧ n.l.ι = null. These con-
ditions are not incompatible with each other, so we “unroll”
the recursive method by one iteration, passing the recursion
condition from iteration (p1, n) to (p1, n.l). The new φ′β is:

n.v , −1∧(n.v < n.v)∧((n.l.ι = alloc∧n.l.v = −1)∨n.l.ι , null)

The refined condition under which iteration (p1, n.l) reads
n.l.v is clearly incompatible with the condition under which
iteration (p2, n) writes n.l.v—the latter requires that n.l.ι =

null, while the former only happens when n.l.ι , null.
Finally, we must make sure that there is no intervening

traversal that writes to n.l.ι, possibly “re-activating” the write
in iteration (p2, n). We see that the only access path that
writes to n.l.ι does so under the same condition as the write
to n.l.v, and is therefore invalidated by the same argument.
Repeating the process for all conflicting access paths, we
discover that all pairs that might introduce a problematic
dependence are incompatible with each other.

7. Implementation and Evaluation
Analysis implementation We implement our analysis in
JastAdd [Ekman and Hedin 2007], a compilation framework
for Java. The analysis analyzes recursive Java methods that
are constrained to only use operations analogous to the oper-
ations in our specification language (Section 4); if a method
does not obey those restrictions, we do not analyze it. We
assume that either a shape analysis or a programmer anno-
tation has established that the recursive data structure be-
ing traversed is a tree. The conditional analysis (Section 6)
passes path conditions to the Z3 SMT solver [De Moura and
Bjørner 2008], which checks whether they are compatible
or not. The conditional analysis currently assumes that all
writes used to compute post-conditions are strong (i.e., in a
single basic block, each write definitely happens), which is
valid for the benchmarks we have studied.

Benchmarks We applied the dependence test of Equa-
tion 3 to five benchmarks, ranging from simple microbench-
marks to complex data-structure construction algorithms:

ll: Repeatedly appending values to a linked list, with traver-
sal starting from the head of the list.

bst: Building a binary search tree, as in Figure 1.
skew: Building a skew-heap [Sleator and Tarjan 1986].4

bh: Building a Barnes-Hut octtree.
kdtree: Building a kd-tree using top-down insertion.

Our analysis is able to prove that the each of these bench-
marks passes the dependence test, and hence can be soundly
transformed using point blocking, as well as other optimiza-
tions; the following section describes the performance ben-
efits of these transformations. Note that not only do all of
these benchmarks modify the contents of the tree structure
being traversed, they also morph the structure of the tree by
adding additional nodes and edges. In all five cases, the full
conditional dependence analysis of Section 6 is required to
verify the dependence test.

Performance evaluation
After proving that the benchmarks pass the dependence test,
we applied three different transformations whose legality is
established by the dependence test:

1. Point blocking, described in detail in Section 2.2

2. Traversal splicing [Jo and Kulkarni 2012]. In contrast
to point blocking, traversal splicing tiles the “tree loop”
instead of the point loop. The original version of traversal
splicing reorders the point loop during execution, and
hence is not amenable to the dependence test that we
develop in this work. However, for benchmarks where a
point only visits one child of any node, traversal splicing
performs no reordering, and hence is legal whenever the
dependence test of Equation 3 holds.

3. Parallelization. It is well-known that top-down tree build-
ing algorithms can be parallelized by recursively building
left and right subtrees in parallel. We design a transfor-
mation that derives the parallel implementation from the
sequential version of any traversal code where each point
only visits one child of a node: we apply point block-
ing to the code, and can then simply run each of the left
and right recursive calls (e.g., the two recursive calls in
Figure 1(b)) in parallel. The resulting parallel implemen-
tation not only requires no locks, it is also guaranteed to
produce the same tree as the original sequential code.

Experimental configurations All experiments were run on
a 48-core AMD Opteron system running at 2.3 GHz, with
64 KB of L1 cache per core, 512K of L2 cache per core,
and 6MB of L3 cache shared among groups of 6 cores. The
baseline code for point-blocking is written in Java (and is
the same code analyzed by the analysis framework described
above). Point blocking uses a block size equal to the in-
put size. For infrastructural reasons, the baselines for the
traversal splicing experiments and the parallelization exper-
iments are written in C++: we analyzed the Java version of

4 We modify the algorithm slightly to fit our language restrictions.
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Bench. Blocking Splicing Parallelization

ll 1.3025 N/A N/A
bst 2.2126 1.8555 2.2320

skew 2.5919 1.0441 1.3780
bh 0.9756 1.3058 2.6950

kdtree 1.3816 2.1212 2.5328

Table 1: Speedups of transformed versions (baselines as
specified in text).
the benchmarks to prove the transformations’ legality, then
ported the benchmarks to C++. For the parallelization trans-
formation, we used Cilk+ [Frigo et al. 1998] for parallelism.
We ran the parallel code using 4 threads, and compared to a
baseline of the Cilk+ code running on a single thread.

For ll, we insert 60,000 values; to avoid stack overflow,
we perform tail-call optimization on the transformed code.
For each of the other benchmarks, we build the trees us-
ing 10 million points/values. The splicing and paralleliza-
tion transformations are only applied to the four tree-based
benchmarks. Table 1 presents the results.

Results discussion Each of our transformations is able to
achieve substantial speedups on most of the benchmarks.
The exceptions are bh, which has no speedup for point
blocking, but good speedup for splicing, and skew, where the
opposite is true. We believe this is because of the structure of
those benchmarks and transformations: point blocking tiles
the point loop, while traversal splicing tiles the tree loop, and
the two benchmarks each benefit from a different transfor-
mation. Parallelization has relatively low speedup for skew
because there is relatively more work to be done at the root
node, which must be done sequentially.

As each of these transformations is enabled by our de-
pendence test, and, moreover, would not have been proven
legal by prior dependence tests, including Jo and Kulka-
rni’s [2011], we have demonstrated the utility of our precise
dependence test and the analyses that check it.

8. Related Work
Many analyses have taken access-path based approaches
to reasoning about the behavior of programs. We adopt
the notion of attaching conditions to access paths to facil-
itate deeper reasoning from Wiedermann and Cook [2007].
Their domain (reasoning about object-relational database
programs) is substantially different than ours, and they only
consider read accesses. Our notions of interference of state-
ments and collisions of access paths are similar to those de-
fined by Larus and Hilfinger [1988]. Hummel et al. [1994]
also use the interference of access paths to identify depen-
dences. Ghiya et al. [1998] use shape analysis to determine
whether loop iterations can be parallelized. Rugina and Ri-
nard [2005] use symbolic constraints to determine possi-
ble interference between pointers. Other shape analyses can
prove interesting properties of structures, but do not provide
enough information to reason about dependences [Deutsch
1994; Ghiya and Hendren 1996; Sagiv et al. 2002]. To our
knowledge, ours is the first analysis to reason about the

structure of dependences with respect to recursion (rather
than just the existence of dependences).

In the context of reasoning about tree and graph pro-
grams, Andrusky et al. [2006] reason about the kinds of
traversals performed over trees (breadth-first vs. depth-first);
their approach does not reason about dependences. Rinard
and Diniz [1997] use commutativity analysis to prove that
certain dependences do not preclude parallelization of graph
traversals; we instead reason about structural properties of
non-commutative dependences (as in BST insertion). Zum-
busch [2007] reasons about dependences to parallelize in-
dividual tree traversals, but does not consider the relation-
ship between multiple traversals. Madhusudan et al. [2012]
develop a logic for reasoning about recursive invariants on
trees; in contrast, we reason about the dynamic behavior of
a program, and, in particular, the behavior of multiple oper-
ations (traversals) over trees.

Most dependence analysis frameworks ([Allen and Kennedy
1984; Banerjee 1991; Bondhugula et al. 2008; Feautrier
1992; Lam et al. 1991; Pugh 1991; Wolf and Lam 1991;
Wolfe 1989], among numerous others) operate over nested
loops with affine loop bounds that manipulate arrays us-
ing affine subscripts. More recent work has attempted to
generalize this model to handlenon-affine loop bounds and
subscripts using symbolic expressions [van Engelen et al.
2004; Pugh and Wonnacott 1996; Venkat et al. 2014], but
they still confine themselves to loop-based programs; these
approaches also require a run-time component to evaluate
the symbolic expressions. Similarly, there has been substan-
tial work in applying locality transformations to sparse-
matrix programs using hybrid compile-time/run-time ap-
proaches [Strout et al. 2003, 2014]. None of these ap-
proaches deal with recursion and pointer-based structures,
however. In addition, many of these approaches deal with
perfectly- or imperfectly-nested loops, but do not consider
further control flow within loop bodies; our path condition–
based analysis is able to account for control flow in ruling
out potential dependences.

9. Conclusions
This paper presents techniques for analyzing dependences
in programs that recursively traverse trees. We developed an
accurate dependence test that identified only those depen-
dences that preclude point blocking. Through a conditional
tree dependence analysis, we are able to prove the legality of
point blocking and other transformations for a wide range of
programs, including tree building codes.

Through multiple decades of compiler research sophisti-
cated dependence analysis frameworks like the unimodular
and polyhedral frameworks were developed to apply trans-
formations like loop tiling to array programs in the face of
complex dependences. Despite these decades of research,
similar analyses for pointer-based programs have been an
elusive target. This paper presents the first dependence anal-
ysis toolkit that can prove the legality of analogous “loop”
transformations over pointer-based data structures.
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and J. Waśniewski, editors, Applied Parallel Computing. State of
the Art in Scientific Computing, volume 4699 of Lecture Notes in
Computer Science, pages 890–899. Springer Berlin Heidelberg,
2007.

13

http://doi.acm.org/10.1145/267959.269969
http://doi.acm.org/10.1145/267959.269969
http://doi.acm.org/10.1145/1057387.1057388
http://doi.acm.org/10.1145/1057387.1057388
http://doi.acm.org/10.1145/514188.514190
http://doi.acm.org/10.1145/514188.514190
http://dx.doi.org/10.1137/0215004
http://doi.acm.org/10.1145/781131.781142
http://dx.doi.org/10.1109/IPDPS.2014.118
http://dx.doi.org/10.1109/IPDPS.2014.118
http://doi.acm.org/10.1145/1006209.1006226
http://doi.acm.org/10.1145/2544137.2544141
http://doi.acm.org/10.1145/1190216.1190248
http://doi.acm.org/10.1145/1190216.1190248
http://doi.acm.org/10.1145/113445.113449
http://doi.acm.org/10.1145/113445.113449
http://doi.acm.org/10.1145/76263.76337
http://doi.acm.org/10.1145/76263.76337


A. Concrete semantics for specification
language

Figure 10 gives a subset of the concrete semantics for per-
forming a traversal; the rules not shown follow the same
pattern. The state at the beginning of a traversal is deter-
mined by the invocation of recurse by the frame program:
〈p, σ[root 7→ tree,point 7→ p], h, F〉, where p is a refer-
ence to the current point performing the traversal, and root
starts out mapped to tree, the root of the tree structure (which
resides in the heap). We assume that the tree structure has
been initialized prior to beginning traversal. All other local
variables are initialized to 0 or null as appropriate.

SKIP has standard semantics, leaving the store and heap
untouched. RETURN changes the return flag to T. This
flag is checked during statement sequencing (SEQ-RET and
SEQ-CONT); if the first statement returns T, the second
statement does not execute. IF-T has standard semantics, ex-
ecuting the true branch of the if statement; the semantics for
the false branch are analogous. STORE-P stores the result
into the appropriate point structure in the heap (looking up
the heap location using σ).

Accessing tree nodes follows a similar pattern. DEF-N
extracts the heap location pointed to by n2. fr, and maps n1
to it. STORE-N dereferences n to update the primitive field
of the appropriate tree node. ALLOC is similar to STORE-
N, except that it updates the appropriate recursive field in the
heap to point to a freshly-allocated tree node (with recursive
fields initialized to null and primitive fields initialized to 0).
The semantics for assigning null to a tree node’s recursive
field are similar.

Expressions have standard semantics. We show the rules
for loading from point and references. Loading from point
requires looking up which point structure is referenced in
the store, then loading the appropriate field from the heap.
Loading from a reference loops up the appropriate location
in the store. Binary operations combine the results of their
operands as expected.

The semantics of calls are relatively straightforward. The
method body is re-executed with a new store, where root
is remapped to the canonical access path the recursive call
is invoked on and point retains the same mapping as the
original store. Note that we do not remap any local variables;
however, because we assume that programs are well-formed,
these variables will be re-initialized before being used. After
the call returns, execution continues with the old store (thus
returning to the old mapping for root), but the updated heap.
Note, also, that the return flag of the call is always reset
to F; if calls are sequenced, all calls execute, following the
semantics of SEQ-CONT.
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l = σ(point) v = h(l. fp)

〈point. fp, σ, h〉 → v
[LOAD-P]

l = σ(n) v = h(l. fp)

〈n. fp, σ, h〉 → v
[LOAD-N]

〈e1, σ, h〉 → v1 〈e2, σ, h〉 → v2 v = v1 ⊕ v2

〈e1 ⊕ e2, σ, h〉 → v
[BINOP]

〈skip, σ, h, F〉 → 〈σ, h, F〉 [SKIP] 〈return, σ, h, F〉 → 〈σ, h, T〉 [RETURN]

〈s1, σ, h, F〉 → 〈σ′, h′, T〉

〈s1; s2, σ, h, F〉 → 〈σ′, h′, T〉
[SEQ-RET]

〈s1, σ, h, F〉 → 〈σ′, h′, F〉 〈s2, σ
′, h′, F〉 → 〈σ′′, h′′, ρ〉

〈s1; s2, σ, h, F〉 → 〈σ′′, h′′, ρ〉
[SEQ-CONT]

〈e, σ, h〉 → v l = σ(point)
〈point. fp := e, σ, h, F〉 → 〈σ, h[l. fp 7→ v], F〉

[STORE-P]
〈e, σ, h〉 → v l = σ(n)

〈n. fp := e, σ, h, F〉 → 〈σ, h[l. fp 7→ v], F〉
[STORE-N]

l1 = σ(n2) l2 = h(l1. fr)

〈n1 := n2. fr, σ, h, F〉 → 〈σ[n1 7→ l2], h, F〉
[DEF-N]

l = σ(n)

〈n. fr := alloc, σ, h, F〉 → 〈σ, h[l. fr 7→ fresh], F〉
[ALLOC]

〈bexp, σ, h〉 → T 〈s1, σ, h, F〉 → 〈σ′, h′, ρ′〉

〈if bexp then s1 else s2, σ, h, F〉 → 〈σ′, h′, ρ′〉
[IF-T]

l = h(σ(root). fr) 〈p, σ[root 7→ l], h, F〉 → 〈σ′, h′, ρ〉

〈recurse (root. fr,point), σ, h, F〉 → 〈σ, h′, F〉
[CALL]

Figure 10: Concrete semantics for traversal
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