Event Graphing and Step Inverses for CnC

Peter Elmers, Nick Vrvilo, Vivek Sarkar
The Event Graph

- Directed graph of execution flow of steps and items
- Acyclic! A cycle would be a deadlock
- Begins at an init step, ends at a finalize step
Simple Example

$context { int length; };
[int data: i];

($initialize: ()) -> [data : 1], (process: 1);

(process: x)
 <- [data : x]
 -> [data : x + 1],
 (process: x + 1) $when(x + 1 < #length);

($finalize: ()) <- [data: #length];
How it looks

length = 3:
Motivation

- Pretty pictures
- Making presentation slides
Motivation

• Debugging and understanding programs
• Confirm correctness of structural logic
Fancy example

(addToLeftEdge: row, col)
-> [out @ cells: row, col], (addToLeftEdge: row+1, col);

(addToRightEdge: row, col)
-> [out @ cells: row, col],
 (addToInside: row+1, col), (addToRightEdge: row+1, col+1);

(addToInside: row, col)
<- [a @ cells: row-1, col-1], [b @ cells: row-1, col]
-> [out @ cells: row, col],
 (addToInside: row+1, col);
Feature overview

• Single HTML file as output

• Highlight possible errors:
 • get without put
 • put without get
 • no path to finalize
Step inverse

- A step definition represents a map from step tags to output collection tags.
 - Remark: this map is **one-to-one** if we do not output multiple items into a single collection.
 - So we can find an inverse.
What it entails

• Given a step with input tag space $X = (x_1, x_2 \ldots x_n)$,

• For each output collection with tags $T = (t_1, t_2, \ldots t_m)$ defined by mappings $t_i = f_i(x_1, x_2, \ldots, x_n)$ where $f_i: X \rightarrow \mathbb{Z}$,

• For each tag x_k of the input tag space,

• Find the mapping $T \rightarrow x_k$ (i.e. solve for x in terms of T)
Recall this one

```
$\text{context} \{ \text{int length; } \};
[ \text{int data: i} ];

( $\text{initialize: } () \) \rightarrow [ \text{data: 1} ], ( \text{process: 1} );

( \text{process: } x )
    \leftarrow [ \text{data: } x ]
    \rightarrow [ \text{data: } x + 1 ],
    ( \text{process: } x + 1 ) \text{ when}(x + 1 < \#\text{length});

( $\text{finalize: } () \) \leftarrow [ \text{data: } \#\text{length} ];
```
Simple Example

Step process:
{
'data': [{x: t1 - 1}],
'process': [{x: Piecewise(
 (t1 - 1, t1 < ctxlength), (nan, True))}]
}
What’s it for?

• Simplifies debugging

• Can blame steps for specific prescribes/puts

• Auto-blame by combining with event graph from an execution log
Stenciling

$context \{ \text{int lastTile; int numIters; } \};$

// tile at index i, iteration (timestep) t
[float *tile: i, t];

($initialize: ()$)

\rightarrow [tile: $\text{rangeTo(#lastTile), 0}$],
(stencil: $\text{rangeTo(#lastTile), 0}$);

(stencil: i, t)

\leftarrow [prevT @ tile: i, t],
[prevL @ tile: $i -1$, t] $\text{when}(i > 0)$,
[prevR @ tile: $i +1$, t] $\text{when}(i < \text{lastTile})$
\rightarrow [nextT @ tile: i, $t +1$],
(stencil: i, $t +1$) $\text{when}(t +1 < \text{numIters})$;

($finalize: ()$)

\leftarrow [tile: $\text{rangeTo(#lastTile), numIters}$];
How it looks
($initialize: ())

-> [tile: $rangeTo(#lastTile), 0],
 (stencil: $rangeTo(#lastTile), 0);

(stencil: i, t)

← [prevT @ tile: i, t],
 [prevL @ tile: i-1, t] $when(i >= 0),
 [prevR @ tile: i+1, t] $when(i < #lastTile)

→ [nextT @ tile: i, t+1],
 (stencil: i, t+1) $when(t+1 < #numIters);

($finalize: ())

← [tile: $rangeTo(#lastTile), #numIters];
Look at the graph
Performing blame on these nodes: ['tile@-1, 0']

Blaming tile@-1, 0: {'stencil': {'i': -1, 't': -1}}
In the future...

- Demand-driven execution:
 - Specify the output, and solve backwards to the initial step
 - All steps visited should be prescribed
What that means
Wrap up

• Event graphs and step inverses
• Tool assisted debugging
• A peak at the future