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Evolution of Performance in
High Performance Computing 

(source: http://www.top500.org/statistics/perfdevel/) 2

Petascale = 1015 Flop/s

Exascale = 1018 Flop/s



Evolution of Failures in HPC

Main Source: Hardware Faults (~ 50%)

Source: Franck Cappello (2009)

In Exascale
SMTTI < 30 min
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SMTTI = System  Mean time to interrupt



Resilience

“The collection of techniques for keeping applications running to a correct 
solution in a timely and efficient manner despite underlying system faults”
Snir et al. (2014)

Resilience  = Fault Tolerance  
Avizienis et al. (2004)
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Coordinated Checkpoint/Restart
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Asynchronous Checkpoint/Restart
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Requirements for Asynchronous 
Checkpoint/Restart

Reasoning about state: Self-aware, execution frontier 

Safe restart: Deterministic computation

Data race free: Monotonically increasing state
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Resilience in CnC

Vrvilo, N. (2014). Asynchronous Checkpoint/Restart for the Concurrent Collections 
Model (Unpublished master’s thesis). Rice University, Houston, Texas USA.
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CnC Properties:
● Dependency graph
● Provable deterministic computation
● Single assignment data

Focused on shared memory CnC runtimes 



The Concurrent Collections Model
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Proof of Concept Implementation
Goal: Assessing the viability of Asynchronous C/R in 
distributed memory CnC runtimes
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Resilience Flavour:
● Dedicated checkpoint node
● Fine grained updates
● Uncoordinated restart 

Runtime: Intel(R) Concurrent Collections for C++
(Architect: Frank Schlimbach)



Dedicated Checkpoint Node &
Fine grained Updates
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data instances consumed
data instances produced
control instances produced
producers
consumers



Restart
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Restart simulation ➜ No fault tolerant MPI

Uncoordinated ➜ Step duplication



Memory Management in CnC

Non-trivial: data accessed by dynamic steps
One solution: get-counting method
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int getCountFib( FibTag t ) {
if ( t > 0 ) {

return 2;
else {

return 1;
}

}



Solution

Extra bookkeeping in checkpoint:
➢ Consider steps only once when lowering get counts

○ Hashmap of considered steps

➢ Never re-add removed data instances 
○ Marking data as removed
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Modelling Overhead  (Tw/Ts)
Coordinated Checkpoint/Restart (Daly, 2006)

Asynchronous Checkpoint/Restart
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Evaluating Asynchronous 
Checkpoint/Restart

23



Benchmarks - Goals

Assessing overhead factor (φ): Ok if high
Method:

Measure w/o resilience = Solve time (Ts)
Measure with resilience = Wall clock time (Tw)
Overhead factor = Tw/Ts   

Assessing restart time (Tr): Should be low
Method:

Measure time needed to calculate the restart set
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Number of Steps
Fibonacci Mandelbrot
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Overhead factor (φ): Increases with number of steps



Restart Time
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Fibonacci: Restart Time

Restart Time (Tr): Low 
Optimization: Shifting some of the complexity to the 
overhead factor



Future Work
Distributed Checkpoint:

➢ Overhead high but constant
➢ Restart time?
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Tag-only logging:
➢ Less communication
➢ Complex restart

Checkpoint



Conclusion

Asynchronous C/R distributed memory CnC runtime
➢ Analyzing different cases
➢ Proof of concept implementation

Asynchronous C/R is viable for systems with low SMTTI
➢ Model
➢ Proof of concept implementation
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