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ABSTRACT

Kuo, Wei-Cheng Ph.D., Purdue University, April 2013. LocalNetwork Coding on Packet
Erasure Channels – From Shannon Capacity to Stability Region. Major Professor: Chih-
Chun Wang Professor.

Network Coding (NC) has emerged as a ubiquitous technique ofcommunication net-

works and has extensive applications in both practical implementations and theoretical de-

velopments. While the Avalanche P2P file system from Microsoft, the MORE routing

protocol, and the COPE coding architecture from MIT have implemented the idea of NC

and exhibited promising performance improvements, a significant part of the success of NC

stems from the continuing theoretic development of NC capacity, e.g., the Shannon capac-

ity results for the single-flow multi-cast network and the packet erasure broadcast channel

with feedback. However, characterizing the capacity for the practical wireless multi-flow

network setting remains a challenging topic in NC. The difficulties of finding the optimal

NC strategy over multiple flows hinder the further advancement in this area. Despite the

difficulty of characterizing the full capacity for large networks, there are evidences showing

that even when using only local operations, NC can still recover substantial NC gain. We

believe that a deeper understanding of multi-flow local network coding will play a key role

in designing the next-generation high-throughput coding-based wireless network architec-

ture.

This thesis consists of two parts. In the first part, we characterize the full Shannon ca-

pacity region of the “COPE” principle when applied to a 2-flow wireless butterfly network

with broadcast packet erasure channels. The capacity results allow for random overhear-

ing probabilities, arbitrary scheduling policies, network-wide channel state information

(CSI) feedback after each transmission, and potential use of non-linear network codes. We

propose a theoretical outer bound and a new class of linear network codes, named the
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Space-Based Linear Network Coding (SBLNC), that achieves the capacity outer bound.

Numerical experiments show that SBLNC provides close-to-optimal throughput even in

the scenario with opportunistic routing.

In the second part, we further consider the complete dynamics of stochastic arrivals and

queueing and study the corresponding stability region. Based on dynamic packet arrivals,

the resulting solution would be one step closer to practicalimplementation, when compared

to the previous block-code-based capacity study. However,the nature of combining packets

in NC is not well-defined in existing store-and-forward stability analysis, which provides

further challenges for online coding and scheduling implementation. Focusing on broad-

cast packet erasure channels, an essential component of thewireless butterfly network, we

modify the network control algorithm Deficit Maximum Weight(DMW) algorithm and

successfully incorporate the nature of combining packets in NC. With the assists of both

modified DMW and SBLNC, we characterize the full stability region of 2-use broadcast

packet erasure channel with feedback.

For the future work, we plan to extend our current results on 2-receiver multi-input

broadcast packet erasure channel to (1) the stability region of the Markovian controlled 2-

receiver multi-input broadcast packet erasure channel, which includes the traditional Adap-

tive Coding and Modulation (ACM) scheme as a special example, and (2) the stability

region of the COPE principle 2-flow wireless butterfly network with broadcast packet era-

sure channels. Last but not least, we also plan to devise practical protocols and testbed

simulation to verify the intuition derived from our capacity and stability analysis.
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1. INTRODUCTION

As the number of smartphone users growing to the majority of wireless carrier customers,

the demand of wireless data rate has increased rapidly and expanded beyond the the tra-

ditional wireline service requirements. How to increase the wireless data rate supporting

multiple users simultaneously with certain scarce resources of the communication network

thus eventually becomes a critical and urgent topic. There are many possible solutions, e.g.,

ultra wide band communication and the multiple-input multiple-out antenna. Nonetheless,

network coding is one of the most promising directions whichcould potentially provide

considerable end-to-end throughput improvement and protect the data privacy of individ-

ual users.

Inspired by the butterfly network, Ahlswedeet al. proposed the concept of network

coding in 2000 [1]. Since then, network coding has emerged asa ubiquitous technique

of modern data communication networks. The extensive applications of network coding

spread from practical implementations to theoretical results. The Avalanche P2P file sys-

tem from Microsoft removes the need of receiving all individual pieces of the original file

as in the BitTorrent system. The MORE protocol from MIT alleviates the use of a scheduler

to coordinate the transmission as in previous opportunistic routing protocols. The COPE ar-

chitecture from MIT incorporate network coding across multiple sessions and demonstrates

that the existing TCP/IP network layer transmission still has great potential to further in-

crease the overall throughput by 40% to 200%. All the above implementations are based on

the concept of network coding. Furthermore, in the areas of the network security, the data

center, and the analog signal processing, network coding has exhibited great potential on

augmenting their current performance. Meanwhile, a significant part of the success of net-

work coding stems from the continuing theoretic development of network coding capacity.

The seminal work [2] in 2003 utilized network coding as the backbone and prosed “random

linear network coding” to achieve the Shannon capacity of single-flow (or single-session)
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(a) (b) (c)

Fig. 1.1. The illustration of local network coding gain on (a) the broadcast
channel; (b) the COPE principle butterfly wireless network;and (c) the oppor-
tunistic routing, where the dashed arcs represent the broadcasting nature and
the rectangle represents a packet.

multi-cast networks. And the feedback capacity of the broadcast channel, the long-term

open question in the area of Shannon capacity, has also been resolved by network coding

for the packet erasure channel case [3,4].

1.1 Network Coding On Local Networks

However, even though COPE [5] has exhibited the great potential for network coding

being applied to multi-user (or multi-flow) wireless data networks, its corresponding the-

oretical capacity remains largely unsolved. The difficulties of finding the optimal network

coding strategy over multiple flows hinder the further advancement in this area. Despite the

difficulty of characterizing the full capacity for large networks, there are evidences show-

ing that even when using only local operations, network coding can still recover substantial

network coding gain. In the following, we are going to present three examples that can

demonstrate substantial network coding gain even on the local operations.
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1.1.1 Network Coding On The Broadcast Channel

The first example is the network coding gain on the broadcast packet erasure channel.

Figure 1.1(a) illustrates the scenario where the network coding can benefit the throughput.

As shown in Figure 1.1(a), the dashed arc represents the nodes can broadcast packets tod1

andd2 simultaneously with certain probabilities. Assumed1 would like to convey packet

X andd2 would like to convey packetY . However, in the first two transmissions byr,

unfortunately,d1 receivesY andd2 receivesX. But then in the next time slot, the nodes

can transmit the combined packetX + Y and both the destinations can recover the desired

packets if it receives the packetX + Y . Without network coding, the nodes needs to

keep transmitX andY separately untild1 andd2 receive the desired packet. Recently, [3]

and [4] successfully characterized the full capacity region of the 1-hop broadcast packet

erasure channel with≤ 3 coexisting flows.

1.1.2 Network Coding On The Butterfly Wireless Network

The second example is the network coding gain on the COPE principle butterfly wire-

less network. Figure 1.1(b) illustrates its scenario and the dashed arc represent the corre-

sponding source node can broadcast packets to the connectedend nodes. Suppose source

s1 would like to send a packetX to destinationd1; sources2 would like to send a packet

Y to d2; and they are allowed to share a common relayr. Also suppose that whens1 (resp.

s2) sendsX (resp.Y ) to r, destinationd2 (resp.d1) can overhear packetX (resp.Y ). We

further assume that after the first two transmissions, bothd1 andd2 can use feedback to

inform r the overhearing status atd1 andd2, respectively. Then instead of transmitting two

packetsX andY separately, the relay noder can send the linear combination[X+Y ]. Each

destinationdi can then decode its desired packet by subtracting the overheard packet from

the linear combination[X + Y ]. In the above simple example, the traditional store-and-

forward transmission scheme requires at least 4 transmissions (s1 to r, s2 to r, r to d1, and

r to d2). But with the network coding in COPE scheme, it only requires 3 transmissions.
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Despite its simple nature, the exact capacity region of the COPE principle remains an

open problem even for the simplest case of two coexisting flows. Several attempts have

since been made to quantify some suboptimal achievable rateregions of the COPE prin-

ciple [6–15]. One difficulty of deriving the capacity regionis due to the use of feedback

in the COPE principle. It is shown in [16] that although feedback could strictly enhance

the capacity in a multi-unicast environment, the exact amount of throughput improvement

is hard to quantify. [17] proposes one queue-based approachfor the general wireline and

wireless networks considering both inter-session and intra-session network coding. How-

ever, the results in [17] mainly focus on the benefits from theside information to decide

either inter-session or intra-session network coding should be applied, which is more re-

lated to [18]. [18] circumvents the difficulty of feedback-based analysis by considering a

special class of 2-staged coding schemes. Although the results in [18] fully capture the ben-

efits of message side information [16, 17, 19–23] , they capture only partially the feedback

benefits, which leads again to a strictly suboptimal achievable rate region.

1.1.3 Network Coding On The Opportunistic Routing

The third example is the network coding gain on the opportunistic routing. Figure 1.1(c)

illustrates its scenario and the dashed arc represent the nodes can broadcast packets to both

r andd with certain probabilities indicated. Here we only have onesession froms to d and

d would like to receive both packetsX andY . After two transmissions froms, the relayr

receives bothX andY while d only receivesX. Then the relayr can directly transmit the

combined packetX + Y andd can recoverY linear operations. Without network coding,

then the opportunistic routing scheme requires a schedulerto inform r what has been re-

ceived byd. And thenr can transmitY . Keeping track of which packets have been heard

or not is a daunting task and network coding drastically simplify it. Recent works [24–26]

take the advantage illustrated in this example to remove theneed of a central scheduler and

experimentally show that with network coding in a 20-node wireless testbed, the unicast
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throughput can be22% higher than the existing opportunistic routing protocols and 95%

higher than the current state-of-art best routing protocolfor wireless mesh networks.

1.1.4 A Critical Question

All the above schemes can augment the end-to-end throughputin the multi-flow wire-

less network. An interesting question thus rises: can we combine all of them together?

Or can we optimize all of them simultaneously? Furthermore,can we do its analytically

Shannon capacity? To answer these questions, we believe that a deeper understanding of

multi-flow local network coding will play a key role, which will also benefit designing the

next-generation high-throughput coding-based wireless network architecture. The analysis

in this thesis is on the packet level as the COPE operating on the current TCP/IP network

layer. With the ARQ mechanisms in the data link layer, the packet erasure channel setting

thus is a natural choice. Hence the anlysis of Shannon capacity of 2-flow wireless butterfly

network with broadcast packet erasure channel turns to our primary objective.

1.2 From Shannon Capacity To Stability Region

The analysis of Shannon capacity is an essential part to establish the possible solutions

for the communication networks of interest. However, Shannon capacity is still quite far

away from practical implementations. In the analysis of Shannon capacity, the results are

derived based on the assumption that the input block code is fixed and the block code length

can be infinitely long. This assumption is apparently impractical because of the memory

buffer limit in real systems. Furthermore, this assumptionwould also induce the extremely

large decoding delay and control overhead. These flaws deviate the analysis of Shannon

capacity from the practical implementations.

Hence we further broaden our attention to the stability region of network coding schemes.

The stability region of the network is defined as the set of allend-to-end traffic load that can

be supported under the appropriate selection of the networkcontrol policy [27]. The analy-

sis of stability region considers the complete dynamics of stochastic arrivals and queueing.
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The assumption of dynamic arrivals greatly alleviates the flaws in the block-based Shannon

capacity analysis, including the problems of memory bufferlimit, decoding delay, and the

large control overhead, and promotes the entire analysis one step closer to the practical

implementations.

However, there are several difficulties which block the extension from Shannon capacity

to the stability region. With fixed block codes as the input inthe Shannon capacity, the

overall throughput in the end of the transmissions can be analyzed by the law of large

number. This does not hold for the case of stochastic arrivals (which means the packets

are endlessly injected into the network) and other tools arerequired to analyze the queue

dynamics at each time instance. Tassiulaset al. [28] introduced Lyaponov drift to resolve

this problem and leaded to the establishment of the network stability analysis research.

Other than the difference between the analysis tools, however, in the existing store-

and-forward stability analysis, the stability region is defined on considering all possible

scheduling, routing, and resource allocation, but no coding allowed inside the network [27].

The nature of combining packets inside the network providesfurther challenges for online

coding and scheduling implementation. Several attempts have been made to resolve this

problem [17, 29]. However, the existing proposed solutionsall tends to circumvent the

problem of combining packets by converting the network coding scheduling problem back

to the existing store-and-forward scheduling problem. This kind of conversions highly

relies on case-by-case discussion and lack of the generality to be systematically applied to

other network topologies. A general network control algorithm which can incorporate the

nature of combining packets inside the network thus is an important subject for the network

coding stability analysis.

1.3 Our Contributions

Our contributions consists of two parts. In the first part, wecharacterize the full Shan-

non capacity of the COPE principle when applied to a 2-flow wireless butterfly network

with broadcast packet erasure channels. The capacity results allow for random overhear-
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ing probabilities, arbitrary scheduling policies, network-wide channel state information

(CSI) feedback after each transmission, and potential use of non-linear network codes.

An information-theoretic outer bound is derived that takesinto account the delayed CSI

feedback of the underlying broadcast packet erasure channels. We then propose a new

class of linear network codes, named the Space-Based LinearNetwork Coding (SBLNC).

SBLNC provides a systematic approach to keep tracking the evolution of knowledge space

at each node. We prove that SBLNC can achieve the capacity region of the 2-flow wireless

butterfly network without considering the opportunistic routing. Furthermore, numerical

experiments show that SBLNC provides close-to-optimal throughput even in the scenario

with opportunistic routing.

In the second part of the contributions, we modify a network control algorithm and

successfully accommodate the nature of combining packets in network coding, named the

Modified Deficit Maximum Weight (Modified DMW) algorithm. TheModified DMW

works on the stochastic processing network (SPN), which is ageneral version of the com-

mon queueing network. There are many similarities between SPN and the network coding

scheduling problem. We apply SBLNC on the broadcast packet erasure channel and derive

the equivalent SPN. With the assist of Modified DMW on the equivalent SPN, we then

successfully characterize the stability region of the 2-user broadcast packet erasure channel

with feedback.

1.4 Thesis Outline

In the next chapter, we formulate the local network model which incorporate the broad-

cast PEC with feedback, the COPE principle, and the opportunistic routing all together.

The stability region problem is also formulated. In Chapter3, we describe the central idea

of this thesis – Spaced-Based Linear Network Coding. In Chapter 4, we characterize the

full Shannon capacity of 2-flow wireless butterfly network with broadcast packet erasure

channels. In Chapter 5, we start to discuss the linear network coding stability region and

introduce its analogy the stochastic processing network. In Chapter 6, we propose the mod-
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ified Deficit Maximum Weight algorithm and fully characterize the stability region of the

2-receiver multi-input broadcast packet erasure channel.In Chapter 7, we conclude this

thesis and discuss the possible extensions and applications from SBLNC and modified-

DMW.
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2. MODEL FORMULATION

In this chapter, we will first formulate the1-to-M broadcast packet erasure channel as a

mathematical model. We then propose a general wireless butterfly model which incorpo-

rates the broadcast packet erasure channels with feedback,the COPE principle, and the

opportunistic routing all together. A useful probability function which can intuitively de-

scribe the probability of interest is defined. We finally discuss the dynamic network coding

and scheduling decision in the 1-to-2 broadcast packet erasure channel. We first define a

useful notation. For any positive integerM , define[M ]
∆
= {1, · · · ,M}.

2.1 The1-to-M Broadcast Packet Erasure Channel

Given a finite fieldGF(q). A 1-to-M broadcast packet erasure channel (PEC) takes

an input packetXs ∈ GF(q) from the sources and outputs anM-dimension vectorY =

(Ys→d1, Ys→d2, ..., Ys→M), whereYs→di ∈ {Xs, ∗} for all i ∈ [M ]. Figure 2.1(a) illustrates

(a) (b)

Fig. 2.1. (a) The 1-to-2 broadcast packet erasure channel; and (b) the 2-flow
wireless butterfly network with opportunistic routing and packet erasure chan-
nels.
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a 1-to-2 broadcast packet erasure channel. Here∗ denotes the erasure symbol.Ys→di = ∗
means that thei-th receiver does not receive the inputXs. We also assume that there is no

other type of noise, i.e., the receivedYs→di is eitherXs or ∗.

We consider onlystationary and memoryless PECs, i.e., the erasure pattern is indepen-

dently and identically distributed (i.i.d.) for each channel usage. The characteristics of a

memoryless1-to-M PEC can be fully described by2M successful reception probabilities

ps→T [M ]\T indexed by any subsetT ⊂ [M ]. That is,ps→T [M ]\T denotes the probability that

a packetXs sent from sources is heard by and only by thei-th destination for alli ∈ T .

For example, supposeM = 3, thenps→{1,3}{2} denotes the probability that a packetXs is

heard byd1 andd3 but not byd2.

For any timet, we use anM-dimensionalchannel status vectorZs(t) to represent the

channel reception status of the1-to-M broadcast packet erasure channel:

Zs(t) = (Zs→d1(t), Zs→d2(t), ..., Zs→dm(t)) ∈ {∗, 1}M

where “∗” and “1” represent erasure and successful reception, respectively. That is, whens

transmits a packetXs(t) ∈ GF(q) in time t, the destinationdm receivesYs→dm(t) = Xs(t)

if Zs→dm(t) = 1 and receivesYs→dm(t) = ∗ if Zs→dm(t) = ∗. For simplicity, we use

Ys→dm(t) = Xs(t) ◦ Zs→dm(t) as shorthand. Since here we only consider stationary and

memoryless PECs,Zs(t) is i.i.d. over time.

2.2 The COPE Principle 2-Flow Wireless Butterfly Network With Opportunistic

Routing and Broadcast Packet Erasure Channels

Here we are going to construct a local network model which incorporates the network

coding gain on (1) the COPE principle, (2) the opportunisticrouting, and (3) the broadcast

packet erasure channel with feedback. The COPE principle 2-flow wireless butterfly net-

work with opportunistic routing and broadcast packet erasure channels is modeled as fol-

lows. We consider a 5-node 2-hop relay network with two source-destination pairs(s1, d1)

and(s2, d2) and a common relayr interconnected by three broadcast PECs. See Fig. 2.1(b)

for the illustration. Specifically, sourcesi can use a 1-to-3 broadcast PEC to communicate
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with {d1, d2, r} for i = 1, 2, and relayr can use a 1-to-2 broadcast PEC to communicate

with {d1, d2}. To accommodate the discussion of opportunistic routing, we allowsi to di-

rectly communicate withdi, see Fig. 2.1(b). When opportunistic routing is not permitted

(as in the case when focusing exclusively on the COPE principle and the broadcast packet

erasure channels), we simply choose the PEC channel successprobabilitiespsi→· such that

the probability thatdi can hear the transmission fromsi is zero.

We assume slotted transmission. Within an overall time budget ofn time slots, source

si would like to conveynRi packetsWi
∆
= (Wi,1, · · · ,Wi,nRi

) to destinationdi for all

i ∈ {1, 2} whereRi is the rate for flowi. For eachi ∈ {1, 2}, j ∈ [nRi], the information

packetWi,j is assumed to be independently and uniformly randomly distributed overGF(q).

For any timet, we use an 8-dimensionalchannel status vectorZ(t) to represent the

channel reception status of the entire network:

Z(t) = (Zs1→d1(t), Zs1→d2(t), Zs1→r(t), Zs2→d1(t),

Zs2→d2(t), Zs2→r(t), Zr→d1(t), Zr→d2(t)) ∈ {∗, 1}8

where “∗” and “1” represent erasure and successful reception, respectively. That is, when

s1 transmits a packetXs1(t) ∈ GF(q) in time t, relay r receivesYs1→r(t) = Xs1(t) if

Zs1→r(t) = 1 and receivesYs1→r(t) = ∗ if Zs1→r(t) = ∗. For simplicity, we useYs1→r(t) =

Xs1(t) ◦ Zs1→r(t) as shorthand.

In this thesis, we consider the node-exclusive interference model. That is, we allow only

one node to be scheduled in each time slot. The scheduling decision at timet is denoted

by σ(t), which takes value in the set{s1, s2, r}. For example,σ(t) = s1 means that node

s1 is scheduled for time slott. For convenience, whens1 is not scheduled at timet, we

simply setYs1→r(t) = ∗. As a result, the scheduling decision can be incorporated into the

following expression ofYs1→r(t):

Ys1→r(t) = Xs1(t) ◦ Zs1→r(t) ◦ 1{σ(t)=s1}.

Similar notation is used for all other received signals. Forexample,Yr→d2(t) = Xr(t) ◦
Zr→d2(t) ◦ 1{σ(t)=r} is whatd2 receives fromr in time t, whereXr(t) is the packet sent by

r in time t.
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We assume that the 3 PECs are memoryless and stationary. Namely, we allow arbitrary

joint distribution for the 8 coordinates ofZ(t) but assume thatZ(t) is i.i.d. over the time

axist. We also assumeZ(t) is independent of the information messagesW1 andW2.

For simplicity, we use brackets[·]t1 to denote the collection from time1 to t. For exam-

ple, [σ,Z, Ys1→d2 ]
t
1

∆
= {σ(τ),Z(τ), Ys1→d2(τ) : ∀τ ∈ [1, t]}. Also, for anyS ⊆ {s1, s2, r}

andT ⊆ {r, d1, d2}, we define

YS→T (t)
∆
= {Ys→d(t) : ∀s ∈ S, ∀d ∈ T}.

For example,Y{s1,r}→{d1,d2}(t) is the collection ofYs1→d1(t), Ys1→d2(t), Yr→d1(t), and

Yr→d2(t).

Given the rate vector(R1, R2), a joint scheduling and network coding (NC) scheme is

defined byn scheduling decision functions

∀t ∈ [n], σ(t) = fσ,t([Z]
t−1
1 ), (2.1)

3n encoding functions ats1, s2, andr, respectively: For allt ∈ [n]

Xsi(t) = fsi,t(Wi, [Z]
t−1
1 ), ∀i ∈ {1, 2}, (2.2)

Xr(t) = fr,t([Y{s1,s2}→r,Z]
t−1
1 ), (2.3)

and2 decoding functions atd1 andd2, respectively:

Ŵi = fdi([Y{s1,s2,r}→di,Z]
n
1 ), ∀i ∈ {1, 2}. (2.4)

By (2.1), we allowσ(t), the scheduling decision at timet, to be a function of the

network-wide reception status vectors before timet. By (2.2), the encoding decision atsi

is a function depending on the information messages and pastchannel status. Encoding at

r depends on whatr received in the past and the past channel status vector, see (2.2). In the

end,di decodesWi based on whatdi has received and the past channel status of the entire

network.1 We allow the encoding and decoding functionsfsi,t, fr,t, andfdi to be linear or

nonlinear.
1Since the scheduling decisionσ(t) is a function of[Z]t−1

1 , all the encoding functions in (2.2) and (2.3), and
the decoding functions in (2.7) also know implicitly the scheduling decisionσ(t).
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This setting models the scenario in which there is a dedicated, error-free, low-rate con-

trol channel that can broadcast the previous network channel statusZ(t− 1) causally to all

network nodes. The total amount of control information is nolarger than8 bits per time

slot, which is much smaller than the actual payload of each packet≈ 104 bits. As a re-

sult, the perfect feedback channel can be easily implemented by piggybacking2 on the data

packets. The scheduling decisionσ(t) can be computed centrally (by a central controller)

or distributively by each individual node since we allow allnodes to have the knowledge of

the reception status of the entire network.

Definition 2.2.1 Fix the distribution ofZ(t). A rate vector(R1, R2) is achievable if for any

ε > 0, there exists a joint scheduling and NC scheme with sufficiently large n andGF(q)

such that

max
∀i∈{1,2}

Prob(Wi 6= Ŵi) < ε.

The capacity region is defined as the closure of all achievable rate vectors(R1, R2).

Remark:In (2.1), the scheduling decisionσ(t) does not depend on the information mes-

sagesWi, which means that we prohibit the use of timing channels [30,31]. Even when we

allow the usage of timing channels, we conjecture that the overall capacity improvement

with the timing channel techniques is negligible. A heuristic argument is that each suc-

cessful packet transmission giveslog2(q) bits of information while the timing information

(to transmit or not) gives roughly 1 bit of information. Whenfocusing on sufficiently large

GF(q), additional gain of timing information is thus likely to be absorbed in our timing-

information-free capacity characterization. In our setting, r is the only node that can mix

packets from two different data flows. Further relaxation such thats1 ands2 can hear each

other and perform coding accordingly is beyond the scope of this work.

2Some pipelining may be necessary to mitigate the propagation delay of the feedback control messages.
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2.2.1 A Useful Notation

In our network model, there are 3 broadcast PECs associated with s1, s2, andr, respec-

tively. We sometimes term those PECs thesi-PEC,i = 1, 2, and ther-PEC. Since only

one node can be scheduled in each time slot, we can assume thatthe reception events

of each PEC are independent from that of the other PECs. As a result, the distribu-

tion of the network-wide channel status vectorZ(t) can be described by the probabilities

p
si→T{r,d1,d2}\T

for all i ∈ {1, 2} and for allT ⊆ {r, d1, d2}, andp
r→U{d1,d2}\U

for all

U ⊆ {d1, d2}. Totally there are8 + 8 + 4 = 20 parameters. By allowing some of the

coordinates ofZ(t) to be correlated, our setting can also model the scenario in which desti-

nationsd1 andd2 are situated in the same physical node and thus have perfectly correlated

channel success events.

For notational simplicity, we also define the following threeprobability functionspsi(·)
, i = 1, 2, andpr(·), one for each of the PECs. The input argument of each function

ps (s being one of{s1, s2, r}) is a collection of the elements in{d1, d2, r, d1, d2, r}. The

functionps(·) outputs the probability that the reception event iscompatibleto the specified

collection of{d1, d2, r, d1, d2, r}. For example,

ps1(d2r) = ps1→d2d1r
+ ps1→d1d2r (2.5)

is the probability that the input of thes1-PEC is successfully received byd2 but not byr.

Herein,d1 is adon’t-carereceiver andps1(d2r) thus sums two joint probabilities together

(d1 receives it or not) as described in (2.5). Another example ispr(d2) = pr→d1d2+pr→d1d2
,

which is the probability that a packet sent byr is heard byd2. To slightly abuse the notation,

we further allowps(·) to take multiple input arguments separated by the comma sign“ ,”.

With this new notation,ps(·) then represents the probability that the reception event is

compatible toat leastone of the input arguments. For example,

ps1(d1d2, r) = ps1→d1d2r
+ ps1→d1d2r

+ ps1→d1d2r

+ ps1→d1d2r
+ ps1→d1d2r

.
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Fig. 2.2. The dynamics of stochastic arrivals in the 2-flow1-to-2 broadcast
packet erasure channel with feedback.

That is,ps1(d1d2, r) represents the probability that(Zs1→d1, Zs1→d2 , Zs1→r) equals one of

the following 5 vectors(1, ∗, ∗), (1, ∗, 1), (1, 1, 1), (∗, 1, 1), and(∗, ∗, 1). Note that these 5

vectors are compatible to eitherd1d2 or r or both. Another example of thisps(·) notation

is ps1(d1, d2, r), which represents the probability that a packet sent bys1 is received byat

leastone of the three nodesd1, d2, andr.

2.3 Dynamics of Stochastic Arrivals And Queues

In Section 2.2, we described the formulation of Shannon capacity with fixed amount of

information packetsWi = (Wi,1,Wi,2, ...,Wi,nRi
). The above models can also be extended

to the stability region analysis. We use the2-flow 1-to-2 broadcast packet erasure channel

with feedback as an example.

Figure 2.2 illustrates the dynamics of the stochastic arrivals in the 2-flow1-to-2 broad-

cast packet erasure channel. Assuming the time-slotted system, we have two queueQ1,overall

andQ2,overall which store infinite amount of flow-1 and flow-2 messages inGF(q), respec-
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tively. We also have two arrival processesA1(t) andA2(t). For any timet andi = 1, 2,

Ai(t) denotes how many messages are sequentially transferred fromQi,overall toQi,revealedat

time t. And hence at timet, Qi,revealedcontains the first
∑t

τ=1Ai(τ) messages inQi,overall.

The subscript “revealed” denotes the packet in the queues are “visible” to the networks and

required to be transmitted to its destinations. We assumeAi(t) is i.i.d. over time and define

the rate(R1, R2) = (E{A1(t)},E{A2(t)}). We useWi(t) = (Wi,1,Wi,2, ...,Wi,
∑t

τ=1 Ai(τ)
)

to denote the collection of the messages in queueQi,revealedat timet. We assumeWi(t) is

independent withZs(t) as defined in Section 2.1.

Given the rate vector(R1, R2), at any timet, a network control algorithm including

coding is defined by the encoding function ats:

Xs(t) = fs,t([W1,W2,Zs]
t−1
1 ),

(2.6)

and2 decoding functions atd1 andd2, respectively:

Ŵi(t) = fdi,t([Ys→di,Zs]
t
1), ∀i ∈ {1, 2}. (2.7)

Ŵi(t) = (Ŵi,1, Ŵi,2, ..., Ŵi,
∑t

τ=1 Ai(τ)
) ∈ (GF(q)∪{e})

∑t
τ=1 Ai(τ) is a

∑t

τ=1Ai(τ)-dimensional

vector. For anyj, if Ŵi,j is in GF(q) then this message is decoded. Otherwise,Ŵi,j = e

means this message is undecoded. For any timet, we use|Qi,decoded| to denote the num-

ber of decoded messages in̂Wi(t). We then define two queue lengthsQi,undecoded(t) =

|Qi,revealed| − |Qi,decoded| at timet for i = 1, 2.

Definition 2.3.1 A rate vector(R1, R2) is feasible if there exists a network control algo-

rithm (including coding) such thatQ1,undecoded(t) andQ2,undecoded(t) are stable3. The stabil-

ity region of the 2-flow1-to-2 broadcast packet erasure channel with feedback is the convex

hull of all feasible rate vectors.

3We will discuss the explicit definition of the stability in Section 5.1.



17

2.4 Chapter Summary

In this chapter, we formulate the model of the1-to-M broadcast packet erasure chan-

nel in Section 2.1. In Section 2.2, we then construct a wireless butterfly network model

including the COPE principle, the opportunistic routing, and the broadcast packet erasure

channels with feedback. The corresponding Shannon capacity region is also defined in

Section 2.2. We extend the problem setting to incorporate the dynamics of the stochastic

arrivals and queues in Section 2.3 and finally define the stability region of 2-flow 1-to-2

broadcast packet erasure channel with feedback.
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3. SPACE BASED LINEAR NETWORK CODING

In this chapter, we introduce a the central idea of this thesis. We will present a class of net-

work coding scheme named the “Space-Based Linear Network Code (SBLNC)” scheme.

An example of SBLNC scheme policies will be provided and willalso be used to explain

the design motivations of the SBLNC policies. The SBLNC schemes will later be used

to achieve(1) the Shannon capacity of the 2-flow wireless butterfly network with packet

erasure channels and (2) the stability region of the 2-flow1-to-2 broadcast packet erasure

channel with feedback.

3.1 Definitions

Here we use the 2-flow wireless butterfly network with packet erasure channels in Sec-

tion 2.2 as an example and construct the corresponding SBLNCscheme. We first provide

some basic definitions that will be used when describing an SBLNC scheme.

For i = 1, 2, a flow-i coding vectorv(i) is annRi-dimensional row vector with each

coordinate being a scalar inGF(q). Any linear combination of the message symbolsWi,1

to Wi,nRi
can thus be represented byv(i)WT

i whereWT
i is the transpose ofWi. We use

the superscript “(i)” to emphasize that we are focusing on a flow-i vector.

We define theflow-i message spaceby Ωi
∆
= (GF(q))nRi, annRi-dimensional linear

space. In the following, we define the following 6knowledge spacesSr, Sd1 , Sd2 , Tr, Td1 ,

andTd2 for the 5-node relay network in Fig. 2.1(b).

The knowledge spacesSr, Sd2 , Sd1 are linear subspaces ofΩ1 and represent the knowl-

edge about the flow-1 packets at nodesr, d2, andd1, respectively. Symmetrically, the

knowledge spacesTr, Td1 , andTd2 are linear subspaces ofΩ2 and represent the knowledge

about the flow-2 packets at nodesr, d1, andd2, respectively. In the following, we dis-
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cuss the detailed construction ofSr, Sd2 , andSd1 and the construction ofTr to Td2 follows

symmetrically.1

• In the end of any timet, Sr(t) ⊂ Ω1 is thelinear spanof a group ofv(1), denoted by

V
(1)
s1→r. The groupV(1)

s1→r contains thev(1) vectors sent bys1 during time1 to t and

have been received successfully byr. Throughout the paper, we use the convention

that the linear span of an empty set is a set containing the zero vector, i.e.,span{∅} =

{0}. For example, ifr has not yet received any packet froms1, then by convention

Sr(t) = {0}.

• In the end of timet, Sd2(t) ⊂ Ω1 is the linear span of two groups ofv(1), denoted by

V
(1)
s1→d2

andV(1)
r,N→d2

. The first groupV(1)
s1→d2

contains thev(1) vectors corresponding

to the packets sent bys1 during time1 to t and have been received successfully by

d2. The second groupV(1)
r,N→d2

contains thev(1) vectors corresponding to the packets

sent byr during time1 to t that are not mixed with any other flow-2 packets. The

letter “N” in the subscript stands for Not-inter-flow-codedtransmission.

• In the end of timet, Sd1(t) ⊂ Ω1 is the linear span of three groups ofv(1), denoted

byV(1)
s1→d1

, V(1)
r,N→d1

, andV(1)
r,C→d1

. The first groupV(1)
s1→d1

contains thev(1) vectors

corresponding to the packets sent bys1 during time1 to t and have been received

successfully byd1. The second groupV(1)
r,N→d1

contains thev(1) vectors correspond-

ing to the packets sent byr during time1 to t thatare not mixed with any other flow-2

packets. The third groupV(1)
r,C→d1

contains thev(1) vectorsthat can be decoded from

the inter-flow coded packets2 sent byr during time1 to t. The letter “C” in the

subscript stands for inter-flow-Coded transmission.

In sum, we useS andT to distinguish whether we are focusing on flow-1 or flow-2

packets, respectively, and we use the subscripts to describe the node of interest. One can

easily see that these six knowledge spaces evolve over time since each node may receive

1The construction ofTd1
(resp.Td2

) follows the construction ofSd2
(resp.Sd1

).
2When the relayr sends a linear combination of both flow-1 and -2 packets.
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Fig. 3.1. The illustration of the coding procedure in Example 3.1.1. We use a
solid line to represent that the corresponding receiver hassuccessfully received
the packet and use a dot line to represent the case of erasure.

more and more packets that can be used to obtain/decode new information. We use the

following example to illustrate the definitions ofSr to Td2 .

Example 3.1.1 ConsiderGF(3) and nR1 = 3 and nR2 = 2. That is, flow-1 contains

3 message symbolsW1,1 to W1,3 and flow-2 contains 2 message symbolsW2,1 andW2,2.

Ω1 andΩ2 are thus 3-dimensional and 2-dimensional linear spaces inGF(3), respectively.

Consider the first four time slotst = 1 to 4 for our discussion.

Whent = 1, suppose thats1 is scheduled; an uncoded flow-1 message symbolW1,1 is

transmitted; and the packet is heard by and only byd2 andr. See Fig. 3.1(a) for illustration,

for which we use the solid lines to represent thatd2 andr have received the packet. We use

the dashed line to denote thatd1 does not receive the packet. Whent = 2, suppose that

s2 is scheduled; an uncoded flow-2 message symbolW2,1 is transmitted; and the packet is

heard by and only byd2, see Fig. 3.1(b). Whent = 3, suppose thats1 is scheduled; an

uncoded flow-1 symbolW1,3 is transmitted; and the packet is heard by and only byr. When

t = 4, suppose thatr is scheduled;r sends a linear combination[W1,1 + 2W1,3] of the

two flow-1 packets it has received thus far; and the packet[W1,1 + 2W1,3] is heard by both

d1 andd2. We now describe the six knowledge spacesSr to Td2 in the end oft = 4. By

Figs. 3.1(a) and 3.1(d),d2 has received two flow-1 packetsW1,1 and [W1,1 + 2W1,3], one

from s1 and one fromr. Therefore, by the end oft = 4, the flow-1 knowledge space atd2



21

Table 3.1
The resulting knowledge spaces at the end of Example 3.1.1.

Flow-1 Flow-2

Sd1(4) span{(1, 0, 2)} Td2(4) span{(1, 0)}
Sr(4) span{(1, 0, 0), (0, 0, 1)} Tr(4) {(0, 0)}
Sd2(4) span{(1, 0, 0), (1, 0, 2)} Td1(4) {(0, 0)}

becomesSd2(4) = span{(1, 0, 0), (1, 0, 2)}. Also, neitherr nor d1 has received any flow-2

packets by the end oft = 4. Therefore,Tr andTd1 , the flow-2 knowledge spaces atr and

d1, respectively, contain only the zero element. The other knowledge spacesSd1 , Sr, and

Td2 in the end oft = 4 can be derived similarly and they are summarized in Table 3.1.

The above definitions also lead to the following self-explanatory lemma.

Lemma 3.1.1 The two destinationsd1 andd2 can decode the desired message symbolsW1

andW2, respectively, if and only if by the end of timen

Sd1(n) = Ω1 and Td2(n) = Ω2.

For simplicity, we useSi(t) andTi(t) to denote the knowledge spaceSdi(t) andTdi(t)

for i = 1, 2. We also omit the input argument “(t)” if the time index is clear from the

context. To conclude this subsection, we introduce the notation of the sum space(A⊕B)
∆
=

span{v : ∀v ∈ A ∪ B}. Notice thatA⊕ B andA ∪ B are different. For example, in a 2-

dimensional linear space withGF(2), we assumeA = span{(1, 0)} andB = span{(1, 1)}.

ThenA ∪ B = {(0, 0), (1, 0), (2, 0), (1, 1), (2, 2)}, butA ⊕ B = span{(1, 0), (1, 1)} =

{(0, 0), (1, 0), (2, 0), (1, 1), (2, 2), (2, 1), (1, 2), (0, 1), (0, 2)}. By simple algebra, we have

Lemma 3.1.2 For any two linear subspacesA andB in Ω, the following equality always

holds.

Rank(A⊕ B) = Rank(A) + Rank(B)− Rank(A ∩ B).
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3.2 An Instance of SBLNC Policies

In the following, we will introduce a new class of network codes, named the Space-

Based Linear Network Code (SBLNC). An SBLNC scheme containsa finite number of

policies. Each policyΓ contains a linear subspaceA(Γ), namedthe inclusion space/set, and

a finite collection of subspacesB(Γ)
l for l = 1 toL(Γ), namedthe exclusion spaces/sets. For

each time slott, the SBLNC chooses one of the specified policies and uses it togenerate

the coded packet. For example, say nodes is scheduled for transmission and we decide to

use a policyΓ for encoding. Thens will first choose arbitrarily a coding vectorv(i) from

the setA(Γ)\
(

⋃L(Γ)

l=1 B
(Γ)
l

)

, and then transmit a linearly encoded packetX = v(i)WT
i .

That is, the coding vector must be in the inclusion setA(Γ) but not in any of the exclu-

sion setsB(Γ)
l . Obviously, a policy can be used/chosen only when the corresponding set

A(Γ)\
(

⋃L(Γ)

l=1 B
(Γ)
l

)

is non-empty. For notational simplicity, we say a policy isfeasibleif

the correspondingA(Γ)\
(

⋃L(Γ)

l=1 B
(Γ)
l

)

is non-empty.

For illustration, consider the following policy for nodes1, named PolicyΓs1,0. When

Policy Γs1,0 is used/chosen, we let source nodes1 choose arbitrarily a coding vectorv(1)

from Ω1\ (S1 ⊕ S2 ⊕ Sr) and send the corresponding coded packetXs1 = v(1)WT
1 . That

is, the inclusion set isA(Γs1,0) = Ω1 and the exclusion set isB(Γs1,0) = S1 ⊕ S2 ⊕ Sr.

Continue the example in Section 3.1 for which the knowledge spaces are summarized

in Table 3.1. In the beginning oft = 5 (or equivalently in the end oft = 4), we have

A(Γs1,0) = Ω1 andB
(Γs1,0)
1 = S1 ⊕ S2 ⊕ Sr = {(a, 0, c) : ∀a, c ∈ GF(q)}. As a result, if we

choose PolicyΓs1,0 for t = 5, any coding vectors of the form(a, b, c) with b 6= 0 are in the

setΩ1\(S1⊕S2⊕Sr). There are totally18 such vectors sinceGF(3) is used. Sources1 can

then choose arbitrarily from any one of the18 vectors and sendX = aW1,1+bW1,2+cW1,3

in time t = 5.

In the following, we define13 policies that will be used to achieve the Shannon capacity

of the 2-flow wireless butterfly network with packet erasure channels.

There are 5 policies governing the coding operations at source s1, which are named

PolicyΓs1,j for j = 0 to 4. When PolicyΓs1,j is used,s1 sendsXs1(t) = v(1)WT
1 for some
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v(1). That is, sources1 only mixes/encodes flow-1 packets together. In the following, we

describe how to choose the vectorv(1) for each individual policy.

§ PolicyΓs1,0: Choosev(1) arbitrarily from

Ω1\(S1 ⊕ S2 ⊕ Sr). (3.1)

§ PolicyΓs1,1: Choosev(1) arbitrarily from

(S2 ⊕ Sr)\ ((S1 ⊕ Sr) ∪ (S1 ⊕ S2)) . (3.2)

§ PolicyΓs1,2: Choosev(1) arbitrarily from

S2\(S1 ⊕ Sr). (3.3)

§ PolicyΓs1,3: Choosev(1) arbitrarily from

Sr\ (S1 ⊕ (S2 ∩ Sr)) . (3.4)

§ PolicyΓs1,4: Choosev(1) arbitrarily from

(S2 ∩ Sr)\S1. (3.5)

Policy Γs2,j, j = 0 to 4 are symmetric versions ofPolicy Γs1,j that concern sources2

and mix/encode flow-2 packets instead. More explicitly, sources2 sendsXs2 = v(2)WT
2

for which the coding vectorv(2) is chosen according to the following specification.

§ PolicyΓs2,0: Choosev(2) arbitrarily from

Ω2\(T1 ⊕ T2 ⊕ Tr). (3.6)

§ PolicyΓs2,1: Choosev(2) arbitrarily from

(T1 ⊕ Tr)\ ((T2 ⊕ Tr) ∪ (T1 ⊕ T2)) . (3.7)

§ PolicyΓs2,2: Choosev(2) arbitrarily from

T1\(T2 ⊕ Tr). (3.8)
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§ PolicyΓs2,3: Choosev(2) arbitrarily from

Tr\ (T2 ⊕ (T1 ∩ Tr)) . (3.9)

§ PolicyΓs2,4: Choosev(2) arbitrarily from

(T1 ∩ Tr)\T2. (3.10)

There are 3 policiesΓr,j, j = 1, 2, 3, governing the coding operations at the relayr,

which are described as follows.

§ PolicyΓr,1: The relayr chooses arbitrarily a vectorv(1) from

Sr\ ((Sr ∩ S2)⊕ S1) (3.11)

and sends an intra-flow-coded flow-1 packetXr = v(1)WT
1 .

§ PolicyΓr,2: The relayr chooses arbitrarily a vectorv(2) from

Tr\ ((Tr ∩ T1)⊕ T2) (3.12)

and sends an intra-flow-coded flow-2 packetXr = v(2)WT
2 .

§ Policy Γr,3 is for the relay noder to send an interflow-coded packetXr = v(1)WT
1 +

v(2)WT
2 , with v(1) andv(2) chosen as follows: If(S2 ∩ Sr)\S1 is non-empty, choosev(1)

arbitrarily from

(S2 ∩ Sr)\S1, (3.13)

otherwise choosev(1) = 0, a zero vector. If(T1 ∩ Tr)\T2 is non-empty, choosev(2)

arbitrarily from

(T1 ∩ Tr)\T2, (3.14)

otherwise choosev(2) = 0.

Continue from Example 3.1.1 in Section 3.1 with the knowledge spaces in the end of

t = 4 described in Table 3.1. Consider PolicyΓs1,3 as defined in (3.4). SinceS2 ∩ Sr = Sr

in the end oft = 4, we haveSr\ (S1 ⊕ (S2 ∩ Sr)) ⊆ Sr\(S2 ∩ Sr) = ∅ being an empty
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set. Thus, in contrast with the fact that PolicyΓs1,0 is feasible in the beginning oft = 5 as

shown in our previous discussion, PolicyΓs1,3 is infeasible in the beginning oft = 5.

One can repeat the above analysis and verify that out of all13 policies, only4 of them

are feasible in the beginning oft = 5, which areΓs1,0, Γs1,4, Γs2,0, andΓr,3. The network

code designer can thus apply one of the four policies int = 5.

Suppose the network designer chooses policyΓs1,0 for t = 5 and sends a flow-1 coded

packet with the coding vector beingv(1) = (2, 1, 0). Also suppose that the packet is re-

ceived byr but by neitherd1 nord2. Then in the end of timet = 5, the knowledge spaceSr

evolves from the originalspan{(1, 0, 0), (0, 0, 1)} to the new spacespan{(1, 0, 0), (0, 0, 1), (2, 1, 0)}.

We now notice that the PolicyΓs1,0 is no longer feasible since with the newSr, the ex-

clusion space ofΓs1,0 becomesS1 ⊕ S2 ⊕ Sr = span{(1, 0, 0), (0, 0, 1), (2, 1, 0)} and

Ω1\ (S1 ⊕ S2 ⊕ Sr) is now empty. On the other hand, the newSr also lets some previously

infeasible policies become feasible. For example, consider PolicyΓs1,3. With the newSr,

we haveSr = span{(1, 0, 0), (0, 0, 1), (2, 1, 0)}andS1⊕(S2∩Sr) = span{(1, 0, 0), (1, 0, 2)}.

Therefore,Sr\ (S1 ⊕ (S2 ∩ Sr)) 6= ∅. PolicyΓs1,3 is thus feasible and can be used for trans-

mission int = 6. With similar analysis, one can verify that in the beginningof t = 6, we

have5 feasible policies:Γs1,3, Γs1,4, Γs2,0, Γr,1, andΓr,3.

3.3 The Design Motivations of SBLNC Policies

We conclude this chapter by discussing the design motivations behind the proposed 13

policies. We first consider the relay policiesΓr,1 to Γr,3 due to its conceptual simplicity.

We then discuss the source policiesΓsi,0 to Γsi,4.

The Relay Policies

We first notice that for all relayr policiesΓr,1, Γr,2, andΓr,3, the corresponding inclu-

sion space is either a subspace ofSr or a subspace ofTr. The reason is that for noder to

send a coded packet, the encoded packet must already be inSr orTr, the knowledge spaces
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of r. As a result, the transmitted vectorv(1) (or v(2)) must be drawn from a subset ofSr (or

Tr).

It is clear thata good network code should try to serve two flows simultaneously in order

to maximize the throughput.We now focus on PolicyΓr,3. First notice that by (3.14),v(2) is

drawn from(T1∩Tr). This means that the value ofv(2)WT
2 is already known by destination

d1 sincev(2) being in the flow-2 knowledge spaceT1 at d1. Hence wheneverd1 receives

the packetXr(t) = v(1)WT
1 + v(2)WT

2 , it can extract its desired information and recover

v(1)WT
1 by substractingv(2)WT

2 . We then note that PolicyΓr,3 ensures that whenever

(3.13) is not empty the selectedv(1) is not inS1, the flow-1 knowledge space atd1. Hence

upon the reception of such a coded packet,Rank(S1) will increase by one. By Lemma 3.1.1

destinationd1 is one step closer to fully decode its desired messageW1. Symmetrically,

by (3.13)d2 has already known the value ofv(1)WT
1 and thusd2 can compute the value of

v(2)WT
2 upon the reception of the inter-flow coded packet generated by PolicyΓr,3. Since

v(2) is not inT2, d2 can decode one extra linear combination of flow-2 packets. Policy Γr,3

thus serves bothd1 andd2 simultaneously.

Although PolicyΓr,3 can serve both destinations simultaneously, there is a limit on how

much information can be sent byΓr,3. That is, if we use only PolicyΓr,3 and nothing

else, the information that can be received byd1 through PolicyΓr,3 is at most(Sr ∩ S2)

since allv(1) are drawn from(Sr ∩ S2). The largest flow-1 knowledge space thatd1 can

possibly attain is thusS1 ⊕ (Sr ∩ S2), whereS1 represents the flow-1 information that

d1 has accumulated by overhearing the transmission directly from its two-hop neighbor

s1, and(Sr ∩ S2) represents the information that can be conveyed byΓr,3. Note that it is

possible thatSr is not a subspace ofS1⊕ (Sr∩S2), which means that relayr still possesses

some flow-1 information that cannot be conveyed tod1 by Γr,3 alone. Γr,1 is devised to

address this problem. That is, thev(1) vector chosen from (3.11) is (i) from the knowledge

space ofr, and (ii) not inS1 ⊕ (Sr ∩ S2), the largest flow-1 knowledge space thatd1 can

attain when using exclusively PolicyΓr,3. Suchv(1) vector thus represents an information

packet that is complementary to the inter-flow-coded PolicyΓr,3.
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The Source Policies

Here without loss of generality we focus on source 1 policies. Even though the policies

can be chosen arbitrarily whenever they are feasible, in thefollowing discussion, we will

explain in a way that they are executed sequentially from Policy Γs1,0 to PolicyΓs1,4 to

better catch up the intuitions.

Before explaining the source policies (3.1)–(3.5), we firstdiscuss what we expect to

achieve during the source 1 transmission. There is one thingwe must achieve. Meanwhile,

there are two things we desire to achieve. The one we must achieve isΩ1 = (S1⊕Sr) at the

end of the source 1 transmission sinces1 → r → d1 ands1 → d1 are the only two routes

from s1 to d1. For the two things we desire to achieve, the first one isΩ1 = (S1⊕(S2∩Sr)).

The reason is that the condition,Ω1 = (S1 ⊕ (S2 ∩ Sr)), makes PolicyΓr,1 always being

infeasible, and hence we can exploit the coding benefit from Policy Γr,3. The second one

is trivially Ω1 = S1.

With those things mentioned above in mind, we then examine and explain each source

policy. PolicyΓs1,j, j = 0, 1, 2, are designed for achievingΩ1 = S1⊕Sr with S1⊕Sr being

a subset of the exclusion sets for these policies. This can beobserved step by step. After

finishing all possible transmissions from PolicyΓs1,0, we haveΩ1 = (S1 ⊕ S2 ⊕Sr). After

finishing all possible transmissions from PolicyΓs1,0 andΓs1,1, it is either(S2 ⊕ Sr) ⊂
(S1⊕Sr) or (S2⊕Sr) ⊂ (S1⊕S2). In the first case,Ω1 = (S1⊕S2⊕Sr) = (S1⊕Sr). For

the second case,Ω1 = (S1 ⊕ S2 ⊕ Sr) = (S1 ⊕ S2). Then with the help from PolicyΓs1,2,

S2 ⊂ (S1⊕Sr) after finishing all possible transmissions from PolicyΓs1,2, the second case

in PolicyΓs1,1 comes to the result,Ω1 = (S1 ⊕ S2 ⊕ Sr) = (S1 ⊕ S2) = (S1 ⊕ Sr). So

far we have examined that PolicyΓs1,j, j = 0, 1, 2, help us to achieveΩ1 = (S1 ⊕ Sr).

However, one may ask why we need three policies to achieve this instead of simply one

policyΩ1\(S1⊕Sr). This question will be answered right after the discussion of achieving

Ω1 = (S1 ⊕ (S2 ∩ Sr)).

Policy Γs1,j, j = 0, 1, 2, 3, are designed for achievingΩ1 = (S1 ⊕ (S2 ∩ Sr)) with

S1 ⊕ (S2 ∩ Sr) being a subset of the exclusion sets for these policies. Similar to the above
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observation forΩ1 = S1 ⊕ Sr, one can verify that after finishing all possible transmissions

from PolicyΓs1,0 to Γs1,3, we haveΩ1 = (S1 ⊕ (S2 ∩ Sr)). Furthermore, PolicyΓs1,1 is

carefully designed for achievingΩ1 = (S1⊕(S2∩Sr)) in the most efficient way. To explain

why PolicyΓs1,1 is the most efficient policy for achievingΩ1 = (S1 ⊕ (S2 ∩ Sr)), we first

observe

Rank(S1 ⊕ (S2 ∩ Sr)) = Rank(S1) + Rank(S2 ∩ Sr)− Rank(S1 ∩ S2 ∩ Sr)

=Rank(S1) + Rank(S2) + Rank(Sr)− Rank(S2 ⊕ Sr)− Rank(S1 ∩ S2 ∩ Sr)

Notice thatS2 ⊕ Sr is the inclusion set for PolicyΓs1,1; andS1, S2, andSr are subsets

of the exclusion sets for PolicyΓs1,1. Then with PolicyΓs1,1 being chosen,Rank(S1 ⊕
(S2 ∩ Sr)) is expected to increasep1(d1) + p1(d2) + p1(r) − 0 − p1(d1d2r). In this way,

we maximize the positive terms and minimize the negative terms at the same time. This

maximum increment ofRank(S1⊕ (S2∩Sr)) leads to the most efficient way for achieving

Ω1 = (S1 ⊕ (S2 ∩ Sr)). This also answer the question why we need three policies for

achievingΩ1 = (S1 ⊕ Sr) instead of simply one policy,Ω1\(S1 ⊕ Sr): Policy Γs1,0 sets

up the environment for executing PolicyΓs1,1, and PolicyΓs1,2 helps PolicyΓs1,1 back to

achievingΩ1 = (S1⊕Sr). Finally, PolicyΓs1,j, j = 0, 1, 2, 3, 4, are designed for achieving

Ω1 = S1 with similar observations.

To summarize, these designed source 1 policies help us to achieve Ω1 = S1 ⊕ Sr,

Ω1 = S1 ⊕ (S2 ⊕ Sr), andΩ1 = S1 simultaneously and in the most efficient way.

3.4 Chapter Summary

In this chapter, we introduce the central idea of this thesis, the space-based linear net-

work coding. We use the 2-flow wireless butterfly network withpacket erasure channels as

an example and construct the corresponding SBLNC scheme. InSection 3.1, we introduce

the necessary definition for constructing SBLNC policies. In Section 3.2, we present an ex-

ample of SBLNC scheme with 13 designed policies. Later we will use these 13 policies to
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achieve the Shannon capacity of the 2-flow wireless butterflynetwork with packet erasure

channels. In Section 3.3, we discuss the design motivationsof the SBLNC policies.
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4. THE SHANNON CAPACITY OF WIRELESS BUTTERFLY

NETWORK

In Section 2.2, we formulate a local network model includingthe broadcast packet erasure

channel with feedback, the COPE principle, and the opportunistic routing. In this chapter,

we will first discuss some related work and compare their settings with the one in Sec-

tion 2.2. We then propose the corresponding outerbound and the inner bound which can

be achieved by the SBLNC scheme described in Section 3.2. Finally we demonstrate the

numerical results including the capacity region comparison and the sum rate throughput

comparison.

4.1 Related Works

Recently, [3] and [4] successfully characterized the full capacity region of the 1-hop

broadcast packet erasure channel with≤ 3 coexisting flows. For comparison, our work

focuses on the 2-hop network in Fig. 1.1(b) while [3] and [4] focus on the 1-hop broad-

cast channel. For the 2-hop network in Fig. 1.1(b), the network designer faces both the

scheduling problem: which node (out of the two source nodess1, s2, and the relay noder)

to transmit at the current time slot, and thenetwork coding problem: how to combine the

heard/overheard packets and generate the network coded packets. For the 1-hop broadcast

channel considered in [3] and [4], there is no scheduling problem since there is only one

base station and the base station transmits all the time. As will be seen shortly, for a 2-hop

erasure network, the feedback/control messages may propagate through the entire network

and affect dynamically the scheduling and coding decisionsfor all three nodess1, s2, and

r, which further complicates the analysis.

Several attempts [17, 18] also have be made to approach the wireless butterfly network

with packet erasure channels. Both of [17,18] take the side-information coding benefit into
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Table 4.1
The feature comparison between this thesis and [18]

Features in [18] Features in this thesis

The outer bound

(1) Sequential scheduling, (1) Dynamic scheduling,

(2) Batched feedback, (2) Per-packet feedback,

(3) Nonlinear coding functions. (3) Nonlinear coding functions.

The inner bound

(1) Sequential scheduling, (1) Sequential scheduling,

(2) Batched feedback, (2) Per-packet feedback,

(3) Linear coding functions. (3) Linear coding functions.

concern. But [17] only proposed a suboptimal achievable scheme while [18] characterized

the full capacity region. In the following, we will discuss the major differences between

[18] and this thesis.

There are three major differences between the setting of this this thesis and in [18].

First, a deterministic sequential scheduling policy was used in [18], which schedules nodes

s1, s2, andr in strict order. Namely,s1 transmits first. Afters1 stops,s2 can begin to

transmit. Only afters2 stops transmission canr start its own transmission. For comparison,

our setting allows for dynamically choosing the scheduleσ(t) for each time slott. Since

we allow the scheduleσ(t) to depend on the past reception status[Z]t−1
1 , the use ofσ(t)

also includes any store-&-forward-based scheduling policies as special cases, suchas the

back-pressure and the maximal weighted matching schemes (see [26] for references). Our

results thus quantify the best achievable rates with jointly designed scheduling and coding

policies.

Secondly, in [18] no feedback is allowed whens1 ands2 transmit. More specifically,

suppose jointlys1 ands2 takets1 + ts2 time slots to finish transmission. Then only in the

beginning of time(ts1+ts2+1) are we allowed to send the channel status[Z]
ts1+ts2
1 to r. No

further feedback is allowed until timen, the end of overall transmission. For comparison,

our setting allows constantly broadcasting network-wide channel status[Z]t−1
1 to s1, s2,
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andr, as discussed in Section 2.2. This setting thus includes theAutomatic Repeat reQuest

(ARQ) mechanism as a special case [3,18]. Broadcasting the control information[Z]t−1
1 to

all the network nodes also eliminates the need of estimating/learning the reception status of

the neighbors. Thirdly, [18] focuses on an arbitrary numberof coexisting flows while this

work focuses exclusively on the 2-flow scenario.

Last but not least, in the way of describing the inner bound in[18] and this work,

they look similar because of the linear programming expressions and the use of the law

of large number. However, they are essentially different. It is extremely difficult for the

techniques in [18] to be extended to this work. The major obstacle is that in the setting of

this thesis, the linear spaces constructed by the received packets keep evolving over time

via per-packet feedback. Hence it is necessary to develop the SBLNC scheme to analysis

the space evolution.

The practical COPE implementation contains three major components: (i) Opportunis-

tic listening: Each destination is in a promiscuous monitoring mode and stores all the

overheard packets; (ii) Opportunistic coding: The relay node decides which packets to be

coded together opportunistically, based on the overhearing patterns of its neighbors; and

(iii) Learning the states of the neighbors: Although in the practical COPE implementation

reception reports are periodically sent to advertise the overhearing patterns of the next-hop

neighbors of the relay, the relay node still needs to extrapolate the overhearing status of its

neighbors since there is always a time lag due to the infrequent periodic feedback.

Our setting closely captures the opportunistic listening component of COPE by model-

ing the wireless packet transmission as a random broadcast PEC. In (2.1)–(2.3), the channel

status vector is used to make the coding and scheduling decisions, which captures the op-

portunistic coding component of COPE. In COPE, the reception reports are broadcast pe-

riodically, which is captured by the control information[Z]t−1
1 . In sum, our capacity region

is a superset of any achievable rates of any COPE-principle-based schemes [5] when focus-

ing on the 5-node 2-hop relay network in Fig. 1.1(b) with the node exclusive interference

model.
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(a) (b)

Fig. 4.1. The illustration of the two–way relay channel for which s1 sendsX
to s2 and ands2 sendsY to s1. In (b), the common relay can send a linear
combination[X + Y ] that benefits both destinations simultaneously.
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Remark:The setting in Section 2.2 also includes the wireless erasure 2-way relay chan-

nel model (Fig. 4.1(a) and 4.1(b)) as a special case. Specifically, if we set the overhearing

probabilities:pi(dj) = 1 for all i 6= j, then the capacity region of the setting in Section 2.2

is also the capacity region of the wireless erasure 2-way relay channel in Fig. 4.1.

4.2 Main Results

In this section, we provide our results based on two cases: The case of considering only

the COPE principle and the case of combining COPE with the opportunistic routing tech-

nique. The main difference is that for the former setting, weassume that no transmission

can be heard by its 2-hop neighbors, i.e.,pi(di) = 0 for all i = 1, 2. For the latter setting,

we allowpi(di) to be non-zero.

For the case of using exclusively the COPE principle, the full capacity region has been

characterized in Section 4.2.1 while for the case of COPE plus opportunistic routing, a pair

of outer and inner bounds are provided in Sections 4.2.2 and 4.2.3, respectively.

4.2.1 COPE Principle Relay Network Capacity

Proposition 4.2.1 Consider any 2-flow wireless butterfly network with packet erasure chan-

nels withpi(di) = 0 for all i = 1, 2. The rate pair(R1, R2) is in the capacity region if and

only if there exist three non-negative time sharing parametersts1, ts2 andtr such that jointly

(R1, R2) and(ts1 , ts2, tr) satisfy

ts1 + ts2 + tr ≤ 1 (4.1)

∀i ∈ {1, 2}, Ri ≤ tsipi(r) (4.2)

R1

pr(d1)
+

(R2 − ts2p2(d1))
+

pr(d1, d2)
≤ tr (4.3)

(R1 − ts1p1(d2))
+

pr(d1, d2)
+

R2

pr(d2)
≤ tr (4.4)

where(·)+ ∆
= max(0, ·) is the projection to non-negative reals.
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The proof of the achievability part of Proposition 4.2.1 is relegated to Section 4.3.2 and

the converse proof is relegated to Appendix A.

The intuition behind (4.1) to (4.4) is as follows. (4.1) is a time sharing bound, which

follows from the total time budget beingn and the node-exclusive interference model.

Inequality (4.2) is a simple cut-set bound. That is, the messageWi has to be sent from

si to the common relayr first. Therefore, the rate is upper bounded by the link capacity

from si to r.

Inequality (4.3) and (4.4) combine the capacity results on message-side-information

[18] and the capacity results on channel output feedback forbroadcast channels [3, 4]. A

very heuristic, not rigorous explanation of (4.3) is as follows. R1

pr(d1)
represents how many

time slots it takes to send all the flow-1 packets tod1 as if there is no flow-2.ts2p2(d1) char-

acterizes how much flow-2 information can be “overheard” byd1, and(R2 − ts2p2(d1))
+

thus represents how much flow-2 information that has not beenheard byd1 but still needs to

be sent tod2. Since those flow-2 packets cannot be “coded” together with any flow-1 pack-

ets, they need to be sent separately by themselves in addition to the R1

pr(d1)
time slots used

to send flow-1 packets. In general, it takes
(R2−ts2p2(d1))

+

pr(d2)
for those packets to arrive atd2.

However, [3] shows that the use of feedback can further reduce the time to
(R2−ts2p2(d1))

+

pr(d1,d2)
.

As a result, (4.3) governs the transmission since the total transmission time of relayr isntr

time slots. (4.4) is symmetric to (4.3).

4.2.2 Capacity Outer Bound for COPE plus OpR

The capacity results in Proposition 4.2.1 can be generalized as an outer bound for the

case when the destinationdi may overhear directly the transmission ofsi, i.e.,pi(di) > 0.
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Proposition 4.2.2 Consider any 2-flow wireless butterfly network with packet erasure chan-

nels in Fig. 2.1(b) with arbitrary channel characteristics. If a rate vector(R1, R2) is achiev-

able, there exist three non-negative scalarsts1, ts2 , andtr satisfying

ts1 + ts2 + tr ≤ 1 (4.5)

∀i ∈ {1, 2}, Ri ≤ tsipi(di, r) (4.6)

(R1 − ts1p1(d1))
+

pr(d1)
+

(R2 − ts2p2(d1, d2))
+

pr(d1, d2)
≤ tr (4.7)

(R1 − ts1p1(d1, d2))
+

pr(d1, d2)
+

(R2 − ts2p2(d2))
+

pr(d2)
≤ tr. (4.8)

This proposition can be proven by canonical techniques in the information theory outer

bound problems as in [32]. And hence we put the detailed proofin Appendix A for reader’s

reference.

Remark: One can easily see that when the channel probabilities satisfy pi(di) = 0

for all i = 1, 2, the outer bound in Proposition 4.2.2 collapses to the capacity region in

Proposition 4.2.1. Proposition 4.2.2 is thus a strict generalization of the converse part of

Proposition 4.2.1.

4.2.3 Capacity Inner Bound for COPE plus OpR

An inner bound for the general case ofpi(di) ≥ 0 is described as follows.

Proposition 4.2.3 A rate vector(R1, R2) is achievable by a linear network code if there

exist 3 non-negative variablests1 , ts2, tr, 10 non-negative variables,ωk
si

, wherei ∈ {1, 2}
andk ∈ {0, 1, 2, 3, 4}, 4 non-negative variablesωk

r,N, ωk
r,C for k = 1, 2, such that jointly the

17 variables1 and(R1, R2) satisfy the following four groups of inequalities:

1In the achieving algorithm in Section 4.3, thet variables correspond to the time slots that each of the sources
and the relay is used; and theω variables correspond to the time slots each policy is used.
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Group 1 has 5 inequalities, namedthe time budget constraints.

∀i = 1, 2,

4
∑

k=0

ωk
si
≤ tsi (4.9)

∀i = 1, 2, ω1
r,N + ω2

r,N + ωi
r,C ≤ tr (4.10)

ts1 + ts2 + tr < 1 (4.11)

Group 2 has12 inequalities, namedthe packet conservation laws at the source nodes.

Consider anyi, j ∈ {1, 2} satisfyingi 6= j. For each(i, j) pair (out of the two choices

(1, 2) and(2, 1)), we have the following 6 inequalities.

ω0
si
pi(di, dj, r) ≤ Ri (4.12)

ω1
si
pi(di, r) ≤ ω0

si
pi(djdir) (4.13)

ω1
si
pi(di, dj) ≤ ω0

si
pi(rdidj) (4.14)

ω2
si
pi(di, r) ≤ ω0

si
pi(djdir)− ω1

si
pi(di, r) (4.15)

ω3
si
pi(di, dj) ≤ ω0

si
pi(rdidj)− ω1

si
pi(dj, dir) (4.16)

ω4
si
pi(di) ≤ ω0

si
pi(djrdi)

+ ω1
si
(pi(dj) + pi(r)− pi(didjr))

+ ω2
si
pi(rdi) + ω3

si
pi(djdi) (4.17)

Group 3 has 4 inequalities, namedthe packet conservation laws at the relay node. For

each(i, j) pair with i 6= j, we have the following 2 inequalities.

ωi
r,Npr(di, dj) ≤ ω0

si
pi(rdidj)− ω1

si
pi(dj, dir)

− ω3
si
pi(di, dj) (4.18)

ωi
r,Cpr(di) ≤ ω0

si
pi(djrdi)

+ ω1
si
(pi(dj) + pi(r)− pi(didjr))

+ ω2
si
pi(rdi) + ω3

si
pi(djdi)

− ω4
si
pi(di) + ωi

r,Npr(djdi) (4.19)
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Group 4 has 2 inequalities, namedthe decodability conditions. Consideri = 1, 2. For

eachi, we have the following inequality.

(

4
∑

k=0

ωk
si

)

pi(di) +
(

ωi
r,N + ωi

r,C

)

pr(di) ≥ Ri (4.20)

An heuristic but not rigorous explanation is as follows. Thetime budget constraints

(4.9)–(4.11) describe the fact that the each transmitting node can only select policies within

its own time budget and the overall time budget is one in ratio. The conservation laws

(4.12)–(4.19) describe the fact that for one policy being eligible to be selected, it must be

a non-empty set, which is equivalent to quantify the space dimensions of the policies. The

decodability conditions describe the fact that to be able toreconstruct the required packets

at two destinations, a certain amount of packets must be received by two destinations.

Proposition 4.2.3 will be proved by explicit construction of an achievability scheme

based on the SBLNC scheme described in the next section. The detailed proof of Proposi-

tion 4.2.3 is relegated to Section 4.3.1.

4.3 Capacity Approaching Coding Scheme

In this section, we will first prove the capacity inner boundProposition 4.2.3for the

setting of the COPE principle when allowing opportunistic routing. We will then prove

that the inner bound coincides with the capacity characterization in Proposition 4.2.1 for

the COPE principle without the opportunistic routing component.

4.3.1 Achieving The Inner Bound of Proposition 4.2.3

We prove Proposition 4.2.3 by properly scheduling the 13 policies described in Sec-

tion 3.2.

Consider anyts1, ts2 , tr, ω
k
si

, i ∈ {1, 2} andk ∈ {0, 1, 2, 3, 4}, ωk
r,N, andωk

r,C, k = 1, 2,

satisfying the inequalities (4.9) to (4.20) in Proposition4.2.3. For anyε > 0, we can always
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construct another set oft′ andω′ variables such that the newt′ andω′ variables satisfy (4.9)

to (4.19) with strict inequality, and satisfy the followinginequality
(

4
∑

k=0

ωk
si

)

pi(di) +
(

ωi
r,N + ωi

r,C

)

pr(di) > Ri − ε (4.21)

instead of (4.20). Based on the above observation, we will assume that the givents1 , ts2 , tr,

ωk
si

, ωk
r,N, andωk

r,C satisfy (4.9) to (4.19) and (4.21) with strict inequality. In the following,

we will construct an SBLNC solution such that the scheme “properly terminates” within

the allocatedn time slots with close-to-one probability and after the SBLNC scheme stops,

eachdi has received at leastn(Ri − ε) number of its desired information packets.

We construct the SBLNC scheme as follows. We first schedule the s1-policies sequen-

tially from Γs1,0 to Γs1,4. Each policyΓs1,k lasts forn · ωk
s1

time slots. After finishingΓs1,k

we move on to PolicyΓs1,k+1 until finishing all 5s1-policies. After finishing thes1-policies,

we move on to thes2-policies. Again, we choose thes2-policies sequentially fromΓs2,0 to

Γs2,4 and each policy lasts forn · ωk
s2

time slots. After thes2-policies, we schedule ther-

policies sequentially fromΓr,1 toΓr,3. PoliciesΓr,1 andΓr,2 last forn ·ω1
r,N andn ·ω2

r,N time

slots, respectively. PolicyΓr,3 lasts forn ·max{ω1
r,C, ω

2
r,C} time slots. Feedback is critical

for the SBLNC scheme as it is used to decide the evolution of the knowledge spacesS1,

S2,...,Tr, which in turn decides the sets in (3.1)–(3.14).

For the above construction, we first discuss its dependency on the finite field sizeq.

Among the entire designed policies (3.1)–(3.14), observe that maxL(Γ) is two, which

means there are at most two exclusion spaces for one policy. Thus for each of the de-

signed policies being non-empty, the minimum requirement of q is no less than 2. To

prove this statement, assume we have 3 linear spacesA, B, andC with the designed policy

A\(B ∪ C). For this policy being non-empty, it requiresqRank(A) = |A| > |(B ∪ C) ∩ A|.
Furthermore, one can show thatRank(A) > max{Rank(A ∩ B),Rank(A ∩ C)} implies

|A| > |A ∩ B| + |A ∩ C| − 1(= qRank(A∩B) + qRank(A∩C) − 1) ≥ |(B ∪ C) ∩ A| with

q ≥ 2. Thus as shown in [3], the feedback capacity of 2-user broadcast erasure channel can

be achieved withq = 2. The scheme proposed here also works forq = 2.
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To prove the correctness of the above construction, we need to show that the following

two statements hold with close-to-one probability: (i) during each time slot, it is always

possible to construct the desired coding vectorsv(1) (or v(2)). That is, we never schedule

an infeasible policy throughout the operation; (ii) destinationdi can decoden(Ri − ε) of

the desired information packets when the scheme terminates2. In addition to the above two

statements, we will also prove that with close-to-one probability; and (iii) during the first

n · ω1
r,C (resp.n · ω2

r,C) time slots of schedulingΓr,3, the computed flow-1 vectorv(1) (resp.

flow-2 vectorv(2)) is not zero.

We first prove (ii) while assuming both (i) and (iii) are true.We notice that all the

exclusion spaces of policiesΓs1,0 to Γs1,4, andΓr,1 containS1 as a subset. As a result, all

those packets carry some new flow-1 information that has not yet been received byd1. If

d1 receives any of those packets, the rank ofS1 will increase by one. Similarly, during the

first nω1
r,C time slots of PolicyΓr,3, the computedv(1) vector does not belong toS1, see

(3.13). As a result, ifd1 receives any of those packets, the rank ofS1 will again increase by

one. From the above reasoning, the expected value ofRank(S1) in the end of the SBLNC

scheme must satisfy

E{Rank(S1)} =p1(d1)

(

4
∑

k=0

nωk
s1

)

+ pr(d1)(nω
1
r,N + nω1

r,C) (4.22)

>n(R1 − ε) (4.23)

where the right-hand side of (4.22) quantifies the expected number of packets received byd1

during PoliciesΓs1,0 toΓs1,4, Γr,1, and the firstnω1
r,C time slots ofΓr,3. (4.23) follows from

(4.21). By the law of large number,Rank(S1) > n(R1 − ε) with close-to-one probability

whenn is sufficiently large. The above inequality ensures thatd1 can decoden(R1 − ε) of

the flow-1 information packets at the end of the SBLNC scheme.By symmetry,d2 can also

decoden(R2 − ε) of the flow-2 packetsW2 in the end of timet = n. What remains to be

shown is to prove that (i) and (iii) hold with close-to-one probability.

2As the existence guaranteed in Proposition 3, givent andω variables satisfying inequality (4.9)–(4.20),
inequalities (4.9)–(4.11) guarantee that we can finish transmission within the allocatedn time slots.



41

Next we prove (i) and (iii) by the first order analysis that assumes sufficiently largen.

We first consider PolicyΓs1,0. For any timet, Γs1,0 is a feasible policy if (3.1) is non-empty,

which is equivalent to having

Rank(Ω1)− Rank(Ω1 ∩ (S1 ⊕ S2 ⊕ Sr))

= Rank(Ω1)− Rank(S1 ⊕ S2 ⊕ Sr) > 0. (4.24)

We first note thatRank(Ω1) = nR1 is a constant and does not change over time. Also

note thatRank(S1⊕S2 ⊕Sr) increases monotonically over time since a node accumulates

more “knowledge” over time. As a result, if we can prove that (4.24) holds in the end of

the duration of (executing) PolicyΓs1,0, then throughout the entire duration ofΓs1,0, we can

always find somev(1) belong to (3.1).

To that end, we notice that when we chooseΓs1,0 as our coding policy, the coding vector

v(1) is chosen from (3.1). Sincev(1) does not belong to the exclusion spaceS1 ⊕ S2 ⊕ Sr,

Rank(S1 ⊕ S2 ⊕ Sr) increases by one if and only if at least one ofd1, d2, andr receives

the transmitted packetXs1 = v(1)WT
1 . Also note that in the beginning of PolicyΓs1,0,

Rank(S1 ⊕ S2 ⊕ Sr) = 0. As a result, in the end of the duration ofΓs1,0, we have

E{Rank(S1 ⊕ S2 ⊕ Sr)}

= 0 + n · ω0
s1
· p1(d1, d2, r) (4.25)

< nR1 = Rank(Ω1), (4.26)

where (4.25) follows from quantifying the expected number of time slots (out of totally

nω0
s1

time slots) in which at least one ofd1, d2, andr receives it. (4.26) follows from

(4.12).

By the law of large numbers, (4.26) implies that (4.24) holdsin the end of the duration

of Γs1,0 with close-to-one probability. As a result, with close-to-one probability PolicyΓs1,0

remains feasible during the assigned duration ofn · ω0
s1

time slots.
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We now consider PolicyΓs1,1. For any timet, Γs1,1 is feasible if (3.2) is non-empty,

which is equivalent to having

qRank(S2⊕Sr) = |S2 ⊕ Sr| > |(S2 ⊕ Sr) ∩ ((S1 ⊕ Sr) ∪ (S1 ⊕ S2))|

= |((S2 ⊕ Sr) ∩ (S1 ⊕ Sr)) ∪ ((S2 ⊕ Sr) ∩ (S1 ⊕ S2))|

⇔ Rank(S2 ⊕ Sr)

> max{Rank((S2 ⊕ Sr) ∩ (S1 ⊕ Sr)),

Rank((S2 ⊕ Sr) ∩ (S1 ⊕ S2))} (4.27)

where “⇔” holds assuming the underlying finite fieldGF(q) satisfyingq ≥ 2. When

we choose PolicyΓs1,1 as our coding policy, the coding vectorv(1) is chosen from (3.2).

Therefore,v(1) must belong to the inclusion spaceS2 ⊕ Sr, which implies that no matter

how many nodes in{d1, d2, r} receive the packet,Rank(S2 ⊕ Sr) remains the same. Also

note that similar to the case ofΓs1,0, Rank((S2 ⊕ Sr) ∩ (S1 ⊕ Sr)) andRank((S2 ⊕ Sr) ∩
(S1 ⊕ S2)) increase monotonically over time. As a result, if we can prove that (4.27) holds

in the end of the duration of PolicyΓs1,1, then throughout the entire duration ofΓs1,1, we

can always find somev(1) belong to (3.2). The remaining task is thus to quantify the three

different ranksRank(S2⊕Sr),Rank((S2⊕Sr)∩(S1⊕Sr)), andRank((S2⊕Sr)∩(S1⊕S2))

at the end of (the duration of)Γs1,1. All the following discussions hold with close-to-one

probability when focusing on the first order analysis ofn.

First considerRank(S2 ⊕ Sr). We know thatRank(S2 ⊕ Sr) remains the same during

PolicyΓs1,1. Therefore, the value ofRank(S2 ⊕ Sr) is decided by how much it increases

duringΓs1,0. Since anyv(1) in PolicyΓs1,0 does not belong toS2 ⊕ Sr (see (3.1)), every

time one ofd2 andr receives a packet ofΓs1,0, Rank(S2 ⊕ Sr) will increase by one. As a

result, in the end ofΓs1,1 we have

E{Rank(S2 ⊕ Sr)} = nω0
s1
p1(d2, r) + nω1

s1
· 0. (4.28)
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We now consider the first termRank((S2⊕Sr)∩ (S1⊕Sr)) in the max operation in (4.27).

By Lemma 3.1.2, we can rewriteRank((S1 ⊕ Sr) ∩ (S2 ⊕ Sr)) by

Rank((S1 ⊕ Sr) ∩ (S2 ⊕ Sr))

= Rank(S2 ⊕ Sr) + Rank(S1 ⊕ Sr)− Rank(S1 ⊕ S2 ⊕ Sr). (4.29)

The value ofRank(S2 ⊕ Sr) is quantified in (4.28). Since anyv(1) in PolicyΓs1,0 does not

belong toS1 ⊕ Sr (see (3.1)) and anyv(1) in PolicyΓs1,1 does not belong toS1 ⊕ Sr either

(see (3.2)), every time one ofd1 andr receives a packet ofΓs1,0 or Γs1,1, Rank(S1 ⊕ Sr)

will increase by one. In the end ofΓs1,1 we thus have

E{Rank(S1 ⊕ Sr)} = nω0
s1
· p1(d1, r) + nω1

s1
· p1(d1, r). (4.30)

Similarly, since anyv(1) in Policy Γs1,0 does not belong toS1 ⊕ S2 ⊕ Sr (see (3.1)) and

anyv(1) in PolicyΓs1,1 belongs toS1 ⊕ S2 ⊕ Sr (see (3.2)), every time one ofd1, d2, andr

receives a packet ofΓs1,0, Rank(S1 ⊕ S2 ⊕ Sr) will increase by one. In the end ofΓs1,1 we

thus have

E{Rank(S1 ⊕ S2 ⊕ Sr)} = nω0
s1
p1(d1, d2, r) + nω1

s1
· 0. (4.31)

By (4.28), (4.29), (4.30), and (4.31), we can verify that (4.13) implies thatRank(S2 ⊕
Sr) > Rank((S2 ⊕ Sr) ∩ (S1 ⊕ Sr)) in the end of PolicyΓs1,1. By swapping the roles

of d2 and r, symmetric arguments can be used to prove that (4.14) implies Rank(S2 ⊕
Sr) > Rank((S2 ⊕ Sr) ∩ (S1 ⊕ S2)) in the end of PolicyΓs1,1. Therefore,Γs1,1 is feasible

throughout its duration ofnω1
s1

time slots.

Similar rank-comparison arguments can be used to complete the proof of (i) and (iii).

The remaining derivation repeats similar steps described above, and hence is relegated to

Appendix B. The proof of Proposition 4.2.3 is thus complete.

4.3.2 Capacity of COPE Principle 2-Flow Wireless Butterfly Network Without Op-

portunistic Routing

In this subsection we will prove that the capacity outer bound in Proposition 4.2.2 and

the capacity inner bound in Proposition 4.2.3 coincide whendestinationdi cannot directly
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hear from sourcesi for i = 1, 2. Proposition 4.2.1 thus describes the exact COPE-principle

2-flow wireless butterfly network capacity region without opportunistic routing.

To complete the proof, we note that whenpi(di) = 0, for i = 1, 2, (4.12)–(4.20) of the

inner bound in Proposition 4.2.3 is reduced to the followingforms:3

ω0
si
pi(dj, r) ≤ Ri, (4.32)

ω1
si
pi(r) ≤ ω0

si
pi(djr), (4.33)

ω1
si
pi(dj) ≤ ω0

si
pi(rdj), (4.34)

ω2
si
pi(r) ≤ ω0

si
pi(djr)− ω1

si
pi(r), (4.35)

ω3
si
pi(dj) ≤ ω0

si
pi(rdj)− ω1

si
pi(dj), (4.36)

ωi
r,Npr(di, dj) ≤ ω0

si
pi(rdj)− ω1

si
pi(dj)

− ω3
si
pi(dj), (4.37)

ωi
r,Cpr(di) ≤ ω0

si
pi(djr) + ω1

si
(pi(dj) + pi(r))

+ ω2
si
pi(r) + ω3

si
pi(dj) + ωi

r,Npr(djdi). (4.38)

and (4.20) becomes

pr(di)(ω
i
r,N + ωi

r,C) ≥ Ri. (4.39)

The following lemma proves the tightness of the bounds when there is no 2-hop overhear-

ing, i.e.,pi(di) = 0 for i = 1, 2.

Lemma 4.3.1 For any 5-tuple(R1, R2, t1, t2, tr) satisfying the capacity outer bound (4.1)–

(4.4), we can always find14 companying variablesωj
si
, ωi

r,N, ω
i
r,C for i = 1, 2 and j =

0, 1, 2, 3, 4, such that jointly the14+5 = 19 variables satisfy (4.9), (4.10), (4.32) to (4.39).

3Inequality (4.17) becomes trivial since the left-hand sideof (4.17) becomes zero and the right-hand side of
(4.17) is always non-negative.
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Proof Given any(R1, R2, ts1 , ts2, tr) satisfying (4.1)–(4.4), we construct
{

ωj
si
, ωi

r,N, ω
i
r,C : i ∈ {1, 2}, j ∈ {0, 1, 2, 3, 4}

}

in the following way. For each pair(i, j) =

(1, 2) or (2, 1), we define

ω0
si
=

Ri

pi(dj, r)
,

ω1
si
=Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

− 1

pi(dj, r)

)

,

ω2
si
=Ri

(

1

pi(r)
− 1

pi(dj)

)+

,

ω3
si
=min

{

Ri

(

1

pi(dj)
− 1

pi(r)

)+

, tsi −
Ri

pi(r)

}

,

ω4
si
=0,

ωi
r,N =

(Ri − tsipi(dj))
+

pr(di, dj)
,

ωi
r,C =

Ri

pr(di)
− (Ri − tsipi(dj))

+

pr(di, dj)
.

One can verify that the above assignment
{

R1, R2, ts1, ts2 , tr, ω
j
si
, ωi

r,N, ω
i
r,C : i ∈ {1, 2}, j ∈ {0, 1, 2, 3, 4}

}

satisfies (4.9), (4.10), (4.32)

to (4.39). The detailed verification is relegated to Appendix C. The proof of Lemma 4.3.1

is thus complete.

4.4 Numerical Results

In this section, we apply the capacity results to some numerically generated scenar-

ios so that we can explicitly quantify the throughput/capacity improvement of the COPE

principle. The detailed simulation setting is described asfollows.

Consider one specific setting of the 2-flow wireless butterflynetwork as depicted in

Fig. 4.2. In Fig. 4.2, we specify the success transmission probability between each node

pair as the number next to the corresponding arrow and we assume the success events

between different node pairs are independent. For example,the probability that a packet

sent bys1 is heard byd1 isp1(d1) = .2 and the probability that a packet sent byr is received
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Fig. 4.2. An instance of the 2-flow wireless butterfly networkwith the success
probabilities being indicated next to the corresponding arrows. We also assume
that the success events between different node pairs are independent.
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SBLNC = Space−Based Linear Network Coding
RLNC = Random Linear Network Coding

Fig. 4.3. The capacity regions of the scenario in Fig. 4.2. The solid line indi-
cates the throughput region of SBLNC. The dash line indicates the throughput
region in [4]. The dot line indicates the throughput region of intra-session
network coding (or random linear network coding).
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(a) (b)

Fig. 4.4. (a) The relative location of(si, di). (b) Topology of two(si, di) pairs.

by d2 is pr(d2) = .6. We then compute6 different capacity rate regions and plot them in

Figure 4.3.

The solid line “SBLNC with OpR” represents the ultimate capacity region4 of this net-

work, for which relayr is allowed to perform inter-flow network coding across both flows

and 2-hop overhearing directly froms1 to d1 (and froms2 to d2) is allowed. The curve

“with COPE, w/o OpR” describes the capacity region when the relayr can perform inter-

flow coding but there is no 2-hop overhearing. Both the curves“with COPE, with OpR” and

“with COPE, w/o OpR” allow for optimal scheduling amongs1, s2, andr. The dash line

“ [18] with (or w/o) OpR” represents the throughput region which can be achieved by the

results in [18] with either opportunistic routing or not. The dot line “RLNC with (or w/o)

OpR” represent the throughput region which can be achieved by simply the intra-session

network coding (or random linear network coding [2]) with either opportunistic routing or

not.

As can be seen, when there is only one flow in the network (sayR2 = 0), then OpR

is optimal as was first established in [33]. However, when there are two coexisting flows

(when bothR1 andR2 > 0), the COPE principle alone sometimes outperforms OpR due to

the strong overhearing betweens2 → d1 ands1 → d2, p2(d1) = 0.4 andp1(d2) = 0.5, in

this example. On the other hand, SBLNC provide the ultimate throughput when compared

to the existing schemes.

4Our main results provide a pair of outer and inner bounds for this capacity region. Since the gap between
the inner and outer bounds is not visible in the figure (with relative gap less than 0.08%), we use the inner
bound (the achievable rate) as the proxy of the capacity region.
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Fig. 4.5. The cumulative distribution of the relative gap between the outer and
the inner bounds when there is no fairness constraint. The outer and the inner
bounds are described in Propositions 4.2.2 and 4.2.3, respectively.
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Table 4.2
Average sum-rates over 10000 random node replacements.

Fairness Constraints OpR SBLNC [18] RLNC

No
allowed .6599/.6594 .6472 .6180

negligible .4820 .4779 .4116

Proportional
allowed .6294/.6286 .6101 .5484

negligible .4775 .4726 .3854

Min-cut
allowed .6031/.6026 .5892 .5406

negligible .4671 .4626 .3856

We are also interested in quantifying the throughput benefits of COPE and OpR in a

randomly placed network. To generate a typical XOR-in-the-air scenario, we first place the

relay node in the center of a unit circle. Then we randomly place four nodes (s1, s2, d1, d2)

inside the unit circle. To simulate the need of the relay for each session pair, we force the

placement of each pair to be in the opposite 90 degree area. That is,di must be located

in the opposite 90 degree area ofsi’s location fori = 1, 2. See Fig. 4.4(a) for illustration.

Fig. 4.4(b) illustrates one realization of our random node placement.

We use the Euclidean distanceD between any two nodes to decide the overhearing

probability when a packet is transmitted. More explicitly,we use the Rayleigh model

Prob(success) =
∫ ∞

T ∗

2x

γ
e−

x2

γ dx whereγ ,
1

(4π)2Dα
,

whereα is the path loss factor, andT ∗ is the decodable SNR threshold. To reflect the packet

delivery ratio measured in practical environments, we chooseα = 2.5 andT ∗ = 0.006 so

that the overhearing probability for a 1-hop neighbor is around0.7–0.8 while overhearing

probability for a 2-hop neighbor is around0.2–0.3. If no direct overhearing is allowed, we

simply hardwire the probability thatdi overhearssi to be zero. We again assume that the

success events between different node pairs are independent.
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For practical concerns, we often enforce fairness constraint to avoid the situation that

one of the flows occupies all of the allocated resource. Here we propose two kinds of

fairness constraint: the min-cut fairness constraint, andthe proportional fairness constraint.

For the min-cut fairness constraint, we impose an additional constraint

Ri = βmin (pi(di, r), pi(di) + pr(di)) for i = 1, 2 with a commonβ, which enforces the

individual rateRi being proportional to the min-cut value fromsi to di assuming no other

sessions are transmitting andsi and r are scheduled with the same frequency. For the

proportional fairness constraint, we uselog(R1) + log(R2) as the objective function in the

linear programming solver. When there is no fairness constraint, we simply maximize the

sum rateR1 + R2 as the objective function in the linear programming solver.Combining

the fairness constraint and the linear constraints in Proposition 4.2.2 or Proposition 4.2.3,

we derive the optimal rates. We repeat the above experiment for 10000 times and lists the

average sum rateR1 +R2 for each case in Table 4.2.

Table 4.2 lists the sum-rate averaged over10000 simulations. When allowing 2-hop

overhearing (pi(di) > 0), then the inner and outer bounds do not always meet. Therefore,

for the entry with both COPE and OpR, the number on the left is the average of the sum

of the optimal rateR1 + R2 for the outer bound, denoted byRsum.outer, while the number

on the right is the average of the sum of the optimal rateR1 + R2 for the inner bound,

denoted byRsum.inner. When hardwiring the 2-hop overhearing probability to zero, as was

proven Section 4.3.2, the sum-rate outer and inner bounds always coincide and hence only

one number is shown in that entry. We also list the sum-rate inner bound results in [18].

The capacity of pure routing and pure OpR [33] can be explicitly computed and therefore

there is only one number in those entries as well. We first notethat in terms of the aver-

aged throughput, the difference between the outer and the inner bounds is around0.08%.

Among all10000 instances, the largest absolute difference is withRsum.outer= 0.6409 and

Rsum.inner= 0.6375. The proposed bounds thus effectively bracket the capacitywhen com-

bining the XOR-in-the-air and the opportunistic routing principle. Jointly using COPE and

OpR SBLNC scheme provides60% throughput improvement over the classic pure routing

scheme with optimal scheduling.
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Fig. 4.5 focuses on the relative gap per experiment when allowing for both COPE and

OpR. Specifically, we compute the relative gap per each experiment,

(Rsum.outer− Rsum.inner) /Rsum.outerwhen there is no fairness constraint, and then plot the cu-

mulative distribution function (cdf) for the relative gaps. We can see that with more than

80% of the experiments, the relative gap between the outer and inner bounds is smaller than

0.2%.

4.5 Chapter Summary

In this chapter, we discuss the capacity region of the local network formulated in Sec-

tion 2.2. In Section 4.1, we compare the proposed model with existing results and demon-

strate that the proposed model includes all the important features of the broadcast packet

erasure channels, the COPE principle, and the opportunistic routing. In Section 4.2, we

then characterize the full capacity region of the 2-flow wireless butterfly network with-

out opportunistic routing, and propose the outer bound and the inner bound for the case

with opportunistic routing. The SBLNC scheme is used to achieve the inner bound in

Section 4.3. In Section 4.4, we use the numerical results to demonstrate how close the

SBLNC scheme can approach the outer bound (and hence the optimal throughput) and the

throughput provided by the SBLNC scheme strictly outperforms existing results.
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5. LINEAR NETWORK CODING SCHEDULING AND THE

ANALOGY TO STOCHASTIC PROCESSING NETWORK

Starting from this chapter, we will start the discussion of the stability region. We will

first discuss the stability definitions rigorously. Then we discuss why the network coding

cross multiple sessions is a critical issue to the existing store-and=forward based network

stability analysis. A more general network model, called the stochastic processing network

(SPN), is introduced to incorporate the inter-session network coding issue. We further

discuss the scheduling algorithm which can stabilize SPN. Finally, we discuss what are the

obstacle when applying SPN to the multi-flow wireless network problem of interest.

5.1 Stability Definitions

We have formulated the stability region problem in Section 2.3. Here we are going

to formally define the stability. The following definitions and properties hold even when

the queue length can possibly be negative (as we will see the “virtual queue length” in the

deficit maximum weight scheduling algorithm).

Definition 5.1.1 A queue lengthq(t) is stable if

lim sup
t→∞

1

t

t
∑

τ=0

E{|q(t)|} < ∞. (5.1)

And the network is stable if all the queues are stable.

Definition 5.1.2 A queue lengthq(t) is sublinearly stable/grows sublinearly if for anyε >

0 andδ > 0, there existst0 such that

Prob(|q(t)| > εt) < δ, ∀t > t0. (5.2)

And the network is sublinearly stable if all the queues are sublinearly stable.
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5.1.1 Properties

Lemma 5.1.1 Suppose both queue lengthsq(t) andp(t) are stable, thenq(t)+ p(t) is also

stable.

Proof This follows from the subadditivity oflim sup,

lim sup
t→∞

1

t

t
∑

τ=0

E{|q(t) + p(t)|} ≤ lim sup
t→∞

1

t

t
∑

τ=0

E{|q(t)|+ |p(t)|}

≤ lim sup
t→∞

1

t

t
∑

τ=0

E{|q(t)|}+ lim sup
t→∞

1

t

t
∑

τ=0

E{|p(t)|} < ∞.

Lemma 5.1.2 Suppose both queue lengthsq(t) andp(t) grow sublinearly. Thenq(t)+p(t)

also grows subnlinearly.

Proof For anyε > 0 andδ > 0,

Prob(|q(t) + p(t)| > εt) ≤ Prob(|q(t)|+ |p(t)| > εt)

≤Prob(|q(t)| > εt/2, |p(t)| > εt/2)

≤Prob(|q(t)| > εt/2) + Prob(|p(t)| > εt/2).

Since bothq(t) andp(t) grow sublinearly, there existst1, t2 such that

Prob(|q(t) + p(t)| > εt) ≤ Prob(|q(t)| > εt/2) + Prob(|p(t)| > εt/2)

< δ/2 + δ/2, ∀t > t0
4
= max{t1, t2}.

Lemma 5.1.3 Suppose the queue lengthq(t) is stable with initial conditionq(0) = c < ∞.

If there exists a constantα such that|q(t)− q(t− 1)| < α holds with probability1 for all

t, thenq(t) grows sublinearly.
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Proof Let ∆(t + 1) = q(t + 1) − q(t). We moveq(t) to the other side and square both

side givesq(t + 1)2 = q(t)2 + 2q(t)∆(t + 1) + ∆(t + 1)2. By definition,|∆(t)| < α with

probability1 for all t. And taking the expectation

E{q(t+ 1)2} − E{q(t)2} ≤ 2E{|q(t)|}α+ α2.

Sinceq(t) is stable,1
t

∑t−1
τ=0 E{|q(t)|} is bounded, say byU . Iteratively summing up both

sides fromτ = 0 to τ = t− 1,

1

t
E{q(t)2} ≤ 2α

1

t

t−1
∑

τ=0

E{|q(t)|}+ α2 +
c

t
≤ 2αU + α2 + c.

For anyε > 0 andδ > 0, we use the Markov inequality

Prob(|q(t)| > εt) ≤ 1

ε2t2
E{q(t)2} ≤ 2αU + α2 + c

ε2t
.

Let t0 be the smallestt such that2αU+α2+c
ε2t

< δ. Then

Prob(|q(t)| > εt) < δ, ∀t > t0.

5.1.2 Achieve The Optimal Throughput By Sublinearly Stability

The stability definition is the one we usually have in the network stability analysis.

The definition of sublinearly stable is not as often seen as the former one. We will use the

following proposition to prove that the sublinear stability can help us to achieve the optimal

throughput.

Proposition 5.1.1 Suppose the network is sublinearly stable under the arrivalrateR and

there exists a naive solution such that the network can successfully send out all the packets

remaining in the queues (assuming no further new incoming packets). Then the network

can achieve the optimal throughput under the arrival rateR.

Proof We assume the system is time-slotted, and the rateR is in the interior of the sublin-

early stability region. We prove this by a frame-based scheme. Let{∆ti}∞i=1 be a sequence
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of integer numbers denoting the length of thei-th frame. The first frame starts att = 1

and ends att = ∆t1. After the first frame ends, we start the first draining procedure at

t = ∆t1 + 1. During the draining procedure, we buffer all the new incoming arrivals

without injecting them into the network. At the same time, the network sends out all the

packets remaining in the queues. The first draining procedure ends when all the queues in

the network are empty, and we use∆td1 to denote the duration of the first draining pro-

cedure. After the first draining procedure (i.e.,t = ∆t1 + ∆td1 + 1), we start the second

frame and inject all the packets buffered during the first draining procedure,t = ∆t1 + 1

to t = ∆t1 +∆td1 , into the network along with the original new arrivals with rateR. The

second frame lasts for∆t2. And then we repeat the draining procedure and so on so forth.

To summarize the above frame-based scheme, thei-th frame starts att =
∑i−1

j=1(∆tj +

∆tdj ) + 1 with all queues being empty. The arrivals during thei-th frame come from two

source. The first one is the original arrivals with rateR. The second one is the arrivals

buffered at the previous draining procedure. And hence the overall rate during thei-th

frame, denoted byRi, is larger thanR. The i-th frame lasts for∆ti and ends att =
∑i−1

j=1(∆tj +∆tdj ) + ∆ti. And then we send out all the packets remaining in the network,

which takes∆tdi time slots, by buffering all the new incoming packets. Then the i + 1-th

frame starts.

Given anyδ > 0 andε > 0. SupposeRi is in the sublinear stability region for alli. Then

all the queues are sublinearly stable during thei-th frame. Since the queue length at the end

of thei-th frame is proportional to∆tdi , there existsti such thatProb(∆tdi < ε∆ti) > 1−δ

for all ∆ti > ti. The overall throughput afteri-th frame and its draining process, denoted

by Γi, is

Γi =
R
(

∑i−1
j=1(∆tj +∆tdj ) + ∆ti

)

∑i
j=1(∆tj +∆tdj )

=R

(

1− ∆tdi
∑i

j=1(∆tj +∆tdj )

)

.



56

Then

Prob(Γi > R(1− ε)) > Prob

(

Γi > R

(

1− ε∆ti
∑i

j=1(∆tj +∆tdj )

))

> 1− δ.

Thus the overall throughput can be made arbitrarily close toR with close-to-1 probability.

Hence it remains to show that there exists a sequence{∆ti}∞i=1 with ∆ti > ti such that

Ri is in the sublinear stability region for alli. We prove this iteratively.R1 = R is in the

interior of the sublinear stability region by the assumption at the beginning of the proof. We

assumeRi is in the sublinear stability region. Notice thatRi+1 comes from (1) the arrivals

buffered at the previous draining procedure and (2) the original arrival rateR, and hence

can be expressed as

Ri+1 =
R∆ti+1 +R∆tdi

∆ti+1
= R

(

1 +
∆tdi
∆ti+1

)

.

SinceR is in the interior of the sublinear stability region, there exists ε′ > 0 such that

R+ ε′ is in the sublinear stability region. Furthermore, sinceRi is in the sublinear stability

region, all the queues are sublinearly stable during thei-th frame. By the fact that∆tdi

is proportional to the maximum queue length at the end of thei-th frame, for anyδ′ > 0

there existst′i such thatProb(∆tdi > ε′t
R
) < δ′ for all t > t′i. We then choose∆ti+1 =

max{ti+1, t
′
i}+ 1 and henceProb(∆tdi >

ε′∆ti+1

R
) < δ′. That is,

Prob

(

R
∆tdi
∆ti+1

< ε′
)

= Prob

(

Ri+1 = R

(

1 +
∆tdi
∆ti+1

)

< R + ε′
)

> 1− δ′.

Sinceδ′ can be made arbitrarily small with corresponding∆ti+1, the proof is complete.

5.2 The Obstacles Between Store-and-Forward Network Control Algorithm and Net-

work Coding

In the existing store-and-forward network stability analysis, a rate is feasible (namely,

this rate is in the stability region) if there exists a network control algorithm which can

stabilize all the queues inside the network considering allpossible routing, scheduling, and

resource allocation. At the same time, as we have seen in previous chapters, applying
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network coding within the network can strictly increase theend-to-end throughput. Thus,

intuitively speaking, the network coding should be able to enlarge the store-and-forward

based stability region.

A standard network model usually consists of queues and links, and the packets can

be stored in the queues and forwarded through links. The back-pressure scheduling al-

gorithm [28] evaluates the differential queue length for each link and choose the feasible1

scheduling decision which maximizes the summation of the differential queue lengths. The

back-pressure algorithm has been proven to achieve the optimal throughput in the store-

and-forward network model. However, the nature of combining packets in network coding

is not a well-defined component in the standard store-and-forward network model. If the

network coding is restricted within the same session (i.e.,intra-session network coding),

the network coding packets can be described as the information flow in the flow model [1].

The flow feature of intra-session thus can be naturally extended to the stability analysis as

in [34] without considering the combining packet issue. However, when network coding

can be applied across multiple sessions (i.e., inter-session network coding), the feature of

information flow in intra-session network coding is no longer legitimate.

5.2.1 An Illustrative Example For The Combining Packet Issue

To illustrate the issue of combining packets more clearly, we again use 2-flow1-to-

2 broadcast packet erasure channel with feedback as an example, and choose the back-

pressure algorithm as the scheduling algorithm. To expose the possible inter-session coding

benefit, we use a 4-queue scheme as illustrated in Figure 5.1.For eachi, j = 1, 2 andj 6= i,

the queueqi with queue lengthQi(t) stores the uncoded packets from flowi which have

not been received by any ofd1 andd2. And the queueqi,SI with queue lengthQi,SI(t)

stores the uncoded packets from flowi which have been received bydj but not bydi. The

“SI” in the subscript denotes the packet in the queue is the side information packet for the

other destination. Hence supposeW1 is in q1,SI andW2 is in q2,SI, then both destinations can

1The “feasible” here means there is no confliction between thescheduled links.
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Fig. 5.1. A 4-queue scheme to illustrate the inter-session coding benefit.
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decode the inter-session coded packetW1+W2 and acquire the desired information packet.

At each time slott, we can choose to schedule one of the four links without inter-session

network coding. With inter-session network coding, we can schedule both links,q1,SI to s

andq2,SI to s, simultaneously and send out the coded packet through the PEC.

In the scenario where the inter-session network coding is prohibited, the back-pressure

algorithm simply comparesQ1(t) + Q1,SI(t) versusQ2(t) + Q2,SI(t) to decide which flow

packet to be sent uncodedly. On the other hand, in the scenario where the inter-session

network coding is legit, there are several possible ways to define the “back-pressure” value

for the inter-session coding choice, which schedulesq1,SI and q2,SI simultaneously. Our

first thought will beQ1,SI(t) + Q2,SI(t) and then the back-pressure algorithm chooses the

maximum back-pressure value amongQ1(t), Q2(t), andQ1,SI(t) + Q2,SI(t) and schedule

the corresponding queue(s). However, this creates a problem as one ofQi,SI(t) may be

zero. SupposeQ2,SI(t) is empty but the back-pressure still choosesQ1,SI(t) + Q2,SI(t) and

schedules the inter-session coded packet. Then the “expected” inter-session coded packet

would simply be a uncoded packet from flow1, and hence the effective throughput turns

to be less than the expected throughput. Suppose we change the definition of the back-

pressure value to bemin{Q1,SI, Q2,SI}, then we circumvent this difficulty but the problem

is that we now give too little priority to the inter-session network coding operation (inter-

session network coding operation can serve both destinations simultaneously and should

have higher priority).

As we have illustrated in the above description, the main difficulty is that we can sched-

ule a inter-session coding operation only when both queues,q1,SI andq2,SI, are non-empty.

And this phenomenon is not carefully considered in the back-pressure algorithm for the

store-and-forward network scheme. Consequently, a new network model setting which

can incorporate the nature of combining packets is required. We also need a new stability

analysis for this new network model setting.
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5.3 The Stochastic Processing Network

In Section 5.2.1, we illustrated the difficulty of inter-session network coding being ap-

plied to the store-and-forward network scheme. To circumvent this difficulty, we introduce

another network scheme, called the stochastic processing network (SPN).

SPN is a generalized version of the store-and-forward network. In the store-and-forward

network, the packet that leaves the queue directly enters the next queue and one queue can

be scheduled as long as there is one packet inside the queue. On the other hand, for SPN the

most basic unit of scheduling is the so-called “service activity”. Each service activity con-

tains multiple queues. A service activity (SA) can be “chosen/activated/scheduled” only if

all queues associated the SA are non-empty. Namely, an SA will take one packet from each

associated queue, jointly “process” them, generate a set ofnew packets, and redistribute

them to some output queues. The detailed definition of an SPN will be defined in the next

subsection.

This generalization extensively widens the possible applications compared with the

store-and-forward network. For example, in the video streaming problem [35], the con-

tent in the network consists of different types of data including the voice and the image.

Different types of the data require different types of processing, e.g., compressing and de-

coding, in the network. And at the user-end, these differenttypes of data require to be

processed together to be a valid video stream. SPN has also been extended to the problems

of the MapReduce scheduling [36] and grid computing [37].

Recall in the example in Section 5.2.1, we can schedule a inter-session coding operation

only when both queue,q1,SI andq2,SI, are non-empty. While this phenomenon is not well-

defined in the store-and-forward network, it is resolved by the constraint that a SA in SPN

can be activated only if all the queues associated the SA are non-empty. SPN thus inclines

to a promising possible solution for the network coding scheduling problem.

However, the analysis of SPN is much more challenging than the regular store-and-

forward network. Thus far, the state-of-the-art analysis results only consideracyclicSPN
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Fig. 5.2. An example of SPN.

with deterministic service2 while in the network coding scenario, it is critical to consider

SPNs that are both cyclic with random service. Detailed discussion of these challenges are

provided in Section 5.4.

5.3.1 Definitions And The SPN Model

Assume a time-slotted system. The SPN definition here mainlyfollows [38]. A SPN

consists of three components: the input activities (IA), the service activities (SA), and the

queues. LetK be the number of queues,M be the number of IAs, andN be the number of

SAs in the SPN. At each time slott, a set of IAs and SAs can be scheduled (or activated).

Each IA denotes a session (or flow) of packets and outputs packets to a collection of queues

when activated. When one SA is activated, it takes packets from a set of queues,In, and

sends packets to another set of queues,On.

When IAm is activated, it sendsak,m packets to queuek. LetA ∈ R
K∗M be the “input

matrix” with Ak,m = −ak,m, for all m andk. When SAn is activated, it takesbk,n packets

from queuek ∈ In and sendb′k,n packets to queuek ∈ On. LetB ∈ R
K∗N be the “service

matrix” with Bk,n = bk,n if k ∈ In andBk,n = −b′k,n if k ∈ On. We assume there is no

cycle in SPN.

2The existing SPN analyses [38,39] also consider the networkwith time-varying channel status (or service).
However, the time-varying channel status is assumed to be a prior information for the scheduler at each time
t. Thus the channel status is still “deterministic” for the scheduler in this sense. We name it “deterministic
service” while “random service” denotes a scenario for which the channel status is not a prior information for
the scheduler for any timet.
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Let a(t) ∈ {0, 1}M be the “arrival vector” at timet. If am(t) = 1, then IA m is

activated at timet. We assumea(t) is a random vector and i.i.d. over time with the average

rateR = E{a(t)}. Let x(t) ∈ {0, 1}N be the “service vector” at timet. If xn(t) = 1, then

SA n is activated at timet. Let s ∈ R
N be the vector of average service rate. Figure 5.2

illustrates an example of SPN.

Since there are some constraints between the activations ofSAs, e.g., the transmission

interference and user’s preference, some of SAs can not be scheduled at the same time slot.

We sayx(t) is feasible if it satisfies all the constraints andX is the set of all feasiblex(t).

Let Λ be the convex hull ofX, i.e.3,

Λ = {s : ∃p ≥ 0,
∑

x∈X

px = 1, s =
∑

x∈X

(px·x)},

and letΛo be the interior ofΛ.

Definition 5.3.1 An arrival rate vectorR is “feasible” if there existss ∈ Λ such that

A·R+B·s = 0; andR is “strictly feasible” if there existss ∈ Λo such thatA·R+B·s = 0.

We call the above SPN an “SPN with deterministic processing”since only the arrival

processa(t) is random but the service matrixB is deterministic.

5.3.2 Deficit Maximum Weight Algorithm For Stabilizing SPN

Several attempts have been made to characterize the stability region of SPN and to

achieve the optimal throughput. Here we focus on the deficit maximum weight (DMW)

algorithm [38] due to its succinct analysis and the potential for further extensions. DMW

algorithm can stabilize any strictly feasible rate vector and achieve the optimal throughput

of SPN described in Section 5.3.1 [38]. We will describe DMW algorithm and conceptually

explain how it works.

For each queuek, Qk(t) denotes its actual queue length at timet. Define a value

Dk(t) ≥ 0 as the “deficit” for the queuek at timet. Dk(t) = Qk(t) − qk(t), whereQk(t)

3We say a vector is no less than the other vecotr by element-wise comparison.
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is the actual queue length, which can be measured directly bycounting how many packets

are actually in the queue,qk(t) is the virtual queue length, which started fromqk(t) = 0

for t = 0, and we will later discuss how to update the virtual queue length qk(t) over

time. Initially, q(0) = Q(0) = D(0) = 0. In the following algorithm, we first choose an

optimized service activation vector according to the virtual queue length at the current time

slot, we then update the virtual queue length for the next time slot. This can be done for

each time slots with well-defined initial conditionq(t) = 0.

For each timet, we choose the service vector

x∗(t) = argmax
x∈X

dT (t) · x,

whered(t) is the back pressure vector defined asd(t) = BTq(t).

Suppose for some queuesk ∈ In, the actual queue lengthQk(t) is smaller than the

amount of leaving packets when the SAn is scheduled, we name it “null activity/underflow.”

When the null activity occurs, the underflow queue generates“fictitious packets” and send

it to SA n as if there are enough packets. We then updateq(t) as follows.

q(t+ 1) = q(t)− A · a(t)−B · x∗(t).

We can also rewrite the above equation as

qk(t+ 1) = qk(t)− µout,k(t) + µin,k(t), ∀k, (5.3)

where

µout,k(t) =
N
∑

n=1

B+
k,nx

∗
n(t),

µin,k(t) =
N
∑

n=1

A−
k,mam(t) +

N
∑

n=1

B−
k,nx

∗
n(t).

andv+ = max{0, v} andv− = max{0,−v}.

We then updateq(t) andD(t) as follows.

Qk(t+ 1) = (Qk(t)− µout,k(t))
+ + µin,k(t), (5.4)

Dk(t+ 1) = Qk(t+ 1)− qk(t+ 1).
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A heuristic but not rigorous explanation about why DMW worksis as follows. In the

back-pressure algorithm of the store-and-forward network, we always try to stabilize the

actual queue length. And hence we choose the schedule decision which maximizes the

back-pressure value based on the actual queue length. Notice that the actual queue length

is always no less than zero as in (5.4). Thus as long asµin,k(t) ≤ µout,k(t) for most of

time slotst, the actual queue length will be conceptually stable. And furthermore, the

actual queue length is likely to touch zero frequently. However, in SPN, whenever the

actual queue length touches zeros and it is inIn for some activated SAn, the underflow

occurs. To avoid the underflow,µin,k(t) ≤ µout,k(t) for most of time slotst is way too

aggressive. And hence we turn to stabilize the virtual queuelength as updated in (5.3),

which choose the schedule decision that maximizes the back-pressure value based on the

virtual queue length. Notice that for the virtual queue length being stable, we need to have

µin,k(t) = µout,k(t) for most of time slotst. And in this case, we can avoid the occurrence

of the underflow. Notice thatµin,k(t) = µout,k(t) impliesµin,k(t) ≤ µout,k(t), and hence

we can use DMW to stabilize the actual queue length and to avoid the occurrence of the

underflow simultaneously.

5.4 The Obstacle Between Stochastic Processing Network AndLNC Scheduling

As discussed in the previous sections, SPN seems to be a promising solution for the

inter-session network coding problem. And DMW can help us tostabilize the problem of

interest. However, there still exist the obstacle when applying SPN results to the SBLNC

scheme.

The obstacle is the random service issue in the wireless network. In a wireless network,

when a packet leaves a queue, it can randomly arrive some possible queues with certain

probabilities. And before the packets actually arrive the queue and send the feedback back

to the source, we have no ideas which queues actually receivethe packet. We name this

feature as the “random service” in SPN as the SAn might randomly serve several queues

in On. We use Figure 5.2 as an example to illustrate this issue. We assumea1,1 = b1,1 =
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b2,2 = b3,2 = 1 and IA1 is activated at every time slot. There is no confliction between SA

1 and SA2 and hence we can activate them at the same time slot. To model the random

service, we assume there are two possible combinations of(b′2,1, b
′
3,1). (b

′
2,1, b

′
3,1) = (1, 0)

with probability 0.5 and (b′2,1, b
′
3,1) = (0, 1) with probability 0.5. That is, whenever SA

1 is activated, it takes a packet fromQ1, and with probability0.5 this packet goes toQ2.

Otherwise, this packet goes toQ3. Meanwhile, whenever SA2 is activated, it must take

one packet from each ofQ2 andQ3. Notice that the queue length difference betweenQ2

andQ3 forms a simple random walk. The analysis of the random walk thus shows that the

difference between two queues,Q2 andQ3, goes unbounded with rate
√
t. And hence there

is no scheduling algorithm which can bound both queue sizes.

We will circumvent this obstacle by properly modifying DMW algorithm in the next

chapter.

5.5 Chapter Summary

In this chapter, we start to discuss the stability region. The definition of stability and

sublinear stability are introduce in Section 5.1. We discuss their properties and prove

that with certain conditions, the sublinear stability can achieve the optimal throughput in

Section 5.1.2. There exists some difficulties when applyinginter-session network coding

scheduling problem to the existing store-and-forward network analysis. We carefully illus-

trate the difficulties in Section 5.2.1. A network model, SPN, which can possibly resolve

the difficulties is introduced in Section 5.3. We introduce DMW algorithm, which is the

stabilizing algorithm for SPN, in Section 5.3.2. We conclude this chapter by discussing the

obstacles when applying SPN to the multi-flow wireless network problem.
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6. DEFICIT MAXIMUM WEIGHT-BASED LINEAR NETWORK

CODING

In this chapter, we will first device a new linear-space-based conversion method such that

we can map the LNC design problem for the dynamic arrival setting to a scheduling prob-

lem of an SPN network with random service. Then we will propose a modified DMW

scheduling algorithm that can stablize the SPN with random service. Finally, we will use

the modified DMW on SPN to derive a LNC solution for dynamic packet arrival such that

it is guaranteed to achieve the optimal throughput (since the modified DMW is guaranteed

to achieve the largest possible stability region of the SPN with random service.)

6.1 Converting The NC With Dynamic Arrival To An Space-BasedLNC Scheduling

Problem

In this chapter we exclusively focus on the stability problem of the 2-user broadcast

PEC with feedback (or 2-flow 1-to-2 broadcast PEC with feedback).

The full Shannon feedback capacity of the 2-user broadcast PEC was first characterized

by [3] in 2009 by a three-stage scheme. We use Figure 2.1(a) toillustrate this three-stage

scheme. In the first stage, the sources sends out the flow-1 packets uncodedly until each of

them is received by eitherd1 or d2. Suppose a flow-1 packet is received byd2 but not byd1,

then we put this packet into a queueq1,SI. The second stage is symmetric to the first stage.

That is, the sources sends out flow-1 packets uncodedly until each of them is received by

eitherd1 or d2. Suppose a flow-1 packet is received byd1 but not byd2, then we put this

packet into a queueq2,SI. In the last stage, the sources take one packetW1 from q1,SI and

one packetW2 from q2,SI, and then send outW1 +W2. Supposeq1,SI is empty, thens send

a packetW2 in q2,SI and vice versa. Fori, j = 1, 2 andi 6= j, since each packet inqi,SI is

overheard by another destinationdj, both destinationsd1 andd2 can recoverW1 +W2 sent
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in Stage 3 correctly. This scheme is devised as a block-code.Namely, we first need to send

outall uncodedW1 packets until each is received by at least one destination and then send

outall W2 packets until each is received by at least one destination.

When we have dynamic arrival, we actually have5 different LNC choice one can pos-

sibly make in each time slot. Choice1: Send a newW1 packet that have not been heard

by any ofd1 andd2; Choice 2: Send a newW2 packet that have not been heard by any of

d1 andd2; Choice 3: When bothQ1,SI andQ2,SI are non-emtpy, send a linear sum of the

two; Choice 4: Send a packet fromQ1,SI directly (without mixing with anyQ2,SI packets

probably becauseQ2,SI is empty); and Choice 5: Send a packet fromQ2,SI directly (without

mixing with anyQ1,SI packets probably becauseQ1,SI is empty).

A LNC scheme with dynamic arrivals need to balance these 5 choices in an optimal

way. On the other hand, from a block-code setting, this 3-stage scheme has been proven to

achieve the optimal throughput for the 2-user broadcast PECwith feedback [3]. Following

the results in our group [40], we can write the above three-stage scheme as a space-base

LNC scheme. This space-based LNC scheme is based on a 5-type coding solution, which

will be elaborated in Section 6.1.1.

6.1.1 The5-Type Coding Scheme

We consider the model formulated in Section 2.3. In the following discussion, we will

see that the 5 choices in the above 3-staged scheme can be converted to a scheme of 5

different types. For two linear spacesA andB, A⊕B is the sum space defined asA⊕B =

span{v : ∀v ∈ A ∪ B}. For i = 1, 2, let Wi,overall = (Wi,1,Wi,2, ...) with Wi,j ∈ GF(q)

for all j be an infinite-dimensional vector with each coordinate being a flow-i message

in queueQi,overall. Let Woverall
4
=(W1,1,W2,1,W1,2,W2,2, ...) be the joint overall message

vector with odd coordinates being a flow-1 message in queueQ1,overall and even coordinates

being a flow-2 message in queueQ2,overall. Letδj denote an infinite-dimensional elementary

delta row vector with itsj-th coordinate being one and all others being zero. We define

Ωoverall
4
=span{δj : ∀j} as the “overall message space.” We also defineΩ1,overall

4
=span{δj :
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j is odd.} as the “overall flow-1 message space,” andΩ2,overall
4
=span{δj : j is even.} as the

“overall flow-2 message space.”

For any timet, notice that there are
∑t

τ=1Ai(τ) flow-i messages in queueQi,revealedfor

i = 1, 2. We define the “revealed flow-1 message space at timet” asΩ1(t)
4
=span{δ2j−1 :

1 ≤ j ≤∑t
τ=1A1(τ)} and the “revealed flow-2message space at timet” asΩ2(t)

4
=span{δ2j :

1 ≤ j ≤∑t

τ=1A2(τ)}. We define the “revealed message space at timet” asΩ(t)
4
=Ω1(t)⊕

Ω2(t).

We define a coding vectorv(t) to be a infinite-dimensional row vector with each coordi-

nate being a scalar inGF(q), and thej-th coordinate being zero for anyj >
∑

i=1,2

∑t
τ=1Ai(τ)

such thatv(t) ∈ Ω(t). Any linear combination of the message symbols in queueQ1,revealed

andQ2,revealedat timet can thus be represented byv(t)WT
overall, whereWT

overall is the trans-

pose ofWoverall. For i = 1, 2, we define the knowledge space atdi at the end of timet

asΨi(t)
4
=span{v(τ) : ∀τ ≤ t andv(τ)WT

overall is received bydi}. We omit the time index

when there is no ambiguity. Let

A1
4
=Ψ1; A2

4
=Ψ2

A3
4
=Ψ1 ⊕ Ω1; A4

4
=Ψ2 ⊕ Ω2; A5

4
=Ψ1 ⊕Ψ2;

A6
4
=Ψ1 ⊕Ψ2 ⊕ Ω1; A7

4
=Ψ1 ⊕Ψ2 ⊕ Ω2;

Each coding type is indexed by a7-bit stringb = b1b2...b7 where eachbk indicates the

coding vectorv(t) is in Ak or not. For example,TYPE31 = TYPE0011111 is the set of

coding vectors, which are inA3 ∩ A4 ∩ A5 ∩A6 ∩ A7 but not in any ofA1 orA2. That is,

TYPE31 =TYPE0011111

4
=(A3 ∩A4 ∩ A5 ∩ A6 ∩A7)\(A1 ∪ A2)

=(A3 ∩A4 ∩ A5)\(A1 ∪A2). (6.1)

We say a coding type is “feasible” if the corresponding set isnon-empty. At each time slot

t, we choose a feasible coding type and randomly select one coding vectorv(t) from the

chosen coding type. And then send out the packetv(t)WT .
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Table 6.1
The relationship between the coding types, the required associated conditions,
and the associated SA in the equivalent SPN, Figure 6.1.

Coding type Required conditions

TYPE9 Condition 2

TYPE18 Condition 1

TYPE31 Condition 3 and 4

TYPE63 Condition 3

TYPE95 Condition 4

In the case of 2-user broadcast PEC with feedback, we consider the following 5 types

TYPE9, TYPE18, TYPE31, TYPE63, andTYPE95. We also have4 conditions.

1.Rank(Ω)− Rank(A7) > 0. (6.2)

2.Rank(Ω)− Rank(A6) > 0. (6.3)

3.Rank(A5) + Rank(A3)− Rank(A6)− Rank(A1) > 0. (6.4)

4.Rank(A5) + Rank(A4)− Rank(A7)− Rank(A2) > 0. (6.5)

It is proven in [40] that each coding type is feasible if and only if the associated condition(s)

is (are) true. For example, for type 31 to be non-empty, we need condition3 and4 are both

true. The relationship between the coding types and the conditions are listed in Table 6.1.

6.1.2 Connections Between 3-Stage Scheme And 5-Type LNC Scheme

Having introduced the5-type LNC scheme, here we demonstrate that the 3-stage scheme

and 5-type LNC scheme are eventually equivalent. Since the three-stage scheme has been

proven to achieve the optimal throughput [3], it is enough toshow that the throughput of

the 5-type LNC scheme is no less than the throughput of the three-stage scheme. To show

this statement, suppose we have two identical 2-user broadcast PECs with feedback with

same arrivals, named PEC 1 and PEC 2. Whenever we send out a packet in the first stage
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in PEC 1, we also encode a packet withTYPE18 and send it out in PEC 2. Whenever we

send out a packet in the second stage in PEC 1, we also encode a packet withTYPE9 and

send it out in PEC 2. Whenever we send out a packet in the last stage with bothq1,SI and

q2,SI are non-empty, we encode a packet withTYPE31 and send it out in PEC 2. If in the

last stageq2,2 is empty, then we encode a packet withTYPE63 and send it out in PEC 2.

If in the last stageq1,SI is empty, then we encode a packet withTYPE95 and send it out in

PEC 2. Finally, we have the following three claims to complete the statement.

We first claim that for any packet sent in the first stage, its corresponding coding vector,

v(t), is in TYPE18. That is, if the first stage is scheduled in PEC 1, thenTYPE18 is also

feasible in PEC 2. In the first stage, the sources sends out flow-1 packets until each of

them is received by any ofd1 andd2. And hence the packet sent in the first stage is in

flow-1 but not known by any ofd1 andd2. We then check whetherv(t) is in Ai or not for

i = 1, 2, ..., 7. Since the packet is neither in any ofd1 andd2, nor a flow-2 packet,v(t) is in

A3, A6 but not inA1, A2, A4, A5, norA7, which is inTYPE0010010 = TYPE18. And hence

v(t) is inTYPE18.

We then claim that for any packet sent in the second stage, itscorresponding coding

vector,v(t), is in TYPE9. By symmetric analysis as the first claim, the packet sent in the

second stage is neither in any ofd1 andd2, nor a flow-1 packet, and hencev(t) is inA4 and

A7, but not inA1, A2, A3, A5, norA6, which is inTYPE0001001 = TYPE9. Thusv(t) is in

TYPE18.

We finally claim that for any packet sent in the last stage, itscorresponding coding

vector,v(t), is in one ofTYPE31, TYPE63, andTYPE95. There are three cases in the

last stage. The first case is bothq1,SI andq2,SI are non-empty, and thens sends the packet

W1+W2 whereWi is from queueqi,SI. SinceW1 is in q1,SI, it is known byd2. On the other

hand,W2 is a flow-2 packet. And hencev(t) is in the sum spaceΨ2 ⊕ Ω2. Symmetrically,

W2 is in q2,SI andW1 is a flow-1 packet. Hencev(t) is also in the sum spaceΨ1 ⊕ Ω1.

Furthermore, sinceW1 is known byd2 andW2 is known byd1, v(t) is also in the sum

spaceΨ1 ⊕ Ψ2. In summary,v(t) is not inA1 nor A2 but in rest of them, which is in

TYPE0011111 = TYPE31.
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Fig. 6.1. The equivalent SPN of the 5-type space-based LNC scheme

The second case of the last stage isq2,SI is empty. Thens sendsW1 in queueq1,SI. Notice

thatW1 is a flow-1 packet and is known byd2. Hence the corresponding coding vector,

v(t), is inA2, A3, A4, A5, A6, andA7 but not inA1, which is inTYPE0111111 = TYPE63.

Symmetric to the second case, the third case isq1,SI is empty. Thens sendW2 in queue

q2,SI. And hence the corresponding coding vector is inA1, A3, A4, A5, A6, andA7 but not

in A2, which is inTYPE1011111 = TYPE95.

Combining the above three claims, the throughput of the 5-type LNC scheme is no less

than the three-stage scheme in [3], and hence the 5-type LNC scheme achieves the optimal

throughput of 2-user broadcast PEC with feedback.

6.1.3 Random Service In Space-Based LNC Scheme

The above 5-type space-based LNC scheme can modeled as an SPN. Figure 6.1 illus-

trates the equivalent SPN. IA 1 is activated whenever a flow-1packet is injected into the

network, and IA 2 is activated whenever a flow-2 packet is injected into the network.
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For example SA9 corresponds to coding type 9, SA18 corresponds to coding type 18.

Q1 corresponds to condition 1,Q2 corresponds to condition 2, and so on so forth. Since we

can schedule type 31 if both Conditions 3 and 4 hold. Similarly, in the SPN network we

can schedule SA31 if and only if bothQ3 andQ4 are non-empty. As will be seen shortly

after, the service in this SPN is random and we thus need to devise a new algorithm that

can stabilize SPNs with random service. The detailed parallelism between the equivalent

SPN and the 5-type spaced-based LNC scheme will be provided in Section 6.3 with proper

service rate assignments. Each service activity corresponds to a coding type.

6.2 Modified DMW Scheduling For SPN With Random Service

As can be seen that the to properly schedule the LNC solutions, we need to take into

account SPNs with random service. In the following, we first propose a modified DMW

method that can stabilize SPNs with random service and then we discuss how to design

an optimal LNC scheduling solution based on the new stability results on the SPN with

random service.

To resolve the random service issue, we first extend the SPN with deterministic service

in Section 5.3.1 to the one with random service. We then modify the DMW scheduling

algorithm to stabilize the SPN with random service and to achieve the optimal throughput.

Even though the following results are motivated by the LNC design problem with dynamic

arrival, throughout our discussion, we focus exclusively on the SPN scheduling problem.

Its detailed connection to the LNC problem will be discussedin Section 6.3.

6.2.1 The SPN Model With Random Service

We consider two network models, name network model 1 (NM 1) and network model

2 (NM 2).

NM 1 is an SPN model with deterministic service as defined in Section 5.3.1 with

arrival vectora(t) and the arrival rateR = E{a(t)}. LetK be the number of queues,M be

the number of IAs, andN be the number of SAs in NM 1. We useB to denote the service
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matrix of NM 1 with each entry denoted byBk,n. AndX is the set of all feasible activation

vectorx(t) in NM 1.

NM 2 is a network model with the same topology (i.e. same relationship between

SAs, IAs, and queues), the same arrival vectora(t), and the same activation setX as in

NM 1. That is, they share same queues, service activities, input activities, and the links.

Furthermore, whenever the input activity IAm is activated in NM 1, the corresponding IA

m in NM 2 will also simultaneously be activated. The only difference between NM 1 and

NM 2 is that we have the random service for each SA in NM 2. We define the random

service rigorously as follows.

Let B(t) be the service matrix in NM 2 at timet. B(t) is a random matrix with each

entry is a bounded random variable and is i.i.d. over time. Ifk ∈ In, thenBk,n(t) is a

non-negative random variable. Ifk ∈ On, thenBk,n(t) is a non-positive random variable.

Otherwise,Bk,n(t) = 0 with probability 1. We further assume thatE{Bk,n(t)} = Bk,n

for all k andn. We useb(t) to denote the realization ofB(t) andbk,n(t) to denote the

realization ofBk,n(t).

Remark:Even though we construct the SPN with deterministic servicefirst then extend

to the SPN with random service. However, when the problem of interest is an SPN with

random service, we will first construct NM 1, the SPN with deterministic service, by taking

the average of the random service matrix. We will then use thenew NM 1 to help us

schedule the random SPN of interest, NM 2.

6.2.2 The Scheduling Algorithm

Let q(1)(t) to be the virtual queue length in NM 1 (VQ 1) andq(2)(t) to be the virtual

queue length in NM2 (VQ 2). Similarly,Q(1)(t) andD(1)(t) are the actual queue length

and the deficit in NM 1. AndQ(2)(t) andD(2)(t) are the actual queue length and the deficit

in NM 2. We assume the initial conditions to zero for all the queues, virtual queues, and

deficit in both NM 1 and NM 2. We describe the update rules ofq(1)(t), q(2)(t), Q(1)(t),

Q(2)(t), D(1)(t), andD(2)(t) as follows.
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Since NW 1 and NW 2 share the same arrivals processa(t), we apply the DMW

scheduling algorithm on NM 1 and utilize the same schedulingdecisionx∗(t) on NM 2.

That is,x∗(t) is the scheduling decision for both NM 1 and NM 2 at timet and

x∗(t) = argmax
x∈X

dT (t) · x, (6.6)

whered = B
T
q(1)(t) is the back-pressure vector in NM 11. We updateq(1)(t) as follows.

q(1)(t+ 1) = q(1)(t)−A · a(t)− B · x∗(t). (6.7)

(6.7) can also be rewritten as

qk
(1)(t+ 1) = qk

(1)(t)− µout,k(t) + µin,k(t), ∀k, (6.8)

where

µout,k(t) =

N
∑

n=1

(

Bk,n
+
x∗
n(t)

)

,

µin,k(t) =
M
∑

m=1

(

A−
k,mam(t)

)

+
N
∑

n=1

(

Bk,n
−
x∗
n(t)

)

.

We also updateq(2)(t) as

q(2)(t + 1) = q(2)(t)− A · a(t)−B(t) · x∗(t). (6.9)

Similarly, we can rewrite (6.9) as

qk
(2)(t+ 1) = qk

(2)(t)− µout,k(t) + µin,k(t), ∀k, (6.10)

where

µout,k(t) =
N
∑

n=1

(

bk,n(t)
+x∗

n(t)
)

(6.11)

µin,k(t) =

M
∑

m=1

(

A−
k,mam(t)

)

+

N
∑

n=1

(

bk,n(t)
−x∗

n(t)
)

.

We then update the actual queue lengthQ(2)(t) and deficitsD(2)(t) in NM 2. For allk,

Qk
(2)(t+ 1) =

(

Qk
(2)(t)− µout,k(t)

)+

+ µin,k(t), (6.12)

Dk
(2)(t + 1) = Qk

(2)(t+ 1)− qk
(2)(t+ 1). (6.13)

1There is only finite number of service activities and henceX is a finite set.
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6.2.3 Properties Of The Virtual Queue Length And The Deficit

Lemma 6.2.1 Given past arrival vectors, VQ 1q(1)(t) is the expectation of VQ 2q(2)(t).

That is,q(1)(t) = E{q(2)(t)|{a(τ)}tτ=1}.

Proof Notice that given the past arrival vectors[a(τ)]tτ=1, q
(1)(t) becomes deterministic

and so doesx∗(t). This property thus is a consequence of (6.7), (6.9), and canbe proven

iteratively.

Remark:Sinceq(1)(t) is the conditional expectation ofq(2)(t), we slightly abuse the

notation in the following discussions. We useq(t)
4
=q(1)(t) and drop all the superscript

“(2)” for the quantities/variables in NM 22.

Lemma 6.2.2 Dk(t) is non-decreasing witht, and satisfies

Dk(t+ 1) = Dk(t) + (µout,k(t)−Qk(t))
+ . (6.14)

Proof This property is from [38]. Following the same derivation in[38] and by definitions

and updating rules, we have

Dk(t+ 1) = Qk(t+ 1)− qk(t+ 1)

= (Qk(t)− µout,k(t))
+ − (qk(t)− µout,k(t))

= Qk(t)− µout,k(t) + (µout,k(t)−Qk(t))
+ − (qk(t)− µout,k(t))

= Dk(t) + (µout,k(t)−Qk(t))
+ .

6.2.4 The Stability Analysis

The following lemmas show that the proposed scheduling algorithm in Section 6.2.2

can stabilize NM 2. Recall thatΛ is the convex hull ofX andΛo is the interior ofΛ.
2Since we never useQ(1)(t) andD(1)(t) in the following analysis, we do not apply the notation changes on
them.
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Lemma 6.2.3 (The necessary condition for NM 1 stability) For any arrivalrateR, if NM

1 can be stabilized, thenA ·R+ B · y = 0 for somey ∈ Λ.

Proof Since NM 1 is an SPN with deterministic service, this followsthe results in [38].

Lemma 6.2.4 (The necessary condition for NM 2 stability) For any arrivalrateR, if NM

2 can be stabilized, thenA ·R+ B · y = 0 for somey ∈ Λ.

Proof To prove this lemma, it is enough to show that ifq(t) is stable, thenq(t) is stable.

By Lemma 6.2.1, ifq(t) is stable, then we take the conditional expectations and derive that

q(t) is also stable.

Lemma 6.2.5 (The sufficient condition for the NM 1 stability) If the arrival rate R is

strictly feasible as defined in Section 5.3.1, then VQ 1q(t) can be stabilized. That is,

for all k,

lim sup
t→∞

1

t

t
∑

τ=0

E{|qk(t)|} < ∞,

where the expectation is taken over all possible arrival vectors.

Proof Notice that NM 1 is an SPN with deterministic service, and we apply DMW schedul-

ing algorithm on NM 1. This lemma is a direct consequence of the results in [38].

Lemma 6.2.6 (The sufficient condition for the NM 2 stability) If the arrival rate R is

strictly feasible, then NM 2 can be sublinearly stabilized.

Proof To prove this lemma, it is enough to show that ifq(t) is stable, thenq(t) is sub-

linearly stable. For anyk ∈ {1, 2, ..., K}, ε > 0, andδ > 0, we square both sides of

(6.10)

qk(t+ 1)2 − qk(t)
2 = (µout,k(t)− µin,k(t))

2 − 2qk(t) (µout,k(t)− µin,k(t)) .
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Conditioning on the arrival vectors, we take the conditional expectation on both sides.

E{qk(t + 1)2|{a(τ)}tτ=1} − E{qk(t)2|{a(τ)}tτ=1}

=E{(µout,k(t)− µin,k(t))
2|{a(τ)}tτ=1} − 2E{qk(t) (µout,k(t)− µin,k(t)) |{a(τ)}tτ=1}

=E{(µout,k(t)− µin,k(t))
2|{a(τ)}tτ=1} − 2qk(t) (µout,k(t)− µin,k(t)) (6.15)

≤C2 + 2|qk(t)|U, (6.16)

where (6.15) follows from the independence betweenqk(t) and(µout,k(t)− µin,k(t)) con-

ditioned on the arrival vectors3; and (6.16) follows from definingC to be the upper bound

of |µout,k(t)−µin,k(t)| andU to be the upper bound4 of |µout,k(t)−µin,k(t)|. Now we take

the expectation over all arrival vectors,

E{qk(t+ 1)2} − E{qk(t)2} ≤ C2 + 2UE{|qk(t)|}

Iteratively summing up the above equation fromt = 0 to t = τ − 1,

E{qk(τ)2} − E{qk(0)2} = E{qk(τ)2} ≤ τC2 + 2U

τ−1
∑

t=0

E{|qk(t)|}

Divide both side byτ and notice thatlim supt→∞
1
t

∑t
τ=0 E{|qk(t)|} < ∞ implies

1
t

∑t
τ=0 E{|qk(t)|} is bounded, say byL, then

1

τ
E{qk(τ)2} ≤ C2 + 2U

1

τ

τ−1
∑

t=0

E{|qk(t)|} ≤ C2 + 2UL

Now we apply Markov inequality with second moment expression.

Prob(|qk(t)| ≥ εt) ≤ 1

ε2t2
E{qk(t)2} ≤ C + 2UL

ε2t

Let t0 to be the firstt such thatC+2UL
ε2t0

< δ. Then

Prob(|qk(t)| ≥ εt) < δ, ∀t > t0.

3Conditioning on the arrival vectors,x∗(t) is deterministic. And hence the only randomness ofµin,k(t) and
µout,k(t) comes fromB(t), which is independent ofq(t).
4C andU exist because all ofµout,k(t), µin,k(t), µout,k(t), andµin,k(t) are bounded by definition.
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6.2.5 The Throughput Analysis

Lemma 6.2.3 to Lemma 6.2.6 describe the stability region of NM 2. However, in the

proposed scheduling algorithm, there exists the occurrence of null activities which generate

fictitious packets (f.p.) as described in Section 5.3.2. To show the proposed scheduling

algorithm is able to achieve the optimal throughput, it remains to show that in the long term,

the the fictitious packets does not influence the overall throughput. Before we explicitly

quantify the fictitious packets throughput, we first analyzethe growth rate of the deficit

and the rate that the null activity occurs in NM 2. Given a arrival vectora(t) with strictly

feasible rateR and utilizing the scheduling algorithm proposed in Section6.2.2, we have

the following results.

Lemma 6.2.7 Dk(t) grows sublinearly.

The proof of Lemma 6.2.7 is relegated to Appendix D.

Proposition 6.2.1 In NM 2, letnk(t) be the number of null activities occur at queuek up

to timet. We define the rate of null activities occur at queuet asrk(t)
4
= 1

t
nk(t). Given any

ε > 0 andδ > 0. ThenProb(rk(t) > ε) < δ given sufficient larget. That is, the probability

thatrk(t) larger than zero can be made arbitrarily small given sufficient larget.

Proof Notice that the null activity (N.A) occurs at timet if and only ifDk(t) > Dk(t−1).

Let c be the minimum increment ofDk(t) whenever N.A. occurs. We use the fact thatDk(t)

is non-decreasing and hence

nk(t) =

t
∑

τ=1

I(Dk(τ) > Dk(τ − 1)) ≤ Dk(t)

c
.

Now for anyε > 0 andδ > 0,

Prob(rk(t) > ε) = Prob(
nk(t)

t
> ε) ≤ Prob(Dk(t) > cεt).

From Lemma 6.2.7, there existst0 such that

Prob(rk(t) > ε) ≤ Prob(Dk(t) > cεt) < δ, ∀t > t0.

The proof is complete.
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Now we analyze the fictitious packets generated at SAn and evaluate its effect on the

overall throughput. Letηfp,n(t) be the number of fictitious packets generated by SAn up

to timet. We use the following proposition to conclude the throughput analysis.

Proposition 6.2.2 For eachn, ηfp,n(t) grows sublinearly.

A heuristic but not rigorous explanation of Proposition 6.2.2 is as follows. Notice that

the SPN is assumed to be acyclic. For the fictitious packet generated at the null activity,

it can only “pollute” finite number of packets. And hence thisresult is a consequence of

Proposition 6.2.1. The detailed proof of Proposition 6.2.2is relegated to Appendix E.

Since the NM 2 can be stabilized with strictly feasible rateR, the overall throughput is

proportional tot. Then the ratio between the number of fictitious packets and the overall

throughput (the influence of the fictitious packets) is proportional to ηfp,n(t)

t
. By Proposi-

tion 6.2.2, this ratio can be arbitrarily small with sufficiently larget. Hence the scheduling

algorithm in Section 6.2.2 achieves the optimal throughputin NM 2.

6.3 The Parallelism Between LNC Scheduling and SPN

We have introduced the5-type coding scheme in Section 6.1.1 and the stability region

of the SPN with random service in Section 6.2. In this section, we will connect these two

together and characterize the stability region of the 2-user broadcast PEC with feedback.

We first define the following queue lengths5.

Q1,LNC(t) = Rank(Ω(t))− Rank(A7(t)),

Q2,LNC(t) = Rank(Ω(t))− Rank(A6(t)),

Q3,LNC(t) = Rank(A5(t)) + Rank(A3(t))− Rank(A6(t))− Rank(A1(t)),

Q3,LNC(t) = Rank(A5(t)) + Rank(A4(t))− Rank(A7(t))− Rank(A2(t)),

Qi,undecoded,LNC(t) = Rank(Ωi(t))− Rank(Ωi(t) ∩Ψi(t)), i = 1, 2.

Namely,Qk,LNC(t) quantifies the gap between the left-hand side and the right-hand side

of Conditionk in (6.2)–(6.5). Recall that in Table 6.1 and the corresponding discussion,

5It is proven in [40] that all of them are non-negative.
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we have shown that we can send a coding type if and only if the associated conditions are

satisfied with strict inequality. This is captured in our definitions herein. We can sched-

ule an SA (an LNC coding type) if and only if the correspondingqueues (the gap of the

conditions) are strictly non-empty.

The new queue we defined here isQi,undecoded,LNC(t). To understand the physical mean-

ing of Qi,undecoded,LNC(t), we notice that at any timet, the overall messages for sessioni

is Ωi(t). At the same time destinationdi can decode any linearly combined packets inΨi

and thus can decode all the desired session-i packets inΩi(t) ∩ Ψi(t). As a result, the

rank difference between the two is how many session-i packets that have arrived at the

sources but still cannot be decoded bydi. We thus term itQi,undecoded,LNC(t). The following

lemma guides us to connect the stability region definition inSection 2.3 with the 5-type

LNC scheme.

Lemma 6.3.1 If Qi,LNC(t) is sublinearly stable for alli, thenQj,undecoded,LNC(t) is also sub-

linearly stable forj = 1, 2.

Proof We first claim that in the 5-type LNC scheme,Rank(A6(t)) + Rank(A7(t)) −
Rank(Ω(t))− Rank(A5(t)) = 0 for all time t. We prove this claim iteratively. Fort = 0,

Rank(A6(0)) + Rank(A7(0))− Rank(Ω(0))− Rank(A5(0))

=Rank(Ω1) + Rank(Ω2)− Rank(Ω1 ⊕ Ω2)− 0 = 0

Suppose it is true fort. Note that in timet + 1, the LNC designer can choose one of

TYPEi for i ∈ {9, 18, 31, 63, 95}. We first notice that if there is any new arrival comes to

the network, the increments ofRank(A6(t+ 1)) + Rank(A7(t+ 1)) andRank(Ω(t + 1))

will be the same. For example, if a new session-1 packet arrives. ThenRank(A6) will

increase by1 andRank(Ω(t + 1)) will increase by1 as well. We further notice that no

matter which coding type we choose, the increments of the positive terms and the negative

terms are always the same. For example, if we choose coding type 9, thenRank(A5(t+1))

(the negative term) andRank(A6(t + 1)) (the positive term) will increase by one if any of

d1 andd2 receive the coding vector whileRank(A7(t+ 1)) (the positive term) remains the

same. And hence the statement is still true fort + 1.
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We now proveQ1,undecoded,LNC(t) is sublinearly stable andQ2,undecoded,LNC(t) can be

proven by symmetric arguments. By definition,

Q1,LNC(t) +Q3,LNC(t)

=Rank(Ω(t))− Rank(A7(t))

+ Rank(A5(t)) + Rank(A3(t))− Rank(A6(t))− Rank(A1(t))

=Rank(A3(t))− Rank(A1(t))

=Rank(Ω1(t))− Rank(Ω1(t) ∩Ψ1(t)) = Q1,undecoded,LNC(t)

SinceQ1,LNC(t) andQ3,LNC(t) are sublinearly stable,Q1,undecoded,LNC(t) is also sublinearly

stable.

Since bothQ1,undecoded,LNC(t) andQ2,undecoded,LNC(t) are sublinearly stable, the 2-user

broadcast PEC with feedback is also sublinearly stable by Proposition 5.1.1.

It remains to characterize the rate region in whichQi,LNC(t) is sublinearly stable for all

i, denoted byΛLNC. Based on the topology in Figure 6.1, we defineSPNε for anyε ≥ 0 as

follows. LetQi,ε(t) be the queue length of the queueQi in SPNε at timet for i = 1, 2, 3, 4.

Let a1,1 = a2,2 = 1. For each timet, the number of IAi activations,ai(t), is equal toAi(t),

the arrival process of flow-i messages. We further associate the corresponding random
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service distributions with the channel statusZs(t) = (Zs→d1(t), Zs→d2(t)) in the 2-user

broadcast PEC with feedback of interest.

(b1,1(t), b
′
3,1(t)) =



















(1, 0) if Zs(t) = (1, ·)
(1, 1) if Zs(t) = (0, 1)

(0, 0) otherwise

(b2,2(t), b
′
4,2(t)) =



















(1, 0) if Zs(t) = (·, 1)
(1, 1) if Zs(t) = (1, 0)

(0, 0) otherwise

(b3,3(t), b4,3(t)) =































(1, ε) if Zs(t) = (1, 0)

(ε, 1) if Zs(t) = (0, 1)

(1, 1) if Zs(t) = (1, 1)

(0, 0) otherwise

b3,4(t) =







1 if Zs(t) = (1, ·)
0 otherwise

b4,5(t) =







1 if Zs(t) = (·, 1)
0 otherwise

We also assume each individual pair listed above is independent with each other, and there

is only one SA inSPNε can be activated at each timet.

In Section 6.2, we have characterized the full stability region of SPN with random

service. Hence we also have the stability region ofSPNε, denoted byΛε, as defined above.

We conclude the stability region of the 5-type LNC 2-user broadcast PEC with feedback

by the following three propositions.

Proposition 6.3.1 For any arrival rate(R1, R2), if we can stabilize the5-type LNC2-user

broadcast PEC with feedback, then we can stabilize theSPN0 network.

Proposition 6.3.2 For any arrival rate(R1, R2), if we can stabilize theSPNε network, then

we can stabilize the5-type LNC2-user broadcast channel.
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Recall that the stability region ofSPN0 andSPNε have been fully characterized, we

thus have

Λε ⊆ ΛLNC ⊆ Λ0

The final step is to letε → 0. We thus have

Proposition 6.3.3 The stability region of the 5-type LNC 2-user broadcast PEC with feed-

back is the same as the stability region ofSPN0. That is,

ΛLNC = Λ0.

An heuristic but not rigorously explanation is as follows. It might seem thatSPN0 has

exactly the same behavior as the 5-type LNC problem. However, this is not true. For the

pair (b3,3(t), b4,3(t)), it could be(1, 0) if Zs(t) = (1, 0). That is, whenZs(t) = (1, 0),

SA31 can be scheduled even ifQ4,0(t) = 0. But in the 5-type LNC problem, if Condition

4 is not hold (i.e.Q4,LNC(t) = 0), then we can not chooseTYPE31. And hence we need

to haveSPNε to approachΛ0 instead of making direct connections. The detailed proof of

Proposition 6.3.1 to Proposition 6.3.3 are relegated to Appendix F.

6.4 Chapter Summary

In this chapter, we first discuss the 5-type space-based LNC scheme for achieving the

Shannon capacity of 2-user broadcast PEC with feedback in Section 6.1. We also define the

space-based LNC notations according to dynamic arrivals, and demonstrate the equivalent

SPN is an SPN with random service. And hence we propose a modified deficit maximum

weight scheduling algorithm to stabilize the SPN with random service and achieve the

optimal throughput in Section 6.2. Finally, we connect all the developed together and

characterize the full stability region of 2-user broadcastPEC with feedback in Section 6.3.
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7. CONCLUSION AND FUTURE WORK

In this thesis, we propose a space-based LNC scheme to characterize the Shannon capac-

ity of the COPE principle 2-user wireless butterfly network with broadcast packet era-

sure channels, which incorporates the broadcast packet erasure channels with feedback, the

COPE principle, and the opportunistic routing all together. A modified deficit maximum

scheduling is proposed to stabilize the SPN with random service. Finally, we combined

all the developed tools together to characterize the stability region of the 2-user broadcast

PEC with feedback.

In Chapter 1, we discuss the network coding gain for three local wireless network

topologies, including the broadcast packet erasure channel with feedback, the COPE princi-

ple wireless butterfly network, and the opportunistic routing. All of them exhibit significant

end-to-end throughput improvement when network coding canbe utilized. In Chapter 2,

we propose a local network topology which incorporates all the three local wireless net-

work together, name the “COPE principle 2-user wireless butterfly network with broadcast

packet erasure channels.” The space-based LNC scheme established in Chapter 3 provides

a intuitive and systematical approach to exploit the possible joint inter-session and inter-

session network coding gain in the network. With the help of space-based LNC scheme,

in Chapter 4, we characterize the Shannon capacity of the COPE principle 2-user wire-

less butterfly network with broadcast packet erasure channel and demonstrate significant

throughput improvement compared with existing solutions.We further extend the block-

code-based model to the dynamic arrival model, so called thestability analysis. This ex-

tension promotes the proposed scheme one step closer to practical implementations. How-

ever, there exist obstacles between the LNC scheme to the stability analysis, as discussed

in Chapter 5. With existing results in stochastic processing networks, we can find some

connection between SPN and the LNC problem. However, the random service issue is not

well-considered in the existing results. We develop modified deficit maximum weight al-
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gorithm to stabilize the SPN with random service. With 5-type space-based LNC scheme

and modified DMW, we characterize the stability region of the2-user broadcast PEC with

feedback in Chapter 6.

Even though we build up the analysis tool based on the local wireless network, those

tools reveal great insight about the possible joint intra-session and inter-session linear net-

work coding gain. The future work can branch out to three categories, the near objective,

the mid-range objective, and the long-term objective.

7.1 The Stability Of 2-User Multi-Input Broadcast PEC With F eedback

Recently, another work in our group [40] also utilizes the similar SBLNC concept to

characterize the LNC feedback capacity of 2-receiver multi-input broadcast PECs. [40]

proposes a space-based LNC scheme to achieve the LNC capacity region and numerically

demonstrates the matching between Shannon capacity and LNCcapacity under this speci-

fied channel. The space-based LNC scheme in [40] consists of “coding types.” Each cod-

ing type can be associated with one SBLNC policy described inChapter 3. That is, at

each timet, the source of the PEC can choose one coding type to encode thetransmitted

packet. However, unlike the sequential scheduling scheme in our achieving algorithm in

Section 4.3, there is no fixed sequence of policy (coding type) scheduling in [40]. Instead,

the key to achieve the LNC capacity region is to properly adjust the coding-type frequency,

so called “tunneling approach.”

Extending our results in this thesis to the 2-use multi-input broadcast PEC with feed-

back is clearly a near objective. There are 18 coding types inthis problem while we discuss

the 5-type scheme in Chapter 6. However, Figure 7.1 exhibit the obstacle. Notice that there

exist a cycle, Queue 3–Type 2–Queue 4–Type 1, in the equivalent SPN. In Section 5.3.1,

we assume there is no cycle in SPN. However, in the multi-flow wireless network with

network coding, it is likely to have cycles in the network as we will see in later. Even

though the cycle issue does not affect the stability analysis in [38], but the problem is in the

throughput analysis. In DMW algorithm in Section 5.3.2, thefictitious packet is generated



86

Type 0

Type 1

Type 2

Type 3

Type 7

Type 9

Type 11

Type 15

Type 18

Type 19

Type 23

Type 27

Type 31

Type 47

Type 63

Type 87

Type 95

Type 127

Queue 1Queue 2

Queue 3

Queue 4

Queue 5

Queue 6

Queue 7

Queue 8

Fig. 7.1. The equivalent SPN of 18 coding types for 2-use multi-input broad-
cast PEC with feedback.
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Fig. 7.2. The illustration of multi-user multi-input broadcast packet erasure
channel.

whenever the underflow occurs. If unfortunately, the fictitious packet goes to one cycle,

this fictitious packet will further generate new fictitious packets endlessly. And thus the

throughput analysis in [38] is no longer valid.

This obstacle can be possibly be resolved by the random service property. Unlike SPN

with deterministic service, it is possible for the packet which enters the cycle leaves the

cycle after certain amount of “looping.” By properly analyzing the amount of “looping,” it

gives a possible approach to circumvent this cycle issue.

7.2 The Mid-Range And Long-Term Objectives

Another possible extension is the stability region of the Markovian controlled 2-receiver

multi-input broadcast packet erasure channel. Consider anergodic finite-state Markov

chain {St : ∀t = 1, 2, ...} with the state spaceS and a sequence of user controllable

actions{Actt ∈ A : ∀t = 1, 2, ...} taken from a finite setA. The reception status of the

Markovian controlled 2-receiver multi-input broadcast PEC at timet is then depends on

St andActt but not onSt′ or Actt′ for anyt′ 6= t. Since the probability distribution of the

reception status is no longer invariant over time, the Markovian controlled 2-receiver multi-

input broadcast PEC is a generalization of the canonical 2-receiver multi-input broadcast

PEC as illustrated in Figure 7.2. With this generalization,the analysis results can closely

capture many important practical applications.



88

For example, consider a setting of cognitive radio. When there exist external transmis-

sions, the probability of success reception becomes lower due to stronger interference. And

the probability of success reception is higher when there isno external transmissions. This

kind of interference can be modeled by the Markov stateSt. At the same time, the classic

Gilbert-Elliott channel model for burst noise is also a special case of Markovian setting.

On the other hand, the setting of user controllable actionActt also provides a variety of

flexibility to capture some practical scnearios. For example, consider an adaptive coding

and modulation with two schemes. The first scheme provides higher transmission rate but

lower success probability while the second scheme provideslower transmission rate but

higher success probability. This setting can be closely captured byActt. [40] provides an

space-based LNC scheme to characterize the LNC capacity region. Extending the existing

capacity analysis to the stability analysis of the Markovian setting is our mid-range goal.

To incorporate the Markovian state and the user-controllable actions, the SPN setting is

required to further consider the these two issues.

The wireless butterfly network which incorporates broadcast PEC with feedback, the

COPE principle, and the opportunistic all together is definitely a objective for the extension

of current results. Our long-term objective is to devise practical protocols and testbed

simulation to verify the intuition derived from our capacity and stability analysis.
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A. THE CONVERSE OF THE CAPACITY

In this appendix, we prove Proposition 4.2.2. For any joint scheduling and NC scheme, we

choosetsi (resp.tr) as the normalizedexpected number of time slots for whichsi (resp.r)

is scheduled. Namely,

tsi
∆
=

1

n
E

{

n
∑

τ=1

1{σ(τ)=si}

}

andtr
∆
=

1

n
E

{

n
∑

τ=1

1{σ(τ)=r}

}

.

By definition,ts1 , ts2 , andtr must satisfy (4.5).

In the subsequent proofs, the logarithm is taken with baseq. We prove (4.6) first. To

that end, we notice that

I(W1;Ŵ1) ≤ I(W1; [Y{s1,s2,r}→d1,Z]
n
1 ) (A.1)

=I(W1; [Z]
n
1 ) + I(W1; [Y{s1,s2,r}→d1 ]

n
1 |[Z]n1 ) (A.2)

≤I(W1; [Y{s1,s2}→{d1,r}]
n
1 |[Z]n1 ) (A.3)

=I(W1; [Ys1→{d1,r}]
n
1 |[Z]n1 ) (A.4)

≤H([Ys1→{d1,r}]
n
1 |[Z]n1 )

=

n
∑

t=1

H(Ys1→{d1,r}(t)|[Z]n1 , [Ys1→{d1,r}]
t−1
1 ) (A.5)

≤
n
∑

t=1

E
{

1{Zs1→d1
(t)=1 or Zs1→r(t)=1} ◦ 1{σ(t)=s1}

}

(A.6)

=nts1p1(d1, r) (A.7)

where (A.1) follow from (2.7); (A.2) follows from the chain rule; (A.3) follows from

(2.3), the data processing inequality, and the fact thatZ is independent ofW1; (A.4)

follows from that conditioning onZ (and σ sinceσ is a function ofZ) Ys2→{d1,r} is

a function ofW2 and is thus independent ofW1; (A.5) follows from the chain rule;

(A.6) follows from that only when1{Zs1→d1
(t)=1 or Zs1→r(t)=1} = 1 and 1{σ(t)=s1} = 1
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will we have a non-zero entropy valueH(Ys1→{d1,r}(t)|[Z]n1 , [Ys1→{d1,r}]
t−1
1 ), and when

H(Ys1→{d1,r}(t)|[Z]n1 , [Ys1→{d1,r}]
t−1
1 ) > 0, it is upper bounded by1 since the base of the

logarithm isq; (A.7) follows from Wald’s lemma.

On the other hand, Fano’s inequality gives us

I(W1;Ŵ1) ≥ nR1(1− ε)−H(ε). (A.8)

Combining (A.7) and (A.8), we have

R1(1− ε)− H(ε)

n
≤ ts1p1(d1, r). (A.9)

Letting ε → 0, (A.9) implies (4.6) for the case ofi = 1. With symmetric arguments, we

can derive (4.6) fori = 2.

We prove (4.8) by similar techniques as used in [16, 41]. Specifically, we create a new

network from the original network by adding an auxiliary pipe that sends all information

available atd2 directly tod1. Later we will show that even with the additional information,

the achievable ratesR1 andR2 are still upper bounded by (4.8). As a result, the achievable

R1 andR2 for the original network must satisfy (4.8) as well. (4.7) isa symmetric version

of (4.8).

With the additional information atd1, the decoding function (see (2.7)) atd1 for the

new network becomes

Ŵ1 = fd1([Y{s1,s2,r}→{d1,d2},Z]
n
1 ). (A.10)

For anyt ∈ [n], define

U(t) , (W2, [Y{s1,s2,r}→{d1,d2},Z]
t−1
1 ). (A.11)
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We then have

nR1 = H(W1|W2)

≤ I(W1;Ŵ1|W2) + nε1 (A.12)

≤ I(W1; [Y{s1,s2,r}→{d1,d2},Z]
n
1 |W2) + nε1 (A.13)

= I(W1; [Z]
n
1 |W2)

+ I(W1; [Y{s1,s2,r}→{d1,d2}]
n
1 |W2, [Z]

n
1 ) + nε1 (A.14)

=

n
∑

t=1

I(W1;Y{s1,s2,r}→{d1,d2}(t)

|W2, [Z]
n
1 , [Y{s1,s2,r}→{d1,d2}]

t−1
1 ) + nε1 (A.15)

= nε1 +

n
∑

t=1

(

I(W1;Yr→{d1,d2}(t)|U(t), [Z]n1 )

+ I(W1;Ys1→{d1,d2}(t)|U(t),Yr→{d1,d2}(t), [Z]
n
1 )

+ I(W1;Ys2→{d1,d2}(t)

|U(t),Y{r,s1}→{d1,d2}(t), [Z]
n
1 )
)

(A.16)

≤ nε1 +

(

n
∑

t=1

I(W1;Yr→{d1,d2}(t)|U(t), [Z]n1 )

)

+ nts1p1(d1, d2) + 0 (A.17)

≤ nε1 + nts1p1(d1, d2)

+

n
∑

t=1

I(Xr(t);Yr→{d1,d2}(t)|U(t), [Z]n1 ), (A.18)

where (A.12) follows from Fano’s inequality whereε1 goes to0 when ε → 0; (A.13)

follows from the data processing inequality and (A.10); (A.14), (A.15), and (A.16) follow

from the chain rule and the fact that the distribution ofZ is independent ofW1 andW2;

(A.17) follows from the observation that the second term of the summation can be upper

bounded by Wald’s lemma (similar to (A.7)) andYs2→{d1,d2}(t) is independent ofW1 given

Z (similar to (A.4)); and (A.18) follows from the data processing inequality.
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To continue, we define the time sharing random variableQt ∈ {1, 2, ..., n}withProb(Qt =

i) = 1
n

for all i ∈ {1, 2, ..., n} andQt being independent of[Z]n1 , W1, andW2 . Since the

mutual information is always non-negative, we can rewrite (A.18) as

(R1 − ts1p1(d1, d2)− ε1)
+

≤
n
∑

t=1

1

n
I(Xr(t);Yr→{d1,d2}(t)|U(t), [Z]n1 )

≤
n
∑

t=1

1

n
H(Yr→{d1,d2}(t)|U(t), [Z]n1 ) (A.19)

=

n
∑

qt=1

Prob(Qt = qt) ·H(Yr→{d1,d2}(qt)|U(qt), [Z]
qt
1 , Qt = qt) (A.20)

where (A.19) follows from the definition of the mutual information; (A.20) follows from

replacing the time indext by the time sharing random variableQt and the distribution of

U(qt) andYr→{d1,d2}(qt) does not depend on the future channel realization[Z]nqt+1.

We define three binary random variablesΘσ , 1{σ(Qt)=r}, ΘZ1 , 1{Zr→d1
(Qt)=1}, and

ΘZ2 , 1{Zr→d2
(Qt)=1}, which are functions ofQt and[Z]Qt

1 . Then we can rewrite (A.20) as

the following.

(R1 − ts1p1(d1, d2)− ε1)
+

≤
n
∑

qt=1

1

n
H(Yr→{d1,d2}(qt)|U(qt), [Z]

qt
1 , Qt = qt,Θσ,ΘZ1,ΘZ2) (A.21)

=
n
∑

qt=1

1

n

∑

∀u,[z]
qt
1 ,

θσ ,θZ1
,θZ2

pU(qt),[Z]
qt
1 ,Θσ ,ΘZ1

,ΘZ2
(u, [z]qt1 , θσ, θZ1 , θZ2)

·H(Yr→{d1,d2}(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = θσ,ΘZ1 = θZ1 ,ΘZ2 = θZ2) (A.22)

=

n
∑

qt=1

1

n

∑

∀u,[z]
qt
1 ,θZ1

,θZ2
s.t. max{θZ1

,θZ2
}=1

p(u, [z]qt1 , 1, θZ1, θZ2)

·H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = 1,ΘZ1 = θZ1 ,ΘZ2 = θZ2) (A.23)
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where (A.21) follows from the fact thatΘ’s are functions ofQ and [Z]Qt

1 ; (A.22) fol-

lows from the definition of the conditional entropy; and (A.23) follows from the fact that

Yr→{d1,d2}(qt) is not erasure only ifσ(qt) = r and at least one ofZr→d1 andZr→d2 equals

to one and furthermoreYr→{d1,d2}(qt) = Xr(qt) under such a condition, where we use

p(u, [z]qt1 , 1, θZ1, θZ2) as the shorthand ofpU(qt),[Z]
qt
1 ,Θσ,ΘZ1

,ΘZ2
(u, [z]qt1 , 1, θZ1, θZ2).

We can further simplify (A.23) by the following steps. We first note that conditioning

onU(qt) = u, [Z]qt−1
1 = [z]qt−1

1 , andΘσ = 1, the random variableXr(qt) is independent

of Z(qt), ΘZ1, andΘZ2. Notice that[Z]qt−1
1 is a subset ofU(qt). Therefore, we have

H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,Θσ = 1,ΘZ1 = θZ1 ,

ΘZ2 = θZ2)

= H(Xr(qt)|U(qt) = u,Θσ = 1). (A.24)

Also the joint probability can be rewritten as

∑

∀u,[z]
qt
1 ,θZ1

,θZ2
s.t. max{θZ1

,θZ2
}=1

pU(qt),[Z]
qt
1 ,Θσ,ΘZ1

,ΘZ2
(u, [z]qt1 , 1, θZ1, θZ2)

=
∑

∀u

pU(qt),Θσ
(u, 1) ·

∑

∀z,θZ1
,θZ2

s.t. max{θZ1
,θZ2

}=1

pZ(qt),ΘZ1
,ΘZ2

|U(qt),Θσ
(z, θZ1 , θZ2 |u, 1) (A.25)

=

(

∑

∀u

pU(qt),Θσ
(u, 1)

)

· pr(d1, d2). (A.26)

where (A.25) follows from the basic probability definition,and (A.26) follows from that

the assumption that the channel is memoryless.

(A.24) and (A.26) helps us rewrite (A.23) as

(A.23) = tr · pr(d1, d2)

·
∑n

qt=1
1
n

∑

∀u p(u, 1) ·H(Xr(qt)|u, 1)
tr

(A.27)

wherep(u, 1) andH(Xr(qt)|u, 1) are the shorthand forpU(qt),Θσ
(u, 1) andH(Xr(qt)|U(qt) =

u,Θσ = 1), respectively.
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We now focus on flow 2. By Fano’s inequality, for someε2 > 0 that goes to 0 asε → 0,

with similar steps as in (A.12)–(A.18), we can also show that

nR2 = H(W2)

≤I(W2; [Y{s1,s2,r}→d2,Z]
n
1 ) + nε2

=I(W2; [Z]
n
1 ) + I(W2; [Y{s1,s2,r}→d2]

n
1 |[Z]n1 ) + nε2 (A.28)

=

n
∑

t=1

I(W2;Y{s1,s2,r}→d2(t)|[Y{s1,s2,r}→d2]
t−1
1 , [Z]n1 )

+ nε2 (A.29)

=nε2 +
n
∑

t=1

(

I(W2; Yr→d2(t)|[Y{s1,s2,r}→d2]
t−1
1 , [Z]n1 )

+ I(W2; Ys2→d2(t)|[Y{s1,s2}→d2 ]
t−1
1 , [Yr→d2]

t
1, [Z]

n
1 )

+I(W2; Ys1→d2(t)|[Ys1→d2 ]
t−1
1 , [Y{s2,r}→d2]

t
1, [Z]

n
1 )
)

(A.30)

≤nε2 +
n
∑

t=1

I(W2; Yr→d2(t)|[Y{s1,s2,r}→d2 ]
t−1
1 , [Z]n1 )

+ nts2p2(d2) + 0 (A.31)

where (A.28), (A.29), and (A.30) follows from the chain ruleand the independence be-

tweenW2 and [Z]n1 ; and (A.31) follows from similar derivation as in (A.17). Wethen

have

(A.31) =nε2 + nts2p2(d2)

+
n
∑

t=1

(

H(Yr→d2(t)|[Y{s1,s2,r}→d2]
t−1
1 , [Z]n1 )

− H(Yr→d2(t)|W2, [Y{s1,s2,r}→d2]
t−1
1 , [Z]n1 )

)

(A.32)

≤ nε2 + nts2p2(d2)

+

n
∑

t=1

(H(Yr→d2(t)|[Z]n1 )−H(Yr→d2(t)|U(t), [Z]n1 )) (A.33)

= nε2 + nts2p2(d2) +
n
∑

t=1

I(U(t); Yr→d2(t)|[Z]n1 ), (A.34)
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where (A.32) and (A.34) follows from the definition of the mutual information; and (A.33)

follows from the fact thatconditioning does not increase the entropyand[Y{s1,s2,r}→d2]
t−1
1

a subset ofU(t). Since the mutual information is always non-negative, we now have

(R2 − ts2ps2(d2)− ε2)
+

≤ 1

n

n
∑

t=1

I(U(t); Yr→d2(t)|[σ,Z]n1 )

=

n
∑

qt=1

Prob(Qt = qt) · I(U(qt); Yr→d2(qt)|[Z]qt1 , Qt = qt) (A.35)

=

n
∑

qt=1

1

n
·H(Yr→d2(qt)|[Z]qt1 , Qt = qt)

−
n
∑

qt=1

1

n
·H(Yr→d2(qt)|U(qt), [Z]

qt
1 , Qt = qt), (A.36)

where (A.35) follows from the definition of the conditional mutual information and the

fact that the distribution ofU(qt) andYr→d2(qt) does not depend on the future channel

realization[Z]nqt+1; and (A.36) follows from the definition of the mutual information. We

first discuss the first summation in (A.36)

n
∑

qt=1

1

n
·H(Yr→d2(qt)|[Z]qt1 , Qt = qt)

=

n
∑

qt=1

1

n
·H(Yr→d2(qt)|[Z]qt1 , Qt = qt,Θσ,ΘZ2) (A.37)

=

n
∑

qt=1

1

n

∑

∀[z]
qt
1 ,

θσ ,θZ2

p[Z]
qt
1 ,Θσ,ΘZ2

([z]qt1 , θσ, θZ2)

·H(Yr→d2(qt)|[Z]qt1 = [z]qt1 ,

Θσ = θσ,ΘZ2 = θZ2) (A.38)

=

n
∑

qt=1

1

n

∑

∀[z]
qt
1

p[Z]
qt
1 ,Θσ,ΘZ2

([z]qt1 , 1, 1)

·H(Xr(qt)|[Z]qt1 = [z]qt1 ,

Θσ = 1,ΘZ2 = 1) (A.39)
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where (A.37) follows from the fact thatΘ’s are functions ofQ and [Z]Qt

1 ; (A.38) fol-

lows from the definition of the conditional entropy; and (A.39) follows from the fact

thatYr→d2(qt) is not erasure only ifσ(qt) = r andZr→d2 equals to one and furthermore

Yr→d2(qt) = Xr(qt) under such a condition.

We can further simplify (A.39) by the following steps. We first note that conditioning

on [Z]qt−1
1 = [z]qt−1

1 andΘσ = 1, the random variableXr(qt) is independent ofZ(qt) and

ΘZ2. Therefore, we have

H(Xr(qt)|[Z]qt1 = [z]qt1 ,Θσ = 1,ΘZ2 = 1)

= H(Xr(qt)|[Z]qt−1
1 = [z]qt−1

1 ,Θσ = 1). (A.40)

Also the joint probability can be rewritten as

∑

∀[z]
qt
1

p[Z]
qt
1 ,Θσ,ΘZ2

([z]qt1 , 1, 1)

=
∑

∀[z]
qt−1
1

p
[Z]

qt−1
1 ,Θσ

([z]qt−1
1 , 1) ·

∑

∀z

p
Z(qt),ΘZ2

|[Z]
qt−1
1 ,Θσ

(z, 1|[z]qt−1
1 , 1) (A.41)

=





∑

∀[z]
qt−1
1

p
[Z]

qt−1
1 ,Θσ

([z]qt−1
1 , 1)



 · pr(d2). (A.42)

where (A.41) follows from the basic probability definition,and (A.42) follows from that

the assumption that the channel is memoryless.

(A.40) and (A.42) helps us rewrite (A.39) as

(A.39) = tr · pr(d2)

·
∑n

qt=1
1
n

∑

∀[z]
qt−1
1

p([z]qt−1
1 , 1) ·H(Xr(qt)|[z]qt−1

1 , 1)

tr
(A.43)

wherep([z]qt−1
1 , 1) andH(Xr(qt)|[z]qt−1

1 , 1) are the shorthand forp
[Z]

qt−1
1 ,Θσ

([z]qt−1
1 , 1) and

H(Xr(qt)|[Z]qt−1
1 = [z]qt−1

1 ,Θσ = 1), respectively.
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Similarly, for the second summation in (A.36),

n
∑

qt=1

1

n
·H(Yr→d2(qt)|U(qt), [Z]

qt
1 , Qt = qt)

=

n
∑

qt=1

1

n
·H(Yr→d2(qt)|U(qt), [Z]

qt
1 , Qt = qt,Θσ,ΘZ2) (A.44)

=
n
∑

qt=1

1

n

∑

∀u,[z]
qt
1 ,

θσ ,θZ2

pU(qt),[Z]
qt
1 ,Θσ,ΘZ2

(u, [z]qt1 , θσ, θZ2)

·H(Yr→d2(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = θσ,ΘZ2 = θZ2) (A.45)

=

n
∑

qt=1

1

n

∑

∀u,[z]
qt
1

pU(qt),[Z]
qt
1 ,Θσ,ΘZ2

(u, [z]qt1 , 1, 1)

·H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = 1,ΘZ2 = 1) (A.46)

where (A.44) follows from the fact thatΘ’s are functions ofQ and [Z]Qt

1 ; (A.45) fol-

lows from the definition of the conditional entropy; and (A.46) follows from the fact

thatYr→d2(qt) is not erasure only ifσ(qt) = r andZr→d2 equals to one and furthermore

Yr→d2(qt) = Xr(qt) under such a condition.

We can further simplify (A.46) by the following steps. We first note that conditioning

onU(qt) = u, [Z]qt−1
1 = [z]qt−1

1 , andΘσ = 1, the random variableXr(qt) is independent

of Z(qt) andΘZ2. Notice that[Z]qt−1
1 is a subset ofU(qt). Therefore, we have

H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,Θσ = 1,ΘZ2 = 1)

= H(Xr(qt)|U(qt) = u,Θσ = 1). (A.47)
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Also the joint probability can be rewritten as

∑

∀u,[z]
qt
1

pU(qt),[Z]
qt
1 ,Θσ,ΘZ2

(u, [z]qt1 , 1, 1)

=
∑

∀u

pU(qt),Θσ
(u, 1) ·

∑

∀z

pZ(qt),ΘZ2
|U(qt),Θσ

(z, 1|u, 1) (A.48)

=

(

∑

∀u

pU(qt),Θσ
(u, 1)

)

· pr(d2). (A.49)

where (A.48) follows from the basic probability definition,and (A.49) follows from that

the assumption that the channel is memoryless.

(A.47) and (A.49) helps us rewrite (A.46) as

(A.39) = tr · pr(d2)

·
∑n

qt=1
1
n

∑

∀u p(u, 1) ·H(Xr(qt)|u, 1)
tr

(A.50)

wherep(u, 1) andH(Xr(qt)|u, 1) are the shorthand forpU(qt),Θσ
(u, 1) andH(Xr(qt)|U(qt) =

u,Θσ = 1), respectively.

Combining (A.43) and (A.50), we can rewrite (A.36) in the following form.

(R2 − ts2ps2(d2)− ε2)
+

≤ tr · pr(d2)

·
(∑n

qt=1
1
n

∑

∀[z]
qt−1
1

p([z]qt−1
1 , 1) ·H(Xr(qt)|[z]qt−1

1 , 1)

tr
−

∑n

qt=1
1
n

∑

∀u p(u, 1) ·H(Xr(q)|u, 1)
tr

)

. (A.51)

Summing up (A.27)
pr(d1,d2)

and (A.51)
pr(d2)

, we thus have

(R1 − ts1p1(d1, d2)− ε1)
+

pr(d1, d2)
+

(R2 − ts2p2(d2)− ε2)
+

pr(d2)

≤ tr ·
∑n

qt=1
1
n

∑

∀[z]
qt−1
1

p([z]qt−1
1 , 1) ·H(Xr(qt)|[z]qt−1

1 , 1)

tr
(A.52)

≤ tr, (A.53)
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where (A.53) is based on the following observations. We firstnote that by definition

tr =

n
∑

qt=1

1

n
Prob(σ(qt) = r)

=

n
∑

qt=1

1

n

∑

∀[z]
qt−1
1

p([z]qt−1
1 , 1).

Therefore, the fraction term in (A.52) can be viewed as the normalization of the conditional

entropyH(Xr(qt)|[z]qt−1
1 , 1). Since each conditional entropy is no larger than1 (with the

base of the logarithm beingq), we thus have (A.53).

(A.53) holds for arbitraryε > 0. Letting ε → 01, we thus have the following final

inequality.

(R1 − ts1p1(d1, d2))
+

pr(d1, d2)
+

(R2 − ts2p2(d2))
+

pr(d2)
≤ tr,

which gives us (4.8). (4.7) can be proven by symmetry. The proof of the outer bound is

thus complete.

1As a result,ε1 → 0 andε2 → 0.
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B. DETAILED ACHIEVABILITY ANALYSIS

The feasibility for PolicyΓs1,0 and PolicyΓs1,1 has been proven in Section 4.3.1. In the

following discussion about the rank of spaces, we again relyon the first order, expectation-

based analysis and assume the application of the law of largenumbers implicitly.

Policy Γs1,2: Similar to the analysis for PolicyΓs1,1, assumingq ≥ 2, the condition

that (3.3) being non-empty is equivalent to whether the following rank-based inequality is

satisfied.

Rank(S2)− Rank(S2 ∩ (S1 ⊕ Sr))

=Rank(S1 ⊕ S2 ⊕ Sr)− Rank(S1 ⊕ Sr) > 0. (B.1)

where (B.1) follows from Lemma 3.1.2.

Similar to the discussion inΓs1,0 andΓs1,1, we will quantify individual ranks at the end

of Γs1,2, the policy of interest, and prove that even in the end ofΓs1,2, the rank difference

in (B.1) is strictly larger than0. Therefore, throughout the entire duration ofΓs1,2, (B.1) is

larger than0 andΓs1,2 is always feasible.

We first focus onRank(S1⊕S2⊕Sr). SinceS1⊕S2⊕Sr is a subset of the exclusion set

in Γs1,0, every time aΓs1,0 packet is received by one ofd1, d2, andr, Rank(S1 ⊕ S2 ⊕ Sr)

will increase by one. On the other hand, notice thatS1 ⊕ S2 ⊕ Sr is a superset of the

inclusion set inΓs1,1 andΓs1,2. HenceRank(S1 ⊕ S2 ⊕ Sr) remains the same throughout

Γs1,1 andΓs1,2. As a result, in the end of policyΓs1,2, we have

E{Rank(S1 ⊕ S2 ⊕ Sr)} = nω0
s1
p1(d1, d2, r). (B.2)

We now focus onRank(S1 ⊕ Sr). SinceS1 ⊕ Sr is a subset of the exclusion sets of

Γs1,0, Γs1,1 andΓs1,2, every time a packet ofΓs1,0, Γs1,1, or Γs1,2 is received by one ofd1

andr, Rank(S1 ⊕ Sr) will increase by one. As a result, in the end of policyΓs1,2, we have

E{Rank(S1 ⊕ Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1, r). (B.3)
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Jointly, (B.2), (B.3), and (4.15) imply (B.1) in the end ofΓs1,2.

Policy Γs1,3: Similar to the analysis of the previous policies, assumingq ≥ 2, the

condition that (3.4) being non-empty is equivalent to whether the following rank-based

inequality is satisfied.

Rank(Sr)− Rank(((S2 ∩ Sr)⊕ S1) ∩ Sr)

=Rank((S2 ∩ Sr)⊕ S1 ⊕ Sr)− Rank((S2 ∩ Sr)⊕ S1) (B.4)

=Rank(S1 ⊕ Sr)− (Rank(S1) + Rank(S2 ∩ Sr)

− Rank(S1 ∩ S2 ∩ Sr)) (B.5)

=Rank(S1 ⊕ Sr)− Rank(S1)− (Rank(S2) + Rank(Sr)

− Rank(S2 ⊕ Sr)) + Rank(S1 ∩ S2 ∩ Sr) > 0, (B.6)

where (B.4) follows from Lemma 3.1.2; (B.5) follows from simple set operations and from

Lemma 3.1.2; and (B.6) follows from Lemma 3.1.2.

Similar to the previous discussion, we will quantify individual ranks at the end ofΓs1,3,

the policy of interest and prove that even in the end ofΓs1,3, the rank difference in (B.6) is

strictly larger than0. Therefore, throughout the entire duration ofΓs1,3, (B.6) is larger than

0 andΓs1,3 is always feasible.

By similar analysis,1 in the end ofΓs1,3 we have

E{Rank(S1)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
+ ω3

s1
)p1(d1), (B.7)

E{Rank(S2)} = n(ω0
s1
+ ω1

s1
+ ω3

s1
)p1(d2), (B.8)

E{Rank(Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(r), (B.9)

E{Rank(S1 ⊕ Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1, r), (B.10)

E{Rank(S2 ⊕ Sr)} = nω0
s1
p1(d2, r) (B.11)

What remains to be decided is the value ofRank(S1 ∩ S2 ∩ Sr) at the end of Policy

Γs1,3. To proceed, we introduce an auxiliary nodea in the following way. Whenever a

1The derivation of (B.8) for the case of PolicyΓs1,3 uses the following inequality as well.

(3.4) ⊆ (Sr\(S2 ∩ Sr)) = (Sr\S2).
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vectorv sent bys1 is received by bothd1 andr, we let the auxiliary nodea observe such

v as well. The knowledge space ofa, denoted bySa is thus the linear span of all vectors

received by bothd1 andr.

We first argue thatSa = S1 ∩ Sr in the end of policyΓs1,2. Sincea only observes those

vectors commonly available at bothd1 andr, the knowledge space ofSa is a subset of

S1 ∩ Sr. KnowingSa ⊆ S1 ∩ Sr, we can quickly check thatSa is a subset of the exclusion

sets in PoliciesΓs1,0, Γs1,1, andΓs1,2. Therefore, every time nodea receives a packet during

policiesΓs1,0, Γs1,1, andΓs1,2, the rank ofSa will increase by one. Therefore, we have

E{Rank(Sa)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1r) (B.12)

in the end ofΓs1,2. On the other hand, by similar analysis as before, we have

E{Rank(S1)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1),

E{Rank(Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(r),

E{Rank(S1 ⊕ Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1, r)

in the end of policyΓs1,2. By Lemma 3.1.2, we thus haveRank(Sa) = Rank(S1 ∩ Sr). As

a result, we have provenSa = (S1 ∩ Sr) in the end ofΓs1,2.

By the above analysis, we thus have(S1∩S2 ∩Sr) = Sa∩S2. By similarly rank-based

analysis, in the end ofΓs1,2 we have

E{Rank(S2)} = n(ω0
s1
+ ω1

s1
)p1(d2) (B.13)

E{Rank(S2 ⊕ Sa)} = n(ω0
s1
+ ω1

s1
)p1(d2, d1r) (B.14)

wherep1(d2, d1r) in (B.14) is the probability that at least one of noded2 and nodea receives

the packet and (B.14) follows from the observation thatS2⊕Sa is a subset of the exclusion

sets ofΓs1,0, Γs1,1 and is a superset of the inclusion set ofΓs1,2. By (B.12), (B.13), and

(B.14), we have thus proven that

E{Rank(S1 ∩ S2 ∩ Sr)} = E{Rank(Sa ∩ S2)}

=E{Rank(S2)}+ E{Rank(Sa)} − E{Rank(S2 ⊕ Sa)}

=n
(

ω0
s1
+ ω1

s1

)

p1(d1d2r) + nω2
s1
p1(d1r) (B.15)
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in the end ofΓs1,2.

In the following, we will quantify the increment ofRank(S1 ∩ S2 ∩ Sr) duringΓs1,3.

To that end, we introduce two more auxiliary nodesb andc. In the beginning ofΓs1,3, we

let nodeb (resp.c) be aware of the knowledge spaceS1 ∩ Sr (resp.S2 ∩ Sr). DuringΓs1,3,

whenever a packet is received byd1 (resp.d2), we let the auxiliary nodeb (resp.c) observe

such a packet as well. From the construction, it is clear thatthe following equalities hold

in the beginning ofΓs1,3.

Sb = S1 ∩ Sr (B.16)

Sc = S2 ∩ Sr. (B.17)

We will prove that (B.16) and (B.17) hold even in the end ofΓs1,3 as well.

In the following, we will prove that (B.16) holds in the end ofΓs1,3. We first note that

by our construction, we always haveS1 ⊃ Sb ⊃ (S1 ∩ Sr). Knowing thatSb is always a

subset ofS1 andS1 is a subset of the exclusion sets inΓs1,3, we can see that everytimed1

receives a packet during policyΓs1,3, Rank(Sb) will increase by one. Moreover, only when

d1 receives a packet during policyΓs1,3 will Rank(Sb) increase. As a result, the increment

of Rank(Sb) duringΓs1,3 equals the number of timesd1 receives a packet duringΓs1,3. On

the other hand,Rank(S1 ∩ Sr) = Rank(S1) +Rank(Sr)−Rank(S1 ⊕ Sr). Since bothSr

andS1 ⊕ Sr are supersets of the inclusion set ofΓs1,3, bothRank(Sr) andRank(S1 ⊕ Sr)

remain identical duringΓs1,3. Therefore, the increment ofRank(S1∩Sr) is identical to the

increment ofRank(S1) duringΓs1,3. As a result, the increment ofRank(S1 ∩ Sr) during

Γs1,3 equals the number of timesd1 receives a packet duringΓs1,3. We have thus proven

Rank(Sb) = Rank(S1∩Sr) in the end ofΓs1,3, which implies (B.16). (B.17) can be proven

by symmetry.

To quantify the increment ofRank(S1∩S2∩Sr) duringΓs1,3, we notice thatRank(S1∩
S2 ∩ Sr) = Rank(Sb ∩ Sc) = Rank(Sb) + Rank(Sc) − Rank(Sb ⊕ Sc). As a result, the

increment ofRank(S1 ∩ S2 ∩ Sr) during policyΓs1,3 is the summation of the increments

of Rank(Sb) andRank(Sc) minus the increment ofRank(Sb ⊕ Sc) duringΓs1,3. By our

construction, the increments ofSb, Sc, andSb ⊕ Sc during Γs1,3 is simply nω3
s1
p1(d1),
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nω3
s1
p1(d2), andnω3

s1
p1(d1, d2), respectively. As a result, the increment ofRank(S1∩S2 ∩

Sr) duringΓs1,3 is simplynω3
s1
p1(d1d2).

Combining (B.15), we have thus proven that

E{Rank(S1 ∩ S2 ∩ Sr)}

=n
(

ω0
s1
+ ω1

s1

)

p1(d1d2r) + nω2
s1
p1(d1r) + nω3

s1
p1(d1d2) (B.18)

in the end of PolicyΓs1,3.

Jointly, (B.7) to (B.11), (B.18), and (4.16) imply (B.6) in the end ofΓs1,3.

Policy Γs1,4: Similar to the analysis of the previous policies, the condition that (3.5)

being non-empty is equivalent to whether the following rank-based inequality is satisfied

in the end ofΓs1,4.

Rank(S2 ∩ Sr)− Rank(S1 ∩ S2 ∩ S2)

=(Rank(S2) + Rank(Sr)− Rank(S2 ⊕ Sr))

− Rank(S1 ∩ S2 ∩ Sr) > 0. (B.19)

Similar to the previous discussion, we will quantify individual ranks at the end ofΓs1,4 and

prove that (B.19) holds in the end ofΓs1,4.

By similar analysis, we have

E{Rank(S2)} = n(ω0
s1
+ ω1

s1
+ ω3

s1
)p1(d2), (B.20)

E{Rank(Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(r), (B.21)

E{Rank(S2 ⊕ Sr)} = nω0
s1
p1(d2, r) (B.22)

in the end ofΓs1,4. What remains to be decided is the value ofRank(S1 ∩ S2 ∩ Sr) at the

end of PolicyΓs1,4. In (B.18), we have already quantifiedRank(S1∩S2 ∩Sr) in the end of

Γs1,3. In the following, we will quantify the increment ofRank(S1 ∩S2 ∩Sr) duringΓs1,4.

By (3.5), we can see that every timed1 receives a packet duringΓs1,4, Rank(S1 ∩ S2 ∩ Sr)
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will increase by one. As a result, the increment ofRank(S1 ∩ S2 ∩ Sr) duringΓs1,4 is

nω4
s1
p1(d1). Together with (B.18), we have proven that

E{Rank(S1 ∩ S2 ∩ Sr)}

=n
(

ω0
s1
+ ω1

s1

)

p1(d1d2r) + nω2
s1
p1(d1r)

+ nω3
s1
p1(d1d2) + nω4

s1
p1(d1) (B.23)

in the end ofΓs1,4. Jointly, (B.20) to (B.23) and (4.17) imply that (B.19) holds in the end

of Γs1,4.

The feasibility of policyΓs2,k, k = 0, 1, 2, 3, 4, can be proven by symmetry.

Policy Γr,1: We first notice that the inclusion space and exclusion space of Policy Γr,1

are the same as of PolicyΓs1,3. Hence to prove the feasibility of PolicyΓr,1, we need to

prove that (B.6) holds in the end ofΓr,1. By similar analysis, we have

E{Rank(S1)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
+ ω3

s1
+ ω4

s1
)p1(d1)

+ nω1
r,Npr(d1), (B.24)

E{Rank(S2)} = n(ω0
s1
+ ω1

s1
+ ω3

s1
)p1(d2)

+ nω1
r,Npr(d2), (B.25)

E{Rank(Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(r), (B.26)

E{Rank(S1 ⊕ Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1, r), (B.27)

E{Rank(S2 ⊕ Sr)} = nω0
s1
p1(d2, r). (B.28)

in the end ofΓr,1.

What remains to be decided is the value ofRank(S1 ∩ S2 ∩ Sr) at the end of Policy

Γr,1. In (B.23) we have computed the value ofRank(S1∩S2∩Sr) in the end ofΓs1,4. As a

result, we only need to quantify the increment ofRank(S1 ∩ S2 ∩ Sr) duringΓr,1 . By the

same analysis as when we quantify the increment ofRank(S1 ∩ S2 ∩ Sr) duringΓs1,3, the
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increment ofRank(S1 ∩ S2 ∩ Sr) duringΓr,1 is nω1
r,Npr(d1d2). By (B.23), we have shown

that

E{Rank(S1 ∩ S2 ∩ Sr)}

=n
(

ω0
s1
+ ω1

s1

)

p1(d1d2r) + nω2
s1
p1(d1r)

+ nω3
s1
p1(d1d2) + nω4

s1
p1(d1) + nω1

r,Npr(d1d2) (B.29)

in the end ofΓr,1. Jointly, (B.24) to (B.29) and (4.18) imply that (B.6) holdsin the end of

Γr,1.

The discussion of PolicyΓr,2 follows symmetrically.

Policy Γr,3 for v(1): We will prove that for the firstnω1
r,C time slots of PolicyΓr,3, we

can always choosev(1) according to (3.13). To that end, we first notice that the inclusion

space and exclusion space in (3.13) are the same as those of Policy Γs1,4. Hence to prove

that (3.13) remains non-empty during the firstnω1
r,C time slots of PolicyΓr,3, we need to

prove that (B.19) holds in the end of the firstnω1
r,C time slots of PolicyΓr,3. By similar

analysis as used in the previous policies, we have

E{Rank(S2)} = n(ω0
s1
+ ω1

s1
+ ω3

s1
)p1(d2)

+ nω1
r,Npr(d2), (B.30)

E{Rank(Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(r), (B.31)

E{Rank(S2 ⊕ Sr)} = nω0
s1
p1(d2, r). (B.32)

in the end of the firstnω1
r,C time slots of PolicyΓr,3. What remains to be decided is the

value ofRank(S1 ∩S2 ∩Sr) at the end of the firstnω1
r,C time slots of PolicyΓr,3. In (B.29)

we have computed the value ofRank(S1 ∩S2 ∩Sr) in the end ofΓr,1. As a result, we only

need to quantify the increment ofRank(S1 ∩ S2 ∩ Sr) during the firstnω1
r,C time slots of

PolicyΓr,3. By the same analysis as when we quantify the increment ofRank(S1∩S2∩Sr)
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duringΓs1,4, the increment ofRank(S1∩S2∩Sr) during the firstnω1
r,C time slots of Policy

Γr,3 is nω1
r,Cpr(d1). By (B.29), we have shown that

E{Rank(S1 ∩ S2 ∩ Sr)}

=n
(

ω0
s1
+ ω1

s1

)

p1(d1d2r) + nω2
s1
p1(d1r)

+ nω3
s1
p1(d1d2) + nω4

s1
p1(d1) + nω1

r,Npr(d1d2)

+ nω1
r,Cpr(d1) (B.33)

in the end of the firstnω1
r,C time slots of PolicyΓr,3. Jointly, (B.30) to (B.33) and (4.19)

imply that (B.19) holds in the end of the firstnω1
r,C time slots ofΓr,3.

The discussion of the firstnω2
r,C time slots ofΓr,3 follows symmetrically.

The above analysis completes the achievability proof started in Section 4.3.1.
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C. BOUND-MATCHING VERIFICATION

Here we are going to verify the proposed parameter assignment in the proof ofLemma

4.3.1satisfies (4.9), (4.10), (4.32) to (4.39). For (4.9),

3
∑

k=0

ωk
si
=

Ri

pi(dj, r)

+Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

− 1

pi(dj, r)

)

+Ri

(

1

pi(r)
− 1

pi(dj)

)+

+min

{

Ri

(

1

pi(dj)
− 1

pi(r)

)+

, tsi −
Ri

pi(r)

}

≤ Ri

pi(r)

+ min

{

Ri

(

1

pi(dj)
− 1

pi(r)

)+

, tsi −
Ri

pi(r)

}

≤tr.

Hence it satisfies (4.9). For (4.10),

ωi
r,N + ωj

r,N + ωi
r,C

=
(Ri − tsipi(dj))

+

pr(di, dj)
+

(Rj − tsjpsj (di))
+

pr(di, dj)

+
Ri

pr(di)
− (Ri − tsipi(dj))

+

pr(di, dj)

=
Ri

pr(di)
+

(Rj − tsjpsj (di))
+

pr(di, dj)
≤ tr.

Hence it satisfies (4.10). For (4.32),

ω0
si
pi(dj, r) =

Ri

pi(dj, r)
pi(dj, r) = Ri.
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Hence it satisfies (4.32). For (4.33),

LHS =Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

− 1

pi(dj, r)

)

pi(r)

=Ri

(

min

{

1,
pi(r)

pi(dj)

}

− pi(r)

pi(dj, r)

)

≤Ri − Ri

pi(r)

pi(dj, r)
,

RHS=Ri

pi(djr)

pi(dj, r)
= Ri − Ri

pi(r)

pi(dj , r)
.

Hence it satisfies (4.33). For (4.34),

LHS =Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

− 1

pi(dj, r)

)

pi(dj)

=Ri

(

min

{

pi(dj)

pi(r)
, 1

}

− pi(dj)

pi(dj, r)

)

≤Ri −Ri

pi(dj)

pi(dj, r)
,

RHS=Ri

pi(rdj)

pi(dj, r)
= Ri − Ri

pi(dj)

pi(dj, r)
.

Hence it satisfies (4.34). For (4.35),

LHS =Ri

(

1

pi(r)
− 1

pi(dj)

)+

pi(r) = Ri

(

1− pi(r)

pi(dj)

)+

,

RHS=Ri

pi(djr)

pi(dj, r)

− Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

− 1

pi(dj, r)

)

pi(r)

=Ri

(

1− pi(r)

pi(dj, r)

)

− Ri

(

min

{

1,
pi(r)

pi(dj)

}

− pi(r)

pi(dj , r)

)

≥Ri

(

1− pi(r)

pi(dj)

)+

.



110

Hence it satisfies (4.35). For (4.36),

LHS =min

{

Ri

(

1− pi(dj)

pi(r)

)+

, tsipi(dj)−Ri

pi(dj)

pi(r)

}

,

RHS=Ri

pi(rdj)

pi(dj, r)

− Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

− 1

pi(dj , r)

)

pi(dj)

=Ri

(

1− pi(dj)

pi(dj, r)

)

− Ri

(

min

{

pi(dj)

pi(r)
, 1

}

− pi(dj)

pi(dj, r)

)

≥Ri

(

1− pi(dj)

pi(r)

)+

.

Hence it satisfies (4.36). For (4.37),

LHS =(Ri − tsipi(dj))
+ ,

RHS=Ri

pi(rdj)

pi(dj, r)

−Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

− 1

pi(dj, r)

)

pi(dj)

−min

{

Ri

(

1− pi(dj)

pi(r)

)+

, tsipi(dj)− Ri

pi(dj)

pi(r)

}

≥Ri

(

1− pi(dj)

pi(r)

)+

−min

{

Ri

(

1− pi(dj)

pi(r)

)+

, tsipi(dj)− Ri

pi(dj)

pi(r)

}

≥ (Ri − tsipi(dj))
+ .
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Hence it satisfies (4.37). For (4.38),

LHS =Ri − (Ri − tsipi(dj))
+ pr(di)

pr(di, dj)
,

RHS=Ri

pi(djr)

pi(dj, r)

+ (pi(dj) + pi(r))

·Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

− 1

pi(dj, r)

)

+Ri

(

1− pi(r)

pi(dj)

)+

+min

{

Ri

(

1− pi(dj)

pi(r)

)+

, tsipi(dj)− Ri

pi(dj)

pi(r)

}

+
(Ri − tsipi(dj))

+

pr(di, dj)
(pr(di, dj)− pr(di))

=Ri min

{

pi(dj)

pi(r)
,
pi(r)

pi(dj)

}

+Ri

(

1− pi(r)

pi(dj)

)+

+min

{

Ri

(

1− pi(dj)

pi(r)

)+

, tsipi(dj)− Ri

pi(dj)

pi(r)

}

+ (Ri − tsipi(dj))
+(1− pr(di)

pr(di, dj)
)

≥Ri − (Ri − tsipi(dj))
+ pr(di)

pr(di, dj)
.

Hence it satisfies (4.38). For (4.39),

pr(di)(ω
i
r,N + ωi

r,C) = Ri

With the above verification, we conclude that this proposed assignment satisfies (4.9),

(4.10), (4.32) to (4.39).
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D. THE GROWTH RATE OF DEFICIT

In this appendix, we analyze the growth rate of the deficit in NM 2. Before proving

Lemma 6.2.7, we need several lemmas. Letpk(t)
4
= −qk(t) + µin,k(t − 1) and pk(t)

grows sublinearly by the properties in Section 5.1.1. We notice thatDk(t) is the running

maximum ofpk(t) because by (6.14)

Dk(t) = Dk(t− 1) + (µout,k(t− 1)−Qk(t− 1))+

= Dk(t− 1) + max{0, µout,k(t− 1)−Qk(t− 1)}

= max{Dk(t− 1),−qk(t− 1) + µout,k(t− 1)}

= max{Dk(t− 1),−qk(t) + µin,k(t− 1)}. (D.1)

Let pk(t)
4
= −qk(t) + µin,k(t− 1) andp′k(t)

4
= pk(t)− pk(t). Note thatpk(t) is stable

by Lemma 5.1.1 andp′k(t) grows sublinearly by Lemma 5.1.2 and Lemma 5.1.3. LetD′
k(t)

be the running maximum of thep′k(t) andDk(t) be the running maximum ofpk(t). That is,

D′
k(t) = max

1≤τ≤t
p′k(τ),

Dk(t) = max
1≤τ≤t

pk(τ).

Let T ′
k(b)

4
= min{t ≥ 0 : p′k(t) ≥ b} be the hitting time ofp′k(t).

Claim D.0.1 There existC > 0 for all arrival vector realizations such that for allt with

Prob(T ′
k(b) ≤ t|{a(τ)}tτ=0) 6= 0,

Prob(p′k(t) ≥ b|T ′
k(b) ≤ t, {a(τ)}tτ=0) > C. (D.2)
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Proof Let∆µin,k(t)
4
= µin,k(t)−µin,k(t),∆µout,k(t)

4
= µout,k(t)−µout,k(t), and∆µk(t)

4
=

∆µin,k(t)−∆µout,k(t). By definition

qk(t) =

t−1
∑

τ=0

(µin,k(τ)− µout,k(τ)),

qk(t) =

t−1
∑

τ=0

(µin,k(τ)− µout,k(τ)),

qk(t)− qk(t) =

t−1
∑

τ=0

∆µk(τ).

Then

pk(t) = −
t−2
∑

τ=0

(µin,k(τ)− µout,k(τ)) + µout,k(t− 1),

pk(t) = −
t−2
∑

τ=0

(µin,k(τ)− µout,k(τ)) + µout,k(t− 1),

p′k(t) =
t−2
∑

τ=0

∆µk(τ) + ∆µout,k(t− 1).

We first notice that conditioning onT ′
k(b) ≤ t and the arrival vectors{a(τ)}tτ=0, p

′
k(t) ≥

b implies

p′k(t)− p′k(T
′
k(b)) ≥ 0

⇒
(

t−2
∑

τ=0

∆µk(τ) + ∆µout,k(t− 1)

)

−





T ′

k
(b)−2
∑

τ=0

∆µk(τ) + ∆µout,k(T
′
k(b)− 1)





=

t−2
∑

τ=T ′

k
(b)

∆µk(τ) + (∆µout,k(t− 1) + ∆µin,k(T
′
k(b)− 1)− 2∆µout,k(T

′
k(b)− 1)) ≥ 0.

Thus

Prob(p′k(t) ≥ b|T ′
k(b) ≤ t, {a(τ)}tτ=0)

=Prob

( t−2
∑

τ=T ′

k
(b)

∆µk(τ) + (∆µout,k(t− 1) + ∆µin,k(T
′
k(b)− 1)

−2∆µout,k(T
′
k(b)− 1)) ≥ 0|T ′

k(b) ≤ t, {a(τ)}tτ=0

)

(D.3)
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We then use the fact that conditioning on the arrival vectors, all the random variables in

(D.3) (in front of the conditioning part) are zero-mean, bounded, independent with each

other, and with finitely many different distributions.1 Thus (D.3) can be seen as

Prob(

L
∑

l=1

Xl ≥ 0) (D.4)

whereL is an arbitrary finite number and{Xl}Ll=1 are zero-mean, bounded, and indepen-

dent random variables with finitely many different distributions. Thus to prove this claim, it

is equivalent to show that for anyL, there existsC > 0 such thatProb(
∑L

l=1Xl ≥ 0) > C.

We first assume thatXl are not only independently distributed but actually i.i.d.By

the central limit theorem, there exists al0 such that whenL > l0, the probability of in-

terest is> 1/4. ChooseC = min(min{Prob(∑L

l=1Xi ≥ 0) : t ≤ t0}, 1/4). Note that

min{Prob(∑L
l=1Xi ≥ 0) : t ≤ t0} 6= 0 because of the zero-mean assumption and hence

C > 0.

Now, we consider the case thatXi are not identically distributed but with finitely many

different distributions. LetK be the number of different distributions andLk be the number

of random variables with distributionk. We group thoseXl, l = 1, 2, ..., L with the same

distribution and denote them by{Xk,lk}Lk

lk=1 for k = 1, 2, ..., K. We can write

Prob(
L
∑

l=1

Xl)

=Prob(

L1
∑

l1=1

X1,l1 +

L2
∑

l2=1

X2,l2 + ... +

lK
∑

lK=1

XK,LK
≥ 0)

≥Prob(

Lk
∑

lk=1

Xk,lk ≥ 0, ∀k)

=
K
∏

k=1

Prob(

Lk
∑

lk=1

Xk,lk ≥ 0). (D.5)

We have shown that for eachk, there existsCk such thatProb(
∑Lk

lk=1Xk,lk ≥ 0) > Ck.

Hence the product in (D.5) is larger thanC
4
=
∏K

k=1Ck. Notice that the arrival vectors only

influence the distribution of{L1, L2, ..., LK} andCk is valid for all possibleLk. Hence this

1This is because there only exist finitely many choices of scheduling decision.
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C is valid for all possible arrival vector realization. This completes the proof of this claim.

Lemma D.0.1 D′
k(t) grows sublinearly.

Proof Notice that by Claim D.0.1, there existsC for all arrival vector realizations such

that

Prob(p′k(t) ≥ b|T ′
k(b) ≤ t, {a(τ)}tτ=0)

=
Prob(p′k(t) ≥ b, T ′

k(b) ≤ t|{a(τ)}tτ=0)

Prob(T ′
k(b) ≤ t|{a(τ)}tτ=0)

=
Prob(p′k(t) ≥ b|{a(τ)}tτ=0)

Prob(T ′
k(b) ≤ t|{a(τ)}tτ=0)

> C (D.6)

Meanwhile, sinceD′
k(t) is the running maximum ofp′k(t),

Prob(D′
k(t) ≥ b|{a(τ)}tτ=0) = Prob(T ′

k(b) ≤ t|{a(τ)}tτ=0) <
1

C
Prob(p′k(t) ≥ b|{a(τ)}tτ=0)

(D.7)

Taking the expectation on both side over all possible arrival vectors

Prob(D′
k(t) ≥ b) <

1

C
Prob(p′k(t) ≥ b) (D.8)

Substitutingb by εt in the above equation and using the fact thatp′k(t) grows sublinearly,

D′
k(t) grows sublinearly. The proof is complete.

Claim D.0.2 The following two inequalities are true for all possible realizations.

(i)Dk(t + 1)2 − Dk(t)
2 ≤ max{pk(t + 1)2 − pk(t)

2, 0} + ∆2, where∆ is the supremum

over all possible|µout,k(t) − µin,k(t − 1)| (which is also the supremum over all possible

|pk(t + 1)− pk(t)|).
(ii)max{pk(t+ 1)2 − pk(t)

2, 0}+∆2 ≤ 2|pk(t)|∆+ 2∆2.

Proof We first prove (i). There are three possible cases.

Case 1:Dk(t) ≥ pk(t + 1). SinceDk(t) is the running maximum ofpk(t), Dk(t + 1) =

Dk(t) in this case. Thus the left hand side of (i) is zero and the inequality holds.
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Case 2:Dk(t) < pk(t + 1) andpk(t) ≥ 0. As a result of the definitions ofDk(t) and∆,

this condition also impliesDk(t+ 1) = pk(t + 1) and

Dk(t)−∆ ≤ pk(t) ≤ Dk(t) < pk(t + 1).

HenceDk(t+ 1)2 −Dk(t)
2 ≤ pk(t+ 1)2 − pk(t)

2 ≤ max{pk(t+ 1)2 − pk(t)
2, 0}+∆2.

Case 3:Dk(t) < pk(t + 1) andpk(t) < 0. SinceDk(t) is always no less than zero and

−∆ ≤ pk(t) < 0 implies∆2 − pk(t)
2 ≥ 0, thusDk(t + 1)2 − Dk(t)

2 ≤ pk(t + 1)2 ≤
max{pk(t+ 1)2 − pk(t)

2, 0}+∆2.

We then prove (ii). Let∆pk(t)
4
= pk(t)− pk(t− 1). Then

max{pk(t+ 1)2 − pk(t)
2, 0}+∆2

=max{(pk(t) + ∆pk(t+ 1))2 − pk(t)
2, 0}+∆2

=max{2pk(t)∆pk(t + 1))2 +∆pk(t+ 1)2, 0}+∆2

≤2|pk(t)|∆+ 2∆2.

Lemma D.0.2 Dk(t) grows sublinearly.

Proof Following from Claim D.0.2 and taking the expectation on both sides over all pos-

sible arrival vectors,

E{Dk(t+ 1)2} − E{Dk(t)2} ≤ 2E{|pk(t)|}∆+ 2∆2.

Iteratively summing up fromτ = 0 to τ = t− 1,

E{Dk(t)
2} ≤ 2∆

t−1
∑

τ=0

E{|pk(t)|}+ 2∆2t

⇒ 1

t
E{Dk(t)

2} ≤ 2∆
1

t

t−1
∑

τ=0

E{|pk(t)|}+ 2∆2.

The fact thatpk(t) is stable implies1
t

∑t−1
τ=0 E{|pk(t)|} is bounded for allt, say byU . For

anyε > 0, δ > 0, we then apply the Markov inequality,

Prob(Dk(t) > εt) ≤ 1

ε2t2
E{Dk(t)

2} ≤ 1

ε2t

(

2∆U + 2∆2
)

.
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Let t0 be the smallestt such that 1
ε2t

(2∆U + 2∆2) < δ. ThenProb(Dk(t) > εt) < δ for

all t > t0.

Proof of Lemma 6.2.7Notice thatDk(t) is the running maximum ofpk(t) andpk(t) =

p′k(t) + pk(t). HenceDk(t) ≤ D′
k(t) + Dk(t). From Lemma D.0.1 and Lemma D.0.2, it

impliesDk(t) also grows sublinearly.
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E. THE GROWTH RATE OF FICTITIOUS PACKETS

In this appendix, we prove Proposition 6.2.2. For eachn, there are two possible reasons

that SAn generates f.p. at timet. The first one is the null activity (N.A.) occurs at SAn at

time t. That is, there exists one queuek ∈ In such thatQk(t) < µout,k(t). By the property

of Dk(t), it is equivalent to sayDk(t) > Dk(t− 1). Thusηfp,n(t) generated from the first

reason can be bounded by

t
∑

τ=1

∑

k∈In

I{Dk(τ) > Dk(τ − 1)}.

The second one is that SAn takes a f.p. from one of the queuek ∈ In. To analyze the

second one, we define a binary random variableIk1,k2(t1, t2) = 1 if there is a f.p. entering

queuek2 at time t2 which is generated from the f.p. entering queuek1 at time t1, and

Ik1,k2(t1, t2) = 0 otherwise. Intuitively speaking,Ik1,k2(t1, t2) depends on the topology of

NM 2 and the route that the f.p. passes through, and hence it depends on the network status

B(τ) and the scheduling decisionsx∗(τ) for t1 ≤ τ ≤ t2. Thus the f.p. generated from the

second reason can be bounded by

t
∑

t2=1

∑

k∈In

∑

k′ 6=k

t
∑

t1=1

Ik′,k(t1, t2)I{Dk′(t1) > Dk′(t1 − 1)}.

Combining the numbers of f.p. generated from both reasons, we have

ηfp,n(t) ≤
t
∑

τ=1

∑

k∈In

I{Dk(τ) > Dk(τ − 1)}

+
t
∑

t2=1

∑

k∈In

∑

k′ 6=k

t
∑

t1=1

Ik′,k(t1, t2)I{Dk′(t1) > Dk′(t1 − 1)}

=
∑

k∈In

t
∑

τ=1

I{Dk(τ) > Dk(τ − 1)}

+
∑

k∈In

∑

k′ 6=k

t
∑

t2=1

t
∑

t1=1

Ik′,k(t1, t2)I{Dk′(t1) > Dk′(t1 − 1)}. (E.1)
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Notice that the first summation in (E.1) grows sublinearly byProposition 6.2.1. Hence

it remains to show that for eachk 6= k′,
∑t

t2=1

∑t
t1=1 Ik′,k(t1, t2)I{D′

k(t1) > D′
k(t1 − 1)}

also grows sublinearly.

Given anyε > 0 andδ > 0, by Markov inequality,

Prob

(

t
∑

t2=1

t
∑

t1=1

Ik′,k(t1, t2)I{D′
k(t1) > D′

k(t1 − 1)} > εt

)

≤ 1

εt
E

{

t
∑

t2=1

t
∑

t1=1

Ik′,k(t1, t2)I{D′
k(t1) > D′

k(t1 − 1)}
}

=
1

εt

t
∑

t1=1

E

{

t
∑

t2=t1+1

Ik′,k(t1, t2)I{D′
k(t1) > D′

k(t1 − 1)}
}

=
1

εt

t
∑

t1=1

E

{

E

{

t
∑

t2=t1+1

Ik′,k(t1, t2)I{D′
k(t1) > D′

k(t1 − 1)}|I{D′
k(t1) > D′

k(t1 − 1)}
}}

=
1

εt

t
∑

t1=1

(Prob(I{D′
k(t1) > D′

k(t1 − 1)} = 1)

· E
{

t
∑

t2=t1+1

Ik′,k(t1, t2)I{D′
k(t1) > D′

k(t1 − 1)}|I{D′
k(t1) > D′

k(t1 − 1)} = 1

}

+ Prob(I{D′
k(t1) > D′

k(t1 − 1)} = 0)

· E
{

t
∑

t2=t1+1

Ik′,k(t1, t2)I{D′
k(t1) > D′

k(t1 − 1)}|I{D′
k(t1) > D′

k(t1 − 1) = 0

})

=
1

εt

t
∑

t1=1

Prob(I{D′
k(t1) > D′

k(t1 − 1)} = 1)

· E
{

t
∑

t2=t1+1

Ik′,k(t1, t2)I{D′
k(t1) > D′

k(t1 − 1)}|I{D′
k(t1) > D′

k(t1 − 1)} = 1

}

(E.2)

E
{
∑t

t2=t1+1 Ik′,k(t1, t2)I{D′
k(t1) > D′

k(t1 − 1)}|I{D′
k(t1) > D′

k(t1 − 1)} = 1
}

is the ex-

pected number of f.p. received by queuek up tot, which come from the N.A. occurred at
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queuek′ at t1. Notice that NM 1 is acyclic and so is NM 2. Hence this amount isalways

bounded, sayc. Following (E.2), we have

Prob

(

t
∑

t2=1

t
∑

t1=1

Ik′,k(t1, t2)I{D′
k(t1) > D′

k(t1 − 1)} > εt

)

≤ c

εt

t
∑

t1=1

Prob(I{D′
k(t1) > D′

k(t1 − 1)} = 1)

=
c

εt

t
∑

t1=1

E{I{D′
k(t1) > D′

k(t1 − 1)}}

=
c

εt
E

{

t
∑

t1=1

I{D′
k(t1) > D′

k(t1 − 1)}
}

. (E.3)

By Proposition 6.2.1,nk(t) =
∑t

t1=1 I{D′
k(t1) > D′

k(t1 − 1)} grows sublinearly. Hence

there existsε′ > 0, δ′ > 0, andt0 with (ε′ + δ′) < δε
c

such thatProb(nk(t) > ε′t) < δ′ for

all t > t0. Furthermore, by definition,nk(t) ≤ t and hence

E{nk(t)} = Prob(nk(t) > ε′t)E{nk(t)|nk(t) > ε′t}+ Prob(nk(t) ≤ ε′t)E{nk(t)|nk(t) ≤ ε′t}

≤δ′t+ ε′t = (δ′ + ε′)t, ∀t > t0.

SubstitutingE{nk(t)} back to (E.3) and yields,

Prob

(

t
∑

t2=1

t
∑

t1=1

Ik′,k(t1, t2)I{D′
k(t1) > D′

k(t1 − 1)} > εt

)

≤ c

εt
· (ε′ + δ′)t

=
c(ε′ + δ′)

ε

<
c

ε
· δε
c

= δ, ∀t > t0.

This completes the proof.
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F. THE THROUGHPUT REGION OF 5-TYPE LNC SCHEME

In this appendix, we prove Proposition 6.3.1 to Proposition6.3.3. For Proposition 6.3.3,

following the continuity of the linear equations describing the stability region ofSPNε, we

have

ΛLNC = lim
ε→0

Λε = Λ0.

To prove Proposition 6.3.1 and Proposition 6.3.2, it is enough to prove the following

two statements: (1) For anyε > 0, the effective throughput of any scheme inSPNε is less

than the throughput of another scheme in 5-type LNC 2-user broadcast PEC; and (2) The

throughput of any scheme in 5-type LNC 2-user broadcast PEC is less than the effective

throughput of another scheme inSPN0.

To prove the first statement, for anyε > 0, we begin with one arbitrary scheme in

SPNε and propose another scheme in LNC problem as follows, named SchemeA. For

any timet, whenever we schedule SAi, if TYPEi is non-empty, then we also choose the

coding vector inTYPEi and send it out, and we send zero packet ifTYPEi is empty for

i ∈ {9, 18, 31, 63, 95}. It remains to show thatTYPEi is always nonempty whenever SAi

is scheduled.

We show this by claiming that for any timet andi ∈ {1, 2, 3, 4}, Qi,ε(t) ≤ Qi,LNC(t)

under SchemeA. We prove this claim iteratively. The statement is trivially true att = 0.

SupposeQi,ε(t) ≤ Qi,LNC(t) at time t. For time t + 1, we first discussi = 1. Since

a1(t) = A1(t) for all t, the number of flow-1 packets injected intoQ1,ε is the same as

the increment inQ1,LNC(t) = Rank(Ω(t)) − Rank(A7(t)). Suppose the scheduler choose

to activate SA18 at time t. SinceQi,ε(t) ≤ Qi,LNC(t), we can chooseTYPE18 at time t

as well. And henceQ1,LNC(t) decreases by one ifZs(t) ∈ {(1, 1), (1, 0), (0, 1)}. By the

random service distribution described before this proposition,Q1,LNC(t) also decreases by

one if Zs(t) ∈ {(1, 1), (1, 0), (0, 1)}. And henceQ1,ε(t + 1) ≤ Q1,LNC(t + 1). We now
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discussi = 3. Q3,ε(t + 1) can increase by one only when SA18 is scheduled at timet and

Zs(t) = (0, 1), whileQ3,LNC(t+1) can increase by one only whenTYPE18 is scheduled at

timet andZs(t) = (0, 1). Thus the increments are the same. The discussion for scheduling

SA63 is the same as scheduling SA18 in Q1,ε. Suppose SA31 is scheduled at timet. Since

Qi,ε(t) ≤ Qi,LNC(t), we can chooseTYPE31 at timet as well.Q3,ε(t + 1) decrease by one

whenZs(t) ∈ {(1, 0), (1, 1)} and byε whenZs(t) = (0, 1), whileQ3,LNC(t + 1) decrease

by one whenZs(t) ∈ {(1, 0), (1, 1)}. And henceQ3,ε(t+1) ≤ Q3,LNC(t+1). Fori = 2, 4,

they are symmetric toi = 1, 3. And hence we complete the proof of the claim and the first

statement.

To prove the second statement, we begin with one arbitrary scheme in LNC problem

and propose another scheme inSPN0 as follows, named Schemeb. For any timet and

i ∈ {9, 18, 31, 63, 95}, whenever we chooseTYPEi, we also schedule SAi if there is no

underflow, and don’t schedule any SA if there is underflow for SAi. It remains to show

that there is always no underflow whenTYPEi is scheduled. We show this by claiming

that for any timet andi ∈ {1, 2, 3, 4}, Qi,ε(t) = Qi,LNC(t) under SchemeB. The proof

of the claim is almost identical to the one for the first claim above. The only difference is

when discussingQ3,LNC(t+1) and choosingTYPE31. Q3,LNC(t+1) decrease by one when

Zs(t) ∈ {(1, 0), (1, 1)}, whileQ3,0(t + 1) decrease by one whenZs(t) ∈ {(1, 0), (1, 1)}.

And hence we complete the proof the second claim and the second statement. The proof of

the proposition is thus completed.
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