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Abstract

• The focus of this paper is on the volume integral

representations to be used in constructing integral equations

for composite volume media.

• The major thrust of the paper is to identify where• The major thrust of the paper is to identify where

derivatives of a discontinuous function arise in the

derivation of the volume representation.

• This paper identifies the sources of error in the incorrect

representations and its major contribution is the rigorously

correct derivation of the representations to be used in

volume integral equations.
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Introduction

• The recent modeling of composite Volumetric

materials employ some form of equivalent electric

and magnetic volumetric currents.

• With finite volumes these currents take a derivative

of the discontinuity corresponding to the boundary

between the scatterer and the surrounding medium.

• This issue is not particularly mentioned till this paper

and in some of the literature the representations

disagree with the ones presented by this paper.



• Thus the major aim of this paper is to provide three

different derivations which are consistent and to

overcome this issue.

• The secondary issue of the paper is the presentation

of integrals which lead to formulations involvingof integrals which lead to formulations involving

either the electric or magnetic field alone which lead

to the reduction in unknowns when solving the

subject integral equation.



• The outline of the paper is as follows:

1. Section II identifies where the derivative of the

discontinuity occurs.

2. Section III and IV derive the correct presentation

using bilinear concomitants .

3. Section V depicts the derivation using delta function3. Section V depicts the derivation using delta function

to arrive at the same equation as in section III and

IV.

4. Section VI presents numerical results based on the

volume integral equation that results from this

paper’s representation



Problem Identification

Maxwell’s eq.’s:

where

Eq.(5)+eq.(6) :



Using the identity:

eq.(8) and eq.(7):

where



• Eq.(13) is the standard representation for E
but it is Incorrect.

• The error is the term in eq.(8)

which involves the differentiation of the

discontinuous permeability.

• Thus in this paper the authors have derived• Thus in this paper the authors have derived

the correct representation using three

methods and verified their consistency with

the known results.



Correct Derivation Using Standard 

Bilinear Concomitant

• Concomitants:

An expression B(u,v), where u,v are functions of x,

satisfying vL(u) - uL̄(v) = (d/dx)·B(u,v), where L and L̄

are given adjoint differential equations.are given adjoint differential equations.

• Concomitants used in Method 1:



• E and H are derived by integrating the

divergence of the Q functions over vo and vD

• When the integration and observation vectors

are in the same region integration of δ(r-ro) is

encountered which gives rise to E(ro).

• Integrating over vo:• Integrating over vo:



• Substituting the expression for Einc gives:

• Similarly integrating over vD:

The key to elimination of error is that

integration is done over vo and vD separately so

no discontinuity in μr is encountered.



• Substituting eq.(6) in (21) and adding in (19):

where

which can be expanded as

From the continuity of tangential E across sD and

Maxwell’s Eq. :



• Since I(ro) does not vanish unless μr=I this term 

is the main missing term in formerly derived VIE.

• So for the correct derivation of E considering the 

third term in (22):

• where

Integrating over vD, using Divergence theorem 

and the identity



• substituting in eq.(22):

where Icomb is the sum of I(ro) and the surface

integral of Iv(ro) which can be simplified to

zero due to continuity of tangential H across

sD.



Thus,

or equivalentlyor equivalently



Method 2

• Concomitants used:

• Proceeding in the same fashion the authors 

end up with the same expressions as eq.(33) 

thus validating their claim that eq.(13) is not 

valid without the integral in eq.(22)



Derivation Using Delta Function

• This section also builds on the same idea of 

discontinuity of μr in Jeq but deals it using the 

delta function. Rewriting the equation as:

where 

• Because F falls to zero outside the material 

boundary and has finite discontinuity so 



• So in order to avoid the step function in eq.(47) 

the following identity is used to give eq.(52)

where

• Iδ(ro)  is the missing term in erroneous eq.(13) 

which can be further reduced using delta 

functions properties as 



which further can be written as:

which gives the same expression as in eq.(22) 

from where eq.(34) is derived as before.



• Thus all the three methods used in this paper 

yield the same integral representation.

• Next it is further validated by the numerical • Next it is further validated by the numerical 

implementation in the last section of the 

paper.



Numerical Implementation and 

Validation

• Using the Method of Moments eq.(34) is 

validated by casting it in the form:

• Discretization: The volumetric scatterer geometry is• Discretization: The volumetric scatterer geometry is

subdivided using hexahedral elements whose volume is

specified by the parametric position vector:

where rmnp are the 27 defining points of each hexahedron and

Lmnp(u,v,w) are the Lagrange interpolation polynomials.



• Basis Functions: The field within the volume is expanded

using 12 basis functions each associated with one of the 12

edges of the hexahedron. Hence, the total discretized field in

each hexahedron is defined as:

• The four basis functions for each of the four edges along

theu,v and w parametric directions respectively are:



• The resulting Matrix elements are given by:

• whereas the RHS of the matrix system takes 

the form:



RCS of homogeneous composite cube of 

side length a = 0.2λ, εr = 1.5 and µr = 2.2



RCS of homogeneous composite sphere of 

radius= 0.15λ, εr = 1.5 and µr = 2.2



RCS of homogeneous composite shell of 

outer radius = 0.2λ , thickness = 0.02λ , 

εr = 1.5 and µr = 2.2



Efficiency of VIE

• Since VIE is a second kind Integral equation so 

its iterative solution converges much faster 

than FE-BI system.

• For a system of 1082(2nd example) VIE unknowns, 

CGS(Conjugate Gradient Squared) solver converged in 5 

iterations to achieve a relative error of 1% and the solution 

was completed in 0.7 seconds on a 1GHz P3 processor.

• For the 3rd example with 880 VIE unknowns , the iterative CGS 

solver converged in 13 iterations and took 1.1 seconds. 



Conclusions

• The examples presented demonstrate the validity of

eq.(34).

• In contrast to using two sets of unknowns for

modeling both the electric and magnetic field

intensities for a magneto-dielectric scatterer, this

numerical procedure discretizes only the electric

field intensity, thus generating a VIE system half the

size of those of traditional methods.



Thank You…..


