
Resilient Distributed
Concurrent Collections
Cédric Bassem
Promotor: Prof. Dr. Wolfgang De Meuter
Advisor: Dr. Yves Vandriessche

1

Evolution of Performance in
High Performance Computing

(source: http://www.top500.org/statistics/perfdevel/) 2

Petascale = 1015 Flop/s

Exascale = 1018 Flop/s

Evolution of Failures in HPC

Main Source: Hardware Faults (~ 50%)

Source: Franck Cappello (2009)

In Exascale
SMTTI < 30 min

3

SMTTI = System Mean time to interrupt

Resilience

“The collection of techniques for keeping applications running to a correct
solution in a timely and efficient manner despite underlying system faults”
Snir et al. (2014)

Resilience = Fault Tolerance
Avizienis et al. (2004)

4

Coordinated Checkpoint/Restart

5

Asynchronous Checkpoint/Restart

6

Requirements for Asynchronous
Checkpoint/Restart

Reasoning about state: Self-aware, execution frontier

Safe restart: Deterministic computation

Data race free: Monotonically increasing state

7

Resilience in CnC

Vrvilo, N. (2014). Asynchronous Checkpoint/Restart for the Concurrent Collections
Model (Unpublished master’s thesis). Rice University, Houston, Texas USA.

8

CnC Properties:
● Dependency graph
● Provable deterministic computation
● Single assignment data

Focused on shared memory CnC runtimes

The Concurrent Collections Model

Tags

env

Fibs Results

9

0

1

2

Checkpoint

0

1

2

The Concurrent Collections Model

Tags

Fibs Results

10

0

1

2

0 0:0

Checkpoint

0

1

2

0:0

The Concurrent Collections Model

Tags

Fibs Results

11

0

1

2

1 1:1
0:0

Checkpoint

0

1

2

0:0

1:1

The Concurrent Collections Model

Tags

Fibs Results

12

0

1

2

2

1:10:0

Checkpoint

0

1

2

0:0

1:1

The Concurrent Collections Model

13

Checkpoint

0

1

2

0:0

1:1

Tags

Fibs Results

The Concurrent Collections Model

14

Checkpoint

0

1

2

0:0

1:1

Tags

Fibs Results

The Concurrent Collections Model

Tags

Fibs Results

15

2

2

1:10:0

Checkpoint

0

1

2

0:0

1:1

2:1

The Concurrent Collections Model

16

env

2:1

Tags

Fibs Results

2

1:10:0 2:1

Checkpoint

0

1

2

0:0

1:1

Proof of Concept Implementation
Goal: Assessing the viability of Asynchronous C/R in
distributed memory CnC runtimes

17

Resilience Flavour:
● Dedicated checkpoint node
● Fine grained updates
● Uncoordinated restart

Runtime: Intel(R) Concurrent Collections for C++
(Architect: Frank Schlimbach)

Dedicated Checkpoint Node &
Fine grained Updates

18

Node

Node

Node

Node

Checkpoint

Updates contain:

data instances consumed
data instances produced
control instances produced
producers
consumers

Restart

19

Node

Node

Node

Node

1

2

3

4

Restart simulation ➜ No fault tolerant MPI

Uncoordinated ➜ Step duplication

Memory Management in CnC

Non-trivial: data accessed by dynamic steps
One solution: get-counting method

20

int getCountFib(FibTag t) {
if (t > 0) {

return 2;
else {

return 1;
}

}

Solution

Extra bookkeeping in checkpoint:
➢ Consider steps only once when lowering get counts

○ Hashmap of considered steps

➢ Never re-add removed data instances
○ Marking data as removed

21

Modelling Overhead (Tw/Ts)
Coordinated Checkpoint/Restart (Daly, 2006)

Asynchronous Checkpoint/Restart

22

Evaluating Asynchronous
Checkpoint/Restart

23

Benchmarks - Goals

Assessing overhead factor (φ): Ok if high
Method:

Measure w/o resilience = Solve time (Ts)
Measure with resilience = Wall clock time (Tw)
Overhead factor = Tw/Ts

Assessing restart time (Tr): Should be low
Method:

Measure time needed to calculate the restart set
24

Number of Steps
Fibonacci Mandelbrot

25

Overhead factor (φ): Increases with number of steps

Restart Time

26

Fibonacci: Restart Time

Restart Time (Tr): Low
Optimization: Shifting some of the complexity to the
overhead factor

Future Work
Distributed Checkpoint:

➢ Overhead high but constant
➢ Restart time?

27

Tag-only logging:
➢ Less communication
➢ Complex restart

Checkpoint

Conclusion

Asynchronous C/R distributed memory CnC runtime
➢ Analyzing different cases
➢ Proof of concept implementation

Asynchronous C/R is viable for systems with low SMTTI
➢ Model
➢ Proof of concept implementation

28

References
Daly, J. T. (2006). A Higher Order Estimate of the Optimum Checkpoint Interval for Restart Dumps. Future Generation
Computer Systems, 22(3), 303–312.

Avizienis, A., Laprie, J., Randell, B., & Landwehr, C. E. (2004). Basic Concepts and Taxonomy of Dependable and
Secure Computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11–33.

Snir, M., Wisniewski, R. W., Abraham, J. A., Adve, S. V., Bagchi, S., Balaji, P., . . . Hensbergen, E. V. (2014).
Addressing Failures in Exascale Computing. International Journal of High Performance Computing Applications, 28(2),
129–173.

Franck Cappello (2009). Fault Tolerance in Petascale/ Exascale Systems: Current Knowledge. International Journal of
High Performance Computing, 23(1), 212-226.

Vrvilo, N. (2014). Asynchronous Checkpoint/Restart for the Concurrent Collections Model (Unpublished master’s
thesis). Rice University, Houston, Texas USA.

29

