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ABSTRACT

Kuo, Wei-Cheng Ph.D., Purdue University, April 2013. Lobkdtwork Coding on Packet
Erasure Channels — From Shannon Capacity to Stability ReghMajor Professor: Chih-
Chun Wang Professor.

Network Coding (NC) has emerged as a ubiquitous techniquemimunication net-
works and has extensive applications in both practical @mgntations and theoretical de-
velopments. While the Avalanche P2P file system from Micitpgbe MORE routing
protocol, and the COPE coding architecture from MIT havelangented the idea of NC
and exhibited promising performance improvements, a Sagmit part of the success of NC
stems from the continuing theoretic development of NC ciipaeg., the Shannon capac-
ity results for the single-flow multi-cast network and theket erasure broadcast channel
with feedback. However, characterizing the capacity ferghactical wireless multi-flow
network setting remains a challenging topic in NC. The ditties of finding the optimal
NC strategy over multiple flows hinder the further advanceinie this area. Despite the
difficulty of characterizing the full capacity for large medrks, there are evidences showing
that even when using only local operations, NC can still vecsubstantial NC gain. We
believe that a deeper understanding of multi-flow local mekveoding will play a key role
in designing the next-generation high-throughput codiaged wireless network architec-
ture.

This thesis consists of two parts. In the first part, we charae the full Shannon ca-
pacity region of the COPFE principle when applied to a 2-flow wireless butterfly networ
with broadcast packet erasure channels. The capacitytsedldw for random overhear-
ing probabilities, arbitrary scheduling policies, netiavide channel state information
(CSI) feedback after each transmission, and potential iserelinear network codes. We

propose a theoretical outer bound and a new class of lingarorie codes, named the



Space-Based Linear Network Coding (SBLNC), that achiekescapacity outer bound.
Numerical experiments show that SBLNC provides closegtrzal throughput even in
the scenario with opportunistic routing.

In the second part, we further consider the complete dyreaiistochastic arrivals and
gueueing and study the corresponding stability regioneBas dynamic packet arrivals,
the resulting solution would be one step closer to pracimeplementation, when compared
to the previous block-code-based capacity study. Howéwvenature of combining packets
in NC is not well-defined in existing store-and-forward #ligbanalysis, which provides
further challenges for online coding and scheduling im@etation. Focusing on broad-
cast packet erasure channels, an essential componentwiréhess butterfly network, we
modify the network control algorithm Deficit Maximum Weig{ibMW) algorithm and
successfully incorporate the nature of combining packetdC. With the assists of both
modified DMW and SBLNC, we characterize the full stabilitgien of 2-use broadcast
packet erasure channel with feedback.

For the future work, we plan to extend our current results aec2iver multi-input
broadcast packet erasure channel to (1) the stability megfithe Markovian controlled 2-
receiver multi-input broadcast packet erasure channethwhcludes the traditional Adap-
tive Coding and Modulation (ACM) scheme as a special exajrte (2) the stability
region of the COPE principle 2-flow wireless butterfly netlwaith broadcast packet era-
sure channels. Last but not least, we also plan to deviseigabprotocols and testbed

simulation to verify the intuition derived from our capacétnd stability analysis.



1. INTRODUCTION

As the number of smartphone users growing to the majorityicéless carrier customers,
the demand of wireless data rate has increased rapidly grahdegd beyond the the tra-
ditional wireline service requirements. How to increase \hreless data rate supporting
multiple users simultaneously with certain scarce ressiof the communication network
thus eventually becomes a critical and urgent topic. Theren@ny possible solutions, e.g.,
ultra wide band communication and the multiple-input npiétiout antenna. Nonetheless,
network coding is one of the most promising directions whgohlild potentially provide
considerable end-to-end throughput improvement and girtite data privacy of individ-
ual users.

Inspired by the butterfly network, Ahlswed al. proposed the concept of network
coding in 2000 [1]. Since then, network coding has emerged akiquitous technique
of modern data communication networks. The extensive egjpdins of network coding
spread from practical implementations to theoreticalltes0’he Avalanche P2P file sys-
tem from Microsoft removes the need of receiving all indiatipieces of the original file
as in the BitTorrent system. The MORE protocol from MIT ai&es the use of a scheduler
to coordinate the transmission as in previous opportwmgtiting protocols. The COPE ar-
chitecture from MIT incorporate network coding across mpldtsessions and demonstrates
that the existing TCP/IP network layer transmission stil$ lyreat potential to further in-
crease the overall throughput by 40% to 200%. All the aboy#eémentations are based on
the concept of network coding. Furthermore, in the areabehetwork security, the data
center, and the analog signal processing, network codiagkhibited great potential on
augmenting their current performance. Meanwhile, a sicguifi part of the success of net-
work coding stems from the continuing theoretic developnoénetwork coding capacity.
The seminal work [2] in 2003 utilized network coding as theki®one and prosed “random

linear network coding” to achieve the Shannon capacity rdlsi-flow (or single-session)
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Fig. 1.1. The illustration of local network coding gain or) {he broadcast
channel; (b) the COPE principle butterfly wireless netwairkg (c) the oppor-
tunistic routing, where the dashed arcs represent the bagédg nature and
the rectangle represents a packet.

multi-cast networks. And the feedback capacity of the becaatichannel, the long-term
open question in the area of Shannon capacity, has also bselved by network coding

for the packet erasure channel case [3,4].

1.1 Network Coding On Local Networks

However, even though COPE [5] has exhibited the great patent network coding
being applied to multi-user (or multi-flow) wireless datawerks, its corresponding the-
oretical capacity remains largely unsolved. The diffi@dtof finding the optimal network
coding strategy over multiple flows hinder the further acheament in this area. Despite the
difficulty of characterizing the full capacity for large meirks, there are evidences show-
ing that even when using only local operations, networkmgdan still recover substantial
network coding gain. In the following, we are going to prdsttmee examples that can

demonstrate substantial network coding gain even on tta tgerations.



1.1.1 Network Coding On The Broadcast Channel

The first example is the network coding gain on the broadcastet erasure channel.
Figure 1.1(a) illustrates the scenario where the netwodingpcan benefit the throughput.
As shown in Figure 1.1(a), the dashed arc represents thesrzatebroadcast packetsdo
andd, simultaneously with certain probabilities. Assumewould like to convey packet
X andd, would like to convey packeY. However, in the first two transmissions by
unfortunatelyd, receivesy” andd, receivesX. But then in the next time slot, the node
can transmit the combined pack€t+ Y and both the destinations can recover the desired
packets if it receives the packét + Y. Without network coding, the node needs to
keep transmifX andY separately untidl; andd, receive the desired packet. Recently, [3]
and [4] successfully characterized the full capacity regid the 1-hop broadcast packet

erasure channel witk 3 coexisting flows.

1.1.2 Network Coding On The Butterfly Wireless Network

The second example is the network coding gain on the COPEipkenbutterfly wire-
less network. Figure 1.1(b) illustrates its scenario amddfaished arc represent the corre-
sponding source node can broadcast packets to the conmertetbdes. Suppose source
s1 would like to send a packet to destination/;; sources, would like to send a packet
Y to d,; and they are allowed to share a common relaxlso suppose that when (resp.

S9) sendsX (resp.Y) to r, destinationi, (resp.d;) can overhear packet (resp.Y). We
further assume that after the first two transmissions, dpthnd d, can use feedback to
inform r the overhearing status @t andds,, respectively. Then instead of transmitting two
packetsX andY separately, the relay nodecan send the linear combinatipki+Y'|. Each
destinationd; can then decode its desired packet by subtracting the cuetipacket from
the linear combinatiofX + Y]. In the above simple example, the traditional store-and-
forward transmission scheme requires at least 4 trangmiséi, to r, s, tor, r to d;, and

r to ds). But with the network coding in COPE scheme, it only regsiBdransmissions.



Despite its simple nature, the exact capacity region of tB&E principle remains an
open problem even for the simplest case of two coexistingsflo@everal attempts have
since been made to quantify some suboptimal achievableagiens of the COPE prin-
ciple [6-15]. One difficulty of deriving the capacity regi@due to the use of feedback
in the COPE principle. It is shown in [16] that although feadk could strictly enhance
the capacity in a multi-unicast environment, the exact amoéithroughput improvement
is hard to quantify. [17] proposes one queue-based appfoathe general wireline and
wireless networks considering both inter-session ana4iséission network coding. How-
ever, the results in [17] mainly focus on the benefits fromditke information to decide
either inter-session or intra-session network coding khbe applied, which is more re-
lated to [18]. [18] circumvents the difficulty of feedbackd®ed analysis by considering a
special class of 2-staged coding schemes. Although thiés@s{d8] fully capture the ben-
efits of message side information [16,17,19-23] , they captualy partially the feedback

benefits, which leads again to a strictly suboptimal achikveate region.

1.1.3 Network Coding On The Opportunistic Routing

The third example is the network coding gain on the oppostimiouting. Figure 1.1(c)
illustrates its scenario and the dashed arc represent ttessrman broadcast packets to both
r andd with certain probabilities indicated. Here we only have eassion frons to d and
d would like to receive both packef§ andY'. After two transmissions fror, the relayr
receives bothX andY while d only receivesX. Then the relay can directly transmit the
combined packek + Y andd can recoved” linear operations. Without network coding,
then the opportunistic routing scheme requires a schetlleform » what has been re-
ceived byd. And thenr can transmit”. Keeping track of which packets have been heard
or not is a daunting task and network coding drastically §imf. Recent works [24—26]
take the advantage illustrated in this example to removedied of a central scheduler and

experimentally show that with network coding in a 20-nodeetass testbed, the unicast



throughput can be2% higher than the existing opportunistic routing protocais 85%

higher than the current state-of-art best routing protémolvireless mesh networks.

1.1.4 A Critical Question

All the above schemes can augment the end-to-end throughpha multi-flow wire-
less network. An interesting question thus rises: can webaoogall of them together?
Or can we optimize all of them simultaneously? Furthermoas we do its analytically
Shannon capacity? To answer these questions, we believa tleeper understanding of
multi-flow local network coding will play a key role, which Walso benefit designing the
next-generation high-throughput coding-based wirelessork architecture. The analysis
in this thesis is on the packet level as the COPE operating®wcurrent TCP/IP network
layer. With the ARQ mechanisms in the data link layer, thekpaerasure channel setting
thus is a natural choice. Hence the anlysis of Shannon dgpd@-flow wireless butterfly

network with broadcast packet erasure channel turns torimeapy objective.

1.2 From Shannon Capacity To Stability Region

The analysis of Shannon capacity is an essential part tblestdhe possible solutions
for the communication networks of interest. However, Slwancapacity is still quite far
away from practical implementations. In the analysis ofriwe capacity, the results are
derived based on the assumption that the input block codesd éind the block code length
can be infinitely long. This assumption is apparently impcat because of the memory
buffer limit in real systems. Furthermore, this assumptiould also induce the extremely
large decoding delay and control overhead. These flaws téetfia analysis of Shannon
capacity from the practical implementations.

Hence we further broaden our attention to the stabilityaegif network coding schemes.
The stability region of the network is defined as the set céiadl-to-end traffic load that can
be supported under the appropriate selection of the neteartol policy [27]. The analy-

sis of stability region considers the complete dynamicsadlsastic arrivals and queueing.



The assumption of dynamic arrivals greatly alleviates #@slin the block-based Shannon
capacity analysis, including the problems of memory buffeit, decoding delay, and the
large control overhead, and promotes the entire analyssstep closer to the practical
implementations.

However, there are several difficulties which block the egien from Shannon capacity
to the stability region. With fixed block codes as the inputhe Shannon capacity, the
overall throughput in the end of the transmissions can béyaed by the law of large
number. This does not hold for the case of stochastic asrfi@hich means the packets
are endlessly injected into the network) and other toolsegeired to analyze the queue
dynamics at each time instance. Tassi@haal.[28] introduced Lyaponov drift to resolve
this problem and leaded to the establishment of the netwalklgy analysis research.

Other than the difference between the analysis tools, hexvév the existing store-
and-forward stability analysis, the stability region idided on considering all possible
scheduling, routing, and resource allocation, but no apdltowed inside the network [27].
The nature of combining packets inside the network provideker challenges for online
coding and scheduling implementation. Several attempte baen made to resolve this
problem [17, 29]. However, the existing proposed solutiathgends to circumvent the
problem of combining packets by converting the network rngdicheduling problem back
to the existing store-and-forward scheduling problem. sThind of conversions highly
relies on case-by-case discussion and lack of the genei@lite systematically applied to
other network topologies. A general network control altyori which can incorporate the
nature of combining packets inside the network thus is amnapt subject for the network

coding stability analysis.

1.3 Our Contributions

Our contributions consists of two parts. In the first part,claracterize the full Shan-
non capacity of the COPE principle when applied to a 2-floneleiss butterfly network

with broadcast packet erasure channels. The capacitytsesldw for random overhear-



ing probabilities, arbitrary scheduling policies, netiavide channel state information
(CSI) feedback after each transmission, and potential ds®m-linear network codes.
An information-theoretic outer bound is derived that takdée account the delayed CSI
feedback of the underlying broadcast packet erasure clgankiée then propose a new
class of linear network codes, named the Space-Based Liwetaiork Coding (SBLNC).
SBLNC provides a systematic approach to keep tracking tbkigon of knowledge space
at each node. We prove that SBLNC can achieve the capacitynrefithe 2-flow wireless
butterfly network without considering the opportunistictiag. Furthermore, numerical
experiments show that SBLNC provides close-to-optimalughput even in the scenario
with opportunistic routing.

In the second part of the contributions, we modify a netwashtml algorithm and
successfully accommodate the nature of combining packetstivork coding, named the
Modified Deficit Maximum Weight (Modified DMW) algorithm. Th&lodified DMW
works on the stochastic processing network (SPN), whichgisreeral version of the com-
mon queueing network. There are many similarities betwd# &d the network coding
scheduling problem. We apply SBLNC on the broadcast packstee channel and derive
the equivalent SPN. With the assist of Modified DMW on the eagl@nt SPN, we then
successfully characterize the stability region of the @risoadcast packet erasure channel

with feedback.

1.4 Thesis Outline

In the next chapter, we formulate the local network modekhlimcorporate the broad-
cast PEC with feedback, the COPE principle, and the oppistiamouting all together.
The stability region problem is also formulated. In Cha@ewe describe the central idea
of this thesis — Spaced-Based Linear Network Coding. In @rap we characterize the
full Shannon capacity of 2-flow wireless butterfly networkiwbroadcast packet erasure
channels. In Chapter 5, we start to discuss the linear nkteading stability region and

introduce its analogy the stochastic processing netwarkHhapter 6, we propose the mod-



ified Deficit Maximum Weight algorithm and fully charactegithe stability region of the
2-receiver multi-input broadcast packet erasure chanimeChapter 7, we conclude this

thesis and discuss the possible extensions and applisdtiom SBLNC and modified-
DMW.



2. MODEL FORMULATION

In this chapter, we will first formulate theto-)M broadcast packet erasure channel as a
mathematical model. We then propose a general wirelessrfiytinodel which incorpo-
rates the broadcast packet erasure channels with feedibeckCOPE principle, and the
opportunistic routing all together. A useful probabilityniction which can intuitively de-
scribe the probability of interest is defined. We finally diss the dynamic network coding
and scheduling decision in the 1-to-2 broadcast packetuerahannel. We first define a

useful notation. For any positive integkf, define[}/| 2 {1,--- , M}.

2.1 Thel-to-M Broadcast Packet Erasure Channel

Given a finite fieldGF(¢q). A 1-to-M broadcast packet erasure channel (PEC) takes
an input packefX; € GF(q) from the sources and outputs ard/-dimension vectolyY =

(Yissars Ysosdg s Yssnr), WhereY, ;. € { X, «} for all « € [M]. Figure 2.1(a) illustrates

(a) (b)

Fig. 2.1. (a) The 1-to-2 broadcast packet erasure channel(g the 2-flow
wireless butterfly network with opportunistic routing arecget erasure chan-
nels.
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a 1-to-2 broadcast packet erasure channel. Hedenotes the erasure symbdl,. ., = x
means that théth receiver does not receive the inpXit. We also assume that there is no
other type of noise, i.e., the receivid, ,, is eitherX; or x.

We consider onlgtationary and memoryless PEC®., the erasure pattern is indepen-
dently and identically distributed (i.i.d.) for each chehnsage. The characteristics of a
memoryless-to-A PEC can be fully described @/ successful reception probabilities
Py INdexed by any subsét C [M]. Thatis,p__, ;77 denotes the probability that
a packetX, sent from source is heard by and only by theth destination for alf € T'.
For example, suppos¥ = 3, thenpsé{lyg}@ denotes the probability that a packef is
heard byd; andds but not byd,.

For any timet, we use anV/-dimensionakchannel status vectd(¢) to represent the

channel reception status of theo-)/ broadcast packet erasure channel:
Zs(t) - (Zs—>d1 (t), Zs—>d2<t)7 ceey Zs—>dm<t)) € {*7 1}M

where *%” and “1” represent erasure and successful reception, respgctivet is, whers
transmits a packeX(¢) € GF(g) in timet, the destinatior,, receivesy;_.,, (t) = X;(¢)

if Z,.q4,(t) = 1 and receivey .4, (t) = = if Z,4,(t) = *. For simplicity, we use
Yia,, (t) = Xs(t) o Zs_q,,(t) as shorthand. Since here we only consider stationary and

memoryless PECg,,(¢) is i.i.d. over time.

2.2 The COPE Principle 2-Flow Wireless Butterfly Network With Opportunistic

Routing and Broadcast Packet Erasure Channels

Here we are going to construct a local network model whicloliporates the network
coding gain on (1) the COPE principle, (2) the opportunisiieting, and (3) the broadcast
packet erasure channel with feedback. The COPE princiflle2wireless butterfly net-
work with opportunistic routing and broadcast packet eamshannels is modeled as fol-
lows. We consider a 5-node 2-hop relay network with two sexdrestination pairs;, d;)
and(sq, d2) and a common relayinterconnected by three broadcast PECs. See Fig. 2.1(b)

for the illustration. Specifically, sourcg can use a 1-to-3 broadcast PEC to communicate
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with {d;, d,r} for i = 1,2, and relayr can use a 1-to-2 broadcast PEC to communicate
with {d,, d,}. To accommodate the discussion of opportunistic routiregallow s; to di-
rectly communicate withl;, see Fig. 2.1(b). When opportunistic routing is not peralitt
(as in the case when focusing exclusively on the COPE piimeipd the broadcast packet
erasure channels), we simply choose the PEC channel symodsilitiesp,, —,. such that
the probability that/; can hear the transmission frasis zero.
We assume slotted transmission. Within an overall time budfn time slots, source
s; would like to conveynR; packetsW; 2 (Wi, -+, Wing,) to destinationd; for all
i € {1,2} whereR; is the rate for flowi. For eachi € {1,2}, j € [nR;], the information
packetlV; ; is assumed to be independently and uniformly randomlyitisted oveiGF ().
For any timet, we use an 8-dimensionahannel status vectdZ(¢) to represent the

channel reception status of the entire network:

Z<t) = <Z81—>d1 (t)v Zsl—>d2 (t)v Zsl—>7‘<t)7 ZS2—>d1 (t)v

Z82—>d2 (t)v Z82—>7“(t)7 Z?“—>d1 (t)v Z?”—>d2 (t)) € {*7 1}8

where %" and “1” represent erasure and successful reception, respegctivedt is, when
s1 transmits a packek, (t) € GF(q) in time ¢, relay r receivesYy, ,.(t) = X, (¢) if
Zs,r(t) = land receivedy, ., (t) = = if Z;,,.(t) = . For simplicity, we usé&’, ,.(t) =
X, (t) o Zg, . (t) as shorthand.

In this thesis, we consider the node-exclusive interfezenadel. Thatis, we allow only
one node to be scheduled in each time slot. The schedulingialeat timet is denoted
by o(t), which takes value in the sék;, s, 7}. For exampleg(t) = s; means that node
s; Is scheduled for time slat For convenience, whesy is not scheduled at time we
simply setY;, ,,.(t) = . As a result, the scheduling decision can be incorporatiectfie

following expression of, ,,.(¢):

YZ?l—H”(t) = X81 (t) © ZS1—>r(t) © 1{o(t):s1}~

Similar notation is used for all other received signals. &mmple,Y, .4, (t) = X.(t) o
Zy—a,(t) 0 Lis1)=ry IS Whatd, receives fromr in time ¢, whereX.,.(¢) is the packet sent by

rintimet.
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We assume that the 3 PECs are memoryless and stationaryl\Wamallow arbitrary
joint distribution for the 8 coordinates @(¢) but assume thad(¢) is i.i.d. over the time
axist. We also assum&(t) is independent of the information messaij¥s andW.

For simplicity, we use bracketg} to denote the collection from timkto ¢. For exam-
ple,[0,Z,Y,, a, ]t 2 {o(7),Z(7), Ys,a,(7) : VT € [1,t]}. Also, for anyS C {sy, s9,7}
andT C {r,d,,d»}, we define

Ysor(t) 2 {Yia(t) : Vs € S,¥d € T).

For example,Y ¢, r}-(4,.4,1(t) iS the collection ofY; 4 (t), Ys,5a,(t), Yisa, (t), and
Y;”—>d2 (t)

Given the rate vectaofR,, R,), a joint scheduling and network coding (NC) scheme is

defined byn scheduling decision functions
Vt € [n], o(t) = fo,t([z]tl_l), (2.1)
3n encoding functions at;, s, andr, respectively: For alt € [n]

Xsi(t) = fsi,t(Wia [Z]i_l)v Vi e {172}7 (2.2)

XT@) = fT,t([Y{S1,52}—>rv Z]i_l)v (2-3)

and2 decoding functions at; andd,, respectively:
Wi = fdi([Y{Sl,S27T}_>di7 Z)t), vie{l,2}. (2.4)

By (2.1), we allowos(t), the scheduling decision at time to be a function of the
network-wide reception status vectors before timBy (2.2), the encoding decision &t
is a function depending on the information messages andchasnel status. Encoding at
r depends on whatreceived in the past and the past channel status vectol el the
end,d; decodesW, based on whai; has received and the past channel status of the entire
network! We allow the encoding and decoding functiofis;, f,.:, andf,, to be linear or

nonlinear.

ISince the scheduling decisiorft) is a function ofiZ] !, all the encoding functions in (2.2) and (2.3), and
the decoding functions in (2.7) also know implicitly the eduling decisior (¢).
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This setting models the scenario in which there is a dedica&eor-free, low-rate con-
trol channel that can broadcast the previous network chateteisZ(t — 1) causally to all
network nodes. The total amount of control information islaxger thar bits per time
slot, which is much smaller than the actual payload of eacketas 10* bits. As a re-
sult, the perfect feedback channel can be easily implerddayt@iggybackingon the data
packets. The scheduling decisioft) can be computed centrally (by a central controller)
or distributively by each individual node since we allowradides to have the knowledge of

the reception status of the entire network.

Definition 2.2.1 Fix the distribution ofZ(¢). A rate vector( R, R») is achievable if for any
e > 0, there exists a joint scheduling and NC scheme with sufflgitarge » and GF(q)
such that

Prob(W,; # W,) < «.
gy Prob W 2 W) <

The capacity region is defined as the closure of all achievadle vectorg R;, Rs).

Remark:In (2.1), the scheduling decisierit) does not depend on the information mes-
sagesW;, which means that we prohibit the use of timing channelsy3p,Even when we
allow the usage of timing channels, we conjecture that tle¥allcapacity improvement
with the timing channel techniques is negligible. A heucistrgument is that each suc-
cessful packet transmission givleg, (¢) bits of information while the timing information
(to transmit or not) gives roughly 1 bit of information. Whigrtusing on sufficiently large
GF(q), additional gain of timing information is thus likely to bésorbed in our timing-
information-free capacity characterization. In our $gfti- is the only node that can mix
packets from two different data flows. Further relaxatioarsthats; ands, can hear each

other and perform coding accordingly is beyond the scophisfiwork.

2Some pipelining may be necessary to mitigate the propagdétay of the feedback control messages.
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2.2.1 A Useful Notation

In our network model, there are 3 broadcast PECs associdted\ws,, andr, respec-
tively. We sometimes term those PECs thePEC,i = 1,2, and ther-PEC. Since only
one node can be scheduled in each time slot, we can assuminéhagception events
of each PEC are independent from that of the other PECs. Asut rehe distribu-
tion of the network-wide channel status vecHjt) can be described by the probabilities
Pssrirdrdpr 1Or all i € {1,2} and for allT" C {r,dy,d>}, andp, ;5 sy for all
U C {dy,dy}. Totally there are8 + 8 + 4 = 20 parameters. By allowing some of the
coordinates o¥%(t) to be correlated, our setting can also model the scenaritiichndesti-
nationsd; andd, are situated in the same physical node and thus have pgréectelated
channel success events.

For notational simplicity, we also define the following tepgobability functionsp;, (-)

, 1 = 1,2, andp,(-), one for each of the PECs. The input argument of each function
ps (s being one of{s, s,,7}) is a collection of the elements ifl;, dy, 7, dy, dy, 7}. The
functionp,(-) outputs the probability that the reception everdampatibleto the specified

collection of{d,, dy, r,dy, d, 7}. For example,

ps1 (dZF) - p51_>d2ﬂ + p81—>d1d2F (25)

is the probability that the input of the-PEC is successfully received ky but not byr.
Herein,d; is adon’t-carereceiver angy, (do7) thus sums two joint probabilities together
(d, receives it or not) as described in (2.5). Another example(i$;) = pr—a,a, + 0,774,
which is the probability that a packet sentiboig heard byl,. To slightly abuse the notation,
we further allowp,(-) to take multiple input arguments separated by the comma“sign
With this new notationp,(-) then represents the probability that the reception event is

compatible taat leastone of the input arguments. For example,

p81 (dld27 T) = pslﬁdlﬁ + psl—)dlgT + p51_>d1d27"

+ psl—)d_ldzT _'_ p81—>d1d27"
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Q 1,overall QQ,OVeraH
Aq(t) As(t)

Ql,revealed QZ,revea]ed
Wl Wz
X
PEC
}/SHdl Ys%dg
A n
W1 WQ
Q 1,decoded |_| |_| Q 2,decoded

Fig. 2.2. The dynamics of stochastic arrivals in the 2-fibwo-2 broadcast
packet erasure channel with feedback.

That is,p,, (d\ds, r) represents the probability tha¥,, 4., Z,, _4,, Z,—») €quals one of
the following 5 vectors1, *, %), (1, %, 1), (1,1,1), (%, 1,1), and(x, *, 1). Note that these 5
vectors are compatible to eithéyd, or r or both. Another example of thjs () notation
is ps, (d1, do, ), which represents the probability that a packet sent;hig received byat

leastone of the three nodes, d-, andr.

2.3 Dynamics of Stochastic Arrivals And Queues

In Section 2.2, we described the formulation of Shannonagpw@ith fixed amount of
information packet®V,; = (W, 1, W, o, ..., W, ,r,). The above models can also be extended
to the stability region analysis. We use thélow 1-to-2 broadcast packet erasure channel
with feedback as an example.

Figure 2.2 illustrates the dynamics of the stochastic alsiin the 2-flowl-to-2 broad-
cast packet erasure channel. Assuming the time-slottéeimys/e have two queug; overal

and @2 overal Which store infinite amount of flow-1 and flow-2 message§fiiq), respec-
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tively. We also have two arrival processés(t) and A,(t). For any timet and: = 1,2,
A,(t) denotes how many messages are sequentially transferradXt@erai to Q; revealeqat
time¢. And hence at time, Q; revealcaCONtains the 1‘irsEtT:1 A, (1) messages i); overall
The subscript “revealed” denotes the packet in the queeevisible” to the networks and
required to be transmitted to its destinations. We assdyfg¢ is i.i.d. over time and define
the rate( Ry, Ry) = (E{A1(?)}, E{A2(?)}). We useW;(t) = (Wix, Wiz, ... Wist  4.1)
to denote the collection of the messages in quEug.eaeqat timet. We assumév,(t) is
independent witlZ,(t) as defined in Section 2.1.

Given the rate vectofR,, R,), at any timet, a network control algorithm including

coding is defined by the encoding functionsat

Xs(t> = f&t([wlv W2> ZSH_1>7
(2.6)

and2 decoding functions at; andd,, respectively:
Wi(t) = fui([Yeoa, Zslt), Vi€ {1,2}. (2.7)

Wi(t) = (Wi, Wia, o, Wit 4 € (GF(q)U{e}) == 4D isay"l | A;(r)-dimensional
vector. For anyj, if TW; ; is in GF(¢) then this message is decoded. Otherwisg; = e
means this message is undecoded. For any tjme use|Q); gecoded t0 denote the num-

ber of decoded messages\ﬁvfi(t). We then define two queue lengths ungecodedt) =

|Qi,revealed - |Qi,decode(J| at timet for i = 17 2.

Definition 2.3.1 A rate vector(R;, R,) is feasible if there exists a network control algo-
rithm (including coding) such tha®; ungecoded?) @aNd Q2 undecoded?) are stablé. The stabil-
ity region of the 2-flowi-to-2 broadcast packet erasure channel with feedback is the gonve

hull of all feasible rate vectors.

3We will discuss the explicit definition of the stability in &eon 5.1.



17

2.4 Chapter Summary

In this chapter, we formulate the model of théo-)/ broadcast packet erasure chan-
nel in Section 2.1. In Section 2.2, we then construct a weseleutterfly network model
including the COPE principle, the opportunistic routingdahe broadcast packet erasure
channels with feedback. The corresponding Shannon cgpa&gjion is also defined in
Section 2.2. We extend the problem setting to incorporagedfmamics of the stochastic
arrivals and queues in Section 2.3 and finally define the Igtabegion of 2-flow 1-to-2

broadcast packet erasure channel with feedback.
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3. SPACE BASED LINEAR NETWORK CODING

In this chapter, we introduce a the central idea of this thésfe will present a class of net-
work coding scheme named the “Space-Based Linear Netwode C8BLNC)” scheme.
An example of SBLNC scheme policies will be provided and waifio be used to explain
the design motivations of the SBLNC policies. The SBLNC soble will later be used
to achieve(1) the Shannon capacity of the 2-flow wirelesgetiit network with packet
erasure channels and (2) the stability region of the 2-flea-2 broadcast packet erasure

channel with feedback.

3.1 Definitions

Here we use the 2-flow wireless butterfly network with packasere channels in Sec-
tion 2.2 as an example and construct the corresponding SBEdi€me. We first provide
some basic definitions that will be used when describing aodNgBscheme.

Fori = 1,2, aflow- coding vectorv(® is annR;-dimensional row vector with each
coordinate being a scalar 8F(¢). Any linear combination of the message symbidls,
to W, .r, can thus be represented ) WT whereW is the transpose dW,;. We use
the superscript(i)” to emphasize that we are focusing on a flowector.

We define thdlow- message spaday 2; 2 (GF(q))™%, annR;-dimensional linear
space. In the following, we define the followindkBowledge spaces., Sy, , Sq4,, 1, Ty, ,
and7y, for the 5-node relay network in Fig. 2.1(b).

The knowledge space$, S,,, Sy, are linear subspaces Q@f and represent the knowl-
edge about the flow-1 packets at nodesl,, andd;, respectively. Symmetrically, the
knowledge space€s,, 7, andT}, are linear subspaces 9f and represent the knowledge

about the flow-2 packets at nodesd,, andd,, respectively. In the following, we dis-
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cuss the detailed construction 8f, S;,, andS,, and the construction df,. to 7;, follows

symmetrically:

e Inthe end of any time, S,(t) C €, is thelinear sparof a group ofv("), denoted by
VS)_W. The groupVS)_)T contains thev(!) vectors sent by, during timel to ¢t and
have been received successfullyrbyThroughout the paper, we use the convention
that the linear span of an empty set is a set containing thezector, i.e.span{(} =

{0}. For example, if- has not yet received any packet fram then by convention

S,(t) = {0}

e Inthe end of time, Sy, (t) C Q, is the linear span of two groups ef"), denoted by
V(l)

81—)d2

to the packets sent by during timel to ¢t and have been received successfully by

andVSh),_}dQ. The first groupvg)_ml2 contains thes!) vectors corresponding

d,. The second group’fn,lh),_)dz contains they(!) vectors corresponding to the packets
sent byr during time1 to ¢ that are not mixed with any other flow-2 packetShe

letter “N” in the subscript stands for Not-inter-flow-cod&@nsmission.

e In the end of time, S,, (t) C Q, is the linear span of three groups of", denoted
by V(l) V(l)

s1—dq!? r,N—dy?

and V', . The first groupv'", , contains thev(" vectors
corresponding to the packets sent 4yduring timel to ¢ and have been received
successfully by;. The second ggrouIn’S,ﬂ_ml1 contains thev(!) vectors correspond-
ing to the packets sent byduring timel to ¢ thatare not mixed with any other flow-
packets The third groupVﬁ}():_)dl contains thev(!) vectorsthat can be decoded from
the inter-flow coded packeétsent byr during timel to t. The letter “C” in the

subscript stands for inter-flow-Coded transmission.

In sum, we useS andT to distinguish whether we are focusing on flow-1 or flow-2
packets, respectively, and we use the subscripts to dedtr@node of interest. One can

easily see that these six knowledge spaces evolve over iiroe sach node may receive

The construction of ;, (resp.T,) follows the construction o, (resp.Sg, ).
2When the relay- sends a linear combination of both flow-1 and -2 packets.
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G ¢ Q,

Fig. 3.1. The illustration of the coding procedure in Exaenpll.1. We use a
solid line to represent that the corresponding receivesbesessfully received
the packet and use a dot line to represent the case of erasure.

more and more packets that can be used to obtain/decode fawation. We use the

following example to illustrate the definitions 6f to 7.

Example 3.1.1 ConsiderGF(3) andnR, = 3 andnR, = 2. That is, flow-1 contains
3 message symbol§; ; to W, 3 and flow-2 contains 2 message symbadis, and IV, ,.
)y and(), are thus 3-dimensional and 2-dimensional linear spaceSH(B), respectively.
Consider the first four time slots= 1 to 4 for our discussion.

Whent = 1, suppose that, is scheduled; an uncoded flow-1 message symhaqlis
transmitted; and the packet is heard by and onlylbgndr. See Fig. 3.1(a) for illustration,
for which we use the solid lines to represent ttiandr have received the packet. We use
the dashed line to denote thét does not receive the packet. Whea: 2, suppose that
s, Is scheduled; an uncoded flow-2 message symifglis transmitted; and the packet is
heard by and only by, see Fig. 3.1(b). Wheh= 3, suppose that; is scheduled; an
uncoded flow-1 symbdV, 5 is transmitted; and the packet is heard by and only-bWhen
t = 4, suppose that is scheduled; sends a linear combinatiofil; ; + 21V, 3] of the
two flow-1 packets it has received thus far; and the padkgt, + 211/, 3] is heard by both
d, andd,. We now describe the six knowledge spageto 7;, in the end oft = 4. By
Figs. 3.1(a) and 3.1(d)J, has received two flow-1 packéts, ; and [V, + 2/, 5], one

from s; and one fromr. Therefore, by the end of= 4, the flow-1 knowledge space &t
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Table 3.1
The resulting knowledge spaces at the end of Example 3.1.1.

Flow-1 Flow-2
Sa, (4) span{(1,0,2)} Ty, (4) | span{(1,0)}
S:(4) | span{(1,0,0),(0,0,1)} | T.(4) | {(0,0)}
Sa,(4) | span{(1,0,0),(1,0,2)} | T4, (4) | {(0,0)}

becomesS,, (4) = span{(1,0,0),(1,0,2)}. Also, neither nor d, has received any flow-2
packets by the end of= 4. Therefore,I,. andT},, the flow-2 knowledge spacesraand
d,, respectively, contain only the zero element. The othewledyge spaces,,, S,, and

T4, in the end of = 4 can be derived similarly and they are summarized in Table 3.1
The above definitions also lead to the following self-explany lemma.

Lemma 3.1.1 The two destinationg; andd, can decode the desired message symWojs

and'W,, respectively, if and only if by the end of time
Say(n) = Qq and Ty, (n) = Qs.

For simplicity, we uses;(t) andT;(¢) to denote the knowledge spag (¢) and 7y, (t)
for i = 1,2. We also omit the input argumentt}” if the time index is clear from the
context. To conclude this subsection, we introduce thetiootaf the sum spaced ¢ B) 2
span{v : Vv € AU B}. Notice thatd & B and A U B are different. For example, in a 2-
dimensional linear space witkF(2), we assumel = span{(1,0)} andB = span{(1,1)}.
ThenA U B = {(0,0),(1,0),(2,0),(1,1),(2,2)}, but A® B = span{(1,0),(1,1)} =

{(0,0), (1,0),(2,0),(1,1),(2,2),(2,1),(1,2),(0,1),(0,2) }. By simple algebra, we have

Lemma 3.1.2 For any two linear subspaces and B in (2, the following equality always
holds.

Rank(A & B) = Rank(A) + Rank(B) — Rank(A N B).
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3.2 An Instance of SBLNC Policies

In the following, we will introduce a new class of network esd named the Space-
Based Linear Network Code (SBLNC). An SBLNC scheme contaifigite number of
policies Each policyl” contains a linear subspadé™ , namedhe inclusion space/seind
a finite collection of subspacégm for I = 1to L, namedhe exclusion spaces/seEor
each time slot, the SBLNC chooses one of the specified policies and useggnerate
the coded packet. For example, say nedescheduled for transmission and we decide to
use a policyl” for encoding. Them will first choose arbitrarily a coding vecter) from
the setA(M\ ( f:? BZ(F)), and then transmit a linearly encoded packet= v0OWT,
That is, the coding vector must be in the inclusion 4€? but not in any of the exclu-
sion setsBl(F). Obviously, a policy can be used/chosen only when the qooreding set
AT\ ( f:(? BZ(F)) is non-empty. For notational simplicity, we say a policyeasibleif
the correspondingl ™\ ( L B}”) is non-empty.

For illustration, consider the following policy for node, named Policyl’;, . When
Policy I',, o is used/chosen, we let source nedechoose arbitrarily a coding vecter!)
from Q,\ (S; @ S, @ S,) and send the corresponding coded packgt= v(VWT. That
is, the inclusion set igl(F=1.0) = O, and the exclusion set BT=10) = 5, & S, & S...

Continue the example in Section 3.1 for which the knowledqgees are summarized
in Table 3.1. In the beginning af = 5 (or equivalently in the end of = 4), we have
ATs0) = 9 andBY Y = 8, @ S, @ S, = {(a,0,¢) : Va, c € GF(q)}. As a result, if we
choose Policy'y, o for ¢t = 5, any coding vectors of the forifa, b, ¢) with b # 0 are in the
setQ;\(S1 @S2 @ S,). There are totally8 such vectors sincéF(3) is used. Source; can
then choose arbitrarily from any one of thevectors and send’ = aW; ; +bW; o +cW 3
intimet = 5.

In the following, we defind 3 policies that will be used to achieve the Shannon capacity
of the 2-flow wireless butterfly network with packet erasunarmels.

There are 5 policies governing the coding operations atceoyt which are named

Policy Ty, ; for j = 0to4. When Policyl,, ; is useds; sendsXj, (t) = v(WWT for some
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(1), That is, source; only mixes/encodes flow-1 packets together. In the follgyine
describe how to choose the vectdt) for each individual policy.

§ Policy Iy, o: Choosev®) arbitrarily from
D\(S1 @S2 @ Sy). (3.1)

§ Policy ', 1: Choosev?) arbitrarily from
(S2® S\ ((S1@S,) U (S1852)). (3.2)

§ Policy T';, »: Choosev(V) arbitrarily from
So\(S1 @ Sy). (3.3)

§ Policy I', : Choosev?) arbitrarily from
S\ (S1 @ (S2NS,)). (3.4)

§ Policy T, 4: Choosev(V) arbitrarily from
(SN S)\Ss. (3.5)

Policy 'y, ;, 7 = 0 to 4 are symmetric versions ¢olicy I',, ; that concern sourcs,
and mix/encode flow-2 packets instead. More explicitly,reeu, sendsX,, = v@ WY}
for which the coding vectov® is chosen according to the following specification.

§ Policy I's, o: Choosev(? arbitrarily from
W\(TheT,dT,). (3.6)

§ Policy T, : Choosev® arbitrarily from
(o T\(LoT)U(hoT)). 3.7)

§ Policy I, o: Choosev'? arbitrarily from

T\(T> & T5). (3.8)
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§ Policy T, 3: Choosev(® arbitrarily from
T\ (T (Th'NT,)). (3.9)

§ Policy T, 4: Choosev® arbitrarily from
(Ty N T\ Ts. (3.10)

There are 3 policie$’, ;, 7 = 1,2, 3, governing the coding operations at the retay
which are described as follows.

§ PolicyT',.;: The relayr chooses arbitrarily a vecter?) from
S\ ((Sr N Sz) @ Sh) (3.11)

and sends an intra-flow-coded flow-1 packet= v(" WT.

§ PolicyT',.»: The relayr chooses arbitrarily a vecter® from
T\ (T, NT) ®T3) (3.12)

and sends an intra-flow-coded flow-2 packet= v2 W7,
§ Policy I',.5 is for the relay node to send an interflow-coded pack&t = v»WWT +
vAWT, with v andv® chosen as follows: 1S, N S,)\S; is non-empty, choose"

arbitrarily from
(S2 N S:)\Sh, (3.13)

otherwise choose(!) = 0, a zero vector. If(7; N T,)\T, is non-empty, choose®

arbitrarily from
(Th NI\, (3.14)

otherwise choose® = 0.

Continue from Example 3.1.1 in Section 3.1 with the knowkedgaces in the end of
t = 4 described in Table 3.1. Consider Policy, ; as defined in (3.4). Sinc& N S, = S,
in the end oft = 4, we haveS,\ (S; @ (S2 N S,)) C S:\(S2NS,.) = () being an empty
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set. Thus, in contrast with the fact that Policy, , is feasible in the beginning ¢f= 5 as
shown in our previous discussion, PoliCy, ; is infeasible in the beginning af= 5.

One can repeat the above analysis and verify that out aBaiblicies, only4 of them
are feasible in the beginning of= 5, which arel'y, o, I', 4, I's, 0, @ndI’, 5. The network
code designer can thus apply one of the four policigs=n5.

Suppose the network designer chooses pdligy, for ¢ = 5 and sends a flow-1 coded
packet with the coding vector being? = (2,1,0). Also suppose that the packet is re-
ceived byr but by neitherl; nord,. Then in the end of timé = 5, the knowledge spacg.
evolves from the originapan{(1, 0, 0), (0,0, 1)} to the new spacsan{(1,0,0), (0,0, 1), (2,1,0)}.
We now notice that the Policy, ( is no longer feasible since with the ney, the ex-
clusion space of’;, ; becomesS; @ S, @ S, = span{(1,0,0),(0,0,1),(2,1,0)} and
21\ (S1 @ S @ S,) is now empty. On the other hand, the néwalso lets some previously
infeasible policies become feasible. For example, constdécy I';, 5. With the news,,
we haves, = span{(1,0,0), (0,0, 1), (2,1,0)}andS;®(5:NS,) = span{(1,0,0),(1,0,2)}.
ThereforeS,\ (S1 @ (S2 N S,)) # 0. PolicyTy, 5 is thus feasible and can be used for trans-
mission int = 6. With similar analysis, one can verify that in the beginnoig = 6, we

have5 feasible policiesI’y, 3, I's, 4, I's, 0, ['v1, andl’;. 5.

3.3 The Design Motivations of SBLNC Policies

We conclude this chapter by discussing the design motwatiehind the proposed 13
policies. We first consider the relay polici€s; to I', ; due to its conceptual simplicity.

We then discuss the source policles, to I';, 4.

The Relay Policies

We first notice that for all relay policiesI’, ;, I, », andI’, 5, the corresponding inclu-
sion space is either a subspaceSpfor a subspace df,.. The reason is that for nodeto

send a coded packet, the encoded packet must alreadysbeiT,., the knowledge spaces
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of r. As a result, the transmitted vecto”) (or v(?)) must be drawn from a subset.8f (or
T,).

Itis clear thata good network code should try to serve two flows simultarigousrder
to maximize the throughputve now focus on Polic¥, ;. First notice that by (3.14%® is
drawn from(77N7,.). This means that the value QP)WQT is already known by destination
d; sincev® being in the flow-2 knowledge spa@® at d;. Hence wheneveti, receives
the packetX,(t) = v(WWT + v@WT | it can extract its desired information and recover
vAOWT by substractingr@®WJ]. We then note that Policy, ; ensures that whenever
(3.13) is not empty the selected® is not inS;, the flow-1 knowledge space @t. Hence
upon the reception of such a coded pacRetyk(.S;) willincrease by one. By Lemma 3.1.1
destinationd; is one step closer to fully decode its desired mes3&ge Symmetrically,
by (3.13)d, has already known the value of YW and thusi, can compute the value of
v(®WT upon the reception of the inter-flow coded packet generageRolicy ', ;. Since
v(? is not inTy, dy can decode one extra linear combination of flow-2 packetkcyPD, 5
thus serves bottl, andd, simultaneously.

Although Policyl’, 5 can serve both destinations simultaneously, there is adimiow
much information can be sent [y, ;. That is, if we use only Policy’, ; and nothing
else, the information that can be receiveddaythrough Policyl’, 5 is at most(S, N Ss)
since allv(?) are drawn from(S, N S,). The largest flow-1 knowledge space thatcan
possibly attain is thus; @ (S, N S2), where S; represents the flow-1 information that
d, has accumulated by overhearing the transmission direxdliy fits two-hop neighbor
s1, and (S, N Sy) represents the information that can be conveyed' by Note that it is
possible thaf, is not a subspace of; @ (S, N S,), which means that relaystill possesses
some flow-1 information that cannot be conveyeditdy I', ; alone. I',.; is devised to
address this problem. That is, the€) vector chosen from (3.11) is (i) from the knowledge
space ofr, and (ii) not inS; & (S, N Sy), the largest flow-1 knowledge space thatcan
attain when using exclusively Polidy; s. Suchv® vector thus represents an information

packet that is complementary to the inter-flow-coded Pdlicy.
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The Source Policies

Here without loss of generality we focus on source 1 polid®gn though the policies
can be chosen arbitrarily whenever they are feasible, iridih@ving discussion, we will
explain in a way that they are executed sequentially fronmicdl;, , to Policy I';, 4 to
better catch up the intuitions.

Before explaining the source policies (3.1)—(3.5), we filistuss what we expect to
achieve during the source 1 transmission. There is one Wénguust achieve. Meanwhile,
there are two things we desire to achieve. The one we mushaels(); = (S; @ .S,) at the
end of the source 1 transmission singe— » — d; ands; — d; are the only two routes
from s, to d;. For the two things we desire to achieve, the first oriejis= (S, & (5,NS,)).
The reason is that the conditio; = (S; @ (S2 N S,)), makes Policyl’, ; always being
infeasible, and hence we can exploit the coding benefit frotity?l", 5. The second one
is trivially €2, = 5.

With those things mentioned above in mind, we then examidesaplain each source
policy. Policyl’y, ;, 7 = 0, 1, 2, are designed for achievitg, = S;® S, with S; ®.S, being
a subset of the exclusion sets for these policies. This carsbberved step by step. After
finishing all possible transmissions from Policy, o, we have?; = (S; & S, & S,). After
finishing all possible transmissions from PoliEy, , and Ly, 4, it is either(S; & S,) C
(S1®S,)or(S2®8S,) C (S1®S,). Inthefirst case®; = (1S5, ®S,) = (51D S,). For
the second cas€); = (S & 5S> @ S,.) = (S1 & S2). Then with the help from Policys, -,
Sy C (51 @ S,) after finishing all possible transmissions from Polity », the second case
in Policy I';, ; comes to the resulf); = (S1® 5 @& S,) = (51 & S2) = (S1 ® S,). So
far we have examined that Polidy, ;, j = 0,1,2, help us to achieve; = (S, ® S,).
However, one may ask why we need three policies to achiegdrnbiead of simply one
policy ;\(S; @ .S,). This question will be answered right after the discussiacbieving
Q1 = (S1 @ (82N S,)).

Policy I'y, ;, 7 = 0,1,2,3, are designed for achievin@, = (S; & (52 N S,)) with

S1 @ (52N S,) being a subset of the exclusion sets for these policies.|&ihoi the above
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observation fof2; = S; @ S,,, one can verify that after finishing all possible transnugsi
from Policy Iy, o to I'y, 5, we have); = (S & (S, N S,)). Furthermore, Policy’s, ; is
carefully designed for achieviri@, = (S;®(S2N.S,)) in the most efficient way. To explain
why PolicyT'y, ; is the most efficient policy for achievin@, = (S1 @ (S2 N S,.)), we first

observe

Rank(S; @ (S2 N S,)) = Rank(S7) + Rank(Sy N.S,.) — Rank(S; NSy N S,)
=Rank(S]) + Rank(Ss) + Rank(S,.) — Rank(S; @ S,) — Rank(S; NS, N'S,.)

Notice thatS, @ S, is the inclusion set for Policy,, 1; and.S;, S, andS, are subsets
of the exclusion sets for Policy,, ;. Then with Policyl'y, ; being chosenRank(S; &
(S N S,)) is expected to increagg (di) + pi(dz) + p1(r) — 0 — pi(didor). In this way,
we maximize the positive terms and minimize the negativeaseat the same time. This
maximum increment oRank(.S; & (S2N.S,)) leads to the most efficient way for achieving
0 = (S1 @ (S2 N S,)). This also answer the question why we need three policies for
achieving2; = (S; @ S,) instead of simply one policy2,\(S; & S,): Policy L'y, ; sets
up the environment for executing Polity, ;, and Policyl';, » helps Policyl';, ; back to
achieving®y; = (5, @ S,). Finally, Policyl'y, ;, 7 = 0,1, 2, 3, 4, are designed for achieving
Q, = S; with similar observations.

To summarize, these designed source 1 policies help us tevach, = S; & 5,

O =851 @ (S, @ S,), andQ; = S; simultaneously and in the most efficient way.

3.4 Chapter Summary

In this chapter, we introduce the central idea of this thehis space-based linear net-
work coding. We use the 2-flow wireless butterfly network vatitket erasure channels as
an example and construct the corresponding SBLNC schen&edtion 3.1, we introduce
the necessary definition for constructing SBLNC policiesSéction 3.2, we present an ex-

ample of SBLNC scheme with 13 designed policies. Later weusi these 13 policies to
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achieve the Shannon capacity of the 2-flow wireless buttadtyork with packet erasure

channels. In Section 3.3, we discuss the design motivatibtiee SBLNC policies.
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4. THE SHANNON CAPACITY OF WIRELESS BUTTERFLY
NETWORK

In Section 2.2, we formulate a local network model including broadcast packet erasure
channel with feedback, the COPE principle, and the oppatigrrouting. In this chapter,
we will first discuss some related work and compare theiirggttwith the one in Sec-
tion 2.2. We then propose the corresponding outerboundfadiher bound which can
be achieved by the SBLNC scheme described in Section 3.2llyvwwe demonstrate the
numerical results including the capacity region compariand the sum rate throughput

comparison.

4.1 Related Works

Recently, [3] and [4] successfully characterized the falbacity region of the 1-hop
broadcast packet erasure channel witl8 coexisting flows. For comparison, our work
focuses on the 2-hop network in Fig. 1.1(b) while [3] and [d¢us on the 1-hop broad-
cast channel. For the 2-hop network in Fig. 1.1(b), the ngtwdesigner faces both the
scheduling problemwhich node (out of the two source nodgs s,, and the relay node)
to transmit at the current time slot, and thetwork coding problemhow to combine the
heard/overheard packets and generate the network codketpaEor the 1-hop broadcast
channel considered in [3] and [4], there is no schedulindpler since there is only one
base station and the base station transmits all the time.ilAsexseen shortly, for a 2-hop
erasure network, the feedback/control messages may mtgpgough the entire network
and affect dynamically the scheduling and coding decisionall three nodes;, s, and
r, which further complicates the analysis.

Several attempts [17, 18] also have be made to approach tekegs butterfly network

with packet erasure channels. Both of [17,18] take the sittemation coding benefit into
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Table 4.1
The feature comparison between this thesis and [18]

Features in [18] Features in this thesis

(1) Sequential scheduling, (1) Dynamic scheduling,
The outer bound (2) Batched feedback, (2) Per-packet feedback,

(3) Nonlinear coding functions. (3) Nonlinear coding functions.

(1) Sequential scheduling, (1) Sequential scheduling,
The inner bound (2) Batched feedback, (2) Per-packet feedback,

(3) Linear coding functions. | (3) Linear coding functions.

concern. But [17] only proposed a suboptimal achievablesewhile [18] characterized
the full capacity region. In the following, we will discudset major differences between
[18] and this thesis.

There are three major differences between the setting sfttig thesis and in [18].
First, a deterministic sequential scheduling policy wasdus [18], which schedules nodes
s1, s2, andr in strict order. Namelys; transmits first. Afters; stops,s, can begin to
transmit. Only aftes, stops transmission carstart its own transmission. For comparison,
our setting allows for dynamically choosing the schedulg for each time slot. Since
we allow the schedule(t) to depend on the past reception sta@l§ ', the use ofr(t)
also includes any stor&-forward-based scheduling policies as special cases, e
back-pressure and the maximal weighted matching scherme$486] for references). Our
results thus quantify the best achievable rates with jpiisigned scheduling and coding
policies.

Secondly, in [18] no feedback is allowed whenand s, transmit. More specifically,
suppose jointlys; ands, taket,, + ts, time slots to finish transmission. Then only in the
beginning of timet,, +t, +1) are we allowed to send the channel stéﬂ}?ﬁt” tor. No
further feedback is allowed until time, the end of overall transmission. For comparison,

our setting allows constantly broadcasting network-widarmel statu$z)\* to s, s,,
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andr, as discussed in Section 2.2. This setting thus includeAdbt@matic Repeat reQuest
(ARQ) mechanism as a special case [3, 18]. Broadcastingpifiteat information[Z]%~* to
all the network nodes also eliminates the need of estimégiaigning the reception status of
the neighbors. Thirdly, [18] focuses on an arbitrary nuntdferoexisting flows while this
work focuses exclusively on the 2-flow scenatrio.

Last but not least, in the way of describing the inner boundlB] and this work,
they look similar because of the linear programming expoessand the use of the law
of large number. However, they are essentially differehis extremely difficult for the
techniques in [18] to be extended to this work. The majoradistis that in the setting of
this thesis, the linear spaces constructed by the receizekkeps keep evolving over time
via per-packet feedback. Hence it is necessary to deve®BBLNC scheme to analysis
the space evolution.

The practical COPE implementation contains three majorpmmants: (i) Opportunis-
tic listening: Each destination is in a promiscuous moirigpmmode and stores all the
overheard packets; (ii) Opportunistic coding: The relagendecides which packets to be
coded together opportunistically, based on the overhgaratterns of its neighbors; and
(iif) Learning the states of the neighbors: Although in thagtical COPE implementation
reception reports are periodically sent to advertise tlegtmaring patterns of the next-hop
neighbors of the relay, the relay node still needs to extedpdhe overhearing status of its
neighbors since there is always a time lag due to the infreiqperiodic feedback.

Our setting closely captures the opportunistic listenimgnponent of COPE by model-
ing the wireless packet transmission as a random broadge&xstiR (2.1)—(2.3), the channel
status vector is used to make the coding and schedulingiolegjsvhich captures the op-
portunistic coding component of COPE. In COPE, the recep&ports are broadcast pe-
riodically, which is captured by the control informati@‘~. In sum, our capacity region
is a superset of any achievable rates of any COPE-prinbigéed schemes [5] when focus-
ing on the 5-node 2-hop relay network in Fig. 1.1(b) with tloel@ exclusive interference

model.
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(@) (b)

Fig. 4.1. The illustration of the two—way relay channel fdnigh s; sendsX
to s, and ands, sendsY” to s;. In (b), the common relay can send a linear
combination X + Y| that benefits both destinations simultaneously.
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Remark:The setting in Section 2.2 also includes the wireless eeadwvay relay chan-
nel model (Fig. 4.1(a) and 4.1(b)) as a special case. Spabjfid we set the overhearing
probabilities:p;(d;) = 1 for all 7 # j, then the capacity region of the setting in Section 2.2

is also the capacity region of the wireless erasure 2-way rethannel in Fig. 4.1.

4.2 Main Results

In this section, we provide our results based on two casescabe of considering only
the COPE principle and the case of combining COPE with thedppistic routing tech-
nique. The main difference is that for the former setting,assume that no transmission
can be heard by its 2-hop neighbors, ig(d;) = 0 for all i = 1, 2. For the latter setting,
we allowp;(d;) to be non-zero.

For the case of using exclusively the COPE principle, thiecacity region has been
characterized in Section 4.2.1 while for the case of COPE @fyportunistic routing, a pair

of outer and inner bounds are provided in Sections 4.2.2 &h8,4espectively.

4.2.1 COPE Principle Relay Network Capacity

Proposition 4.2.1 Consider any 2-flow wireless butterfly network with packasare chan-
nels withp;(d;) = 0 for all i = 1,2. The rate pair(R;, R») is in the capacity region if and
only if there exist three non-negative time sharing parars#t, , t;, andt¢, such that jointly
(Ry, Ry) and(ts, , ts,, t,) satisfy

ts, +ts, +1, <1 (4.1)
Vie {1,2}, R; <tg,pi(r) (4.2)
Ry (Ry — to,pa(dy)) ™

+ <t, 4.3

) T ) S (4-3)
(Ry — to,p1(da))™ Ry

+ <t 4.4

pr(dy, ds) pr(ds) — (44)

where(-)* 2 max(0, -) is the projection to non-negative reals.
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The proof of the achievability part of Proposition 4.2.1ekegated to Section 4.3.2 and
the converse proof is relegated to Appendix A.

The intuition behind (4.1) to (4.4) is as follows. (4.1) isimé sharing bound, which
follows from the total time budget beingand the node-exclusive interference model.

Inequality (4.2) is a simple cut-set bound. That is, the rageB/; has to be sent from
s; to the common relay first. Therefore, the rate is upper bounded by the link capaci
from s; tor.

Inequality (4.3) and (4.4) combine the capacity results @ssage-side-information
[18] and the capacity results on channel output feedbackrmadcast channels [3,4]. A

very heuristic, not rigorous explanation of (4.3) is asdols.

Ry
pr(dl)
time slots it takes to send all the flow-1 packetgt@s if there is no flow-2t,,p2(d;) char-

represents how many

acterizes how much flow-2 information can be “overheardbyand (R, — t,,ps(d;))"
thus represents how much flow-2 information that has not heard byd; but still needs to

be sent tal,. Since those flow-2 packets cannot be “coded” together wgtflaw-1 pack-

Ry
pr(dl)

+
to send flow-1 packets. In general, it ta@%@ for those packets to arrive éi.

+
However, [3] shows that the use of feedback can further rethe time to%.

As aresult, (4.3) governs the transmission since the t@astnission time of relayis nt,

ets, they need to be sent separately by themselves in adthtithe time slots used

time slots. (4.4) is symmetric to (4.3).

4.2.2 Capacity Outer Bound for COPE plus OpR

The capacity results in Proposition 4.2.1 can be genethbgean outer bound for the

case when the destinatidhmay overhear directly the transmissionsgfi.e.,p;(d;) > 0.
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Proposition 4.2.2 Consider any 2-flow wireless butterfly network with packaseare chan-
nels in Fig. 2.1(b) with arbitrary channel characteristidéa rate vector R, R) is achiev-

able, there exist three non-negative scalarst,,, andt, satisfying

ts, +ts, +1, <1 (4.5)
Vi € {1, 2}, Ri < tsipi(dia ’I“) (46)
(Ry — to,p1(di))"  (Ro —ty,pa(dy, da))™
+ <t, 4.7
o (dy) pdnd) 47
(Ry — ts,p1(dy, d2))+ (Rg — ts,po (dz))+
+ <t,. 4.8
o (dr ) d) S (48)

This proposition can be proven by canonical techniquesanrtformation theory outer
bound problems as in [32]. And hence we put the detailed pro&dppendix A for reader’s
reference.

Remark: One can easily see that when the channel probabilitieshsatigl;) = 0
for all : = 1,2, the outer bound in Proposition 4.2.2 collapses to the ¢gpeegion in
Proposition 4.2.1. Proposition 4.2.2 is thus a strict galeation of the converse part of

Proposition 4.2.1.

4.2.3 Capacity Inner Bound for COPE plus OpR

An inner bound for the general casepfd;) > 0 is described as follows.

Proposition 4.2.3 A rate vector(R;, R,) is achievable by a linear network code if there
exist 3 non-negative variables , t,, t,, 10 non-negative variables; , wherei € {1,2}
andk € {0,1,2,3,4}, 4 non-negative variables], ) for k = 1,2, such that jointly the

17 variable$ and (R, , R,) satisfy the following four groups of inequalities:

In the achieving algorithm in Section 4.3, theariables correspond to the time slots that each of the ssurc
and the relay is used; and thevariables correspond to the time slots each policy is used.



37

Group 1 has 5 inequalities, namdhke time budget constraints

4
Vi=12 Y wh<t, (4.9)
k=0
Vi=1,2, wytwiytwic<t, (4.10)
to, 4+ tey +1, <1 (4.11)

Group 2 hasl2 inequalities, namethe packet conservation laws at the source nodes
Consider anyi,j € {1,2} satisfyingi # j. For each(i, j) pair (out of the two choices

(1,2) and(2, 1)), we have the following 6 inequalities.

wopi(di, dj,r) < R (4.12)
wy,pi(di,r) < wypi(didyr) (4.13)
w;ipi(d,-, d;) < wgz_pz(rdld]) (4.14)
Wipz'(du r) < wgipi(djW) — w;ip,-(di, r) (4.15)
wi pi(ds, dj) < Wl pi(rdid;) — wg,pi(d;, dir) (4.16)
wy pi(ds) < wl pi(djrd;)

+ g, (pi(dy) + pi(r) = pi(didyr))

+wipi(rd;) + wi pi(d;d;) (4.17)

Group 3 has 4 inequalities, namdige packet conservation laws at the relay ndew

each(z, j) pair with i # j, we have the following 2 inequalities.

Wf;,NPr(du dj) < ngpi(rfdj) - Wslipz‘(dp d;r)
wy, cpr(d;) < wipi(djrd;)
+ w (pi(d;) + pi(r) — pi(didyr))
id;)
— wy pi(d;) + wiwpr(dsd;) (4.19)

+ wi pi(rd;) + wg’z_ pi(
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Group 4 has 2 inequalities, namdlde decodability conditiongConsider; = 1,2. For

eachi, we have the following inequality.

4
(Z wk> pi(d;) + (win+ wic) pr(di) > R; (4.20)
k=0

An heuristic but not rigorous explanation is as follows. Timee budget constraints
(4.9)—(4.11) describe the fact that the each transmittotiprcan only select policies within
its own time budget and the overall time budget is one in rafibe conservation laws
(4.12)—(4.19) describe the fact that for one policy beingilele to be selected, it must be
a non-empty set, which is equivalent to quantify the spanesdsions of the policies. The
decodability conditions describe the fact that to be abketonstruct the required packets
at two destinations, a certain amount of packets must bévestby two destinations.

Proposition 4.2.3 will be proved by explicit constructioham achievability scheme
based on the SBLNC scheme described in the next section. éilied| proof of Proposi-
tion 4.2.3 is relegated to Section 4.3.1.

4.3 Capacity Approaching Coding Scheme

In this section, we will first prove the capacity inner bouPposition 4.2.3or the
setting of the COPE principle when allowing opportunisbating. We will then prove
that the inner bound coincides with the capacity charaza@an in Proposition 4.2.1 for

the COPE principle without the opportunistic routing coment.

4.3.1 Achieving The Inner Bound of Proposition 4.2.3

We prove Proposition 4.2.3 by properly scheduling the 13cjes described in Sec-
tion 3.2.

Consider any,,, t,, t,, wl, i € {1,2} andk € {0,1,2,3,4}, wiy, andwfc, k = 1,2,
satisfying the inequalities (4.9) to (4.20) in Propositb8.3. For any > 0, we can always
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construct another set ¢fandw’ variables such that the neivandw’ variables satisfy (4.9)

to (4.19) with strict inequality, and satisfy the followingequality

4
(Z wk> pi(di) + (win +wic) pr(di) > Ry — € (4.21)
k=0

instead of (4.20). Based on the above observation, we veilliag that the givet , ¢.,, .,
wk , wky, andw] ¢ satisfy (4.9) to (4.19) and (4.21) with strict inequality. the following,
we will construct an SBLNC solution such that the scheme gprty terminates” within
the allocated time slots with close-to-one probability and after the SELBcheme stops,
eachd; has received at leas{ R; — ¢) number of its desired information packets.

We construct the SBLNC scheme as follows. We first schedele;tpolicies sequen-
tially from I';, o to I's, 4. Each policyl'y, , lasts forn - wfl time slots. After finishind’s,
we move on to PolicY'y, ,1 until finishing all 5s,-policies. After finishing the;-policies,
we move on to the,-policies. Again, we choose thg-policies sequentially fronh'y, o to
'y, 4 and each policy lasts for - w§2 time slots. After thesy-policies, we schedule the
policies sequentially fronh, ; toI', ;. PoliciesI’, ; andI’, » last forn - w},N andn - wf,N time
slots, respectively. Policy, s lasts forn - max{w, ¢, w;} time slots. Feedback is critical
for the SBLNC scheme as it is used to decide the evolution®ktiowledge spaces,,
Sa,..., T;., which in turn decides the sets in (3.1)—(3.14).

For the above construction, we first discuss its dependendaye finite field size;.
Among the entire designed policies (3.1)—(3.14), obsehat hax L") is two, which
means there are at most two exclusion spaces for one polioys Tor each of the de-
signed policies being non-empty, the minimum requiremédns & no less than 2. To
prove this statement, assume we have 3 linear sp&cBsandC' with the designed policy
A\(B U C). For this policy being non-empty, it requirg8»<(4) = |A| > |(BU C) N A|.
Furthermore, one can show tHaink(A) > max{Rank(A N B), Rank(A N C)} implies
Al > [ANB| + |[ANC| — 1(= ¢Rank(AnB) 4 gRank(ANC) _ 1) > (B U C) N A| with
q > 2. Thus as shown in [3], the feedback capacity of 2-user bastdrasure channel can

be achieved witly = 2. The scheme proposed here also works;fer 2.
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To prove the correctness of the above construction, we reegliiow that the following
two statements hold with close-to-one probability: (i) idgreach time slot, it is always
possible to construct the desired coding vectdts (or v(?)). That is, we never schedule
an infeasible policy throughout the operation; (ii) deationd; can decodei(R; — ¢) of
the desired information packets when the scheme termfateaddition to the above two
statements, we will also prove that with close-to-one pbdltg; and (iii) during the first
n-w;c (resp.n - w?c) time slots of scheduling, ;, the computed flow-1 vectar™ (resp.
flow-2 vectorv(?) is not zero.

We first prove (i) while assuming both (i) and (iii) are tru&/e notice that all the
exclusion spaces of policids, o to I'y, 4, andI’, ; containS; as a subset. As a result, all
those packets carry some new flow-1 information that has eobgen received by;. If
d, receives any of those packets, the ranisptvill increase by one. Similarly, during the
first nw; - time slots of Policyl’, 5, the computed-") vector does not belong t6;, see
(3.13). As aresult, itl; receives any of those packets, the rankpivill again increase by
one. From the above reasoning, the expected vallRnok(S; ) in the end of the SBLNC

scheme must satisfy

E{Rank(S1)} =p:(d;) (Z ”Wfl)

k=0
+ pr(di) (nwy  + 1wy ) (4.22)
~n(Ry — ¢ (4.23)

where the right-hand side of (4.22) quantifies the expeatether of packets received by
during Policied’s, o toI'y, 4, I';1, and the firshw},c time slots ofl’, 5. (4.23) follows from
(4.21). By the law of large numbeRank(S;) > n(R; — €) with close-to-one probability
whenn is sufficiently large. The above inequality ensures thatan decode:(R; — ¢) of
the flow-1 information packets at the end of the SBLNC schdByesymmetry,, can also
decoden (R, — ¢€) of the flow-2 packetdV, in the end of time = n. What remains to be

shown is to prove that (i) and (iii) hold with close-to-on@bability.

2As the existence guaranteed in Proposition 3, givemdw variables satisfying inequality (4.9)—(4.20),
inequalities (4.9)—(4.11) guarantee that we can finishstrassion within the allocatexd time slots.
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Next we prove (i) and (iii) by the first order analysis thatuaess sufficiently large.
We first consider Policy', o. For any time, I,  is a feasible policy if (3.1) is non-empty,

which is equivalent to having

Rank(Q;) — Rank(Q; N (S; & S2 @ S,))
= Rank(€);) — Rank(S; & Sy & S,.) > 0. (4.24)

We first note thaRank(€2;) = nR; is a constant and does not change over time. Also
note thatRank(S; & S, @ S,.) increases monotonically over time since a node accumulates
more “knowledge” over time. As a result, if we can prove ta24) holds in the end of
the duration of (executing) Polidys, o, then throughout the entire durationlaf, o, we can
always find some (V) belong to (3.1).

To that end, we notice that when we chodsg, as our coding policy, the coding vector
v is chosen from (3.1). Since)) does not belong to the exclusion spaged S, & S,
Rank(S; & Sy @ S,.) increases by one if and only if at least onedef d,, andr receives
the transmitted packeX,, = v(VWT. Also note that in the beginning of Polidy., o,
Rank(S; & 52 @ S,) = 0. As aresult, in the end of the durationIof, ;, we have

E{Rank(51 D Sg D Sr)}
:O+n~w21 ‘pl(dl,dg,’f’) (425)
< nRy = Rank(Qy), (4.26)

where (4.25) follows from quantifying the expected numbktimme slots (out of totally
nw? time slots) in which at least one @f, d,, andr receives it. (4.26) follows from
(4.12).

By the law of large numbers, (4.26) implies that (4.24) haidhe end of the duration
of I, o with close-to-one probability. As a result, with closeeoe probability Policy’y, o

remains feasible during the assigned duration of;?  time slots.
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We now consider Policy', ;. For any timet, Iy, ; is feasible if (3.2) is non-empty,

which is equivalent to having

g RES) — 15y @ S| > [(S2© 5,) N ((S1 @ S,) U (S1 6 5))]
= (52 ®5,) N (S1®5,)) U((S2® 5,) N (518 5))
< Rank(S, @ S,)
> max{Rank((Sy @& S,) N (S1 & S,.)),
Rank((Sy @ S,) N (S & S2))} (4.27)

where “=” holds assuming the underlying finite fieldF(¢) satisfyingg > 2. When
we choose Policy',, ; as our coding policy, the coding vectof!) is chosen from (3.2).
Therefore,v(!) must belong to the inclusion spasg @ S,, which implies that no matter
how many nodes ifd, ds, 7} receive the packeRank(S, @ S,) remains the same. Also
note that similar to the case bf, ,, Rank((S2 & S,) N (51 & S,)) andRank((Sz & S,) N
(S1 @ Ss)) increase monotonically over time. As a result, if we can prihat (4.27) holds
in the end of the duration of Polidys, ;, then throughout the entire durationlof, ;, we
can always find some(") belong to (3.2). The remaining task is thus to quantify three¢h
different rankRank(S2® .S, ), Rank((Se® S, )N(S1®S,)), andRank((S,®S,)N(S1ES2))
at the end of (the duration of),, ;. All the following discussions hold with close-to-one
probability when focusing on the first order analysis:of

First consideRank(S; @ S,). We know thaRank (S, @ S,.) remains the same during
Policy I'y, ;. Therefore, the value dRank(S; & S,) is decided by how much it increases
duringT,, 0. Since anyw® in Policy I',, o does not belong t&, @ S, (see (3.1)), every
time one ofd, andr receives a packet df;, o, Rank(S, & S,) will increase by one. As a

result, in the end of ;, ; we have

E{Rank(S> ® S,)} = nw; p1(da, r) + nw,, - 0. (4.28)
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We now consider the first teriRank((S2 & S,) N (S1 & S,)) in the max operation in (4.27).
By Lemma 3.1.2, we can rewrifgank((S; & S,) N (Se & S,.)) by

Rank((S; & S,) N (S @ S,))
= Rank(Ss @ S,) + Rank(S; @ S,) — Rank(S; & S, & S,.). (4.29)

The value ofRank(S, @ S,.) is quantified in (4.28). Since any") in Policy 'y, , does not
belong toS; @ S, (see (3.1)) and any) in Policy T, ; does not belong t&; @ S, either
(see (3.2)), every time one df andr receives a packet dfy, o or I';, 1, Rank(S; & S,)

will increase by one. In the end 6f, ; we thus have
E{Rank(51 @D ST)} = nwgl : pl(dla T) + nwil - P1 (dl, 7’). (430)

Similarly, since anwV in Policy I',, , does not belong t&; @ S, @ S, (see (3.1)) and
anyv® in PolicyT',, ; belongs taS; @ S, @ S, (see (3.2)), every time one df, d,, andr
receives a packet df;, o, Rank(S; @ S> @ S,) will increase by one. In the end of, ; we

thus have
E{Rank(S; @ S> & S,)} = nw? pi(di, da, ) + nw,, - 0. (4.31)

By (4.28), (4.29), (4.30), and (4.31), we can verify thatl®).implies thatRank (S, &
S,) > Rank((S2 @ S,) N (S1 & S,)) in the end of Policyl', ;. By swapping the roles
of d, andr, symmetric arguments can be used to prove that (4.14) impliek(S, &
Sr) > Rank((Se @ S,) N (S1 @ S2)) in the end of Policy’,, ;. Thereforel';, ; is feasible
throughout its duration ofw? time slots.

Similar rank-comparison arguments can be used to completprbof of (i) and (iii).
The remaining derivation repeats similar steps descrilbedey and hence is relegated to

Appendix B. The proof of Proposition 4.2.3 is thus complete.
4.3.2 Capacity of COPE Principle 2-Flow Wireless Butterfly Network Without Op-
portunistic Routing

In this subsection we will prove that the capacity outer bumProposition 4.2.2 and

the capacity inner bound in Proposition 4.2.3 coincide wihestinationd; cannot directly
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hear from source; for i = 1, 2. Proposition 4.2.1 thus describes the exact COPE-priacipl
2-flow wireless butterfly network capacity region withoupoptunistic routing.
To complete the proof, we note that wheiid;) = 0, for i = 1,2, (4.12)—(4.20) of the

inner bound in Proposition 4.2.3 is reduced to the followfimgns 3

wopi(dy,r) < Ry, (4.32)
wl pi(r) < Wl pi(d;T), (4.33)
wy,pi(d;) < wy pi(rd;), (4.34)
wipi(r) < wipildyT) — we,pi(r), (4.35)
wepi(d;) < wepi(rd;) — wg,pi(d;), (4.36)
wenpr(diy d) < wipi(rdy) — wypi(d))

— wipi(dy), (4.37)
wf‘,CpT(d ) < Wy pz(d T) + wy (pz(dj) —|—pl(7’))
+ w2 pi(r) + Wi pidy) + wp npr(ddy). (4.38)
and (4.20) becomes

pr(di)(wi,N + Wf«,c) > R;. (4.39)

The following lemma proves the tightness of the bounds wheretis no 2-hop overhear-

ing, i.e.,p;(d;) =0fori=1,2.

Lemma 4.3.1 For any 5-tuple( Ry, R», t1, 2, t,.) satisfying the capacity outer bound (4.1)—
(4.4), we can always find4 companying vanables;s , ﬁN, rcfori=12andj =
0,1,2, 3,4, such that jointly the4 + 5 = 19 variables satisfy (4.9), (4.10), (4.32) to (4.39).

3Inequality (4.17) becomes trivial since the left-hand ifié4.17) becomes zero and the right-hand side of
(4.17) is always non-negative.
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Proof Given any(Rl, Ry, ts,, ts,, 1) satisfying (4.1)—(4.4), we construct
{wl Wiy wic:ie{l,2},j€{0,1,2,3,4}} inthe following way. For each pait, j) =
(1,2) or (2,1), we define

wo = RZ
o opi(d,r)’
1 1 1
w! =R, (mln{ , } ) ,
: pi(r) pild;) } pildj,r)
1 1\
(.Ug :Ri ( - ) )
Z pi(r)  pi(dy)
1 1\ R
w? =min RZ< — ) i ls 0,
Z { pi(d;)  pi(r) ©op(r)
w;lz_ =0,
i (B tapi(d)))”
mN pr(diadj) 7
;R (Ri —ts,pi(d;))"
We.c = -
= pe(dy) pr(di, dj)

One can verify that the above assignment
{R1, Ry, ty, oy tr,wl Wi wic i€ {1,2}, 5 €{0,1,2,3,4}} satisfies (4.9), (4.10), (4.32)
to (4.39). The detailed verification is relegated to App&rli The proof of Lemma 4.3.1

is thus complete. [ |

4.4 Numerical Results

In this section, we apply the capacity results to some nuwrakyi generated scenar-
ios so that we can explicitly quantify the throughput/cagyaienprovement of the COPE
principle. The detailed simulation setting is describetbdews.

Consider one specific setting of the 2-flow wireless buttaréywork as depicted in
Fig. 4.2. In Fig. 4.2, we specify the success transmissiobatsility between each node
pair as the number next to the corresponding arrow and weres$oe success events
between different node pairs are independent. For exartifgdgyrobability that a packet

sent bys, is heard byi; isp;(d;) = .2 and the probability that a packet sent/big received



Fig. 4.2. An instance of the 2-flow wireless butterfly netwarikh the success
probabilities being indicated next to the correspondimgwas. We also assume
that the success events between different node pairs apandent.

— SBLNC with OpR
SBLNC w/o OpR |
RLNC with OpR
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Fig. 4.3. The capacity regions of the scenario in Fig. 4.2e 3blid line indi-

cates the throughput region of SBLNC. The dash line indgctite throughput
region in [4]. The dot line indicates the throughput regidndra-session
network coding (or random linear network coding).
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(@) (b)

Fig. 4.4. (a) The relative location ¢%;, d;). (b) Topology of two(s;, d;) pairs.

by d, is p,.(dy) = .6. We then computé different capacity rate regions and plot them in
Figure 4.3.

The solid line “SBLNC with OpR” represents the ultimate ceiparegiort of this net-
work, for which relayr is allowed to perform inter-flow network coding across botiwi
and 2-hop overhearing directly from to d; (and froms, to d») is allowed. The curve
“with COPE, w/o OpR” describes the capacity region when #@layrr can perform inter-
flow coding but there is no 2-hop overhearing. Both the cutwéth COPE, with OpR” and
“with COPE, w/o OpR” allow for optimal scheduling among s,, andr. The dash line
“ [18] with (or w/o) OpR” represents the throughput regionigthcan be achieved by the
results in [18] with either opportunistic routing or not. &Hot line “RLNC with (or w/0)
OpR” represent the throughput region which can be achieyesirbply the intra-session
network coding (or random linear network coding [2]) witlher opportunistic routing or
not.

As can be seen, when there is only one flow in the network {gay- 0), then OpR
is optimal as was first established in [33]. However, whemeglse two coexisting flows
(when bothR; andR, > 0), the COPE principle alone sometimes outperforms OpR due to
the strong overhearing between— d; ands; — ds, p2(d;) = 0.4 andp;(dy) = 0.5, in
this example. On the other hand, SBLNC provide the ultimateuighput when compared

to the existing schemes.

40ur main results provide a pair of outer and inner boundsHisr ¢apacity region. Since the gap between
the inner and outer bounds is not visible in the figure (wilatiee gap less than 0.08%), we use the inner
bound (the achievable rate) as the proxy of the capacitpregi
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Fig. 4.5. The cumulative distribution of the relative gapvizeen the outer and
the inner bounds when there is no fairness constraint. Ttex and the inner
bounds are described in Propositions 4.2.2 and 4.2.3,ctaply.
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Table 4.2
Average sum-rates over 10000 random node replacements.

Fairness Constraints OpR SBLNC [18] | RLNC
N allowed | .6599/.6594 .6472| .6180
o]
negligible 4820 A779| 4116
_ allowed | .6294/.6286/ .6101| .5484
Proportional —
negligible AT7T75 A4726| .3854
_ allowed | .6031/.6026 .5892| .5406
Min-cut —
negligible 4671 4626| .3856

We are also interested in quantifying the throughput benefitCOPE and OpR in a
randomly placed network. To generate a typical XOR-indlrescenario, we first place the
relay node in the center of a unit circle. Then we randomlg@l@ur nodessy, ss, di, ds)
inside the unit circle. To simulate the need of the relay fhesession pair, we force the
placement of each pair to be in the opposite 90 degree areat. ig;ld; must be located
in the opposite 90 degree areasgf location fori = 1,2. See Fig. 4.4(a) for illustration.
Fig. 4.4(b) illustrates one realization of our random nol@e@ment.

We use the Euclidean distanée between any two nodes to decide the overhearing

probability when a packet is transmitted. More explicitlg use the Rayleigh model

0021' x

2 1
Prob(succesp= e vdxr wherey® ——

™ Y (4m)2 D>’
wherea is the path loss factor, anid is the decodable SNR threshold. To reflect the packet
delivery ratio measured in practical environments, we skoo= 2.5 and7™* = 0.006 so
that the overhearing probability for a 1-hop neighbor isua0.7-0.8 while overhearing
probability for a 2-hop neighbor is aroudd2—0.3. If no direct overhearing is allowed, we
simply hardwire the probability that; overhears;; to be zero. We again assume that the

success events between different node pairs are indepgenden
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For practical concerns, we often enforce fairness comsttaiavoid the situation that
one of the flows occupies all of the allocated resource. Hexgrmpose two kinds of
fairness constraint: the min-cut fairness constraint,taegroportional fairness constraint.
For the min-cut fairness constraint, we impose an additioostraint
R; = Bmin (p;(d;,r), pi(d;) + pr(d;)) for i = 1,2 with a common3, which enforces the
individual rateR; being proportional to the min-cut value frogmto d; assuming no other
sessions are transmitting argdand r are scheduled with the same frequency. For the
proportional fairness constraint, we use(R;) + log(R;) as the objective function in the
linear programming solver. When there is no fairness camdtfrwe simply maximize the
sum rateR; + R, as the objective function in the linear programming solN&wmbining
the fairness constraint and the linear constraints in Fitipa 4.2.2 or Proposition 4.2.3,
we derive the optimal rates. We repeat the above experirent00 times and lists the
average sum ratB, + R, for each case in Table 4.2.

Table 4.2 lists the sum-rate averaged ou&b00 simulations. When allowing 2-hop
overhearing;(d;) > 0), then the inner and outer bounds do not always meet. Therefo
for the entry with both COPE and OpR, the number on the lethésaverage of the sum
of the optimal rateR, + R, for the outer bound, denoted sym.outer While the number
on the right is the average of the sum of the optimal ate+ R, for the inner bound,
denoted byRsum.inner When hardwiring the 2-hop overhearing probability to zexr® was
proven Section 4.3.2, the sum-rate outer and inner boumdsyalcoincide and hence only
one number is shown in that entry. We also list the sum-rateribound results in [18].
The capacity of pure routing and pure OpR [33] can be explickmputed and therefore
there is only one number in those entries as well. We first tiwein terms of the aver-
aged throughput, the difference between the outer and tex lvounds is aroun@ 08%.
Among all 10000 instances, the largest absolute difference is i#ithh outer= 0.6409 and
Rsuminner= 0.6375. The proposed bounds thus effectively bracket the capatign com-
bining the XOR-in-the-air and the opportunistic routinggiple. Jointly using COPE and
OpR SBLNC scheme providé®% throughput improvement over the classic pure routing

scheme with optimal scheduling.
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Fig. 4.5 focuses on the relative gap per experiment whewaldipfor both COPE and
OpR. Specifically, we compute the relative gap per each expet,
(Rsum.outer— Rsum.inned / Rsum.outerWhen there is no fairness constraint, and then plot the cu-
mulative distribution function (cdf) for the relative gapé/e can see that with more than
80% of the experiments, the relative gap between the outer arett ounds is smaller than
0.2%.

4.5 Chapter Summary

In this chapter, we discuss the capacity region of the loeddark formulated in Sec-
tion 2.2. In Section 4.1, we compare the proposed model witting results and demon-
strate that the proposed model includes all the importaatitifes of the broadcast packet
erasure channels, the COPE principle, and the opportamaiting. In Section 4.2, we
then characterize the full capacity region of the 2-flow Veiss butterfly network with-
out opportunistic routing, and propose the outer bound hedrtner bound for the case
with opportunistic routing. The SBLNC scheme is used to eahithe inner bound in
Section 4.3. In Section 4.4, we use the numerical resultemanstrate how close the
SBLNC scheme can approach the outer bound (and hence tineabgtroughput) and the
throughput provided by the SBLNC scheme strictly outpenf®existing results.
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5. LINEAR NETWORK CODING SCHEDULING AND THE
ANALOGY TO STOCHASTIC PROCESSING NETWORK

Starting from this chapter, we will start the discussion loé stability region. We will
first discuss the stability definitions rigorously. Then wecdss why the network coding
cross multiple sessions is a critical issue to the existingesand=forward based network
stability analysis. A more general network model, callezlgtochastic processing network
(SPN), is introduced to incorporate the inter-session agvweoding issue. We further
discuss the scheduling algorithm which can stabilize Skilly, we discuss what are the

obstacle when applying SPN to the multi-flow wireless nekymoblem of interest.

5.1 Stability Definitions

We have formulated the stability region problem in SectioB. 2Here we are going
to formally define the stability. The following definitions@ properties hold even when
the queue length can possibly be negative (as we will seeviitedl queue length” in the

deficit maximum weight scheduling algorithm).

Definition 5.1.1 A queue lengtl(¢) is stable if

¢

) 1

lim sup i g E{lqt)|} < oo. (5.1)
7=0

t—o00

And the network is stable if all the queues are stable.

Definition 5.1.2 A queue lengtl(¢) is sublinearly stable/grows sublinearly if for aay>

0 andé > 0, there existg, such that
Prob(|q(t)| > et) < 0, ¥t > t. (5.2)

And the network is sublinearly stable if all the queues atdisearly stable.
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Lemma 5.1.1 Suppose both queue lengtfis) andp(t) are stable, then(¢) + p(t) is also

stable.

Proof This follows from the subadditivity ofim sup,

lim sup ~ ZE{Iq )+ ()]} < limsup - ZE{\q )+ I}

t—o00

<l1msup ZE{|q }+hmsup ZE{|p |} < oc.

Lemma 5.1.2 Suppose both queue lengtfig) andp(t) grow sublinearly. Then(t)+

also grows subnlinearly.
Proof Foranye > 0 andé > 0,

Prob(|q(t) + p(t)| > et) < Prob([q(t)| + [p(t)] > et)
<Prob(|q(t)| > €t/2, [p(t)| > et/2)

<Prob(|q(t)| > €t/2) + Prob(|p(t)| > €t/2).
Since bothy(t) andp(t) grow sublinearly, there exists, ¢, such that

Prob(|q(t) + p(t)| > et) < Prob(|q(t)] > et/2) + Prob(|p(t)] > et/2)

< §/24+6/2, Yt >ty 2 max{t,, ta}.

p(t)

Lemma 5.1.3 Suppose the queue lengtft) is stable with initial conditior(0) = ¢ < co.

If there exists a constant such thatq(t) — ¢(t — 1)| < « holds with probabilityl for all

t, theng(t) grows sublinearly.
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Proof LetA(t+ 1) = q(t+ 1) — q(t). We moveq(t) to the other side and square both
side givesy(t + 1) = q(t)* + 2q(t)A(t + 1) + A(t + 1)%. By definition,|A(t)| < « with

probability 1 for all . And taking the expectation

E{q(t + 1)} — E{a(t)*} < 2E{Ja(t)]}a + o>

Sinceq(t) is stable,; S E{Jq(t)]} is bounded, say by . Iteratively summing up both

sidesfromr =0tor =t — 1,

1 18 c
ZE{g(H)? < 20= E 2, -<9 24
; {q(®)°} < atz {la@®)]} + « ty < al+a” +c

7=0
For anye > 0 andé > 0, we use the Markov inequality

20U + %+ ¢

Prob(|q(t)| > et) < %E{q(t)Q} < N

Let t, be the smallestsuch that%jf*C < 4. Then

Prob(|q(t)| > et) < §, Vt > t.

5.1.2 Achieve The Optimal Throughput By Sublinearly Stabilty

The stability definition is the one we usually have in the retwstability analysis.
The definition of sublinearly stable is not as often seen asdamer one. We will use the
following proposition to prove that the sublinear stalgittan help us to achieve the optimal

throughput.

Proposition 5.1.1 Suppose the network is sublinearly stable under the arrat R and
there exists a naive solution such that the network can ssteky send out all the packets
remaining in the queues (assuming no further new incomirgigta). Then the network

can achieve the optimal throughput under the arrival r&te

Proof We assume the system is time-slotted, and theRasein the interior of the sublin-

early stability region. We prove this by a frame-based sehdmt{At¢;}°, be a sequence
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of integer numbers denoting the length of thiéh frame. The first frame starts at= 1
and ends at = At;. After the first frame ends, we start the first draining pracedat
t = Aty + 1. During the draining procedure, we buffer all the new incognarrivals
without injecting them into the network. At the same timeg tietwork sends out all the
packets remaining in the queues. The first draining proeednds when all the queues in
the network are empty, and we usg, to denote the duration of the first draining pro-
cedure. After the first draining procedure (ie+ At; + Aty + 1), we start the second
frame and inject all the packets buffered during the firstriing proceduret = At; + 1
tot = Aty + Aty,, into the network along with the original new arrivals witite R. The
second frame lasts fak¢,. And then we repeat the draining procedure and so on so forth.
To summarize the above frame-based scheme;théame starts at = Z;;ll(Atj +
Atg;) + 1 with all queues being empty. The arrivals during tite frame come from two
source. The first one is the original arrivals with r&te The second one is the arrivals
buffered at the previous draining procedure. And hence teeatl rate during theé-th
frame, denoted byR;, is larger thanR. Thei-th frame lasts forAt; and ends at =
S T1(At; + Aty,) + At;. And then we send out all the packets remaining in the network
which takesAt,, time slots, by buffering all the new incoming packets. Thesit+ 1-th
frame starts.
Givenany) > 0 ande > 0. SupposeR; is in the sublinear stability region for all Then
all the queues are sublinearly stable duringithieframe. Since the queue length at the end
of thei-th frame is proportional té\¢,,, there existg; such thaProb(At,;, < eAt;) >1—¢
for all At; > t;. The overall throughput aftérth frame and its draining process, denoted

byT;,is

R (z;’;ll(mj +Aty) + Ati)
S (At + Aty))

el Aty
S(AL 4+ Aty) )

Fi:
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Then

Prob(T'; > R(1—¢)) > Prob (T; > R [ 1— — €At ~1-4.
E]:l(At] + Atdj)

Thus the overall throughput can be made arbitrarily close waith close-tod probability.
Hence it remains to show that there exists a sequéneg°, with At; > t; such that
R; is in the sublinear stability region for all We prove this iterativelyR;, = R is in the
interior of the sublinear stability region by the assumptbthe beginning of the proof. We
assumeR; is in the sublinear stability region. Notice th&f,; comes from (1) the arrivals
buffered at the previous draining procedure and (2) themalagrrival rateR, and hence

can be expressed as

Rz‘+1 =

RAt; 1 + RAt, Aty
~=R|(1 .
Atiy - Aty

Since R is in the interior of the sublinear stability region, thepasés ¢’ > 0 such that
R + € is in the sublinear stability region. Furthermore, siiés in the sublinear stability
region, all the queues are sublinearly stable during:ttreframe. By the fact thaf\¢,,
is proportional to the maximum queue length at the end oftieframe, for any’ > 0
there exists such thatProb(At,, > <) < ¢ for all t > t,. We then choosé\t;,, =

R
max{t;11,t} + 1 and hencérob(At,; > E'A%) < d'. Thatis,

AtL / Atz /
Prob <RAt:r1 <e) = Prob <Ri+1 :R(l—i- At:—l) <R+e> >1-14.

Sinced’ can be made arbitrarily small with correspondiiag , |, the proof is complete.

5.2 The Obstacles Between Store-and-Forward Network Contd Algorithm and Net-
work Coding

In the existing store-and-forward network stability arsady a rate is feasible (namely,
this rate is in the stability region) if there exists a netkwoontrol algorithm which can
stabilize all the queues inside the network consideringa@skible routing, scheduling, and

resource allocation. At the same time, as we have seen inopechapters, applying
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network coding within the network can strictly increase émel-to-end throughput. Thus,
intuitively speaking, the network coding should be ablentare the store-and-forward
based stability region.

A standard network model usually consists of queues and liakd the packets can
be stored in the queues and forwarded through links. The-peedsure scheduling al-
gorithm [28] evaluates the differential queue length farkelink and choose the feasible
scheduling decision which maximizes the summation of tfferéintial queue lengths. The
back-pressure algorithm has been proven to achieve thmalptihroughput in the store-
and-forward network model. However, the nature of comlgmackets in network coding
is not a well-defined component in the standard store-ansafi@ network model. If the
network coding is restricted within the same session (ingxa-session network coding),
the network coding packets can be described as the infaymtdw in the flow model [1].
The flow feature of intra-session thus can be naturally eddrio the stability analysis as
in [34] without considering the combining packet issue. ldger, when network coding
can be applied across multiple sessions (i.e., inter@esstwork coding), the feature of

information flow in intra-session network coding is no lontggitimate.

5.2.1 An lllustrative Example For The Combining Packet Isse

To illustrate the issue of combining packets more clearly, again use 2-flovt-to-
2 broadcast packet erasure channel with feedback as an exaamal choose the back-
pressure algorithm as the scheduling algorithm. To exguspdssible inter-session coding
benefit, we use a 4-queue scheme as illustrated in Figur&ér®ach, j = 1,2 andj # 1,
the queuey; with queue length);(¢) stores the uncoded packets from flowvhich have
not been received by any @f andd,. And the queuey s, with queue length)); si(t)
stores the uncoded packets from flowhich have been received kly but not byd,. The
“SI” in the subscript denotes the packet in the queue is tihe isiformation packet for the

other destination. Hence suppd$gis in ¢, s andWs is in g2 5;, then both destinations can

1The “feasible” here means there is no confliction betweestheduled links.



Ay(t) Azl(f)
!
Q1(1) Qa(t)
Q1 pi(t) Q2 41(¢)

Fig. 5.1. A 4-queue scheme to illustrate the inter-sessioling benefit.
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decode the inter-session coded padket- 1V, and acquire the desired information packet.
At each time slot, we can choose to schedule one of the four links without{sésision
network coding. With inter-session network coding, we cemeslule both linksg, ) to s
andg. s to s, simultaneously and send out the coded packet through t@e PE

In the scenario where the inter-session network codingabipited, the back-pressure
algorithm simply compareg () + Q1,si(t) versus)z(t) + Qq,si(?) to decide which flow
packet to be sent uncodedly. On the other hand, in the scewhaere the inter-session
network coding is legit, there are several possible way®fmd the “back-pressure” value
for the inter-session coding choice, which schedyles and ¢, i simultaneously. Our
first thought will be®, si() + Q2.si(t) and then the back-pressure algorithm chooses the
maximum back-pressure value amafg(t), Q2(t), andQy s(t) + Q2.s/(t) and schedule
the corresponding queue(s). However, this creates a prnoateone ofQ); si(t) may be
zero. Supposé), si(t) is empty but the back-pressure still chooéls;(t) + Q2 si(t) and
schedules the inter-session coded packet. Then the “@¢idater-session coded packet
would simply be a uncoded packet from fldwand hence the effective throughput turns
to be less than the expected throughput. Suppose we chaagkefihition of the back-
pressure value to bein{Q; si, Q2,si}, then we circumvent this difficulty but the problem
is that we now give too little priority to the inter-sessiogtwork coding operation (inter-
session network coding operation can serve both destirasionultaneously and should
have higher priority).

As we have illustrated in the above description, the maiincdity is that we can sched-
ule a inter-session coding operation only when both quengsandg, i, are non-empty.
And this phenomenon is not carefully considered in the j@elssure algorithm for the
store-and-forward network scheme. Consequently, a newanketmodel setting which
can incorporate the nature of combining packets is requiéglalso need a new stability

analysis for this new network model setting.
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5.3 The Stochastic Processing Network

In Section 5.2.1, we illustrated the difficulty of inter-seam network coding being ap-
plied to the store-and-forward network scheme. To circumtias difficulty, we introduce
another network scheme, called the stochastic processimgrk (SPN).

SPN is a generalized version of the store-and-forward nitwo the store-and-forward
network, the packet that leaves the queue directly entersdit queue and one queue can
be scheduled as long as there is one packet inside the quetlee Gther hand, for SPN the
most basic unit of scheduling is the so-called “servicevitgti. Each service activity con-
tains multiple queues. A service activity (SA) can be “chidaetivated/scheduled” only if
all queues associated the SA are non-empty. Namely, an $faké one packet from each
associated queue, jointly “process” them, generate a se¢wfpackets, and redistribute
them to some output queues. The detailed definition of an SiHMewefined in the next
subsection.

This generalization extensively widens the possible apfibns compared with the
store-and-forward network. For example, in the video stieg problem [35], the con-
tent in the network consists of different types of data idaig the voice and the image.
Different types of the data require different types of pssirg, e.g., compressing and de-
coding, in the network. And at the user-end, these diffetgmés of data require to be
processed together to be a valid video stream. SPN has ascektended to the problems
of the MapReduce scheduling [36] and grid computing [37].

Recall in the example in Section 5.2.1, we can schedule eset&sion coding operation
only when both queuey s andqg, i, are non-empty. While this phenomenon is not well-
defined in the store-and-forward network, it is resolvedh®y/d¢onstraint that a SA in SPN
can be activated only if all the queues associated the SAarempty. SPN thus inclines
to a promising possible solution for the network coding sithieg problem.

However, the analysis of SPN is much more challenging tharrégular store-and-

forward network. Thus far, the state-of-the-art analyssuits only consideacyclic SPN
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Fig. 5.2. An example of SPN.

with deterministic servicewhile in the network coding scenario, it is critical to coshesi
SPNs that are both cyclic with random service. Detailedudison of these challenges are

provided in Section 5.4.

5.3.1 Definitions And The SPN Model

Assume a time-slotted system. The SPN definition here méutiyws [38]. A SPN
consists of three components: the input activities (IAg, skervice activities (SA), and the
gueues. Le be the number of queued/ be the number of IAs, andy be the number of
SAs in the SPN. At each time slota set of IAs and SAs can be scheduled (or activated).
Each IA denotes a session (or flow) of packets and outputspattka collection of queues
when activated. When one SA is activated, it takes packeis & set of queues,,, and
sends packets to another set of quetigs,

When IAm is activated, it sends; ,,, packets to queuk. Let A € R¥*M be the “input
matrix” with Ay ,,, = —ax ., for allm andk. When SAn is activated, it takes;, ,, packets
from queuek € J,, and sendy, , packets to queuk € O,,. Let B € R**" be the “service
matrix” with By, ,, = by, if k € J,, and By, = —b;,, if k € O,,. We assume there is no

cycle in SPN.

°The existing SPN analyses [38, 39] also consider the netwiirktime-varying channel status (or service).
However, the time-varying channel status is assumed to biewripformation for the scheduler at each time
t. Thus the channel status is still “deterministic” for théaaduler in this sense. We name it “deterministic
service” while “random service” denotes a scenario for Whie channel status is not a prior information for
the scheduler for any time
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Let a(t) € {0,1}* be the “arrival vector” at time. If a,,(t) = 1, then IAm is
activated at time. We assuma(¢) is a random vector and i.i.d. over time with the average
rateR = E{a(t)}. Letx(t) € {0, 1}" be the “service vector” at time If x,,(t) = 1, then
SA n is activated at time. Lets € RY be the vector of average service rate. Figure 5.2
illustrates an example of SPN.

Since there are some constraints between the activatidd8gfe.g., the transmission
interference and user’s preference, some of SAs can notieelgied at the same time slot.
We sayx(t) is feasible if it satisfies all the constraints akds the set of all feasible&(t).

Let A be the convex hull ok, i.e3,

A={s:3p >0 px=15= (X},

xeX xeX

and letA° be the interior ofA.

Definition 5.3.1 An arrival rate vectorR is “feasible” if there existss € A such that
A-R+B-s = 0; andR is “strictly feasible” if there exists € A° suchthatd-R+B-s = 0.

We call the above SPN an “SPN with deterministic processsigte only the arrival

process:(t) is random but the service matrix is deterministic.

5.3.2 Deficit Maximum Weight Algorithm For Stabilizing SPN

Several attempts have been made to characterize the tstabdion of SPN and to
achieve the optimal throughput. Here we focus on the defieitimum weight (DMW)
algorithm [38] due to its succinct analysis and the potémiafurther extensions. DMW
algorithm can stabilize any strictly feasible rate vectod achieve the optimal throughput
of SPN described in Section 5.3.1 [38]. We will describe DMMbaithm and conceptually
explain how it works.

For each queué, Q(t) denotes its actual queue length at timeDefine a value

Dy (t) > 0 as the “deficit” for the queug at timet. Dy (t) = Qr(t) — qx(t), whereQy(t)

3We say a vector is no less than the other vecotr by elemertagisiparison.
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is the actual queue length, which can be measured directtpbgting how many packets
are actually in the queue () is the virtual queue length, which started fregt{t) = 0
for ¢t = 0, and we will later discuss how to update the virtual queugtien; (¢) over
time. Initially, g(0) = Q(0) = D(0) = 0. In the following algorithm, we first choose an
optimized service activation vector according to the algueue length at the current time
slot, we then update the virtual queue length for the nexé tehot. This can be done for
each time slots with well-defined initial conditieytt) = 0.

For each time&, we choose the service vector

x*(t) = argmaxd” (¢) - x,
xeX

whered(t) is the back pressure vector defineddds) = BT q(t).

Suppose for some queugsc 7, the actual queue lengifd.(¢) is smaller than the
amount of leaving packets when the 84s scheduled, we name it “null activity/underflow.”
When the null activity occurs, the underflow queue generdiggious packets” and send

it to SAn as if there are enough packets. We then updéteas follows.
q(t+1)=q(t) — A-a(t) — B-x*(t).
We can also rewrite the above equation as
@t +1) = q(t) = prout,k(t) + prini(t), VE, (5.3)

where

Hout, k Z Bk n :L
Hin,k(t) = Z Ai,mam + Z By n nl
n=1

andvt = max{0,v} andv~ = max{0, —v}.

We then update(t) andD(¢) as follows.

Qu(t+1) = (Qr(t) — fourk(t)) " + pini(t), (5.4)
Dp(t+1) =Qr(t+1) — qu(t +1).
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A heuristic but not rigorous explanation about why DMW workss follows. In the
back-pressure algorithm of the store-and-forward netywak always try to stabilize the
actual queue length. And hence we choose the scheduleaegwiich maximizes the
back-pressure value based on the actual queue length.eNbéitthe actual queue length
is always no less than zero as in (5.4). Thus as long;as8(t) < fouk(t) for most of
time slotst, the actual queue length will be conceptually stable. Anth&rmore, the
actual queue length is likely to touch zero frequently. Hesvein SPN, whenever the
actual queue length touches zeros and it i§,jrfor some activated S, the underflow
occurs. To avoid the underflow,, ,(t) < pouk(t) for most of time slotg is way too
aggressive. And hence we turn to stabilize the virtual quength as updated in (5.3),
which choose the schedule decision that maximizes the pegedsure value based on the
virtual queue length. Notice that for the virtual queue kbrfgeing stable, we need to have
Link(t) = tour(t) for most of time slots. And in this case, we can avoid the occurrence
of the underflow. Notice that;, x(t) = pour(t) IMplies i,k (t) < pour(t), and hence
we can use DMW to stabilize the actual queue length and talahei occurrence of the

underflow simultaneously.

5.4 The Obstacle Between Stochastic Processing Network AhNC Scheduling

As discussed in the previous sections, SPN seems to be agangnsolution for the
inter-session network coding problem. And DMW can help ustabilize the problem of
interest. However, there still exist the obstacle whenypglSPN results to the SBLNC
scheme.

The obstacle is the random service issue in the wirelessonketwn a wireless network,
when a packet leaves a queue, it can randomly arrive somébfgogsieues with certain
probabilities. And before the packets actually arrive thewe and send the feedback back
to the source, we have no ideas which queues actually rettedvpacket. We name this
feature as the “random service” in SPN as the:Siight randomly serve several queues

in O,,. We use Figure 5.2 as an example to illustrate this issue. 38lenaeu; ; = b1 =
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bao = b3o = 1 and IA 1 is activated at every time slot. There is no confliction b&w8A
1 and SA2 and hence we can activate them at the same time slot. To ntoglehibhdom
service, we assume there are two possible combinatio(is pft; ;). (by,03,) = (1,0)
with probability 0.5 and (b, ;, b5 ;) = (0,1) with probability 0.5. That is, whenever SA
1 is activated, it takes a packet frofyy, and with probability0.5 this packet goes t@-.
Otherwise, this packet goes €®;. Meanwhile, whenever SA is activated, it must take
one packet from each @, and(@;. Notice that the queue length difference betwégn
and(@; forms a simple random walk. The analysis of the random walk #hows that the
difference between two queuég, andQ;, goes unbounded with ratét. And hence there
is no scheduling algorithm which can bound both queue sizes.

We will circumvent this obstacle by properly modifying DMWgarithm in the next

chapter.

5.5 Chapter Summary

In this chapter, we start to discuss the stability regione dkfinition of stability and
sublinear stability are introduce in Section 5.1. We disctieir properties and prove
that with certain conditions, the sublinear stability cahiave the optimal throughput in
Section 5.1.2. There exists some difficulties when applyier-session network coding
scheduling problem to the existing store-and-forward oetvanalysis. We carefully illus-
trate the difficulties in Section 5.2.1. A network model, SF#ich can possibly resolve
the difficulties is introduced in Section 5.3. We introduckl® algorithm, which is the
stabilizing algorithm for SPN, in Section 5.3.2. We condubis chapter by discussing the

obstacles when applying SPN to the multi-flow wireless nekvpooblem.
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6. DEFICIT MAXIMUM WEIGHT-BASED LINEAR NETWORK
CODING

In this chapter, we will first device a new linear-space-dasanversion method such that
we can map the LNC design problem for the dynamic arrivairggtb a scheduling prob-
lem of an SPN network with random service. Then we will pragpasmodified DMW
scheduling algorithm that can stablize the SPN with randemise. Finally, we will use
the modified DMW on SPN to derive a LNC solution for dynamicketarrival such that
it is guaranteed to achieve the optimal throughput (sineartbdified DMW is guaranteed

to achieve the largest possible stability region of the SRR random service.)

6.1 Converting The NC With Dynamic Arrival To An Space-BasedLNC Scheduling

Problem

In this chapter we exclusively focus on the stability problef the 2-user broadcast
PEC with feedback (or 2-flow 1-to-2 broadcast PEC with feeldha

The full Shannon feedback capacity of the 2-user broadd¢zStwas first characterized
by [3] in 2009 by a three-stage scheme. We use Figure 2.1{H)istrate this three-stage
scheme. In the first stage, the sous@ends out the flow-1 packets uncodedly until each of
them is received by eithel or d,. Suppose a flow-1 packet is receiveddgybut not byd;,
then we put this packet into a queggs;. The second stage is symmetric to the first stage.
That is, the source sends out flow-1 packets uncodedly until each of them isveddyy
eitherd, or d,. Suppose a flow-1 packet is receiveddyybut not byds,, then we put this
packet into a queug s;. In the last stage, the soursdake one packell; from ¢; s and
one packetV, from ¢, ), and then send odt; + W,. Supposey; s, is empty, thers send
a packetiV; in ¢, 51 and vice versa. Far, j = 1,2 and: # j, since each packet i) g; IS

overheard by another destinatiéy both destinationg, andd, can recoveiV; + W, sent
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in Stage 3 correctly. This scheme is devised as a block-dddmely, we first need to send
outall uncodedW, packets until each is received by at least one destinatidnhem send
outall W, packets until each is received by at least one destination.

When we have dynamic arrival, we actually hdveifferent LNC choice one can pos-
sibly make in each time slot. Choide Send a newwW packet that have not been heard
by any ofd, andd,; Choice 2: Send a neW, packet that have not been heard by any of
d; andd,; Choice 3: When botld); 5; and (. s; are non-emtpy, send a linear sum of the
two; Choice 4: Send a packet fro@y s, directly (without mixing with any@, s; packets
probably becaus@: s, is empty); and Choice 5: Send a packet frQax, directly (without
mixing with any(), s; packets probably becauég s, is empty).

A LNC scheme with dynamic arrivals need to balance these ekan an optimal
way. On the other hand, from a block-code setting, this §est&heme has been proven to
achieve the optimal throughput for the 2-user broadcast WigCfeedback [3]. Following
the results in our group [40], we can write the above thragesscheme as a space-base
LNC scheme. This space-based LNC scheme is based on a 5efgimg solution, which

will be elaborated in Section 6.1.1.

6.1.1 The5-Type Coding Scheme

We consider the model formulated in Section 2.3. In the Waithy discussion, we will
see that the 5 choices in the above 3-staged scheme can bertednio a scheme of 5
different types. For two linear spacdsandB, A ® B is the sum space defined 4s> B =
span{v : Vv € AU B}. Fori = 1,2, let W, oyeran = (Wi 1, Wi o, ...) with W, ; € GF(q)
for all j be an infinite-dimensional vector with each coordinate darflow< message
in queueq); overal- Let Wo\,era”é(Wl,l, Wa1, Wi 2, Was, ...) be the joint overall message
vector with odd coordinates being a floammessage in queug; overan @nd even coordinates
being a flow2 message in queu@; overal- Letd; denote an infinite-dimensional elementary
delta row vector with itgj-th coordinate being one and all others being zero. We define

Qo\,era”gspan{éj : Vj} as the “overall message space.” We also deﬁﬂng,era"éspan{éj :
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jisodd} as the “overall flow-1 message space,” mvera"éspan{éj : j is even} as the
“overall flow-2 message space.”

For any timet, notice that there argizl A, () flow-i messages in queu; revealedfor
1 = 1,2. We define the “revealed flowmessage space at tinieas Ql(t)ﬁspan{égj_l :
1<j <> | A(r)}andthe “revealed flow-message space at tim’easQQ(t)éspan{cSQj :
1< <> Ay(7)}. We define the “revealed message space atzfirasQ(t)éQl(t) ®
Qo(1).

We define a coding vecter(t) to be a infinite-dimensional row vector with each coordi-
nate being a scalar &F (¢), and thej-th coordinate being zero forany> 5", , 51 _; Ai(7)
such thatv(t) € €(t). Any linear combination of the message symbols in quUgUR ealed
and Qs reveaea@t timet can thus be represented bt )W ..., WhereW] .., is the trans-
pose of Wyerar FOri = 1,2, we define the knowledge spacedatat the end of time
astI!i(t)éspan{v(r) V7 < tandv(r)W/ ., is received byl;}. We omit the time index

when there is no ambiguity. Let

Alé\lll; A2é‘1’2
A3é‘1’1 @ Qy; A4é‘1’2 D Q; A5é‘111 D Wo;

AGé\DI D Wy ® Oy A7é‘l’1 D Wy @ Qy;

Each coding type is indexed by7abit stringb = b,b,...b; where eachb, indicates the
coding vectorv(t) is in A, or not. For exampleTYPE3; = TYPEgo 1111 IS the set of

coding vectors, which are iA; N A, N A5 N Ag N A7 but not in any of4; or A,. Thatis,

TYPESI :TYPE0011111
2(A5 N A;N As 0 Ag N A\ (A; U Ay)
We say a coding type is “feasible” if the corresponding sebis-empty. At each time slot

t, we choose a feasible coding type and randomly select oriageodctorv(t) from the

chosen coding type. And then send out the paeketW .



Table 6.1

The relationship between the coding types, the requireacéged conditions,
and the associated SA in the equivalent SPN, Figure 6.1.

D

Coding type| Required conditions
TYPEg Condition 2
TYPE 5 Condition 1
TYPE3, Condition 3 and 4
TYPEgs Condition 3
TYPEgys Condition 4
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In the case of 2-user broadcast PEC with feedback, we caniedollowing 5 types

TYPE,, TYPE s, TYPE;3, TYPEgs, andTYPEgs. We also have conditions.

(6.2)
(6.3)
(6.4)
(6.5)

Itis proven in [40] that each coding type is feasible if antyofthe associated condition(s)

is (are) true. For example, for type 31 to be non-empty, wel weadition3 and4 are both

true. The relationship between the coding types and theittonsl are listed in Table 6.1.

6.1.2 Connections Between 3-Stage Scheme And 5-Type LNC Soie

Having introduced thé-type LNC scheme, here we demonstrate that the 3-stage schem

and 5-type LNC scheme are eventually equivalent. Sincehtteeistage scheme has been

proven to achieve the optimal throughput [3], it is enougkhow that the throughput of

the 5-type LNC scheme is no less than the throughput of tleethtage scheme. To show

this statement, suppose we have two identical 2-user basa®ECs with feedback with

same arrivals, named PEC 1 and PEC 2. Whenever we send outet pathe first stage
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in PEC 1, we also encode a packet withiPE;s and send it out in PEC 2. Whenever we
send out a packet in the second stage in PEC 1, we also encea&et pithTYPE, and
send it out in PEC 2. Whenever we send out a packet in the ke stith bothy, 5 and
¢2.51 @are non-empty, we encode a packet WithPEs; and send it out in PEC 2. If in the
last stagey, » is empty, then we encode a packet wWithPEs; and send it out in PEC 2.
If in the last stagey, s is empty, then we encode a packet witiiPEg; and send it out in
PEC 2. Finally, we have the following three claims to complbie statement.

We first claim that for any packet sent in the first stage, itsesponding coding vector,
v(t), is in TYPEs. That is, if the first stage is scheduled in PEC 1, tiéfPE5 is also
feasible in PEC 2. In the first stage, the souscgends out flow-1 packets until each of
them is received by any af; andd,. And hence the packet sent in the first stage is in
flow-1 but not known by any of; andd,. We then check whether(¢) is in A; or not for
i=1,2,...,7. Since the packet is neither in anydifandd,, nor a flow-2 packety(t) isin
As, Ag butnotinA;, Ay, Ay, As, nor A7, which is InTYPEy10010 = TYPE;s. And hence
v(t)isin TYPE;s.

We then claim that for any packet sent in the second stagepitesponding coding
vector,v(t), is in TYPEy. By symmetric analysis as the first claim, the packet serttén t
second stage is neither in any&fandd,, nor a flow-1 packet, and heneét) isin A, and
Az, butnotinAy, Ay, Az, As, nor Ag, which is inTYPEg1001 = TYPEg. Thusv(t) is in
TYPEs.

We finally claim that for any packet sent in the last stagecasesponding coding
vector, v(t), is in one of TYPE3;, TYPEg;, and TYPEys. There are three cases in the
last stage. The first case is baths andg, s are non-empty, and thensends the packet
Wi + Wy whereW; is from queuey; s;. Sincel; is in ¢ g, it is known byd,. On the other
hand,IV; is a flow-2 packet. And henoce(t) is in the sum spacé&, @ Q,. Symmetrically,
Wy is in ¢o 5y and W is a flow-1 packet. Hence(t) is also in the sum space; & ;.
Furthermore, sincél’; is known byd, and W, is known byd;, v(¢) is also in the sum
spaceVl; @ W,. In summary,v(t) is not in A; nor A, but in rest of them, which is in
TYPEwo11111 = TYPE3;.
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Fig. 6.1. The equivalent SPN of the 5-type space-based LK€mnse

The second case of the last stag® is is empty. Thers senddV; in queuey; ;. Notice
that 1/, is a flow-1 packet and is known his. Hence the corresponding coding vector,
v(t),isin Ay, Az, Ay, As, Ag, andA; but not in Ay, which is inTYPEq11111 = TYPEgs.
Symmetric to the second case, the third casg isis empty. Thens sendlV, in queue
¢2.s1- And hence the corresponding coding vector islin As, A4, Az, Ag, andA; but not
in Ay, which is inTYPE 911111 = TYPEgs.

Combining the above three claims, the throughput of thegg-tyNC scheme is no less
than the three-stage scheme in [3], and hence the 5-type tN&hee achieves the optimal

throughput of 2-user broadcast PEC with feedback.

6.1.3 Random Service In Space-Based LNC Scheme

The above 5-type space-based LNC scheme can modeled as afrigiie 6.1 illus-
trates the equivalent SPN. IA 1 is activated whenever a flgyadket is injected into the

network, and IA 2 is activated whenever a flow-2 packet isctgd into the network.
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For example SA corresponds to coding type 9, Acorresponds to coding type 18.
(2, corresponds to condition &), corresponds to condition 2, and so on so forth. Since we
can schedule type 31 if both Conditions 3 and 4 hold. Sinyilanl the SPN network we
can schedule SA if and only if both@s; and@, are non-empty. As will be seen shortly
after, the service in this SPN is random and we thus need tselavnew algorithm that
can stabilize SPNs with random service. The detailed isath between the equivalent
SPN and the 5-type spaced-based LNC scheme will be proudgedtion 6.3 with proper

service rate assignments. Each service activity correlgptma coding type.

6.2 Modified DMW Scheduling For SPN With Random Service

As can be seen that the to properly schedule the LNC solytivaseed to take into
account SPNs with random service. In the following, we firstppse a modified DMW
method that can stabilize SPNs with random service and thedigcuss how to design
an optimal LNC scheduling solution based on the new stgbiisults on the SPN with
random service.

To resolve the random service issue, we first extend the SENdeterministic service
in Section 5.3.1 to the one with random service. We then mgatié DMW scheduling
algorithm to stabilize the SPN with random service and taeas@hthe optimal throughput.
Even though the following results are motivated by the LN&igie problem with dynamic
arrival, throughout our discussion, we focus exclusiveiytioe SPN scheduling problem.

Its detailed connection to the LNC problem will be discussefection 6.3.

6.2.1 The SPN Model With Random Service

We consider two network models, name network model 1 (NM 1)) metwork model
2 (NM 2).

NM 1 is an SPN model with deterministic service as defined iatiSe 5.3.1 with
arrival vectora(t) and the arrival rat® = E{a(¢)}. Let K be the number of queues/ be

the number of IAs, andV be the number of SAs in NM 1. We uggto denote the service
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matrix of NM 1 with each entry denoted Hy;. .. And X is the set of all feasible activation
vectorx(t) in NM 1.

NM 2 is a network model with the same topology (i.e. same ilahip between
SAs, IAs, and queues), the same arrival veet@y, and the same activation s&tas in
NM 1. That is, they share same queues, service activitipsit iactivities, and the links.
Furthermore, whenever the input activity 1A is activated in NM 1, the corresponding IA
m in NM 2 will also simultaneously be activated. The only di#face between NM 1 and
NM 2 is that we have the random service for each SA in NM 2. Wendetine random
service rigorously as follows.

Let B(t) be the service matrix in NM 2 at time B(¢) is a random matrix with each
entry is a bounded random variable and is i.i.d. over timex & J,, then By ,.(¢) is a
non-negative random variable. #fe O,,, thenB,, ,,(¢) is a non-positive random variable.
Otherwise, By, ,(t) = 0 with probability 1. We further assume th&{B;,,(t)} = B,
for all £ andn. We useb(t) to denote the realization dB(¢) andby ,(¢) to denote the
realization ofBy, ,(1).

Remark:Even though we construct the SPN with deterministic serfiisethen extend
to the SPN with random service. However, when the problenmtafést is an SPN with
random service, we will first construct NM 1, the SPN with detimistic service, by taking
the average of the random service matrix. We will then usentgve NM 1 to help us
schedule the random SPN of interest, NM 2.

6.2.2 The Scheduling Algorithm

Let gV () to be the virtual queue length in NM 1 (VQ 1) antP () to be the virtual
queue length in NM2 (VQ 2). SimilaryQ™ (¢) andD™(¢) are the actual queue length
and the deficitin NM 1. AndQ®) (t) andD?)(¢) are the actual queue length and the deficit
in NM 2. We assume the initial conditions to zero for all theeges, virtual queues, and
deficit in both NM 1 and NM 2. We describe the update rulegdf(t), q®(t), QM (1),
Q) (t), DW(t), andD? (¢) as follows.



74

Since NW 1 and NW 2 share the same arrivals proedss we apply the DMW
scheduling algorithm on NM 1 and utilize the same schedutiegsionx*(¢) on NM 2.
That is,x*(t) is the scheduling decision for both NM 1 and NM 2 at titrend

x*(t) = arg mang( ) - X, (6.6)

xXE
whered = B’ q(V(¢) is the back-pressure vector in NM.We updatey ") (¢) as follows.
qV(t+1)=qP) —A-a(t) — B-x*(1). (6.7)

(6.7) can also be rewritten as

Pt +1) = GV (t) — Tomr(t) + Tng(t), VE, (6.8)

where

() = Y (B ()

v v
Fnil®) = 3 (A pan®) + 3 (Ben ()
m=1 n=1
We also updateg®(t) as
q?(t+1)=q? @) — A-a(t) — B(t) - x*(t). (6.9)

Similarly, we can rewrite (6.9) as

@ (t+1) = 42 (t) = tourn(t) + prins(t), VE, (6.10)
where
N
Hout, k Z bk n (611)
n=1
M
m= 1

We then update the actual queue len@t® (¢) and def|C|tsD(2 (t) inNM 2. For all &,

Qe+ 1) = (@D (1) ~ touei(t)) + it (6.12)

Dt +1)= QP (t+1) — @t +1). (6.13)

There is only finite number of service activities and hefids a finite set.
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6.2.3 Properties Of The Virtual Queue Length And The Deficit

Lemma 6.2.1 Given past arrival vectors, VQ V() is the expectation of VQ @ (t).
Thatis,q(t) = E{q® (t) {a(r)}_, }.

Proof Notice that given the past arrival vectdeg7)]*_,, q'*)(¢) becomes deterministic
and so doex*(t). This property thus is a consequence of (6.7), (6.9), andegproven

iteratively. [ ]

Remark: Sinceq")(¢) is the conditional expectation @f? (¢), we slightly abuse the
notation in the following discussions. We uﬁ@)éq(l)(t) and drop all the superscript

“(2)” for the quantities/variables in NM22
Lemma 6.2.2 Dy(t) is non-decreasing with and satisfies
Dy (t + 1) = Dy(t) + (prour (1) — Qi(1))". (6.14)

Proof This property is from [38]. Following the same derivatiorj38] and by definitions

and updating rules, we have

Dp(t+1) = Qr(t +1) — qu(t + 1)
= (Qk(t) = tout k(1) — (@ (t) = Hour k(1))
= Qi(t) = touts(t) + (Houtk(t) — Qr(t)™ — (qi(t) = tours(t))

= Dk(t) + (,Uout,k:(t) - Qk(t))+ :

6.2.4 The Stability Analysis

The following lemmas show that the proposed schedulingrdtgo in Section 6.2.2

can stabilize NM 2. Recall that is the convex hull of¢ andA° is the interior ofA.

2Since we never us®™)(t) andD™)(t) in the following analysis, we do not apply the notation chesign
them.
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Lemma 6.2.3 (The necessary condition for NM 1 stability) For any arrivate R, if NM
1 can be stabilized, theA - R + B - y = 0 for somey € A.

Proof Since NM 1 is an SPN with deterministic service, this folldws results in [38]m

Lemma 6.2.4 (The necessary condition for NM 2 stability) For any arrivate R, if NM
2 can be stabilized, theA - R + B - y = 0 for somey € A.

Proof To prove this lemma, it is enough to show thady{t) is stable, therj(¢) is stable.
By Lemma 6.2.1, ify(¢) is stable, then we take the conditional expectations ardeitrat

q(t) is also stable. =

Lemma 6.2.5 (The sufficient condition for the NM 1 stability) If the amivrate R is
strictly feasible as defined in Section 5.3.1, then VQ(4) can be stabilized. That is,

for all k,
1 t
limsup + 3 E{7(t)[} < o<,
t—o00 t —0
where the expectation is taken over all possible arrivatoec

Proof Notice that NM 1is an SPN with deterministic service, and mglaDMW schedul-

ing algorithm on NM 1. This lemma is a direct consequence efésults in [38]. [ |

Lemma 6.2.6 (The sufficient condition for the NM 2 stability) If the amivrate R is

strictly feasible, then NM 2 can be sublinearly stabilized.

Proof To prove this lemma, it is enough to show thagif) is stable, thery(¢) is sub-
linearly stable. For any: € {1,2,..., K}, ¢ > 0, andd > 0, we square both sides of
(6.10)

ar(t +1)° = qe(t)* = (Bours(t) = pink(t)* — 201 () (Hours (t) — in 1 (1))
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Conditioning on the arrival vectors, we take the conditi@agoectation on both sides.

E{ar(t + 1)*{a(r)}m} — E{au(t)*{al(r)}o1 )
=E{ (Houtk (t) = pin k(1)) *Ha(T) Y21} — 2E{qi(t) (ttour k(t) — pin x(8)) {alm) Yo}
=E{(toutk (t) = pin (1) ?{a(m) Yomi} = 205 (t) (ot (t) — Hini(1)) (6.15)
<C? + 2g(t)|U, (6.16)

where (6.15) follows from the independence betweg) and (fioux(t) — fink(t)) CON-

ditioned on the arrival vectotsand (6.16) follows from defining' to be the upper bound

Of | ttout x(t) — pinx(t)| @ndU to be the upper boudAdf |y x(t) — Hinx(t)]. Now we take

the expectation over all arrival vectors,
E{gn(t + 1)} — E{a(t)*} < C* + 2UE{[q(1)[}

Iteratively summing up the above equation from O tot = 7 — 1,

T—1

E{ax(7)"} — E{ax(0)*} = E{qu(r)*} < 7C* +2U Y E{[a(t)[}

t=0
Divide both side byr and notice thalim sup,_, ., + 5! _, E{|7(t)|} < oo implies
IS E{|ax()|} is bounded, say by, then

T—1

YE{g(r)} < O 4201 S E(Ig()]} < O+ 2UL

t=0

Now we apply Markov inequality with second moment expressio

C+2UL

1
Prob(lg(t)] > ) < —Efa(t)?} < —

Lett, to be the first such that=2/% < 4. Then
Prob(|gx(t)] > et) < 8, Yt > to.

3Conditioning on the arrival vectors; (¢) is deterministic. And hence the only randomnesgQfy.(¢) and
Hout,k(t) comes fromB(t), which is independent af(t).
4C andU exist because all Qf sk (t), ftin.k (), Tourk (t), andfiz, x(t) are bounded by definition.
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6.2.5 The Throughput Analysis

Lemma 6.2.3 to Lemma 6.2.6 describe the stability region lf 2l However, in the
proposed scheduling algorithm, there exists the occuerefioull activities which generate
fictitious packets (f.p.) as described in Section 5.3.2. A@asthe proposed scheduling
algorithm is able to achieve the optimal throughput, it raTe#o show that in the long term,
the the fictitious packets does not influence the overalluginput. Before we explicitly
quantify the fictitious packets throughput, we first analylze growth rate of the deficit
and the rate that the null activity occurs in NM 2. Given awairivectora(t) with strictly
feasible rateR and utilizing the scheduling algorithm proposed in Secdh?2, we have

the following results.
Lemma 6.2.7 Dy(t) grows sublinearly.
The proof of Lemma 6.2.7 is relegated to Appendix D.

Proposition 6.2.1 In NM 2, letn,(¢) be the number of null activities occur at queluep
to timet. We define the rate of null activities occur at queé@asr(¢) 2 Ink(t). Given any
e > 0ando > 0. ThenProb(r(t) > €) < ¢ given sufficient large. That is, the probability

thatr(t) larger than zero can be made arbitrarily small given suffitirrgez.

Proof Notice that the null activity (N.A) occurs at timteéf and only if Dy (¢) > Dy(t—1).
Let ¢ be the minimum increment dd,,(¢) whenever N.A. occurs. We use the fact tha(t)

is non-decreasing and hence

Dy (t) _

C

ni(t) =Y I(Di(7) > Di(r — 1)) <

Now for anye > 0 andj > 0,

Prob(ry(t) > ¢) = Prob(nkt(t)

> €) < Prob(Dg(t) > cet).
From Lemma 6.2.7, there exigtssuch that
Prob(ri(t) > €) < Prob(Dy(t) > cet) < §, Vt > t.

The proof is complete. [ |
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Now we analyze the fictitious packets generated at:S¥d evaluate its effect on the
overall throughput. Lety, ,(t) be the number of fictitious packets generated by S4dp

to timet. We use the following proposition to conclude the througtgnalysis.
Proposition 6.2.2 For eachn, 7y, ,(t) grows sublinearly.

A heuristic but not rigorous explanation of Proposition.B. as follows. Notice that
the SPN is assumed to be acyclic. For the fictitious packetrgéed at the null activity,
it can only “pollute” finite number of packets. And hence thesult is a consequence of
Proposition 6.2.1. The detailed proof of Proposition 6i2 2legated to Appendix E.

Since the NM 2 can be stabilized with strictly feasible mtethe overall throughput is
proportional tot. Then the ratio between the number of fictitious packets hadverall
throughput (the influence of the fictitious packets) is prtipaal to "f%”(t) By Proposi-
tion 6.2.2, this ratio can be arbitrarily small with suffietly larget. Hence the scheduling

algorithm in Section 6.2.2 achieves the optimal throughpiM 2.

6.3 The Parallelism Between LNC Scheduling and SPN

We have introduced thetype coding scheme in Section 6.1.1 and the stability regio
of the SPN with random service in Section 6.2. In this sectream will connect these two
together and characterize the stability region of the 2-bssadcast PEC with feedback.

We first define the following queue lengths

Quinc(t) = Rank(Q(t)) — Rank(A(t)),

Q2,nc(t) = Rank(Q(t)) — Rank(A(t)),

Qs.nc(t) = Rank(As5(t)) + Rank(As(t)) — Rank(Aq(t)) — Rank(A(t)),

Qs.nc(t) = Rank(As5(t)) + Rank(A4(t)) — Rank(A7(t)) — Rank(Ax (1)),
Qi undecodedne () = Rank(Q;(t)) — Rank(Q;(t) N W;(t)), i = 1,2.

Namely, Qr nc(t) quantifies the gap between the left-hand side and the rigid-Iside
of Conditionk in (6.2)—(6.5). Recall that in Table 6.1 and the correspogdaiiscussion,

Sltis proven in [40] that all of them are non-negative.
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we have shown that we can send a coding type if and only if thecieted conditions are
satisfied with strict inequality. This is captured in our d&fons herein. We can sched-
ule an SA (an LNC coding type) if and only if the correspondqgues (the gap of the
conditions) are strictly non-empty.

The new queue we defined her&js ndecoded nc(t). To understand the physical mean-
ing of Q; undecoded Nc(t), We Notice that at any timg the overall messages for session
is Q;(t). At the same time destinatiaf) can decode any linearly combined packetdin
and thus can decode all the desired sessipaekets in;(t) N V,(¢). As a result, the
rank difference between the two is how many sessipackets that have arrived at the
sources but still cannot be decoded . We thus term itQ; undgecodeanc(t). The following
lemma guides us to connect the stability region definitios@ttion 2.3 with the 5-type

LNC scheme.

Lemma 6.3.1 If Q;  nc(?) is sublinearly stable for all, then@); undecoded nc(t) IS @lso sub-

linearly stable forj = 1, 2.

Proof We first claim that in the 5-type LNC schemBank(Aq(t)) + Rank(A7(t)) —
Rank(€2(t)) — Rank(As(¢)) = 0 for all time¢. We prove this claim iteratively. Far= 0,

Rank(Ag(0)) + Rank(A7(0)) — Rank(£2(0)) — Rank(A5(0))
=Rank(€;) + Rank(€y) — Rank(Q2; & Q) —0=10

Suppose it is true fot. Note that in timet 4+ 1, the LNC designer can choose one of
TYPE; for i € {9,18,31,63,95}. We first notice that if there is any new arrival comes to
the network, the increments &fank(Aq(t + 1)) + Rank(A7(t 4+ 1)) andRank(2(t + 1))

will be the same. For example, if a new sesslopacket arrives. TheRank(Ag) will
increase byl and Rank(§2(¢ + 1)) will increase byl as well. We further notice that no
matter which coding type we choose, the increments of thigiy@terms and the negative
terms are always the same. For example, if we choose codiediytherRank(A;(t+1))
(the negative term) anBank(Ag(¢ + 1)) (the positive term) will increase by one if any of
d, andd, receive the coding vector whileank(A-(t + 1)) (the positive term) remains the

same. And hence the statement is still truetforl.
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We now proveQ); undecodednc(t) IS Sublinearly stable and)s yndecodednc(t) €an be

proven by symmetric arguments. By definition,

Q1ne(t) + Qsine(t)
_Rank(Q(t)) — Rank(A; (1))

+ Rank(As(¢)) + Rank(As(t)) — Rank(Aq(t)) — Rank(A, (£))
—Rank(As(t)) — Rank(A, (1))

=Rank(€(¢)) — Rank(2;(¢) N U4(t)) = Q1 undecoded Nc(t)

Since®; inc(t) and Qs nc(t) are sublinearly stable); yndecoded nc(t) IS also sublinearly

stable. [ ]

Since bothQ; undecoded nc(t) aNd Q2 undecodednc(f) are sublinearly stable, the 2-user
broadcast PEC with feedback is also sublinearly stable bgdition 5.1.1.

It remains to characterize the rate region in whigh nc(?) is sublinearly stable for all
i, denoted by\| nc. Based on the topology in Figure 6.1, we defgRN, for anye > 0 as
follows. LetQ); .(¢) be the queue length of the que@iein SPN, at timet fori =1, 2,3, 4.
Leta;; = aso = 1. For each time, the number of IAactivationsg;(t), is equal toA;(t),

the arrival process of flow-messages. We further associate the corresponding random
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service distributions with the channel statligt) = (Z,_4,(t), Zs_a4,(t)) in the 2-user

broadcast PEC with feedback of interest.

(1,0) if Zy(t) = (1,")

(bra(8), b5, (1)) = ¢ (1,1) i Zi(t) = (0,1)
\ (0,0) otherwise

(o) iz =)

(ba2(t), Uyo(t) =< (1,1)  if Zy(t) = (1,0)
(0,0) otherwise

(1) if Zy(t) = (1,0)

(bs5(£), bas(t)) = (e,1) ff Z(t) = (0,1)

(1,1)  if Z,(t) = (1,1)
(0,0) otherwise

\

bsa(t) { bomAn =

0 otherwise

bas(t) { b=

0 otherwise

We also assume each individual pair listed above is indegp@mwiith each other, and there
is only one SA inrSPN, can be activated at each time

In Section 6.2, we have characterized the full stabilityioegof SPN with random
service. Hence we also have the stability regio8®R,, denoted by\,, as defined above.
We conclude the stability region of the 5-type LNC 2-userdoimast PEC with feedback

by the following three propositions.

Proposition 6.3.1 For any arrival rate(R;, R), if we can stabilize thé-type LNC2-user

broadcast PEC with feedback, then we can stabiliz&Sthg, network.

Proposition 6.3.2 For any arrival rate( Ry, R»), if we can stabilize th6PN. network, then

we can stabilize thé-type LNC2-user broadcast channel.
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Recall that the stability region &PN, andSPN. have been fully characterized, we

thus have
Ae € Ane € Ag
The final step is to let — 0. We thus have

Proposition 6.3.3 The stability region of the 5-type LNC 2-user broadcast PEiB feed-
back is the same as the stability regiorS&fN,. That is,

ALNC = A0-

An heuristic but not rigorously explanation is as follows.nlight seem thabPN, has
exactly the same behavior as the 5-type LNC problem. Howdvisris not true. For the
pair (bss(t),bss(t)), it could be(1,0) if Zs(t) = (1,0). That is, whenZ,(t) = (1,0),
SA;; can be scheduled evendf, o(¢) = 0. But in the 5-type LNC problem, if Condition

4 is not hold (i.e.Q4,nc(t) = 0), then we can not chooSEYPE;;. And hence we need
to haveSPN, to approach\, instead of making direct connections. The detailed proof of

Proposition 6.3.1 to Proposition 6.3.3 are relegated toefypx F.

6.4 Chapter Summary

In this chapter, we first discuss the 5-type space-based ldi€nse for achieving the
Shannon capacity of 2-user broadcast PEC with feedbaclkcitin®eé.1. We also define the
space-based LNC notations according to dynamic arrivatsdamonstrate the equivalent
SPN is an SPN with random service. And hence we propose a madiéficit maximum
weight scheduling algorithm to stabilize the SPN with ramdservice and achieve the
optimal throughput in Section 6.2. Finally, we connect ai developed together and

characterize the full stability region of 2-user broadds€C with feedback in Section 6.3.
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7. CONCLUSION AND FUTURE WORK

In this thesis, we propose a space-based LNC scheme to tdrvaradhe Shannon capac-
ity of the COPE principle 2-user wireless butterfly networkhabroadcast packet era-
sure channels, which incorporates the broadcast paclsirerehannels with feedback, the
COPE principle, and the opportunistic routing all togeth@modified deficit maximum
scheduling is proposed to stabilize the SPN with randomicar#inally, we combined
all the developed tools together to characterize the #habglgion of the 2-user broadcast
PEC with feedback.

In Chapter 1, we discuss the network coding gain for threalladgreless network
topologies, including the broadcast packet erasure chaitiheeedback, the COPE princi-
ple wireless butterfly network, and the opportunistic nogtiAll of them exhibit significant
end-to-end throughput improvement when network codingleaatilized. In Chapter 2,
we propose a local network topology which incorporatestadl three local wireless net-
work together, name the “COPE principle 2-user wirelessebily network with broadcast
packet erasure channels.” The space-based LNC scheméstsdlin Chapter 3 provides
a intuitive and systematical approach to exploit the pdsgdint inter-session and inter-
session network coding gain in the network. With the helppafce-based LNC scheme,
in Chapter 4, we characterize the Shannon capacity of theEC®@ciple 2-user wire-
less butterfly network with broadcast packet erasure chamtedemonstrate significant
throughput improvement compared with existing solution& further extend the block-
code-based model to the dynamic arrival model, so calledtduality analysis. This ex-
tension promotes the proposed scheme one step closer twakaoplementations. How-
ever, there exist obstacles between the LNC scheme to thiéitgtanalysis, as discussed
in Chapter 5. With existing results in stochastic procegsiatworks, we can find some
connection between SPN and the LNC problem. However, thagborarservice issue is not

well-considered in the existing results. We develop moditleficit maximum weight al-
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gorithm to stabilize the SPN with random service. With 5eiygpace-based LNC scheme
and modified DMW, we characterize the stability region of 2heser broadcast PEC with
feedback in Chapter 6.

Even though we build up the analysis tool based on the loaa@legs network, those
tools reveal great insight about the possible joint inrasgon and inter-session linear net-
work coding gain. The future work can branch out to threegmaies, the near objective,

the mid-range objective, and the long-term objective.

7.1 The Stability Of 2-User Multi-Input Broadcast PEC With F eedback

Recently, another work in our group [40] also utilizes thmiar SBLNC concept to
characterize the LNC feedback capacity of 2-receiver mmitut broadcast PECs. [40]
proposes a space-based LNC scheme to achieve the LNC ga@idn and numerically
demonstrates the matching between Shannon capacity anccapicity under this speci-
fied channel. The space-based LNC scheme in [40] consistdirig types.” Each cod-
ing type can be associated with one SBLNC policy describe@hapter 3. That is, at
each timet, the source of the PEC can choose one coding type to encodetisenitted
packet. However, unlike the sequential scheduling schenoeii achieving algorithm in
Section 4.3, there is no fixed sequence of policy (coding)tgpkeduling in [40]. Instead,
the key to achieve the LNC capacity region is to properly sidjoe coding-type frequency,
so called “tunneling approach.”

Extending our results in this thesis to the 2-use multi-ifpoadcast PEC with feed-
back is clearly a near objective. There are 18 coding typ#ssiproblem while we discuss
the 5-type scheme in Chapter 6. However, Figure 7.1 exthbibbstacle. Notice that there
exist a cycle, Queue 3—Type 2—Queue 4-Type 1, in the equivd@RN. In Section 5.3.1,
we assume there is no cycle in SPN. However, in the multi-flareless network with
network coding, it is likely to have cycles in the network as will see in later. Even
though the cycle issue does not affect the stability anaipdi38], but the problem is in the
throughput analysis. In DMW algorithm in Section 5.3.2, fictitious packet is generated
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Fig. 7.1. The equivalent SPN of 18 coding types for 2-use inmybut broad-

cast PEC with feedback.
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Broadcast PEC1

Broadcast PEC2

Fig. 7.2. The illustration of multi-user multi-input broeakt packet erasure
channel.

whenever the underflow occurs. If unfortunately, the fiotis packet goes to one cycle,
this fictitious packet will further generate new fictitiouagkets endlessly. And thus the
throughput analysis in [38] is no longer valid.

This obstacle can be possibly be resolved by the randomcegpvoperty. Unlike SPN
with deterministic service, it is possible for the packetiahhenters the cycle leaves the
cycle after certain amount of “looping.” By properly analyg the amount of “looping,” it

gives a possible approach to circumvent this cycle issue.

7.2 The Mid-Range And Long-Term Objectives

Another possible extension is the stability region of thekdaian controlled 2-receiver
multi-input broadcast packet erasure channel. Considezrgodic finite-state Markov
chain{s, : vt = 1,2,...} with the state spacé and a sequence of user controllable
actions{Act; € A : vVt = 1,2, ...} taken from a finite se#d. The reception status of the
Markovian controlled 2-receiver multi-input broadcast@&t timet is then depends on
S; andAct, but not onS; or Act for anyt’ # t. Since the probability distribution of the
reception status is no longer invariant over time, the Meaidkocontrolled 2-receiver multi-
input broadcast PEC is a generalization of the canonicak2iver multi-input broadcast
PEC as illustrated in Figure 7.2. With this generalizatitwe, analysis results can closely

capture many important practical applications.
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For example, consider a setting of cognitive radio. Whenetlegist external transmis-
sions, the probability of success reception becomes louetalstronger interference. And
the probability of success reception is higher when then@iexternal transmissions. This
kind of interference can be modeled by the Markov sfateAt the same time, the classic
Gilbert-Elliott channel model for burst noise is also a sglecase of Markovian setting.

On the other hand, the setting of user controllable adkici also provides a variety of
flexibility to capture some practical scnearios. For exanpbnsider an adaptive coding
and modulation with two schemes. The first scheme providgsehitransmission rate but
lower success probability while the second scheme provmesr transmission rate but
higher success probability. This setting can be closelyured byAct;. [40] provides an
space-based LNC scheme to characterize the LNC capacipnrdgxtending the existing
capacity analysis to the stability analysis of the Markawatting is our mid-range goal.
To incorporate the Markovian state and the user-contriglabtions, the SPN setting is
required to further consider the these two issues.

The wireless butterfly network which incorporates broatl®dsC with feedback, the
COPE principle, and the opportunistic all together is dedlgia objective for the extension
of current results. Our long-term objective is to devisecpcal protocols and testbed

simulation to verify the intuition derived from our capacétnd stability analysis.
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A. THE CONVERSE OF THE CAPACITY

In this appendix, we prove Proposition 4.2.2. For any joatesiuling and NC scheme, we
choose,, (resp.t,) as the normalizedxpected number of time slots for whigHresp.r)

is scheduledNamely,

A 1 “ A 1 n
tsi - EE {Z 1{0'(7')281'}} andtr = EE {Z 1{0’(7‘):7”}} .
=1 =1

By definition,t,,, t,,, andt, must satisfy (4.5).
In the subsequent proofs, the logarithm is taken with lgasé/e prove (4.6) first. To

that end, we notice that

I(Wi; Wi) < I(W33 [ sprd ZI7) (A1)

=I(W1; [Z])) + I(W 15 [Y (51,50, —a 11 [Z]T) (A.2)

SI<VV1§ [Y{81,82}—>{d177"}]?‘ [Z]ﬁ (A-3)

:](Wl; [Y81—>{d177“}]?| [Z]rll) (A4)

<H([Ys-a.n]TZ]7)

= Z H(Y o ofar .y OIZ]Y, [Y sy ] (A.5)
=1

< Z E {1{231%1 ()=1 0r Zs, s (t)=1} © 1{0(15):31}} (A.6)
=1

:ntslpl (db T) (A7)

where (A.1) follow from (2.7); (A.2) follows from the chairule; (A.3) follows from
(2.3), the data processing inequality, and the fact #has independent oW,; (A.4)
follows from that conditioning orZ (and o sinceo is a function ofZ) Y,, .14 » IS
a function of W5, and is thus independent &V ;; (A.5) follows from the chain rule;

(A.6) follows from that only Whenl{zsﬁdl(t)ﬂorzsﬁ7.(t):1} = 1l and 1jp)—s) = 1
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will we have a non-zero entropy valué(Y, 4, - ()|[Z]7, [Ys,—an]i "), and when
H(Y s, tar.y (OZ]E [Ysio(a]T") > 0, itis upper bounded by since the base of the
logarithm isg; (A.7) follows from Wald’s lemma.

On the other hand, Fano’s inequality gives us
I(Wy; W1) > nR(1—¢€) — H(e). (A.8)

Combining (A.7) and (A.8), we have

mi1 -0 - 1D <t (. (A.9)

Lettinge — 0, (A.9) implies (4.6) for the case af= 1. With symmetric arguments, we
can derive (4.6) foi = 2.

We prove (4.8) by similar techniques as used in [16,41]. Bipally, we create a new
network from the original network by adding an auxiliary @ifhat sends all information
available ati, directly tod;. Later we will show that even with the additional informatjo
the achievable rateR; and R, are still upper bounded by (4.8). As a result, the achievable
R; and R, for the original network must satisfy (4.8) as well. (4.7aisymmetric version
of (4.8).

With the additional information ad;, the decoding function (see (2.7)) &t for the

new network becomes
VAVl = fdl ([Y{S1782,7”}—>{d17d2}7 ZHL) (A].O)
For anyt € [n], define

U(t) = (W27 [Y{81,82,T}—>{d1,d2}7 Z]tl_l)' (All)
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We then have

nRy, = H(W;|W,)
< I(W1: W1 |[Wy) + ne (A.12)
< T(Wis [Yfsy,s0,m1—{dr o} 2] [Wa2) + ey (A.13)
= I(W1; [Z]7|W>)

+ I(W1; [Y (s 0} {ds,do} T W, [Z]1) + ney (A.14)

n

Z I(Wla Y{s1,52,r}—>{d1,d2} (t)

t=1

|Wa, [Z]7, [Y{sl sz, r}%{dl,dg}]i_l) + ne; (A.15)
= ne; + Z (W1 Y, i OIU (), [Z]7)

+ I(Wl; Y81—>{d1,d2}( )‘U( ) r—{di, d2}<t) [Z]@
_I_ I(Wla Y82—>{d1,d2}(t>

|U(t)v Y{T,S1}—>{d1,d2}(t)v [ZHL)) (A16)
< nep + <Z I(W 1Yo a0y (O|U (1), [ZHL)>
+ nts,pi(di, d) + 0 (A.17)

< ney + ntslpl(dl, dg)
T ZI Yo qana} (OU(0), [Z]7), (A.18)

where (A.12) follows from Fano’s inequality where goes to0 whene — 0; (A.13)
follows from the data processing inequality and (A.10);1#), (A.15), and (A.16) follow
from the chain rule and the fact that the distributiorZois independent oW; and Wy;
(A.17) follows from the observation that the second termhaf summation can be upper
bounded by Wald’s lemma (similar to (A.7)) aid,_, (4, 4, (¢) iS independent oW, given

Z (similar to (A.4)); and (A.18) follows from the data procegsinequality.
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To continue, we define the time sharing random varighle {1,2, ..., n} with Prob(Q, =

i) = Lforalli € {1,2,...,n} andQ, being independent d%|?, W;, andW, . Since the

T n

mutual information is always non-negative, we can rewrtd 8) as

(Ry — ts,p1(dy, ds) — 61)+

< 37 10 Yo (DU (1), [2)

<3 LU, ) (A19)
t=1

- Z Prob(Qr = ¢) - H(Y (a1} (@)U (@), [2]1, Qe = @) (A.20)
qt=1

where (A.19) follows from the definition of the mutual infoation; (A.20) follows from
replacing the time index by the time sharing random variahig and the distribution of
U(q:) andY, (4, 4,)(q:) does not depend on the future channel realizg@j ;.

We define three binary random variabl®s = 1(5(,)=r}, Oz = 1z, (@)-1}, @nd
Oz, £ 1(z,,,,(Q)=1}, Which are functions of), and[Z]?*. Then we can rewrite (A.20) as

the following.

(Ry — ts,p1(dy, da) — 61)+

1
S Z EH(YT’%{dth}(qt”U(qt)v [Z]({tv Qt = 4, 907 @ZU @ZQ) (A21)

qt=1
n 1 )
= " Y Put @ e.00,.07, W 1 00,02, 02,)
qt::[ Y [ }Qt
05,02, .02,
! H(YT—>{d1,d2}(qt>|U(Qt) = u, [Z]({t = ['4%7
O, =0,,07, =04,0, =02, (A.22)
"1
_ - qt
_Zn Z p(u7 [Z]l 71792179Z2)
qt=1 Vu, (2]t 02, .02,

st max{0z,,0z,}=1
-H(Xo()|U(@) = u, [Z]T = [T,
O, = 1, @Z1 - 9Z1> @ZQ = 9Z2) (A23)
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where (A.21) follows from the fact thad’s are functions of() and [Z]?t; (A.22) fol-
lows from the definition of the conditional entropy; and (8)2ollows from the fact that
Y, (a2} (@) 1S NOt erasure only if(¢;) = r and at least one of,_.,, andZ,_,,4, equals
to one and furthermor&,_, (4, 4,3(¢:) = X.(g) under such a condition, where we use
p(u, [2]{,1,60z,,02,) as the shorthand @ (g0). 121 .0,.02,.02, (Us 12]$,1,02,,02,).

We can further simplify (A.23) by the following steps. We firote that conditioning
onU(q) = u, [Z]#" = [2]%", andO, = 1, the random variabl&, (¢,) is independent

of Z(g), ©z,, andO ,. Notice thatZ]¥ " is a subset of/(¢;). Therefore, we have

H(*XT(QI?)‘U(qt) =u, [Z]({t = [Z](llt7 @Cf = 17 @Zl = 6217
@Z2 = 922)
= H(XT<Qt)‘U(Qt> = u, @0 = 1) (A24)

Also the joint probability can be rewritten as

qt
§ pU((h),[Z]gt,@g,@Zl 027, (u> [2]1 L 9217 922)
Vuv[z]gtﬁzl 7922
S.t. max{9Z1 79Z2}:1

= ZPU(Qt)@a(uv 1) ’ Z
Yu

Vz,07,.,0z4
S.t. max{@zl 7€Z2 }=1

pz(qt)ﬁzl 79Z2|U(Qt)7®a (27 9217 922 |U, 1) (A25)
= (Z PU(g),00 (U, 1)) - pr(dy, da). (A.26)
Yu

where (A.25) follows from the basic probability definitioand (A.26) follows from that
the assumption that the channel is memoryless.
(A.24) and (A.26) helps us rewrite (A.23) as

(A23) = t,n . pr(dla dg)

S S p(e 1) H(X (g, 1)
tr

(A.27)

wherep(u, 1) andH (X, (¢)|u, 1) are the shorthand fei; ) e, (v, 1) andH (X, (¢:)|U(q:) =

u, ®, = 1), respectively.
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We now focus on flow 2. By Fano’s inequality, for some> 0 that goes to 0 as— 0,

with similar steps as in (A.12)—(A.18), we can also show that

nR2 = H(Wg)
SI(WZ) [Y{Sl,sz,r’}—)(ba Z]?) + nes

=I(W2; [Z]7) + T(W3; [Y (1 o)) | [Z]T) + 162

Z [(W27 Y{S1 82 T’}—>d2( )|[Y{S1 82 T’}—>d2] 17 [Z]?)

=ney + Z (W Yo, DY (1 sy st [Z]T)

+ I(W2; }/:92—>d2 (t) | [Y{S1782}—>d2]?l_17 [YT’—>d2]i> [ZHL)

+[(W2; Y odo (t)|[Y81—>d2] [Y{82 T}—>d2]17 [Z]n))

<ne; + Z I(WZ; K’—>d2( )HY{Sl s2, 7‘}—>d2] 17 [ZHL)
t=1

+ nts,pa(ds) + 0

where (A.28), (A.29), and (A.30) follows from the chain riad the independence be-

(A.28)

(A.29)

(A.30)

(A.31)

tweenW, and[Z]7}; and (A.31) follows from similar derivation as in (A.17). Wken

have
(A.31) =ney + nts,pa(ds)
+ Z T—)dz Y{Sl 52, T}—>d2] 17 [Z]?)

- H(Yr—>d2 (t)‘W% [Y{S1,82,r}—>d2]§_17 [ZHL))

< neg + ntg,pa(ds)

+Z Yooa, ONZIY) = H(Y,—a, (D[U (1), [Z]7))

= ney + nt52p2(d2) + Z I(U(t)§ Yr—>d2(t)|[z]?)7

t=1

(A.32)

(A.33)

(A.34)
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where (A.32) and (A.34) follows from the definition of the maat information; and (A.33)
follows from the fact thatonditioning does not increase the entrgnd[Y,, s, r}_>d2]t‘1

a subset ot/(¢). Since the mutual information is always non-negative, we have
(Rz — ts,ps,(d2) — €2) "

ZI o )|[U7 Z]?)

= Z Prob(Q, = ¢) - 1(U(q.): Yiman (@) 211, Q1 = ) (A.35)
q=1

=3 % Va2, = )
- Z Y a, Qt)|U(C]t) [Z] Q= qt)v (A.36)

where (A.35) follows from the definition of the conditionalutmal information and the

fact that the distribution ot/(¢,) andY,_4,(¢;) does not depend on the future channel
realization[Z];, . ;; and (A.36) follows from the definition of the mutual infortran. We
first discuss the first summation in (A.36)

n

S L H @2 Q= )

n
qt=1
= Z Va0 [Z)7, Q1 = 41, O, O12,) (A.37)
- Z Z p[z]fh O, @Z ]1t7607922)
qt= 1

90 922

H(Yosa (@) [2]1 = [2]7,

Oy = 05,0z, = 0z,) (A.38)
- Z Z Diz)% o, GZ lftv 17 1)
qe=1 V[z]%

H(X (@)[[2]1 = [T

0, =10y, =1) (A.39)
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where (A.37) follows from the fact thad’s are functions of() and [Z]?t; (A.38) fol-
lows from the definition of the conditional entropy; and (8)Jollows from the fact
thatY, 4, (q;) is not erasure only i&(¢,) = r and Z,_,,, equals to one and furthermore
Y, a4,(q:) = X,-(q) under such a condition.

We can further simplify (A.39) by the following steps. We firote that conditioning
on[Z]* ' = [2]%"" and®, = 1, the random variabl&, (¢,) is independent of(¢,) and

©z,. Therefore, we have

H(X ()| [Z)f = [2]1, 05 = 1,07, = 1)
= H(X(q)|[Z)1 " =[] 0, = 1). (A.40)

Also the joint probability can be rewritten as
ZP[Z]J O, 922 1t7171)

= 2 Pgpre, (TN D

vz %t Vz
+—1
Paia).0, 120, (5 HIET 1) (A.41)
( Z Pizee, (217 171)> - pr(dy). (A.42)
V]!

where (A.41) follows from the basic probability definitioand (A.42) follows from that
the assumption that the channel is memoryless.

(A.40) and (A.42) helps us rewrite (A.39) as

(A.39) =t, - p(dy)
s 3 D D HOG @)D

tr

(A.43)

wherep([z]%~", 1) andH (X, (¢)|[z]* "', 1) are the shorthand fQJr[Zr{H@U([z]({t‘l, 1) and
H(X,(q)|[Z]* " = []*7", 0, = 1), respectively.
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Similarly, for the second summation in (A.36),

n

S L H Y@ U (), 125, Q) = )

qt= 17’L
- Z Yisa (@)U (a), [Z]1, @t = a1, ©5,O2,) (A.44)
- Z Z Pu(q.),[2)% 04,02, (u, (2], 05, 02,)
qt= 1 Yu,| z
0, 922

CH(Yrsa,(0)|U(q) = w, [Z]7 = [2]1

O = 05,02, = 0z,) (A.45)
= Z Z PUg). 1z 0.0, (U [21 1, 1)
qt= 1 Vu,| z

: H(Xr(qt)lU(qt) =u, [Z]1 = [T,
0,=1,0, =1) (A.46)

where (A.44) follows from the fact tha®’s are functions of) and [Z]?t; (A.45) fol-
lows from the definition of the conditional entropy; and (B)4follows from the fact
thatY, 4, (q;) is not erasure only i&(¢,) = r andZ,_,,, equals to one and furthermore
Y, a4, (q:) = X.(¢:) under such a condition.

We can further simplify (A.46) by the following steps. We firote that conditioning
onU(q) = u, [Z]% " = [2]*", andO, = 1, the random variabl&, (¢,) is independent

of Z(q;) and©,. Notice thaf{Z]? " is a subset of/ (¢, ). Therefore, we have

H(Xo(q)U(qr) = w, [Z)" = [2]1", 00 = 1,02, = 1)
= H(X,(q)|U(q) = u, 0, =1). (A.47)
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Also the joint probability can be rewritten as

Z pU(qt),[Z}({t7®a7922 (u7 [Z](llt7 17 1)

Vu,[2] 5
- ZpU(Qt)@a (uv 1) ’ Z
Vu Vz
P2(4).02,1U(a).0, (%, 11, 1) (A.48)
- (Z PU(q),00 (u> 1)) : p?“(dZ)' (A49)
Yu

where (A.48) follows from the basic probability definitioand (A.49) follows from that
the assumption that the channel is memoryless.
(A.47) and (A.49) helps us rewrite (A.46) as

(A.39) = t, - p,(ds)

X I p(u 1) H(X (g, 1)
tr

(A.50)

wherep(u, 1) andH (X, (¢)|u, 1) are the shorthand fei; ) e, (v, 1) andH (X, (¢:)|U(q:) =
u, ®, = 1), respectively.
Combining (A.43) and (A.50), we can rewrite (A.36) in theléoVing form.

(Ry — ts,ps,(d2) — €2) "

S tr : pr(d2)

POME-D IR p([29 7 1) - H(Xo(q)|[2)17, 1)

tr

n_ 1 u, 1) - H(X,(q)|u, 1

th—1 n pr( t ) (X (9) )) . (A.51)
Summing uppfél'iz)z) and ;A(ZB we thus have
(Ry —typi(di,dy) — €)™ (Ry —tg,pa(da) — €)™
pr(dy, ds) pr(dz)
S S e PR ) - H (X (g[8 1)

< . amln S 1t AL (A.52)
<t (A.53)
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where (A.53) is based on the following observations. We fiaie that by definition

=Y %Prob(a(qt) — )

qt=1

=D DR T(E )]

=l v
Therefore, the fraction term in (A.52) can be viewed as threnadization of the conditional
entropy H (X, (¢)|[z]%~",1). Since each conditional entropy is no larger thafith the
base of the logarithm being, we thus have (A.53).
(A.53) holds for arbitrarye > 0. Lettinge — 0%, we thus have the following final
inequality.
(Ba = tspi(di, do)) ™ (By — tupa(da))” _ ;
pr(di, da) pr(d2) -

which gives us (4.8). (4.7) can be proven by symmetry. Thefoobthe outer bound is

thus complete.

1As aresulte; — 0 andey — 0.
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B. DETAILED ACHIEVABILITY ANALYSIS

The feasibility for Policyl'y, o and Policyl’,, ; has been proven in Section 4.3.1. In the
following discussion about the rank of spaces, we againaelthe first order, expectation-
based analysis and assume the application of the law of tangdoers implicitly.

Policy I', »: Similar to the analysis for Policy,, ;, assuming; > 2, the condition
that (3.3) being non-empty is equivalent to whether theofilhg rank-based inequality is

satisfied.

Rank(Sy) — Rank(Sy N (S1 @ S,))
=Rank(S; ® S @ S,) — Rank(S; @ S,.) > 0. (B.1)

where (B.1) follows from Lemma 3.1.2.

Similar to the discussion ifi, o andl'y, ;, we will quantify individual ranks at the end
of I';, o, the policy of interest, and prove that even in the endl 9f, the rank difference
in (B.1) is strictly larger thai®. Therefore, throughout the entire durationlqf -, (B.1) is
larger tharD andT’, - is always feasible.

We first focus oRank(S; &S, @.S,). SinceS; @S, @ .S, is a subset of the exclusion set
in Iy, o, every time d';,  packet is received by one af, d,, andr, Rank(S; & S, & S,.)
will increase by one. On the other hand, notice thatp S, @ S, is a superset of the
inclusion set in’', ; andI'y, ». HenceRank(S; & S, & S,) remains the same throughout

Iy, 1 andl’y, 5. As aresult, in the end of polidy;, », we have
E{Rank(Sl D 52 D S,n)} = nwglpl (dl, dg, ’f’). (BZ)

We now focus orRank(S; @ S,.). SinceS; @ S, is a subset of the exclusion sets of
Iy, 0, I's,1 @andl'y, o, every time a packet df,, o, I's, 1, or Iy, » is received by one od,

andr, Rank(S; & S,) will increase by one. As a result, in the end of poligy », we have

E{Rank(51 D S,n)} = n(wgl + w;l + w?l)pl(dl, ’I“). (83)
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Jointly, (B.2), (B.3), and (4.15) imply (B.1) in the end of, ».
Policy I';, 5: Similar to the analysis of the previous policies, assumjng 2, the
condition that (3.4) being non-empty is equivalent to weetthe following rank-based

inequality is satisfied.
Rank(S,) — Rank(((S2NS,) & S1) N S,)
=Rank((S2 N S,) & 51 @ S,) — Rank((S2 N S,) & 54) (B.4)
=Rank(S; @ S,) — (Rank(S;) + Rank(S3 N S,)

— Rank(S1 NS, N S,)) (B.5)

=Rank(S; & S,) — Rank(S;) — (Rank(S3) + Rank(.S,)

— Rank(S; @ S,)) + Rank(S; NS2 N S,) > 0, (B.6)
where (B.4) follows from Lemma 3.1.2; (B.5) follows from gahe set operations and from
Lemma 3.1.2; and (B.6) follows from Lemma 3.1.2.

Similar to the previous discussion, we will quantify indluial ranks at the end &1, 5,
the policy of interest and prove that even in the endl 9f;, the rank difference in (B.6) is
strictly larger thard. Therefore, throughout the entire duratioriof 5, (B.6) is larger than

0 andl'y, 5 is always feasible.

By similar analysis,in the end ofl’,, ; we have

E{Rank(5))} = n(wy, +w;, + w3, +wi)pi(dy), (B.7)
E{Rank(Ss)} = n(wy, +w;, + ;) )p1(da), (B.8)
E{Rank(S,)} = n(wy, +w,, +w} )pi(r), (B.9)
E{Rank(S: & S,)} = n(w?, + wl, + w2 )pi(di,7), (B.10)
E{Rank(S> @& S,)} = nw, pi1(da, 1) (B.11)

What remains to be decided is the valueRefnk(S; N Sy N .S,) at the end of Policy

I'y, 3. To proceed, we introduce an auxiliary noden the following way. Whenever a

1The derivation of (B.8) for the case of Polify, 3 uses the following inequality as well.

(3.4) € (Sr\(S2NSr)) = (Sr\S2).
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vectorv sent bys; is received by botll; andr, we let the auxiliary node observe such
v as well. The knowledge space @fdenoted byS, is thus the linear span of all vectors
received by botkl; andr.

We first argue that, = S; N S, in the end of policy’, ». Sincea only observes those
vectors commonly available at both andr, the knowledge space &, is a subset of
SN S,.. Knowing S, C S; N S,, we can quickly check that, is a subset of the exclusion
sets in Policies'y, o, I'y, 1, andl’,, ». Therefore, every time nodereceives a packet during

policiesT’y, o, I's, 1, @andl'y, o, the rank ofS, will increase by one. Therefore, we have
E{Rank(S,)} = n(w? +w, + w? )pi(dir) (B.12)
in the end ofl';, ». On the other hand, by similar analysis as before, we have

E{Rank(S;)} = n(wg1 + wsll + wil)pl(dl),

E{Rank(S,)} = n(wgl + w; + wfl)pl(r),

E{Rank(S; & S,)} = n(w? 4wl + w?)pi(di,r)
in the end of policyl’,, 5. By Lemma 3.1.2, we thus harank(S,) = Rank(S; N S;). As
a result, we have prove$), = (S; N S,) in the end ofl';, ».

By the above analysis, we thus hag NS, N .S,.) = S, N S,. By similarly rank-based

analysis, in the end df, » we have

E{Rank ()} = n(wf, +w!,)p1(d) (8.13)

E{Rank(S> ® S,)} = n(wy, + w; )p1(da, di7) (B.14)
wherep, (dz, dir) in (B.14) is the probability that at least one of natieand node: receives
the packet and (B.14) follows from the observation that S, is a subset of the exclusion
sets ofl'y, o, I's, 1 and is a superset of the inclusion setlgf .. By (B.12), (B.13), and
(B.14), we have thus proven that

E{Rank(S; NSy N S,)} = E{Rank(S, N Ss)}
=E{Rank(S3)} + E{Rank(S,)} — E{Rank(Ss ® S,)}

=n (wg, +wy, ) p1(didar) + nw? p(dir) (B.15)
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in the end ofl’;, ».

In the following, we will quantify the increment dtank(S; N Sy N S,.) during L'y, 5.
To that end, we introduce two more auxiliary nodesndc. In the beginning of'y, 3, we
let nodeb (resp.c) be aware of the knowledge spagen S, (resp.S; N .S,). During Ly, s,
whenever a packet is received ty(resp.d-,), we let the auxiliary nodeé (resp.c) observe
such a packet as well. From the construction, it is cleartti@following equalities hold

in the beginning of’;, s.

Sp=51N5, (B.16)
S.=S5,N8S,. (B.17)

We will prove that (B.16) and (B.17) hold even in the end’of ; as well.

In the following, we will prove that (B.16) holds in the endIof, ;. We first note that
by our construction, we always hage O S, O (51N S,). Knowing thatS, is always a
subset ofS; and.S; is a subset of the exclusion setslip 3, we can see that everytinag
receives a packet during polity, 5, Rank(S;) will increase by one. Moreover, only when
d; receives a packet during poli¢y, ; will Rank(S,) increase. As a result, the increment
of Rank(S,) duringI';, 5 equals the number of times receives a packet duriig, ;. On
the other handRank(S; NS,) = Rank(S;) + Rank(S,) — Rank(S; @ S,). Since bothS,
andS; @ S, are supersets of the inclusion seflof 5, bothRank(S,) andRank(S; & S,)
remain identical durind',, ;. Therefore, the increment &fank(S; NS, ) is identical to the
increment ofRank(S;) duringl’y, 5. As a result, the increment d&fank(S; N S,) during
I'y, 3 equals the number of time& receives a packet during,, ;. We have thus proven
Rank(S,) = Rank(5;NS,) inthe end ofl’, 3, which implies (B.16). (B.17) can be proven
by symmetry.

To quantify the increment diank(S;N.S2N.S,) duringl’y, 5, we notice thaRank (.S, N
S N S,) = Rank(S, N S,) = Rank(S,) + Rank(S.) — Rank(S, @ S.). As a result, the
increment ofRank(S; N S, N S,) during policyI’,, 5 is the summation of the increments
of Rank(S;) andRank(S,) minus the increment dRank(S, & S.) duringly, 5. By our

construction, the increments 6%, S., andS, @ S. during L'y, 5 is simplynwg’lpl(dl),
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nw? p1(dz), andnw? py(dy, dz), respectively. As a result, the incrementiafnk(S; NS, N
S,) duringT’y, 5 is simplynw? p;(did,).

Combining (B.15), we have thus proven that

E{Rank(51 N Sg N ST)}

=n (ng + Wsll) p1(didar) + nwglpl(dlr) + nwglpl(dle) (B.18)

in the end of Policy’';, s.

Jointly, (B.7) to (B.11), (B.18), and (4.16) imply (B.6) ihé end ofl’;, s.

Policy I';, 4: Similar to the analysis of the previous policies, the candithat (3.5)
being non-empty is equivalent to whether the following rualsed inequality is satisfied

in the end ofl’;, 4.

Rank(Sg N ST) — Rank(51 N Sg N Sg)
=(Rank(S;) + Rank(S,.) — Rank(S, @ S,.))
— Rank(S; NSNS, > 0. (B.19)

Similar to the previous discussion, we will quantify indiuial ranks at the end @f;, , and
prove that (B.19) holds in the end Bf, ,.

By similar analysis, we have

E{Rank(S>)} = n(w, +w) +w? )pi(da), (B.20)
E{Rank(S,)} = n(w), + w,, + w2 )pi(r), (B.21)
E{Rank(S, @ S,)} = nw! pi1(da, 1) (B.22)

in the end ofl';, . What remains to be decided is the valu&ahk(S; NS> N S,) at the
end of Policyl'y, 4. In (B.18), we have already quantifi®hnk(S; NS, N S,) in the end of
'y, 5. In the following, we will quantify the increment dfank(S; N .S, N S,) duringl’s, 4.
By (3.5), we can see that every tirigreceives a packet durifg,, 4, Rank(S; N.S2 N S;.)



105

will increase by one. As a result, the incrementlRefnk(S; N Sy N'S,.) during Iy, 4 is

nw; pi(dy). Together with (B.18), we have proven that

E{Rank(Sl N SQ N S,n)}
=n (wgl + wil) p1(didar) + mu?lpl(dlr)

+ nw? pr(didy) + nwy pr(dy) (B.23)

in the end ofl',, 4. Jointly, (B.20) to (B.23) and (4.17) imply that (B.19) hsloh the end
of I', 4.

The feasibility of policyl', ., £ = 0,1, 2, 3, 4, can be proven by symmetry.

Policy I',. 1: We first notice that the inclusion space and exclusion spaPelay I, ,
are the same as of Polidy,, ;. Hence to prove the feasibility of Polidy, ;, we need to

prove that (B.6) holds in the end 6f ;. By similar analysis, we have

E{Rank(S))} = n(w?, +w! +w? +w? +w! )pi(dy)

+ nwy v (da), (B.24)
E{Rank(Ss)} = n(wy, +w;, +w;, )p1(da)

+ nw, pr (da), (B.25)
E{Rank(S,)} = n(wy, +w;, + w2 )pi(r), (B.26)
E{Rank(S: & S,)} = n(w?, +wl, + w2 )pi(di,7), (B.27)
E{Rank(S; & S,)} = nw? p1(da, 7). (B.28)

in the end ofl, ;.

What remains to be decided is the valueRefnk(S; N Sy N .S,) at the end of Policy
I',.1. In (B.23) we have computed the valueldnk(S; NS> N S,) inthe end ofl’, 4. As a
result, we only need to quantify the incrementofnk(S; N S, N'S,) duringl’,; . By the

same analysis as when we quantify the incremetitaafk(S; N S, N S,) duringl’y, 5, the
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increment ofRank(S; NSy N .S,.) duringl’,.; is nwinr(dldg). By (B.23), we have shown
that

E{Rank(S;1 NSy NS,)}
=n (W2 +wl) pr(didar) + nw? pi(dyr)

+ nwg’lpl (dldg) + nwﬁlpl (d1> + nw}’Npr(dldﬁ (829)

in the end ofl", ;. Jointly, (B.24) to (B.29) and (4.18) imply that (B.6) holiasthe end of
L1

The discussion of Policy, , follows symmetrically.

Policy I',.5 for v(1): We will prove that for the firshw},c time slots of Policyl’, 3, we
can always choose(!) according to (3.13). To that end, we first notice that thetisicn
space and exclusion space in (3.13) are the same as thoskwyfIPo,. Hence to prove
that (3.13) remains non-empty during the fiﬁzst},c time slots of Policyl’, 3, we need to
prove that (B.19) holds in the end of the fimb},c time slots of Policyl', ;. By similar

analysis as used in the previous policies, we have

E{Rank(S5)} = n(w? + w! + w? )pi(do)

+ e, Ny (d2), (B.30)
E{Rank(S,)} = n(w), +w;, +w’ )p:(r), (B.31)
E{Rank(S: & S,)} = nw? pi(da, 7). (B.32)

in the end of the firshw] - time slots of Policyl’,.3. What remains to be decided is the
value ofRank(S; NS, N S,) at the end of the firstw;C time slots of Policyl’,. 5. In (B.29)
we have computed the valueRink(S; NS, N.S,) inthe end ofl’, ;. As a result, we only
need to quantify the increment 8fank(S; N S, N S,.) during the firsthw, - time slots of

PolicyT’, ;. By the same analysis as when we quantify the incremeRtok(S; N.S2N.S,.)
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duringl’y, 4, the increment oRank(S; NS, N S,.) during the firs’rnw,{C time slots of Policy

I3 is nw; cp,(dy). By (B.29), we have shown that

E{Rank(S;1 NSy NS,)}
=n (W0 +wl) pr(didar) + nw? pi(dyr)
+ nw? pi(dida) + nwy pi(di) + nw},Npr(d1d2)

+ nw, cpy (di) (B.33)

in the end of the firs’nw,{C time slots of Policyl’, 5. Jointly, (B.30) to (B.33) and (4.19)
imply that (B.19) holds in the end of the finsaz;;C time slots ofl’, ;.
The discussion of the first.? - time slots off,. 3 follows symmetrically.

The above analysis completes the achievability proofesfart Section 4.3.1.
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C. BOUND-MATCHING VERIFICATION

Here we are going to verify the proposed parameter assignimeéhe proof ofLemma
4.3.1satisfies (4.9), (4.10), (4.32) to (4.39). For (4.9),

R;
= i)
1 1\ R;
+mm{RZ <pz<dj> B pm) T pm}
<t,.

Hence it satisfies (4.9). For (4.10),

nyN + Wﬁ,N + wf«,c
(R —typildy)T | (B — ts,ps,(di)) "
 pldidy) pr(di, d;)
n R (Ri—tspi(dy)”
pr(d;) pr(d;, dj)
_ Ri (Rj - tsjpsj (di))+ < ¢
pr(d;) pr(d;, dy) -

Hence it satisfies (4.10). For (4.32),

R;

———pi(d;,7) = R
pz(dj,r)p( Vi )
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Hence it satisfies (4.32). For (4.33),

HHS = (mm {pib) ’ pz-(ldj) } - pi(dlj> 7’)) 2ir)
= ({105 - i)

<R;— R, Pi(r)

pi(dj,r)’
RHS =g, 24T _ p o pilr)
pild;,r) pild;,r)

Hence it satisfies (4.33). For (4.34),

LHS =R, (mm{ 1 plldj} i(; T))pi(dj)

o a1} =560

pi(d;)
<R~ R, ,
"pi(d;,r)
rHs—, LU _ p g i)
pi(d;, ) pi(d;,r)

Hence it satisfies (4.34). For (4.35),

LHS =R, (L ~ %)Un(r) = R; (1 S )+,

pz( ) pi(d' pi(dj)
pz(d T)
RHS_RZpi(dj,T)
. 1 1 1
e (m {m ’ mdj)} - pi<dj,r>) pilr)

_n (1 pi(r)
i (1 Pildsr)

— R (min {17 ; i((d:))} - p,zzgl(]i)r))




Hence it satisfies (4.35). For (4.36),

LHS = min {RZ (1 — M)+ ,tsipi(dj) — Ripi(dj) } )

pi(r)
Pi(rd_j)

pi(dj,r)

Hence it satisfies (4.36). For (4.37),
LHS = (R; — ts,pi(d;))",

pz(rd_)
pi(d;,r)

(mm{pz 3)} )

a2 "3}
=l (1 - ]va)))

— min {Ri <1 — pi(dj))Jr Jts,pi(dj) — Ripi(dj)}

RHS =R,

pi(T’) pi(r)
> (Ri — to,pi(d;)) ™.
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Hence it satisfies (4.37). For (4.38),

LHS =R; — (R; — ts,pi(d; +7>
RHS =R, 2i(")
pi(d;,7)

+ (pi(dy) + pi(r))

pz(dj)
R B O 1 R VG2
+ {RZ (1 pi(r> ) 7t8ip2(d]) Rl pi(T) }
(Ri — t,pi(d;))"

_l_

rddy el dy) = pr(dy))
=R; min{pi(dﬂ') pi(r) }"‘Ri (1 _pilr) )*
) p

pi(r) ’Pz‘(dj)

. ‘ _pi(dj i 1N D i(d;)
+ min {RZ (1 2i(r) ) 7t5ipl(d]) R; pi(r) }

" pr(di)
—+ (RZ — tsipi(dj>> (1 B pr(diu dj>>
+ pr(di>
>R — (R — t5,pi(d;)) pr(di, dy)

Hence it satisfies (4.38). For (4.39),
pr(di)(win +wrc) = By

With the above verification, we conclude that this proposssigmment satisfies (4.9),
(4.10), (4.32) to (4.39).
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D. THE GROWTH RATE OF DEFICIT

In this appendix, we analyze the growth rate of the deficit M R. Before proving
Lemma 6.2.7, we need several lemmas. belt) = —gi(t) + pins(t — 1) and pu(t)
grows sublinearly by the properties in Section 5.1.1. WecedhatD,.(¢) is the running

maximum ofpy(t) because by (6.14)

Dy(t) = Dt — 1) + (powre(t — 1) — Qi(t — 1))"
= Dy(t — 1) + max{0, fourr(t — 1) — Qr(t — 1)}
=max{Dy(t — 1), —qr(t = 1) + pour(t — 1)}

(
= max{Dy(t — 1), —qu(t) + prani(t — 1)}. (D.1)

Let 7in(t) 2 —Gin(t) + Tngi(t — 1) andpl,(t) £ pu(t) — Pr(t). Note thatpy(t) is stable
by Lemma5.1.1 angl,_(¢) grows sublinearly by Lemma 5.1.2 and Lemma 5.1.3. DEft)

be the running maximum of thé (¢) and Dy.(¢) be the running maximum of;(¢). That s,

Dy,(t) = max py(7),

1<7<t

Dy (t) = max pg(7).

1<7<t
Let T} (b) = mln{t > 0: p,.(t) > b} be the hitting time of (¢).

Claim D.0.1 There existU > 0 for all arrival vector realizations such that for atl with
Prob(T}(b) < tl{a(r)}._) # O,

Prob(pj,(t) > b|T;(b) < t.{a(7)};) > C. (D.2)
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Proof  Let Aptin i (£) = frin ()~ T & (£)s Attont 4 (E) = o (8) —Traii (1), andApue(t) =

Aptin 1(t) — Aptour x(t). By definition

() = ;(umvk(ﬂ — Hout k(7))
a(t) - Sowmm (7)),
alt) — () = Z Apu(7)
Then B
pelt) = té(umk( ) = Hout (7)) + touat — 1)
PR(t) = jwmk( ) — T (7)) + ot — 1)
i) = A7) + Atourilt — 1)

We first notice that conditioning df,(b) < ¢ and the arrival vectorga(7) }£_,, p}.(t) >

b implies
Pi(t) = pi(Ty(b)) = 0

t—2 1. (b)—
= Z Apg(T) + Aptour 1 (t — 1) ) ( Z Apr(7) + Aptoe 1 (T7,(b) — 1))

= > A7)+ (Aot = 1) + Aptin o (TH(0) = 1) = 28 p1u (T (b) — 1)) > 0.

Prob(p;,(t) > BTy (b) < t.{a(7)}7—)

—prob Z A7) + (Mot = 1)+ Ayt i TL0) = 1)

T=T} (b

2 TL0) ~ ) 2 O1TL0) < 1, fa(r) ) ) (0.3
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We then use the fact that conditioning on the arrival vegtalisthe random variables in
(D.3) (in front of the conditioning part) are zero-mean, bded, independent with each

other, and with finitely many different distributiohs hus (D.3) can be seen as

L
Prob() ~ X, > 0) (D.4)

=1

whereL is an arbitrary finite number andX;}> , are zero-mean, bounded, and indepen-
dent random variables with finitely many different disttibms. Thus to prove this claim, it
is equivalent to show that for arly, there exist&” > 0 such thaProb(3"), X; > 0) > C,

We first assume thaX; are not only independently distributed but actually i.iBly
the central limit theorem, there existdg@such that when. > [, the probability of in-
terest is> 1/4. ChooseC' = min(min{Prob(3>1, X; > 0) : t < t,},1/4). Note that
min{Prob(3" | X; > 0) : t < t,} # 0 because of the zero-mean assumption and hence
C>0.

Now, we consider the case th&t are not identically distributed but with finitely many
different distributions. Lef be the number of different distributions angl be the number
of random variables with distributiok. We group thoseX;, [ = 1,2, ..., L with the same

distribution and denote them t{m,lk}fk';l fork=1,2, ..., K. We can write
L
Prob() X))
=1

L1 L2 lK
:Prob(z Xl,l1 —+ ZXQJQ + ...+ Z XK,LK > 0)

=1 la=1 lg=1

Ly,
>Prob() " Xy, > 0,Vk)

K Ly
= H Prob(z Xk, > 0). (D.5)
k=1 le=1

We have shown that for eadh there exist<;, such thatProb( ﬁle Xk, > 0) > Cp.
Hence the productin (D.5) is larger than2 Hle C'x. Notice that the arrival vectors only

influence the distribution of 1, Lo, ..., L } andC} is valid for all possible.,. Hence this

1This is because there only exist finitely many choices of dalieg decision.



115

C'is valid for all possible arrival vector realization. Thismpletes the proof of this claim.

u
Lemma D.0.1 Dj(t) grows sublinearly.

Proof Notice that by Claim D.0.1, there existsfor all arrival vector realizations such
that

Prob(pj,(t) > b|T;(b) < ¢, {a(r)}._,)
:Prob(p;(t) >0, T} (b) < tl{a(r)}_y)
Prob(T} (b ) < tl{a(r)}:=0)
_ Prob(p),(t) > bl{a(7)}._)
e > (D.6)

Meanwhile, since); (¢) is the running maximum aof; (),

Prob(D}(t) > bl{a(r)}._q) = Prob(TL(b) < tl{a(r)}_y) < —Prob(p}(t) > bl{a(r)}._y)

C
(D.7)
Taking the expectation on both side over all possible drigators
Prob(D)(£) > b) < —Prob(p, (t) > b) (D.8)

C

Substitutingd by et in the above equation and using the fact thidt) grows sublinearly,

D,.(t) grows sublinearly. The proof is complete. [ |

Claim D.0.2 The following two inequalities are true for all possible lieations.

() Dr(t + 1)? — Dy(t)? < max{pp(t + 1)* — pr(t), 0} + A2, whereA is the supremum

over all possibleiio. £ (t) — Tmk(t — 1)| (which is also the supremum over all possible
Pr(t+1) — pi(0)])-
(iymax{pr(t + 1) — px ()%, 0} + A% < 2[pi ()| A + 2A%

Proof We first prove (i). There are three possible cases.
Case 1:Dy(t) > pr(t + 1). SinceD,(t) is the running maximum of(¢), Dy(t + 1) =
Dy (t) in this case. Thus the left hand side of (i) is zero and thetiakty holds.
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Case 2:D.(t) < pr(t + 1) andpz(t) > 0. As a result of the definitions @b, () and A,
this condition also implie®),(t + 1) = pz(t + 1) and

Dy(t) — A < pi(t) < Dy(t) < pr(t +1).

HenceDy(t + 1)2 — Dy (#)? < pre(t + 1)2 — pr(t)? < max{pp(t + 1)? — pr(t)%,0} + A2,
Case 3:Dy(t) < pr(t + 1) andpi(t) < 0. SinceDy(t) is always no less than zero and
~A < Pr(t) < 0impliesA? — p(t)? > 0, thusDy(t + 1)? — Di(t)? < pe(t +1)? <
max{px(t + 1)* — pr(t)%, 0} + A

We then prove (ii). Let\py(¢) 2 Pr(t) —pe(t — 1). Then

max{pr(t + 1)* — pr(t)?, 0} + A?
= max{(Px(t) + Apx(t +1))* — Pe(t)?, 0} + A”
= max{2p; () APR(t + 1))? + Apr(t + 1)%,0} + A?

<2AFR(H)|A + 242,

Lemma D.0.2 D, (t) grows sublinearly.

Proof Following from Claim D.0.2 and taking the expectation ontbsitles over all pos-

sible arrival vectors,
E{D(t +1)*} — E{Dy(t)?} < 2E{|pr(t)[}A + 2A%.

Iteratively summing up from =0tor =1¢ — 1,

t—1

E{Dx(t)’} <20 "E{|px(t)|} +2A%

= CE(DL(1)) <207 >_E(0)} + 22"

The fact thap(t) is stable implies; S E{|E(t)|} is bounded for alt, say byU. For

anye > 0, > 0, we then apply the Markov inequality,

_ J 1
Prob(Dy(t) > et) < @E{Dk(t)z} <5 (2AU +2A7) .
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Let ¢, be the smallest such thats; (2AU + 2A?) < 6. ThenProb(Dj,(t) > et) < 6 for

a”t>t0. [

Proof of Lemma 6.2.7Notice thatD,(¢) is the running maximum qgfy.(t) andp(t) =

p,(t) + Dr(t). HenceDy(t) < D) (t) + Dy(t). From Lemma D.0.1 and Lemma D.0.2, it

implies Dy (t) also grows sublinearly.
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E. THE GROWTH RATE OF FICTITIOUS PACKETS

In this appendix, we prove Proposition 6.2.2. For eaclhere are two possible reasons
that SAn generates f.p. at time The first one is the null activity (N.A.) occurs at SAat
timet. Thatis, there exists one quekies J,, such that),(t) < poux(t). By the property
of Dy(t), it is equivalent to say,(t) > Dy (t — 1). Thusny, ,(t) generated from the first
reason can be bounded by

> H{Dy(7) > Di(r — 1)}

T7=1 k€T,

The second one is that SAtakes a f.p. from one of the quekec J,,. To analyze the
second one, we define a binary random varidhle, (¢1,?,) = 1 if there is a f.p. entering
queuek, at timet, which is generated from the f.p. entering quéyeat timet¢;, and
Iy, k,(t1,t2) = 0 otherwise. Intuitively speakindy, x,(t1,t2) depends on the topology of
NM 2 and the route that the f.p. passes through, and hencpends on the network status
B(7) and the scheduling decision$(7) for t; < 7 < t,. Thus the f.p. generated from the
second reason can be bounded by

t t
SN D Iuklty, t2)I{Dp(tr) > Di(t — 1)}
to=1ked, k'#kt1=1
Combining the numbers of f.p. generated from both reasoas)ave

Nppn(t) <D Y H{Dy(r) > Di(r — 1)}

=1 k€J,

+ Z Z Z Z Iy (1, t2) I{ Dy (t1) > Di(t1 — 1)}

to=1kETn k'£k t1=1

=> > I{Dy(r) > Di(r — 1)}

k€dn T=1

+ 3 Y Iwilt, ) [{Dp(t) > Dp(i = 1)} (E.D)

kE€Tn k' £k ta=111=1
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Notice that the first summation in (E.1) grows sublinearlyRvgposition 6.2.1. Hence
it remains to show that for eaéh+# &/, Z;Zl Z;Zl Lk (t1, t2) I{D;.(t1) > Dp(t:1 — 1)}
also grows sublinearly.

Given anye > 0 andé > 0, by Markov inequality,

Prob <zt: Zt: ]k/7k(t1,t2)I{D];(t1) > D;{;(tl — 1)} > Et>
SlE {Z T go(t1, t2) I{ Dy, (t1) > Dy (t; — 1)}}

et
to=1t1=1

:ét =1 - {t ;+1[k’7k(t17t2)I{Dl,c(t1) - D;C(tl R 1)}}
:ét > E {E {t ;ﬂ Ik/,k(h,h)]{D;(tl) > Dy (ty — 1) HI{D}(t1) > D;.(t; — 1)}}}
:é Z:l (Prob(I{Dj,(t:) > D}(t = 1)} = 1)

B { Zt: Ly i(tr; t2) I{ D (t1) > Di(ts = DHI{Dy(tr) > Dy(ty — 1)} = 1}

+ Prob(I{D,(t,) > D.(t, — 1)} = 0)

- E { Eti L ity t2) I{ Dy (t1) > Dy (ty — DHI{Dy(t1) > Dy(ty — 1) = 0})

to=t1+1

:é zt: Prob(I{Dj(t1) > Dy (t; — 1)} = 1)

t1=1

-E { D Iwwlts, t2)I{Dy(t1) > Dty = DII{Dj(tr) > Dyt = 1)} = 1}

(E.2)

E {Z;:tﬁ-l Ik/7k(t1,t2)]{D;€(t1) > D;f(tl — 1)}|I{D;€(t1) > D;f(tl — 1)} = 1} is the ex-

pected number of f.p. received by queuap tot, which come from the N.A. occurred at
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gueuek’ att;. Notice that NM 1 is acyclic and so is NM 2. Hence this amourahgays

bounded, say. Following (E.2), we have

Prob <i i Ik/7k(t1, tQ)I{D;C(tl) > D];(tl — 1)} > €t>

to=1t1=1

gé i Prob(I{D},(t;) > Dj(t; — 1)} = 1)

t1=1

:e—ct > E{I{Dj(t) > Di(t: — 1)}}

t1=1

:éE {Xt: I{Dj}(t;) > Dj(t; — 1)}} : (E-3)

t1=1

By Proposition 6.2.1p,,(t) = >, _, I{D}(t:) > Dj(t, — 1)} grows sublinearly. Hence
there exists’ > 0, &' > 0, andt, with (€' 4 0') < % such thaProb(n(t) > €'t) < &' for

all t > t,. Furthermore, by definitiom,(¢) < ¢ and hence

E{nw(t)} = Prob(n(t) > ¢'t)E{ns(t)|ni(t) > €'t} + Prob(n.(t) < ¢'t)E{ns(t)|np(t) < €'t}

<Ot + €t = (8 + €N, vt > .

Substitutinge{n,(t)} back to (E.3) and yields,

Prob <zt: zt: Ik/7k(t1, tg)]{D;C(tl) > D];(tl — 1)} > €t>

to=1t1=1
<Z (d+0)
et
el +4")
a €
¢ Oe

<C% 5 v > 1,
€ &

This completes the proof.
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F. THE THROUGHPUT REGION OF 5-TYPE LNC SCHEME

In this appendix, we prove Proposition 6.3.1 to Proposi6dh3. For Proposition 6.3.3,
following the continuity of the linear equations descripiie stability region o6PN,, we

have
ALNC = lim A6 = Ao.
e—0

To prove Proposition 6.3.1 and Proposition 6.3.2, it is gtoto prove the following
two statements: (1) For anry> 0, the effective throughput of any schemeSiPN. is less
than the throughput of another scheme in 5-type LNC 2-usmdwast PEC; and (2) The
throughput of any scheme in 5-type LNC 2-user broadcast RHEss than the effective
throughput of another schemeSRN,.

To prove the first statement, for amy> 0, we begin with one arbitrary scheme in
SPN, and propose another scheme in LNC problem as follows, nambdn$eA. For
any timet, whenever we schedule $Af TYPE; is non-empty, then we also choose the
coding vector inTYPE; and send it out, and we send zero packéfYiPE; is empty for
i € {9,18,31,63,95}. It remains to show thal YPE; is always nonempty whenever SA
is scheduled.

We show this by claiming that for any tinteand: € {1,2,3,4}, Q;(t) < Qinc(t)
under Schemel. We prove this claim iteratively. The statement is triwalue att = 0.
SupposeR); (t) < Q:unc(t) at timet. For timet + 1, we first discuss = 1. Since
ai(t) = Ay(t) for all ¢, the number of flow-1 packets injected infd . is the same as
the increment irQ; .nc(t) = Rank(€2(t)) — Rank(A7(¢)). Suppose the scheduler choose
to activate SAs at timet. SinceQ); (t) < Q;inc(t), we can choosdYPE;s at timet
as well. And hencé); nc(t) decreases by one #,(t) € {(1,1),(1,0),(0,1)}. By the
random service distribution described before this prapwsi), (nc(t) also decreases by

one ifZ,(t) € {(1,1),(1,0),(0,1)}. And henceQ; (t +1) < Qyinc(t + 1). We now
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discuss = 3. Q;(t + 1) can increase by one only when §As scheduled at timeand
Z(t) = (0,1), while Q5 nc(t + 1) can increase by one only wha@rYPE; is scheduled at
timet andZ,(t) = (0, 1). Thus the increments are the same. The discussion for saigdu
SAg; is the same as scheduling §An Q1 .. Suppose SA is scheduled at timeé Since
Qi(t) < Qiinc(t), we can choos& YPE;; at timet as well. Q) (¢ + 1) decrease by one
whenZ,(t) € {(1,0),(1,1)} and bye whenZ(t) = (0, 1), while Q3 nc(t + 1) decrease
by one wher¥,(t) € {(1,0),(1,1)}. And hence)s (t +1) < Qsnc(t+1). Fori = 2 4,
they are symmetric to= 1, 3. And hence we complete the proof of the claim and the first
statement.

To prove the second statement, we begin with one arbitrdrgrse in LNC problem
and propose another schemeSiRN, as follows, named Schente For any timet and
i € {9,18,31,63,95}, whenever we choosEYPE;, we also schedule SAf there is no
underflow, and don’t schedule any SA if there is underflow fAr.SIt remains to show
that there is always no underflow whaiPE; is scheduled. We show this by claiming
that for any timet andi € {1,2,3,4}, Q;(t) = Q:nc(t) under Schemés. The proof
of the claim is almost identical to the one for the first claiboee. The only difference is
when discussin@); .nc(t + 1) and choosing YPEs;. Qs nc(t + 1) decrease by one when
Z(t) € {(1,0),(1,1)}, while Q3 0(t + 1) decrease by one whéh(t) € {(1,0),(1,1)}.
And hence we complete the proof the second claim and the detatement. The proof of

the proposition is thus completed.
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