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Dedicated to the memory of Robert A. Heinlein.

Here he lies where he longed to be,

Home is the sailor, home from sea,

And the hunter home from the hill.

- Robert Louis Stevenson
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2.10 Arti�cial libration surface for � = 0:5; only half of the torus (x > 0)

appears : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

3.1 Evolution of the Sun-Earth collinear libration point locations with � : 42

3.2 Geometric relationships between the three bodies and a libration point 47

3.3 Example: Third-order Sun-Earth L1 solar sail halo orbit approximation 52

3.4 Example: Sun-Earth L2 solar sail halo orbit approximation : : : : : : 53

3.5 Evolution of Sun-Earth L1 halo orbits with sail lightness � : : : : : : 55

3.6 E�ects of � on L1 halo orbit amplitude and period : : : : : : : : : : 56

3.7 Classical Sun-Earth L1 halo family : : : : : : : : : : : : : : : : : : : 58

3.8 Sun-Earth L1 halo family for �=0.025 : : : : : : : : : : : : : : : : : : 59

3.9 Sun-Earth L1 halo family for �=0.055 : : : : : : : : : : : : : : : : : : 60

3.10 Classical Sun-Earth L2 halo family : : : : : : : : : : : : : : : : : : : 61

3.11 Sun-Earth L2 halo family for �=0.03 : : : : : : : : : : : : : : : : : : 62

3.12 Evolution of the Sun-Earth L1 halo family: � = 0.0-0.055 : : : : : : : 63



ix

Figure Page

3.13 Evolution of the Sun-Earth L2 halo family: � = 0.0-0.06 : : : : : : : 64

3.14 Evolution of the stability characteristic of the Sun-Earth L1 halo fam-

ily: � = 0.0-0.055 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

3.15 Evolution of the stability characteristic of the Sun-Earth L2 halo fam-

ily: � = 0.0-0.06 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

3.16 Relationship of the target points to the nominal and actual trajectories 73

3.17 Nominal Sun-Earth L1 halo orbit for � = 0:005 : : : : : : : : : : : : 78

3.18 Nominal Sun-Earth L1 halo orbit for � = 0:055 : : : : : : : : : : : : 80

3.19 Nominal Sun-Earth L2 halo orbit for � = 0:01 : : : : : : : : : : : : : 82

4.1 Locations of the example o�-axis libration points : : : : : : : : : : : 92

4.2 Example: asymptotically stable trajectory : : : : : : : : : : : : : : : 93

4.3 Orientation angle time history for the asymptotically stable trajectory 94

4.4 Example: quasi-periodic trajectory : : : : : : : : : : : : : : : : : : : 95

4.5 Orientation angle time history for the quasi-periodic trajectory : : : : 96

5.1 Stable manifold for a Sun-Earth L1 halo (�=0.0) : : : : : : : : : : : 100

5.2 Stable manifold for a Sun-Earth L1 halo (�=0.025) : : : : : : : : : : 101

5.3 Stable manifold for a Sun-Earth L1 halo (�=0.045) : : : : : : : : : : 102

5.4 Patched transfer trajectory segments : : : : : : : : : : : : : : : : : : 106

5.5 Example: transfer to a Sun-Earth L1 halo (�=0.035) : : : : : : : : : 113

5.6 Variation in sail orientation angles along the example transfer path : 114



x

ABSTRACT

McInnes, Allan I. S., M.S.E., Purdue University, August, 2000. Strategies for So-

lar Sail Mission Design in the Circular Restricted Three-Body Problem. Major

Professor: Dr. Kathleen C. Howell.

The interaction between the naturally rich dynamics of the three-body problem,

and the \no-propellant" propulsion a�orded by a solar sail, promises to be a useful

one. This dynamical interaction is explored, and several methods for incorporating it

into mission designs are investigated. A set of possible \arti�cial" libration points is

created by the introduction of a solar sail force into the dynamical model represented

in the three-body problem. This set is split into two subsets: the on-axis libration

points, lying along the Sun-Earth axis; and a complementary set of o�-axis libration

points. An analytical approximation for periodic motion in the vicinity of the on-axis

libration points is developed, and then utilized as an aid in exploring the dynamics

of the new halo families that result when a solar sail force is exploited. The changing

shape and stability of these new halo families is investigated as the level of thrust

generated by a sail is increased. A stationkeeping algorithm is then developed to

maintain a spacecraft in the vicinity of a nominal halo orbit using changes in the

solar sail orientation. The o�-axis libration points are determined to be generally

unstable, and lacking �rst order periodic solutions. Thus, variations in the orientation

of the solar sail are used to produce asymptotically stable and bounded motion. Sail

orientation changes are also utilized in a proposed algorithm for generating transfers

between the Earth and on-axis halo orbits.
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1. Introduction

The human species stands on the edge of a new frontier, the transition from a planet-

bound to a space-faring civilization. Just as the transition from hunter-gatherer to

farmer necessitated new approaches to solve new problems, so the expansion into

space, in terms of both human and robotic applications, requires the development

of innovative new technologies and mission design strategies. Solar sail propulsion is

one such new technology that promises to be useful in overcoming the challenges of

moving throughout the solar system.

Using solar radiation pressure (SRP) as a method of spacecraft propulsion, al-

though not yet fully exploited in an actual mission, is by no means a new idea. The

concept dates back at least as far as the writings of Konstantin Tsiolkovsky in the

1920's [1]; it has now matured suÆciently to warrant serious consideration in the form

of actual solar sail propulsion systems. The major advantage of a solar sail is clear:

there is no propellant expenditure. Thus, the \thrust" is applied continuously, and

the maneuvering capability of the spacecraft is limited only by the longevity of the

materials from which the sail is constructed. For a solar sail spacecraft, the combi-

nation of these factors allows a huge variety of ight paths that are non-Keplerian

in nature. However, techniques to eÆciently design these trajectories are not yet

available.

Exploiting solar sails in the context of multiple gravitational �elds is yet another

challenge. However, the \libration point" trajectories that exist in regimes de�ned by

multiple gravitational �elds are extremely useful for mission design, and have been

incorporated into baseline trajectories that support various scienti�c objectives. Even

the three-body problem has been studied extensively for several hundred years, and

has inspired many new developments in the mathematical theory of di�erential equa-
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tions and dynamical systems. These new developments, as well as recent signi�cant

insights into trajectory design that exploit three-body dynamics, have led to inno-

vative non-Keplerian trajectories in the vicinity of the libration points, and missions

such as ISEE-3 [2], WIND [3], Genesis [4], Triana [5], and others now in development.

The continuous thrust, long duration nature of solar sail propulsion is ideally

suited to the dynamical interactions of a multi-body system. In concert with the

tools of three-body trajectory design, solar sails o�er a rich new set of trajectory

options for mission designers. The focus of this research e�ort is the identi�cation of

some of these new trajectory options, and the development of methodologies to aid

in the design of missions utilizing these trajectories.

1.1 Problem De�nition

1.1.1 Circular Restricted Three-Body Problem

Traditional mission design focuses on a model of the system that is consistent

with the two-body problem, usually comprised of some massive central body and a

much less massive spacecraft. Ultimately, this approach leads to spacecraft equations

of motion that result in the familiar conic sections of Keplerian motion. The gravita-

tional �elds of any additional bodies are then modelled as perturbations to the conic

solution. Preliminary analysis for more ambitious missions is accomplished through

a sequence of two-body arcs linked via the \patched conic" method.

A more general formulation of the problem that incorporates one additional grav-

itational interaction can be modelled as the three-body problem in orbital mechanics,

and dates back to Newton's investigations in the 17th century [6]. Unlike the two-

body problem, there is no closed form analytical solution for the di�erential equations

governing the motion in the three-body problem. However, it is still possible, although

not easy, to gain insight into the qualitative nature of the solutions in this system.

This task is more tractable if several simplifying assumptions are introduced.

In reducing the general three-body equations, the �rst assumption is that the mass

of one of the bodies is in�nitesimal, that is, it does not a�ect the motion of the other

two bodies. Thus, the two massive bodies, or primaries, move in Keplerian orbits
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about their common center of mass. This reduced model is denoted the \restricted

three-body problem," and was formalized by Euler in the late 18th century [6]. The

problem is further simpli�ed by constraining the primaries to move in circular orbits

about their center of mass. The resulting simpli�ed model is usually labelled the

circular restricted three-body problem (CR3BP). Although a less complex dynamical

model than the general problem (in terms of the number of equations and the number

of dependent variables), analysis in the circular problem o�ers further understanding

of the motion in a regime that is of increasing interest to space science, as well as

new options for mission design.

Unfortunately, even with the simplifying assumptions, no general closed form

solution to the CR3BP is available. However, particular solutions can be determined.

Of notable interest are the equilibrium solutions, �rst identi�ed by Lagrange in 1772,

which represent locations where the in�nitesimal particle remains �xed, relative to a

frame of reference that rotates with the primaries.

1.1.2 Libration Points

If the restricted problem is formulated in terms of a coordinate frame that rotates

with the primaries, it is possible to identify �ve equilibrium solutions, also known as

libration or Lagrange points. Three of these points are collinear, and lie along the

line joining the primaries. The other two points form equilateral triangles with the

primaries, in the plane of primary motion.

The focus of most investigations into the three-body problem is the motion of the

in�nitesimal particle in the vicinity of the equilibrium points. The collinear points,

in particular, have recently attracted much interest as a consequence of the three-

dimensional bounded motion in their vicinity. These solutions, periodic halo orbits

[7] and quasi-periodic Lissajous trajectories [8], exist in a region of the solution space

that is not accessible through a two-body model, and they enable the design of mission

scenarios that were not considered feasible previously.

In general, any initial analysis of motion in the vicinity of the libration points does

not include solar radiation pressure. The magnitude of the SRP force is assumed to
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be suÆciently small such that it can be accommodated as a perturbation in the latter

stages of the trajectory design process. The inclusion of a solar sail, a device designed

speci�cally to generate propulsively signi�cant forces and to direct them appropriately

using SRP, will transform solar radiation pressure from a mere perturbation into a

critical force component. Thus, in this context, SRP must be incorporated at a much

earlier phase of the trajectory design process.

1.1.3 Solar Radiation Pressure and Solar Sails

The fact that electromagnetic radiation can \push" matter is contrary to every-

day experience, but commonplace in the solar system. Perhaps the most well known

example is the dust tail created behind comets by solar radiation pressure [9]. In

mission design, it is well known that the inuence of SRP must be incorporated into

the trajectory design process [10]. As accomplished for observational data, electro-

magnetic radiation pressure can also be derived from both Maxwell's electromagnetic

theory and quantum theory [1]. Thus, theoretical tools for the analysis and design of

devices utilizing SRP do exist.

From the perspective of quantum mechanics, solar radiation pressure can be con-

ceptualized as the force generated by the the transfer of momentum from reected

photons to some reective surface. Photons represent the discrete packets of energy

that compose electromagnetic radiation. Although they possess zero rest mass, pho-

tons transport energy, and, thus, the mass-energy equivalence of special relativity

implies that they also transport momentum. However, the momentum transported

by an individual photon is relatively small. Thus, to generate a signi�cant impact, it

is desirable to use a large reective area to capture as many photons as possible. Min-

imizing the mass of the reective surface maximizes the resulting acceleration. This

requirement for a high area-to-mass ratio implies that the ideal SRP-based propulsive

device is a large, very thin reective sheet. Hence, the name \solar sail". To date,

SRP has been successfully used to generate attitude control torques [11, 12], but no

spacecraft have yet own that employ solar sails to derive primary propulsion.
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1.2 Previous Contributions

1.2.1 The Restricted Problem

As mentioned, Leonhard Euler �rst formulated the restricted three-body problem

in 1772, with his introduction of a rotating coordinate system [13]. Also in 1772,

Joseph L. Lagrange identi�ed the triangular libration points as a particular solution

in the general three-body problem. Based on these results, Lagrange predicted the

existence of the Sun-Jupiter Trojan asteroids; observations veri�ed the prediction 134

years later [14].

Although apparently unaware of Euler's formalism and, thus, using a sidereal

(non-rotating) coordinate system, Carl G. J. Jacobi was able to demonstrate the

existence of a constant of the motion in 1836. This constant relates the square of the

relative velocity of the \massless" particle to a pseudo-potential function derived from

the centrifugal and gravitational potentials [6]. In the late 1800's, Henri Poincar�e

investigated the problem and concluded that the restricted three-body problem is

non-integrable, but periodic solutions do exist. In the process, Poincar�e laid the

foundations for modern dynamical systems theory [6, 14].

1.2.2 Libration Point Orbits

In 1902, Henry C. Plummer, using an approximate, second-order analytical solu-

tion to the di�erential equations in the circular restricted three-body problem, pro-

duced a family of two-dimensional periodic orbits near the collinear libration points

[15]. Forest R. Moulton, in studies performed between 1900 and 1917, numerically

integrated periodic orbits, for several speci�c mass ratios, in the vicinity of the tri-

angular libration points. Moulton's results also included three-dimensional periodic

solutions to the linearized equations of motion relative to the collinear points [6].

Further work in this direction was hindered by the tedious computations required

for both higher order analytical solutions and numerically integrated trajectories.

Thus, researchers in this �eld did not progress signi�cantly until the introduction of

high-speed computers in the middle of the 20th century.

The 1967 publication of Victor G. Szebehely's book, Theory of Orbits: The Re-
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stricted Problem of Three Bodies [6], brought together various strands of research, and

e�ectively summarized the state of the art at that time. Szebehely's comprehensive

treatise includes a survey of the numerically integrated trajectories then identi�ed,

and an introduction to the \three-dimensional" and \elliptic" formulations of the

restricted three-body problem.

During the 1960's, Robert W. Farquhar initiated an analytical investigation into

a class of precisely periodic three-dimensional trajectories known today as halo orbits

[16]. These trajectories are associated with the collinear points, and are a special case

of the more general libration point orbits frequently denoted as Lissajous trajecto-

ries. Working in conjunction with Ahmed A. Kamel, Farquhar developed analytical

approximations for quasi-periodic solutions associated with L2, the Earth-Moon li-

bration point on the far side of the Moon, published in 1973 [8]. In 1975, David L.

Richardson and Noel D. Cary derived a third-order approximation for motion near the

interior Sun-Earth libration point [17] in the restricted problem. This was followed

in 1980 by Richardson's third-order approximation to represent halo orbits near the

collinear points in the circular restricted problem [18].

Beyond higher order analytical approximations, numerical investigations have re-

focused many of the studies of this problem since the 1970's. In 1979, considering

motion in the vicinity of the collinear points, John V. Breakwell and John V. Brown

could numerically extend the work of Farquhar and Kamel to produce a family of pe-

riodic halo orbits [7]. The discovery of a set of stable orbits in Breakwell and Brown's

halo family motivated a search for stable orbits in the families associated with all three

collinear points by Kathleen C. Howell, in collaboration with Breakwell, in 1982 [19].

Howell used the numerical technique of continuation to produce orbits beyond the

range of validity of the analytical approximations. A range of \stable" periodic orbits

appear in each libration point family [20, 21].

Given the three-dimensional halo families of precisely periodic orbits, Howell and

Henry J. Pernicka sought numerical techniques to eÆciently compute the quasi-

periodic trajectories earlier identi�ed by Farquhar [8]. A scheme to compute such
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bounded trajectories successfully emerged in 1988 [22]. The technique developed by

Howell and Pernicka relies on an iterative process to update some set of target states

that lie at speci�ed intervals along the trajectory.

In any actual mission scenario, unmodelled perturbations and injection errors,

coupled with the generally unstable nature of libration point orbits, will cause a

spacecraft to drift from the nominal trajectory. Consequently, in 1993, Howell and

Pernicka developed a exible stationkeeping strategy for libration point orbits [23].

The resulting methodology is also applicable to transfer arc and maneuver design

[4, 24], as well as error analysis [25].

1.2.3 Solar Sails

It is generally agreed that the earliest suggestion that spacecraft could be propelled

by sunlight appears in Konstantin E. Tsiolkovsky's 1921 publication Extension of Man

into Outer Space [26]. An innovator in the application of scienti�c ideas, Tsiolkovsky

was one of the �rst to consider many of the problems involved in space travel, and

ultimately made a number of important contributions in aviation as well. Fridrickh

Tsander, Tsiolkovsky's student and co-worker, published the �rst practical paper on

solar sailing in 1924 [1].

After the early e�orts by Tsiolkovsky and Tsander, the �eld remained relatively

dormant for nearly 30 years. Then, in 1951, Carl Wiley, using the pseudonym Russell

Sanders to protect his professional credibility, published an article about the feasibility

and design of solar sails in Astounding Science Fiction [27]. Later, in 1958, Richard

L. Garwin published the �rst paper on solar sailing in a technical archival journal,

Jet Propulsion [28]. Garwin's optimistic evaluation of the practicality of solar sailing

led several other researchers to explore the concept [1, 29, 30].

The next major advance appeared in the early 1970's. Jerome L. Wright, as part

of some low-priority NASA studies on solar sails, discovered a trajectory that would

allow a rendezvous with Halley's comet [1]. This prompted a formal proposal for

a rendezvous mission in 1976, and led to the production of much practical research

on solar sail construction and trajectories. However, solar sails are a technologically
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risky proposition, and NASA endorsed an alternate solar-electric propulsion concept

at the time. Eventually, due to escalating costs, any plans for a low-thrust rendezvous

mission were halted.

An interesting conceptual leap appeared in 1991 in a paper by Robert L. Forward,

who proposed using solar sails, not to propel a spacecraft, but to maintain it in a

stationary position [31]. Forward's \statites" are suggested in response to the crowd-

ing of geosynchronous orbit, using solar radiation pressure to generate \levitated,"

non-Keplerian geosynchronous trajectories.

Throughout the 1990's, Colin R. McInnes has been extremely active in studying

the dynamics of solar sails. McInnes is primarily concerned with analytical techniques

for developing a �rst approximation for these non-Keplerian trajectories [26, 32, 33],

including some work in the restricted three-body problem [34] as well as control

issues [35]. Additionally, his investigations include the e�ects of more accurate solar

radiation models [36]. In 1999, McInnes published Solar Sailing [1], summarizing in

one book the state of the art in all aspects of solar sail design, construction, and

trajectory design.

For application speci�cally to libration point missions, Julia L. Bell examined the

e�ects of solar radiation pressure on the interior Sun-Earth libration point as well

as the associated Lissajous trajectories in 1991 [37]. This work was not speci�cally

focused on solar sails, but did include some preliminary results for the computation

of halo orbits that incorporate some additional small magnitude force. Her force

model is consistent with a solar sail in both magnitude and direction. More recently,

extending the work of Bell and McInnes, Jason S. Nuss formulated a study of the

dynamics of solar sails within the framework of the three-body problem [38]. His

analysis includes periodic motion in the vicinity of points along the Sun-Earth axis,

and he introduces the use of methodologies such as invariant manifold theory for the

design of transfers to and from these periodic orbits.
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1.3 Present Work

The focus of this current investigation is the development of methodologies for the

design of solar sail trajectories within the context of the circular restricted three-body

problem. This work expands upon the e�orts of McInnes, Bell, and Nuss.

The approach is focused on the motion of the in�nitesimal particle (i.e., the space-

craft) in the vicinity of the new libration points that result from the introduction of

solar radiation pressure into the dynamical model. The �rst step in this process is

the characterization of the dynamics of solar sails near these points. This process

generates qualitative insight into the type of trajectories that may be feasible. Once

an understanding of the dynamical structure is available, techniques for generating

various kinds of libration point trajectories can be developed. As a starting point,

methodologies that have previously been applied in the classical circular restricted

three-body problem can be adapted to incorporate solar radiation pressure. How-

ever, the addition of a solar sail introduces new capabilities and thus may require

new methodologies as well.

This work is arranged as follows:

CHAPTER 2: BACKGROUND

The mathematical model corresponding to the classical circular re-

stricted three-body problem is presented, and equations of motion are

derived. An introduction to three-body trajectory analysis is presented,

along with an example of a numerically generated libration point trajec-

tory obtained through the analysis techniques being described. A force

model for solar radiation pressure is also de�ned. Three-body equations

of motion incorporating the e�ects of a solar sail are then derived. Ex-

pressions for the required sail orientation and performance capabilities to

utilize a speci�c libration point are developed. New options are suggested

through an understanding of the range of new \arti�cial" libration points

generated by the addition of a solar sail.
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CHAPTER 3: ON-AXIS SOLUTIONS

The e�ects of a solar sail on the locations of the familiar collinear libra-

tion points in the Sun-Earth system is examined. An approximation for

motion in the vicinity of these points is developed from an existing approx-

imation that did not include solar radiation pressure. The approximation

is used to generate initial guesses for several numerical investigations.

Families of periodic orbits are numerically determined and characterized.

A stationkeeping algorithm useful in the transition to more representative

models for the design of solar sail missions is developed and tested.

CHAPTER 4: OFF-AXIS SOLUTIONS

The stability and controllability of the o�-axis libration points is re-

viewed. State feedback controllers are designed and used to stabilize the

motion of a particle located at a libration point, and to generate periodic

trajectories relative to an arti�cial equilibrium point. The use of discrete

maneuvers to maintain bounded trajectories is discussed.

CHAPTER 5: TRANSFERS

The e�ects of solar radiation pressure on stable and unstable manifolds

is examined. A technique for computing transfers to and from libration

point orbits generated by incorporating a solar sail force is proposed.

CHAPTER 6: CONCLUSIONS

The conclusions of this investigation are summarized. Suggestions for

future work are presented and discussed.
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2. Background

The next few decades promise unprecedented growth in the exploration and ex-

ploitation of space. This inevitably requires a corresponding growth in capabilities.

Challenging new mission scenarios will require innovative trajectory designs. The

combination of libration point orbits and solar sails can create some unique trajec-

tory options to support some of these complex scienti�c and engineering goals. This

chapter includes a description of the circular restricted three-body model, and the

development of the di�erential equations that govern three-dimensional motion of a

small mass, i.e., a spacecraft, in this system. Particular solutions to the equations of

motion are introduced, in the form of the �ve known equilibrium points. Analytical

approximations for periodic orbits, and numerical techniques for re�ning them, are

also described. The derivation of the force model for a solar sail is presented and it

is incorporated into the equations of motion.

2.1 Circular Restricted Three-Body Problem

2.1.1 Assumptions

The general three-body problem, as formulated by Newton, consists of three bodies

of arbitrary mass moving under their mutual gravitational inuence. This system

requires 18 scalar �rst-order di�erential equations to completely describe the resulting

motion. The formulation of the restricted problem was originally suggested to Euler

by the approximately circular motion of the planets about the Sun and the small

masses of the asteroids relative to these larger bodies [6]. The application of a speci�c

set of assumptions or constraints in the restricted problem reduces the system to 6

�rst-order di�erential equations, yielding an analysis that is far more tractable.

The fundamental assumption in reducing the general three-body problem to the
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restricted problem concerns the mass distribution. Two of the bodies, labelled pri-

maries (designated P1 and P2), are massive with respect to the third body (designated

P3). Thus, the third body is assumed to have in�nitesimal mass relative to the pri-

maries, and, therefore, does not a�ect the primary motion. All bodies are assumed

spherically symmetric, and can therefore be represented as point masses. The masses

of P1, P2, and P3 are denoted by M1, M2, and M3, respectively. The convention

adopted in the following analysis for the relative size of the bodies is somewhat arbi-

trary, that is, M1 > M2 �M3.

If the gravitational e�ects of P3 are neglected, the determination of the motion of

the primaries, P1 and P2, is reduced to the solution of a two-body problem. There-

fore, the primary motion is Keplerian relative to their common center of mass, or

barycenter. The two-body motion is further simpli�ed by constraining the primaries

to circular orbits about the barycenter, thus, the motion of P3 becomes a solution to

the circular restricted three-body problem.

2.1.2 Geometry

To formulate a mathematical expression for the motion of P3, it is necessary to

de�ne several reference frames and position vectors. (See Figure 2.1.) Denote vectors

with an overbar (e.g., v) and unit vectors with a caret (e.g., v̂).

Observe in the �gure that the inertial reference frame I is comprised of the right-

handed triad X̂ � Ŷ � Ẑ, such that the origin B is de�ned at the barycenter of the

primary system. Frame I is oriented such that the X̂ � Ŷ plane coincides with the

plane of primary motion. Additionally, a synodic frame S is introduced such that the

triad x̂� ŷ� ẑ is right-handed, with the origin at the barycenter. Frame S is initially

coincident with frame I, but rotates such that the x̂-axis is always directed from P1

toward P2. The angle between I and S is designated �. Since the primary motion is

constrained to be circular, the rate of change of �, that is, _�, is equal to n, the mean

motion of the P1-P2 system. The vector R represents the position of P3 relative to B.

Vectors R1 and R2 then locate P3 relative to P1 and P2, respectively.
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X̂

Ŷ

�

R

P3

P2

R1

R2ŷ

x̂

d1

d2

P1

B

Figure 2.1. Geometry of the three-body problem

2.1.3 Equations of Motion

The di�erential equations in the circular restricted three-body problem are the

mathematical expressions describing the motion of the in�nitesimal mass P3. The

most signi�cant forces that determine this motion are the gravitational forces on P3

due to the primaries P1 and P2. Given Newton's Law of Gravity, these forces can be

represented in the following form,

FP1 = �
GM1M3

R
2
1

R1

R1

; (2.1)

and

FP2 = �
GM2M3

R
2
2

R2

R2

; (2.2)

where G is the universal gravitational constant. The symbols R1 and R2 (without

overbars) represent the magnitudes of the vectors R1 and R2. Thus, from Newton's

Second Law, the general expression for the vector equation that governs the motion

of P3 is

�F =M3

I
d
2
R

dt
2

= �
GM1M3

R
2
1

R1

R1

�
GM2M3

R
2
2

R2

R2

; (2.3)

where the superscript I denotes di�erentiation in the inertial frame.
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To simplify and generalize the solution of this equation, it is useful to non-

dimensionalize the system of equations by introducing various characteristic quan-

tities. These quantities include the characteristic length L�, characteristic mass M�,

and characteristic time T �. The characteristic length is de�ned as the distance be-

tween the primaries, that is, L� = jd1j+ jd2j. The sum of the primary masses serves

as the characteristic mass such that M� = M1 + M2. Then, the de�nition of the

characteristic time is selected to be

T
� =

s
L
�3

GM
�
: (2.4)

This de�nition for T � yields values of the gravitational constant, G, and the mean

motion, n, that are both equal to one in terms of the nondimensional units. Using the

characteristic quantities, and suitable additional nondimensional variables, equation

(2.3) can be rewritten in nondimensional form as

I
d
2
r

dt
2
= �

(1� �)

r
3
1

r1 �
�

r
3
2

r2 ; (2.5)

where r = R
L�
, r1 = R1

L�
, and r2 = R2

L�
. The mass ratio � is also introduced as

� = M2

M�
and, thus, (1 � �) = M1

M�
. The nondimensional vector form of the second-

order di�erential equations is complete.

To determine the scalar equations of motion, the kinematic expressions on the

left side of equation (2.5) must be expanded. The kinematic analysis begins with

position. The position vector r is de�ned in terms of nondimensional components in

the rotating frame, that is,

r = xx̂ + yŷ + zẑ : (2.6)

The �rst derivative of equation (2.6), with respect to nondimensional time and relative

to an inertial observer, becomes

I _r =
I
dr

dt

=
S
dr

dt

+I
!
S � r ; (2.7)

where I
!
S is the angular velocity of the rotating frame, S, with respect to the inertial

frame, I. As a consequence of the assumed circular motion of the primaries, this
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angular velocity is constant and of the following form,

I
!
S = nẑ : (2.8)

Furthermore, the nondimensional mean motion is equal to one, and, thus, the nondi-

mensional angular velocity is most simply expressed as the unit vector ẑ. Evaluating

equation (2.7) in terms of the scalar components yields,

I _r = ( _x� y)x̂+ ( _y + x)ŷ + _zẑ : (2.9)

Proceeding to the second derivative of r, the acceleration of P3 in the inertial frame

is produced from the following operation,

I�r =
I
d
I _r

dt

=
S
d
I _r

dt

+I
!
S �I _r : (2.10)

In terms of the scalar components, this results in the kinematic expression,

I�r = (�x� 2 _y � x)x̂ + (�y + 2 _x� y)ŷ + �zẑ : (2.11)

Expressions for r1 and r2 in terms of nondimensional scalar components are now

available. The positions of the primaries with respect to the barycenter can be written

in the form

d1 = �
M2

M1 +M2

L
�
x̂ = ��x̂ ; (2.12)

d2 =
M1

M1 +M2

L
�
x̂ = (1� �)x̂ ; (2.13)

where d1 and d2 are de�ned in Figure 2.1. Thus, the resulting expressions for the

components of r1 and r2 are

r1 = r � d1 = (x+ �)x̂+ yŷ + zẑ ; (2.14)

r2 = r � d2 = (x� (1� �))x̂+ yŷ + zẑ : (2.15)

The scalar form of the second-order di�erential equations of motion in equation (2.5)

is then

�x� 2 _y � x = �
(1� �)(x+ �)

r
3
1

�
�(x� (1� �))

r
3
2

; (2.16)
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�y + 2 _x� y = �
(1� �)y

r
3
1

�
�y

r
3
2

; (2.17)

�z = �
(1� �)z

r
3
1

�
�z

r
3
2

: (2.18)

A more compact notation may be developed by de�ning a pseudo-potential function

U such that

U =
(1� �)

r1

+
�

r2

+
1

2
(x2 + y

2) : (2.19)

Then, the scalar equations of motion may be rewritten in the form

�x� 2 _y = Ux ; (2.20)

�y + 2 _x = Uy ; (2.21)

�z = Uz ; (2.22)

where the symbol Uj denotes
@U
@j
. Equations (2.16)-(2.18) or equations (2.20)-(2.22)

comprise the dynamical model for the circular restricted three-body problem.

2.1.4 Libration Points

From the equations of motion derived previously (equations (2.20),(2.21) and

(2.22)), it is apparent that an equilibrium solution exists relative to the rotating

frame S when the partial derivatives of the pseudo-potential function (Ux; Uy; Uz) are

all zero, i.e., rU = 0. These points correspond to the positions in the rotating frame

at which the gravitational forces and the centrifugal force associated with the rotation

of the synodic reference frame all cancel, with the result that a particle positioned at

one of these points appears stationary in the synodic frame.

There are �ve equilibrium points in the circular restricted three-body problem,

also known as Lagrange points or libration points. Three of the libration points (the

collinear points) lie along the x̂-axis: one interior point between the two primaries,

and one point on the far side of each primary with respect to the barycenter. The

other two libration points (the triangular points) are each positioned at the apex of

an equilateral triangle formed with the primaries. The notation frequently adopted

denotes the interior point as L1, the point exterior to P2 as L2, and the L3 point
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as exterior to P1. The triangular points are designated L4 and L5, with L4 moving

ahead of the x̂-axis and L5 trailing the x̂-axis as the synodic frame rotates relative to

frame I. (See Figure 2.2.)

B

P1

ŷ

P2

L5

L4

L3 L1 L2 x̂

Figure 2.2. Position of the libration points corresponding to � = 0.1

The libration points are particular solutions to the equations of motion as well as

equilibrium solutions. Of course, information about the stability of an equilibrium

point in a nonlinear system can be obtained by linearizing and producing variational

equations relative to the equilibrium solutions [39]. Thus, a limited investigation of

the motion of P3 in the vicinity of a libration point can be accomplished with linear

analysis. The linear variational equations associated with libration point Li, corre-

sponding to the position (xLi
; yLi

; zLi
) relative to the barycenter, can be determined

through a Taylor series expansion about Li, retaining only �rst-order terms. To allow
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a more compact expression, the variational variables (�; �; �) are introduced such that

� = x� xLi
; � = y � yLi

; and � = z � zLi
:

The resulting linear variational equations for motion about Li are written as follows,

�
� � 2 _� = U

�

xx� + U
�

xy� + U
�

xz� ; (2.23)

�� + 2 _� = U
�

yx� + U
�

yy� + U
�

yz� ; (2.24)

�
� = U

�

zx� + U
�

zy� + U
�

zz� ; (2.25)

where Ujk =
@U
@j@k

and U�

jk = UjkjLi . The expressions corresponding to each of these

partial derivatives appear in Appendix A.

Analysis of the variational equations is more convenient if they appear in state

space form. This is accomplished by rewriting the system of three second-order

di�erential equations (equations (2.23), (2.24), and (2.25)) as a system of six �rst-

order equations. De�ning the six-dimensional state vector as

� �
h
� � �

_
� _� _

�

iT
;

the variational equations can be written in state space form as

_
� = A� ; (2.26)

where the bold typeface denotes a matrix, and the matrix A has the general form

A �

2
64 0 I3

B C

3
75 :

Then, the submatrices of A are

0 � 3� 3 zero matrix;

I3 � 3� 3 identity matrix;

B �

2
666664
U
�

xx U
�

xy U
�

xz

U
�

yx U
�

yy U
�

yz

U
�

zx U
�

zy U
�

zz

3
777775 ;
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C �

2
666664

0 2 0

�2 0 0

0 0 0

3
777775 :

The solution to the system of linear di�erential equations represented in equation

(2.26) is of the following form,

� =
6X

i=1

Aie
sit
; (2.27)

� =
6X

i=1

Bie
sit
; (2.28)

� =
6X

i=1

Cie
sit
; (2.29)

where the symbols Ai, Bi, and Ci represent constant coeÆcients, and the six eigenval-

ues of the matrix A appear as si. The eigenvalues, or characteristic roots, determine

the stability of the linear system for motion relative to the equilibrium point, and,

thus, also contain some information about the stability of the nonlinear system and

the qualitative nature of the motion.

The systems of variational equations relative to the collinear points each possess

two real eigenvalues, one of which is positive [6]. Thus, the motion in the region of the

solution space surrounding the collinear points is generally unstable. However, the

other four eigenvalues are purely imaginary, indicating the potential for strictly oscil-

latory motion. It is therefore possible to select initial conditions that excite only the

oscillatory modes and generate stable periodic orbits. The eigenvalues corresponding

to the linearized system and associated with the triangular points are all pure imag-

inary for � < �0 � 0:0385; for � > �0, some of the eigenvalues possess positive real

parts. Thus, the nonlinear behavior near L4 and L5 is likely to be oscillatory and

bounded for some combinations of primaries, and unstable for others.

2.1.5 Approximate Periodic Solutions

For initial conditions that excite only the oscillatory modes, the general form of

the solution for motion near the collinear libration points is a Lissajous path described
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mathematically as follows,

� = A1 cos �t+ A2 sin�t ; (2.30)

� = �kA1 sin�t + kA2 cos�t ; (2.31)

� = C1 sin �t + C2 cos �t ; (2.32)

where � is the in-plane frequency, � is the out-of-plane frequency, and k is a constant

denoting a relationship between the coeÆcients corresponding to the � and � com-

ponents. This is bounded motion that is not necessarily periodic since the ratios of

the frequencies for the in-plane (x� y or � � �) and out-of-plane (z or �) motion are

generally irrational. By careful selection of the initial conditions associated with the

Lissajous motion, a precisely periodic orbit can be constructed. Of course, speci�ca-

tion of the initial states e�ectively imposes certain constraints on the in-plane and

out-of-plane amplitudes and phases. The result is a �rst-order solution of the form

� = �Ax cos(�t+ �) ; (2.33)

� = kAx sin(�t+ �) ; (2.34)

� = Az sin(�t+  ) ; (2.35)

where Ax and Az are the in-plane and out-of-plane amplitudes, while � and  are the

phase angles.

Using the �rst-order periodic solution as a basis, Richardson [18] applies the

method of successive approximations to develop a third-order solution for periodic

motion about the collinear points:

� = a21A
2
x + a22A

2
z � Ax cos(�� + �) + (a23A

2
x � a24A

2
z) cos(2�� + 2�)

+(a31A
3
x � a32AxA

2
z) cos(3�� + 3�) ; (2.36)

� = kAx sin(�� + �) + (b21A
2
x � b22A

2
z) sin(2�� + 2�)

+(b31A
3
x � b32AxA

2
z) sin(3�� + 3�) ; (2.37)

� = ÆnAz cos(�� + �) + Ænd21AxAz(cos(2�� + 2�)� 3)

+Æn(d32AzA
2
x � d31A

3
z) cos(3�� + 3�) ; (2.38)
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where ajk, bjk, and djk are coeÆcients derived from the successive approximation

procedure (see Appendix B), Æn = �1 is a switch function specifying the direction of

the maximum out-of-plane excursion, and � is a scaled time variable. Additionally,

the amplitudes Ax and Az must satisfy the constraint relationship [18]

l1A
2
x + l2A

2
z +� = 0 ; (2.39)

where l1, l2, and � are evaluated from the expressions that appear in Appendix B.

The coeÆcients ajk, bjk, djk, lj, and k, and the frequency �, are ultimately func-

tions of cn, the coeÆcients in a Legendre polynomial expansion that represents the

Lagrangian for motion in the vicinity of a collinear libration point [40]. The coeÆ-

cients cn are evaluated from the following expressions,

cn =
1


3
L

"
(�1)n�+ (�1)n

(1� �)n+1L

(1� L)n+1

#
(L1 or L2) ; (2.40)

cn =
1


3
L

"
1� �+

�
n+1
L

(1 + L)n+1

#
(L3) ; (2.41)

where L is the ratio of the distance between the libration point and the nearest

primary to the distance between the primaries.

These approximate analytical solutions o�er useful insights into the nature of the

motion in the vicinity of the collinear libration points. In particular, families of three-

dimensional periodic orbits, commonly labelled as \halo" orbits [16], are known to

exist and have been numerically computed [20, 21]. These orbits are broadly classi�ed

in terms of the sign of the out-of-plane component at the point of maximum excursion

as either northern (max(z) > 0), or southern (max(z) < 0). Approximate solutions

are also useful in any numerical scheme to determine exact solutions to the nonlinear

equations of motion. The numerical techniques that are applied to generate exact

numerically integrated solutions to the nonlinear equations are not self-starting, and

require an externally generated initial guess that is near a periodic orbit. This initial

guess can sometimes be provided by an approximate analytical solution.
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2.1.6 The State Transition Matrix

The numerical technique to determine precisely periodic orbits in the nonlinear

system is the di�erential corrections method. The use of di�erential corrections to

compute a periodic orbit requires information concerning the sensitivity of a state

along the path to changes in the initial conditions. Such sensitivity information is

obtained by linearizing the equations of motion relative to a reference trajectory,

and then using the resulting linear variational equations to develop a state transition

matrix.

The linear variational equations for motion relative to a reference trajectory, i.e.,

one that is a solution to the nonlinear di�erential equations, are similar to those pre-

viously developed relative to the constant equilibrium solutions, that is, the libration

points. Perturbation variables are again introduced, although, to distinguish them

from the variables (�; �; �) that represent variations relative to the libration points,

the variations with respect to the reference trajectory are designated (Æx; Æy; Æz). The

six-dimensional state vector is then de�ned as

Æx � [Æx Æy Æz Æ _x Æ _y Æ _z]
T
;

and the resulting state space form of the variational equations appears as

Æ _x(t) = A(t)Æx(t) : (2.42)

The time-dependent matrix A(t) is represented in terms of four 3 � 3 submatrices,

that is,

A(t) �

2
64 0 I3

B(t) C

3
75 :

This is similar in form to the A matrix corresponding to the variational equations

derived relative to the libration points. However, in this case, the submatrix B(t) is

not a constant, and therefore A(t) is time-varying.

The general form of the solution to the system in equation (2.42) is

Æx(t) = �(t; t0)Æx(t0) ; (2.43)
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where �(t; t0) is the state transition matrix (STM). The STM is a linear map from

the initial state at the initial time t0 to a state at some later time t, and thus o�ers

a tool to approximate the impact of variations in the initial state on the evolution of

the trajectory. The STM must satisfy the matrix di�erential equation

_�(t; t0) = A(t)�(t; t0) ; (2.44)

given the initial condition,

�(t0; t0) = I6 ; (2.45)

where I6 is the 6� 6 identity matrix.

It is clear that the STM at time t can be numerically determined by integrating

equation (2.44) from the initial value in equation (2.45). Since the STM is a 6 �

6 matrix, propagation of equations (2.44) requires the integration of 36 �rst-order

scalar di�erential equations. Since the elements of B(t), and hence A(t), depend on

the reference trajectory, equation (2.44) must be integrated simultaneously with the

nonlinear equations of motion to generate the reference states. This necessitates the

integration of an additional 6 �rst-order equations, for a total of 42 scalar di�erential

equations.

2.1.7 Di�erential Corrections

The di�erential corrections technique is essentially an iterative targeting scheme.

Given some initial state x(t0), where the six-dimensional state vector is de�ned as

x � [x y z _x _y _z]
T
;

the objective is the generation of a trajectory that terminates at a desired state

x(tf )des. In general, the integration of x(t0) will terminate at some state x(tf ) that

di�ers from the desired state. The initial state is then modi�ed such that the resultant

�nal state is within some threshold distance of the desired state.

The e�ect on the �nal state of a modi�cation in the initial state can be estimated

by examining the �rst variations in the �nal state, that is,

Æx(tf ) =
@x(tf )

@x(t0)
Æx(t0) + _x(tf )Æ(tf � t0) : (2.46)
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The matrix partial derivative
@x(tf )

@x(t0)
is equivalent to the state transition matrix, eval-

uated at time tf . Thus, equation (2.46) is simply,

Æx(tf) = �(tf ; t0)Æx(t0) + _x(tf)Æ(tf � t0) : (2.47)

The correction in the �nal state that is required to match the value corresponding to

the desired state can be written as

Æx(tf ) = x(tf )des � x(tf) : (2.48)

By substituting equation (2.48) into equation (2.47), it is possible to solve for an

estimate of the change in the initial state, Æx(t0), that is required to generate the

desired �nal state. In general, this procedure will require several iterations, since it

is based on a linear approximation; the system of interest is, of course, nonlinear.

Recall that three-dimensional periodic halo orbits are known to exist in the vicin-

ity of the libration points. Such orbits can be numerically computed by exploiting

equation (2.47) [20, 21, 19]. The process is simpli�ed by taking advantage of the

symmetry of these familiar orbits about the x̂� ẑ plane. This symmetry implies that

the periodic orbit must cross the x̂ � ẑ plane perpendicularly, and, therefore, at the

crossings,

y = _x = _z = 0 :

From the perspective of the numerical algorithm, the condition corresponding to the

perpendicular plane crossings yields several useful features. First, the computational

overhead is reduced since the initial state need only be integrated for a half revolution.

Second, there is no need to specify a �nal time, tf , a priori, since the intersection with

the x̂� ẑ plane, i.e., y(tf) = 0, can be used as a stopping condition in the algorithm.

In fact, since y(tf) is speci�ed to be equal to zero, Æ(tf � t0) emerges as the sixth

dependent variable in equation (2.47).

If the initial state is selected such that it corresponds to a plane crossing, then

the initial state vector is evaluated in the form

x(t0) = [x0 0 z0 0 _y0 0]
T
:
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To maintain this perpendicular departure, the only elements of the initial state that

can be manipulated are x0, z0, and _y0. For periodicity, the desired �nal state vector

also possesses the form

x(tf)des = [xf 0 zf 0 _yf 0]
T
:

The values of xf , zf , and _yf are arbitrary, since the perpendicular crossing condition

is established solely by the requirement that yf = _xf = _zf = 0. Since yf = 0 is

used as the stopping condition for the integrator, the corrections process adjusts the

initial conditions to shift the �nal state elements _xf and _zf closer to zero. Thus,

the evaluation of Æx(t0) from equation (2.47) is reduced to solving a system of two

equations (from _xf and _zf) in three unknowns (x0, z0, and _y0). A minimum norm

solution is immediately available using standard techniques from linear algebra. How-

ever, to allow more control over the speci�c orbit that is isolated with this procedure,

the approach adopted in this investigation is based on �xing one of the initial state

elements, and, thus, reducing the system to two equations in two unknowns. This

latter approach is useful, for example, to force the generation of halo orbits with some

speci�ed amplitude.

An arbitrary L1 halo orbit in the Sun-Earth system, one that is generated by

di�erentially correcting a third-order approximate solution, is depicted in Figure 2.3.

The orbit is plotted in the rotating frame with the origin at the Sun-Earth barycenter.

Since the maximum out-of-plane excursion (200,000 km) is in the positive ẑ direction,

this orbit is a member of the northern halo family. Also consistent with a northern

family, note the direction of motion in the ŷ � ẑ projection.
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2.2 Solar Sails

2.2.1 Force Model

The existence of radiation pressure was predicted in 1873 by James Clerk Maxwell

[1], as a consequence of the uni�ed theory of electromagnetic radiation. Later repre-

sentations were derived from quantum mechanical principles. However, in both cases

the resulting expression for the radiation pressure is the same, that is,

P =
W

c

; (2.49)

where the scalar P denotes the magnitude of the radiation pressure force, and c is

the speed of light. The symbol W in equation (2.49) represents the energy ux of the

electromagnetic radiation that is inducing the pressure. Assuming that the e�ects of

a �nite solar disc are negligible (i.e., that the Sun can be modelled as a point source),

the energy ux of solar radiation varies in proportion to the inverse square of the

distance from the Sun. At the mean distance of the Earth from the Sun, L� = 1 AU,

and the solar ux, including all frequencies of solar radiation, is approximately W � =

1368 Js�1m�2. Assuming perfect capture, this results in a value of the solar radiation

pressure force per area such that P � = 4:56� 10�6 Nm�2.

The mathematical model to be used for the solar radiation pressure force is consis-

tent with other studies, i.e., McInnes [1], Bell [37], and Nuss [38]. For the purposes of

this investigation, it is assumed that the solar sails are ideal, at, perfectly reecting

surfaces. Thus, the solar sails intercept photons of all possible frequencies, and re-

ect them in perfectly elastic collisions. As a consequence of these assumptions, such

solar sails experience both a momentum transfer force from incident photons, and a

reaction force | of equal magnitude | from the reected photons. (See Figure 2.4.)

The resultant force is directed normal to the surface of the sail, and the magnitude

of the pressure force is exactly twice the value computed in equation (2.49).

The net force generated by a solar sail is clearly dependent on the area of the sail

that is exposed to solar radiation. The exposed area varies in response to changes in

the sail orientation relative to direction of the solar radiation. The angle between the
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Figure 2.4. Force on a at, perfectly reecting solar sail

sail normal and the incident solar radiation is designated � (as it appears in Figure

2.4). At � = 0Æ, the sail is perpendicular to the solar radiation, thus maximizing the

projected area of the sail, and the resultant force. As � increases, the projected area

of the sail and the magnitude of the resultant force each decreases. The equation that

models the force vector on a solar sail of mass M3, at a distance R1 from the Sun

(P1), is

F SRP =
2P �

M3

�

�
L
�

R1

�2
cos2 � n̂ ; (2.50)

where n̂ is the sail surface normal vector, and � is a sail design parameter de�ned as

the ratio of the sail mass to sail area.

The mass/area ratio that is required, such that a sail with � = 0Æ generates a

force equal and opposite to the solar gravitational force is,

�
� =

2P �
L
�2

GM1

; (2.51)

where G is the universal gravitational constant and M1 is the mass of the Sun. The

corresponding value of �� is determined to be approximately equal to 1.53 g m�2.
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Then, using the terminology introduced by McInnes [1, 34, 35], the dimensionless sail

lightness parameter � can be de�ned as follows,

� �
�
�

�

:

E�ectively, the sail lightness parameter is the ratio of solar radiation pressure accel-

eration to solar gravitational acceleration. Since both accelerations are assumed to

be functions of the inverse square of the distance between the sail and the Sun, � is

independent of distance. Typical sail lightness values for current solar sail designs

range from a conservative � � 0:03 to optimistic proposals for sails with a lightness

parameter of � � 0:3 [1]. The e�ective sail lightness value for a typical spacecraft

without a solar sail is approximately � = 1:5 � 10�5 (derived from values given by

Bell [37], and converted from Bell's model using the expression � � 1:53�S
1000

.)

The introduction of the sail lightness parameter allows reformulation of equation

(2.50) in terms of solar gravitational acceleration, that is,

F SRP = �

GM1M3

R
2
1

cos2 � n̂ : (2.52)

The force described by equation (2.52) can be rewritten as an acceleration per unit

mass, in terms of the nondimensional units introduced previously, as,

I�rSRP = �

(1� �)

r
2
1

cos2 � n̂ : (2.53)

Equation (2.53) represents the e�ects of a solar sail in a form that is readily incor-

porated into the equations of motion derived in the circular restricted three-body

problem.

2.2.2 Solar Sail Orientation

The direction of the solar sail \thrust" vector is determined by the orientation of

the sail with respect to the incident solar radiation. It is assumed that gravitational

torques on the sail structure are negligible, and that the sail orientation is completely

controllable (e.g., with \control vanes" that use solar radiation pressure to generate

attitude control torques [41].) The sail orientation can be described using two angles
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de�ned in terms of a sail centered orthogonal reference frame. One of these angles

is the cone angle, previously de�ned as �, that corresponds to nutation. The other

angle is the clock angle, labelled , that corresponds to a precession angle.
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n̂

r̂1

(r̂1�ẑ)�r̂1

j(r̂1�ẑ)�r̂1j

r̂1�ẑ

jr̂1�ẑj

Figure 2.5. De�nition of sail angles

The solar radiation is assumed to be directed radially from the Sun towards the

solar sail, and, thus, is represented by the unit vector r̂1 = r1=r1. The other vectors

composing the reference orthogonal triad are constructed with the aid of the ẑ unit

vector, which is common to both the inertial and rotating frames. Illustrated in

Figure 2.5 is the relationship between �, , the sail normal, and the incident solar

radiation. Given the de�nition of � with respect to the Sun radius line, a constant

value of � implies that the sail will complete one revolution in the inertial frame with

each orbit.

The sail orientation can also be expressed in terms of the components of the sail

normal vector as expressed in the rotating frame. Given the sail angle de�nitions, the

scalar components of n̂ corresponding to the directions x̂, ŷ, and ẑ are

nx =
cos� (x+ �)

jr1j
�

sin� cos  (x+ �)z

j(r1 � ẑ)� r1j
+
sin� sin  y

jr1 � ẑj
; (2.54)
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ny =
cos� y

jr1j
�

sin� cos  yz

j(r1 � ẑ)� r1j
�

sin� sin  (x + �)

jr1 � ẑj
; (2.55)

nz =
cos� z

jr1j
+
sin� cos  (y2 + (x+ �)2)

j(r1 � ẑ)� r1j
; (2.56)

where

jr1j =
q
(x+ �)2 + y

2 + z
2
;

jr1 � ẑj =
q
(x + �)2 + y

2
;

j(r1 � ẑ)� r1j =
q
(x+ �)2z2 + y

2
z
2 + ((x+ �)2 + y

2)2 :

Representing the sail orientation as de�ned in equations (2.54), (2.55), and (2.56)

allows the e�ects of a solar sail to be added to the scalar equations of motion as

formulated in the circular restricted three-body problem.

2.2.3 Three-Body Equations of Motion

Recall from equation (2.5) that the vector di�erential equation governing motion

of the in�nitesimal mass with respect to the two primaries in the circular restricted

three body problem is
I
d
2
r

dt
2
= �

(1� �)

r
3
1

r1 �
�

r
3
2

r2 ;

where the terms on the right hand side of the equation represent the gravitational

accelerations due to P1 and P2, respectively, expressed in terms of nondimensional

quantities. Inclusion of a solar sail adds another force, and therefore another accel-

eration term, to the model. Incorporating the solar sail acceleration from equation

(2.53) into the vector equation of motion, yields a modi�ed form of equation (2.5),

i.e.,
I
d
2
r

dt
2
= �

(1� �)

r
3
1

r1 �
�

r
3
2

r2 + �

(1� �)

r
2
1

cos2 � n̂ : (2.57)

Thus, this equation de�nes the dynamical system that is the focus of this investiga-

tion.

To enable a compact expression for the scalar form of the equations of motion,

the solar sail acceleration is de�ned in terms of three auxiliary variables representing



32

the scalar components corresponding to rotating coordinates:

ax = �

(1� �)

r
2
1

cos2 � nx ; (2.58)

ay = �

(1� �)

r
2
1

cos2 � ny ; (2.59)

az = �

(1� �)

r
2
1

cos2 � nz ; (2.60)

where n̂x, n̂y, and n̂z are the components of the sail normal vector from equations

(2.54), (2.55), and (2.56). With the inclusion of the solar sail accelerations, the scalar

equations for the motion of P3 are augmented and appear in the form

�x� 2 _y = Ux + ax ; (2.61)

�y + 2 _x = Uy + ay ; (2.62)

�z = Uz + az ; (2.63)

where the Uj terms are the partial derivatives of the three-body scalar potential

de�ned in equations (2.20)-(2.22).

2.2.4 Solar Sail Libration Points

The equations of motion that result from the addition of a solar sail force to the

circular restricted three-body problem possess new equilibrium solutions. McInnes,

McDonald, Simmons, and MacDonald [34] determined that the modi�ed equations

of motion result in surfaces of \arti�cial" libration points. These surfaces can be

parameterized by sail orientation. As usual, the equilibrium solutions in the restricted

problem correspond to positions at which all components of velocity and acceleration

relative to the rotating coordinates are zero. Thus, from equations (2.61), (2.62), and

(2.63) the equilibrium solutions are computed from the relationship,

�rU = �

(1� �)

r
2
1

cos2 � n̂ ; (2.64)

where rU = Uxx̂+Uyŷ+Uz ẑ. The vector product of rU , as determined in equation

(2.64), and n̂ produces zero, i.e.,

�rU � n̂ = 0 ; (2.65)
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that implies that an arti�cial libration point exists only if the sail orientation, repre-

sented by n̂, is parallel to rU . Since the n̂ is a unit vector, the expression

n̂ =
�rU
j � rU j

; (2.66)

yields a sail normal in the appropriate direction.

From the de�nition of �, the cosine of the sail cone angle is

cos� = r̂1 � n̂ = r̂1 �
�rU
j � rU j

: (2.67)

Thus, equation (2.64) can be solved explicitly for the sail lightness parameter that is

required to produce an arti�cial libration point, and the result appears as follows,

� =
r
2
1

(1� �)

j � rU j3

(r̂1 � �rU)2
; � � 0 : (2.68)

The required sail orientation can be deduced using the vector and scalar products of

equation (2.66) with r̂1. The resulting expressions are

tan� =
jr̂1 ��rU j
r̂1 � �rU

; (2.69)

tan  =
j(r̂1 � ẑ)� (r̂1 ��rU)j
(r̂1 � ẑ) � (r̂1 ��rU)

: (2.70)

Note that � is constrained to lie in the range �90Æ � � � 90Æ, since it is physically

impossible to direct the solar radiation pressure acceleration vector sunward, and, as

a consequence, the sail normal vector will never be directed towards the Sun.

Using the expressions for �, �, and  from equations (2.68)-(2.70), a set of po-

tential arti�cial libration points can be parameterized by sail lightness �. This pa-

rameterization generates level surfaces as demonstrated, for the Sun-Earth system,

in Figures 2.6-2.10. These �gures are plotted in the barycentric rotating frame. Note

that Figures 2.8 and 2.9 depict a more detailed view of the level surfaces in the vicinity

of the Earth. Topologically, these surfaces are nested toroids, although, for � > 1:0

the interior radii of the toroids vanish. Each point on a given surface corresponds to

a particular sail orientation. Of course, the conditions corresponding to the classi-

cal three-body problem exist as a special case of the general solar sail equations of

motion, when � = 0 or � = 0Æ, and the level surfaces collapse to the libration points.
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The level surfaces asymptotically approach a boundary, de�ned by a constraint

on �, as � ! 1. The boundary can be determined by expressing the constraint in

the form

r1 � �rU � 0 : (2.71)

The bounding surface is then de�ned by the equality condition in equation (2.71),

that, when evaluated, yields the relationship,

x(x + �) + y
2 �

(1� �)

r1

�
(r1 � r2)�

r
3
2

= 0 : (2.72)

This equation de�nes two topologically disconnected surfaces, designated S1 and S2,

that bound the region of existence for the arti�cial libration points (Figures 2.6-2.9).

Surface S1 has a cylindrical topology and, in the x̂� ŷ plane, excludes solutions that

lie outside the classical L2 and L3 points. Surface S2 excludes solutions between L1

and P2 along the x̂-axis, as well as some o�-axis locations apparent in Figures 2.8 and

2.9. All �ve classical libration points are located on one of the bounding surfaces.

The huge range of potential arti�cial libration points, as depicted in Figures 2.6-

2.10, o�ers the possibility of many new mission scenarios. However, to utilize these

new points in the conceptual development of a mission, a better understanding of the

dynamical properties of the arti�cial libration points is necessary. The exploration

and exploitation of the dynamics in the vicinity of the arti�cial libration points that

are generated by a solar sail is the primary focus of the following sections.
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Figure 2.6. Section: libration point level surfaces; x̂� ŷ plane

Representative sail lightness values:

1 : � = 0:3 5 : � = 0:99

2 : � = 0:5

3 : � = 0:7

4 : � = 0:9
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Figure 2.7. Section: libration point level surfaces; x̂� ẑ plane

Representative sail lightness values:

1 : � = 0:3 5 : � = 0:99

2 : � = 0:5 6 : � = 1:0

3 : � = 0:7 7 : � = 1:1

4 : � = 0:9 8 : � = 1:5
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Representative sail lightness values:

1 : � = 0:02 5 : � = 0:2

2 : � = 0:04 6 : � = 0:4

3 : � = 0:06 7 : � = 1:0
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Representative sail lightness values:

1 : � = 0:02 5 : � = 0:2

2 : � = 0:04 6 : � = 0:4

3 : � = 0:06 7 : � = 1:0
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3. On-Axis Solutions

The introduction of forces associated with a solar sail into the circular restricted

three-body problem alters the properties of the dynamical system. A consequence of

such a modi�cation that is of particular interest to mission designers is the creation

of a set of arti�cial libration points. The arti�cial libration points that lie along the

x̂-axis form a subset of the the complete new set of equilibrium points. The \on-axis"

solutions originate with the classical collinear libration points and serve as a natural

starting point in the study of the arti�cial libration points.

This chapter examines the e�ects of the introduction of solar sail forces on the

position and stability of the on-axis libration points. An analytical approximation for

periodic solutions about these new libration points is then developed. This approx-

imation is used as an aid in initiating a numerical investigation of the new periodic

solutions. The focus of the investigation is a study of the evolution of the shape of

halo-type families of periodic orbits, and the stability of the orbits within the fam-

ily, under the increasing inuence of solar radiation pressure. Finally, a halo orbit

stationkeeping algorithm, based on controlled variations in solar sail orientation, is

formulated.

3.1 E�ects of Solar Radiation Pressure on the Collinear Libration Points

3.1.1 Location of the Libration Points

For points along the x̂-axis, r1, and, thus, r̂1, is parallel to the x̂-axis. So, as is

appropriate, the only non-zero component of rU is Ux, the x̂ component. Equation

(2.66) then correctly yields

n̂on�axis = �x̂ : (3.1)
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To generate on-axis libration points, the sail cone angle � = 0Æ, i.e., the sail is per-

pendicular to the Sun-spacecraft line (and, thus,  is arbitrary). The scalar equations

of motion then reduce, that is,

�x� 2 _y � x = �
(1� �)(1� �)(x+ �)

r
3
1

�
�(x� (1� �))

r
3
2

; (3.2)

�y + 2 _x� y = �
(1� �)(1� �)y

r
3
1

�
�y

r
3
2

; (3.3)

�z = �
(1� �)(1� �)z

r
3
1

�
�z

r
3
2

: (3.4)

To examine the collinear points, note that the values y = z = 0 by de�nition. The

location of the libration points on the x̂-axis can then be determined from the solution

of a single scalar equation,

x�
(1� �)(1� �)(x+ �)

(x + �)3
�
�(x� (1� �))

(x� (1� �))3
= 0 : (3.5)

Of course, this expression is very similar in form to the equivalent equation from the

classical restricted three-body problem, di�ering only by the (1 � �) factor in the

second term. Note that collinear solutions exist only for � < 1.

The solution of equation (3.5) requires determination of the roots of a �fth or-

der polynomial in x. Typically, the equivalent expression in the classical restricted

three-body problem is solved iteratively (e.g., using Newton's method) [6], and this

technique is equally successful when the libration point locations are inuenced by

a solar sail force. The e�ect of solar radiation pressure can be quanti�ed by solv-

ing equation (3.5) for various values of sail lightness. (See Figure 3.1.) As the sail

lightness increases, the libration points move closer to the Sun, although this e�ect is

much smaller in magnitude in the case of the L2 libration point. These e�ects were

previously noted in 1991 by Bell, for spacecraft inuenced by solar radiation pressure

[37].

3.1.2 Libration Point Stability

The similarity in form between equations (3.2), (3.3), and (3.4), and the classical

di�erential equations corresponding to the restricted problem suggests that a quantity
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Figure 3.1. Evolution of the Sun-Earth collinear libration point locations with �
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analogous to the pseudo-potential exists. The \modi�ed pseudo-potential", 
, is

de�ned as,


 =
(1� �)(1� �)

r1

+
�

r2

+
1

2
(x2 + y

2) : (3.6)

The linear variational equations for motion relative to a libration point Li are then,

written in standard form,

�
� � 2 _� = 
�xx� + 
�xy� + 
xz�� ; (3.7)

�� + 2 _� = 
�yx� + 
�yy� + 
�yz� ; (3.8)

�
� = 
�zx� + 
�zy� + 
�zz� ; (3.9)

where 
jk = @

@j@k

and 
�jk = 
jkjLi . The expressions for these partial derivatives

appear in Appendix C.

By de�nition, the collinear points lie on the x̂-axis, and, thus,


�xy = 
�yx = 
�xz = 
�zx = 
�yz = 
�zy = 0 : (3.10)

This results in a di�erential equation for the out-of-plane motion, �, that is decoupled

from the in-plane motion represented by � and �. First, consider the out-of-plane

behavior. Since M1 > M2, the mass ratio � <
1
2
. Also, as stated previously, � < 1

for the collinear points. Therefore,


�zz = �
(1� �)(1� �)

r
3
1

�
�

r
3
2

< 0 ; (3.11)

and the characteristic equation resulting from equation (3.9),

s
2 = 
�zz ; (3.12)

and, thus, the characteristic roots associated with � are purely imaginary.

The analysis of the in-plane motion is similar to that presented in [6] for the clas-

sical three-body problem. The non-zero terms that remain in the system of equations

for in-plane (� � �) motion simplify to,


�xx = 1 +
2(1� �)(1� �)

r
3
1

+
2�

r
3
2

> 0 ; (3.13)


�yy = 1 �
(1� �)(1� �)

r
3
1

�
�

r
3
2

< 0 : (3.14)
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The corresponding characteristic equation for this system appears as follows,

s
4 + (4� 
�xx � 
�yy)s

2 + 
�xx

�

yy = 0 : (3.15)

Making the substitution S = s
2, equation (3.15) can be rewritten in the form

S
2 + 2�1S � �2

2 = 0 ; (3.16)

where,

�1 = 2�

�xx + 
�yy

2
; (3.17)

�2
2 = �
�xx


�

yy > 0 : (3.18)

The roots of equation (3.16) are real and of opposite sign:

S1 = ��1 + (�2
1 + �2

1)
1=2

> 0 ; (3.19)

S2 = ��1 � (�2
1 + �2

1)
1=2

< 0 : (3.20)

and, thus, the four characteristic roots for the � � � system, s = (�S11=2; �S21=2),

include two real and two pure imaginary roots.

The characteristic roots determined in equations (3.12), (3.19), and (3.20) are

associated with the variational equations that incorporate the solar sail force, and,

thus, correspond to the arti�cial on-axis libration points. Note that these \new" roots

are actually of the same form as those determined for the classical collinear points

[6]. Therefore, the qualitative stability of the on-axis libration points, inuenced by

the force representing a solar sail, is similar to stability information derived in the

classical system. Of particular interest is the survival of the pure imaginary roots,

with the obvious implication that the periodic halo orbits that exist in the vicinity of

the classical collinear points may be preserved in some modi�ed form.

3.2 A Modi�ed Analytical Halo Approximation

Recall Richardson's third-order halo orbit approximation [18],

� = a21A
2
x + a22A

2
z � Ax cos(�� + �) + (a23A

2
x � a24A

2
z) cos(2�� + 2�)
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+(a31A
3
x � a32AxA

2
z) cos(3�� + 3�) ; (3.21)

� = kAx sin(�� + �) + (b21A
2
x � b22A

2
z) sin(2�� + 2�)

+(b31A
3
x � b32AxA

2
z) sin(3�� + 3�) ; (3.22)

� = ÆnAz cos(�� + �) + Ænd21AxAz(cos(2�� + 2�)� 3)

+Æn(d32AzA
2
x � d31A

3
z) cos(3�� + 3�) : (3.23)

This approximate solution is based on a Legendre polynomial expansion of the La-

grangian for the motion of P3 relative to the libration point. Since the coeÆcients

in this approximation are functions of cn, that is, the coeÆcients of the expansion of

the Lagrangian (see Appendix B), the approximation is actually a general third-order

algebraic solution for systems possessing a Lagrangian that can be expressed in the

form

L =
1

2
( _� � _�) +

1X
n=2

cn�
n
Pn(�=�) ; (3.24)

where the position vector � = �x̂+ �ŷ+ �ẑ, � = j�j, and Pn(�=�) is the nth Legendre

polynomial of the �rst kind with argument �=�. Additionally, the nonlinear system

for which an approximation is sought must have a �rst-order periodic solution, since

the approximation scheme relies on the use of a �rst-order \guess" as a generating

solution.

As has been demonstrated previously, the equations of motion for a solar sail in

the vicinity of the on-axis libration points can be reduced to a form very similar

to that of the classical circular restricted three-body problem. Also, as noted in

the previous section, the stability properties of the variational equations that result

from the linearization process are such that a �rst-order periodic solution is available.

Proceeding with an analysis similar to that in [40], the Lagrangian for motion in the

vicinity of an on-axis libration point, incorporating the e�ects of a solar sail force,

can be developed in terms of the perturbing potentials due to the gravitational �elds

of P1 and P2.

Given that for on-axis libration points � = 0Æ, equations (2.3) and (2.52) can be
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combined to yield a vector equation for the motion of P3 in the inertial frame,

M3

I
d
2
R

dt
2

= �
GM1M3

R
3
1

R1 �
GM2M3

R
3
2

R2 + �

GM1M3

R
3
1

R1 : (3.25)

Applying Newton's Law of Gravity, the expression for the motion of P1 is

M1

I
d
2
d1

dt
2

=
GM1M3

R
3
1

R1 +
GM1M2

R
3
12

R12 ; (3.26)

where d1 is the position vector of P1 as de�ned in Figure 2.1, and R12 = d2 � d1.

Utilizing the assumption that M3 � M2 < M1, and equations (3.25) and (3.26), the

motion of P3 relative to P1 is described by the expression,

I
d
2
R1

dt
2

=
I
d
2
R

dt
2
�

I
d
2
d1

dt
2

= �GM1

(1� �)

R
3
1

R1 +GM2

"
R12 � R1

jR12 �R1j3
�
R12

R
3
12

#
: (3.27)

Note that the substitution �R2 = R12�R1 has been employed to reduce the number

of di�erent vectors in the expression.

Using the characteristic quantities and nondimensional variables previously de-

�ned for the classical restricted three-body problem, equation (3.27) can be rewritten

in nondimensional form as

I
d
2
r1

dt
2

= �(1� �)
(1� �)

r
3
1

r1 + �

"
r12 � r1

jr12 � r1j3
�
r12

r
3
12

#
; (3.28)

where r12 =
R12

L�
. The Lagrangian associated with the motion of P3 relative to P1 can

then be written as follows,

LP1 =
1

2
(_r1 � _r1) + (1� �)

(1� �)

r1

+ �

"
1

jr12 � r1j3
�
r12 � r1
r
3
12

#
; (3.29)

where the over-dot (e.g., _r1) indicates di�erentiation with respect to time, and in the

inertial frame.

As stated previously, the nondimensional angular velocity of the synodic frame

relative to the inertial frame is I
!
S = ẑ. Thus, expanding the kinematic expression

on the left hand side of equation (3.28) results in the following,

I
d
2
r1

dt
2

=
S
d
2
r1

dt
2

+ 2ẑ �
S
dr1

dt

� r1 : (3.30)
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Figure 3.2. Geometric relationships between the three bodies and a libration point

Let a libration point Li be located relative to P1 by the vector rL, as it appears

in Figure 3.2. At the libration point,
Sd2r1
dt2

=
Sdr1
dt

= 0, and, therefore, from equations

(3.28) and (3.30),

rL � (1� �)
(1� �)

r
3
L

rL + �

"
r12 � rL

jr12 � rLj3
�
r12

r
3
12

#
= 0 : (3.31)

Solving equation (3.31) for r12
r3
12

yields,

r12

r
3
12

= �
�1
rL � �

�1(1� �)
(1� �)

r
3
L

rL +
r12 � rL

jr12 � rLj3
: (3.32)

Substituting this expression into equation (3.29), and de�ning the vectors (as seen in

Figure 3.2),

rP1 = �rL ;

rP2 = r12 � rL ;

� = r1 � rL ;

allows the Lagrangian to be rewritten as

LP1 =
1

2
( _� � _�)� _rP1 � _� + rP1 � �+ (1� �)(1� �)

"
1

jrP1 � �j
�
rP1 � �
jrP1j3

#

+ �

"
1

jrP2 � �j
�
rP2 � �
jrP2j3

#
+ constant terms : (3.33)

From equation (3.30), at a libration point (r1 � rP1),

I
d
2
r1

dt
2

= �r1 ; (3.34)

and, thus, the second and third terms of equation (3.33) can be combined to form

the identity,

� _rP1 � _� + rP1 � � � �
I
d

dt

(� � _rP1) : (3.35)
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Then, from equation (3.33), it is possible to write,

L � LP1 +
d

dt

(� � _rP1) : (3.36)

This expression possesses a form corresponding to a canonical transformation. Se-

lecting the identity transformation as the most straightforward coordinate change,

the new Lagrangian is,

L =
1

2
( _� � _�) + (1� �)(1� �)

"
1

jrP1 � �j
�
rP1 � �
jrP1j3

#

+ �

"
1

jrP2 � �j
�
rP2 � �
jrP2j3

#
: (3.37)

This closely resembles the Lagrangian developed by Richardson for the classical sys-

tem.

Given the Lagrangian of of the form in equation (3.37), the expansion of the

Lagrangian into a Legendre polynomial power series is accomplished for the interior

and exterior libration points. In the case of an interior (L1) libration point, de�ne

the dimensionless ratio L as follows, i.e.,

L �
rP2

(d1 + d2)
;

where (d1 + d2) is the distance between the primaries. Using this de�nition, the

vectors from the libration point to each primary become,

rP1 = �(1� L)x̂ ; (3.38)

rP2 = Lx̂ : (3.39)

The Lagrangian can then be rewritten as,

L =
1

2
( _� � _�) + (1� �)(1� �)

2
4 1q

(�(1� L)� �)2 + �
2 + �

2
+
(1� L)�

(1� L)3

3
5

+ �

2
4 1q

(L � �)2 + �
2 + �

2
�
L�


3
L

3
5
: (3.40)

It is known [42] that a function having the form,

1
p
1� 2qu+ u

2
;
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can be expressed as a Legendre polynomial series such that,

1
p
1� 2qu+ u

2
=

1X
n=0

Pn(q)u
n
; (3.41)

where Pn(q) denotes a Legendre polynomial of the �rst kind, with argument q. Note

also that P0(q) = 1, and P1(q) = q. Thus, de�ne q = �=�, and u = ��=(1� L); the

the �rst bracketed term in equation (3.40) becomes2
4 1q

(�(1� L)� �)2 + �
2 + �

2
+

(1� L)�

(1� L)3

#

=

2
664 1

(1� L)

r
1 + 2 �

(1�L)
+ �2

(1�L)2

+
�

(1� L)2

#
; (3.42)

=
1

(1� L)

"
1

p
1� 2qu+ u

2
� qu

#
; (3.43)

=
1

(1� L)

"
1X
n=2

Pn(q)u
n � 1

#
; (3.44)

=

"
1X
n=2

(�1)n�n

(1� L)n+1
Pn(�=�)�

1

(1� L)

#
: (3.45)

Similarly, again let q = �=�, and u = �=L, and the second bracket in equation (3.40)

yields

2
4 1q

(L � �)2 + �
2 + �

2
�
L�


3
L

3
5 =

2
664 1

L

r
1� 2 �

L
+ �2

2
L

+
�


2
L

3
775 ; (3.46)

=
1

L

"
1

p
1� 2qu+ u

2
� qu

#
; (3.47)

=
1

L

"
1X
n=2

Pn(q)u
n � 1

#
; (3.48)

=

"
1X
n=2

�
n


n+1
L

Pn(�=�)�
1

L

#
: (3.49)
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The Lagrangian in equation (3.40) can then be rewritten as follows,

L =
1

2
( _� � _�) + (1� �)(1� �)

"
1X
n=2

(�1)n�n

(1� L)n+1
Pn(�=�)

#

+ �

"
1X
n=2

�
n


n+1
L

Pn(�=�)

#
+ constant terms : (3.50)

Thus, the modi�ed expression for the expansion coeÆcient, cn, is

cn =

"
(�1)n(1� �)(1� �)

(1� L)n+1
+

�


n+1
L

#
: (3.51)

The coeÆcients for the L2 and L3 libration points can be derived in a similar fashion.

Thus, for an L2 libration point (i.e., exterior to P2), L is de�ned as

L �
rP2

(d1 + d2)
;

and, thus, rP1 and rP2 are rede�ned as

rP1 = �(1 + L)x̂ ; (3.52)

rP2 = �Lx̂ : (3.53)

The expansion coeÆcient for this case is then,

cn =

"
(�1)n(1� �)(1� �)

(1 + L)n+1
+

(�1)n�

n+1
L

#
: (3.54)

In the case of an L3 libration point (i.e., exterior to P1),

L �
rP1

(d1 + d2)
;

and,

rP1 = Lx̂ ; (3.55)

rP2 = (1 + L)x̂ : (3.56)

The resulting expansion coeÆcient is then,

cn =

"
(1� �)(1� �)


n+1
L

+
�

(1 + L)n+1

#
: (3.57)
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Note that these expressions are derived in terms of the nondimensional units intro-

duced previously, rather than Richardson's normalized units, and, thus, the approxi-

mate solutions resulting from the use of these modi�ed coeÆcients will also be in the

same nondimensional units.

The new coeÆcients obtained from equations (3.51), (3.54), and (3.57) can be

substituted into the expressions in Appendix B to generate approximate solutions

for periodic orbits near the arti�cial on-axis libration points that result from the

introduction of a solar sail force. These periodic solutions retain the sail orientation

assumption upon which the approximation is constructed, that is, � = 0Æ along the

entire solution. Examples of third-order approximations are presented in Figures 3.3

and 3.4; these plots represent periodic solar sail orbits in the vicinity of the modi�ed

L1 and L2 libration points. Approximate solutions generated as a result of this scheme

have been successfully used as initial guesses for the numerical generation of precisely

periodic orbits.

3.3 Families of Periodic Orbits

3.3.1 Generation of Families

Using the the modi�ed third-order approximation to generate initial guesses for

periodic halo orbits, a di�erential corrections scheme (as outlined in section 2.1.7) is

applied to obtain numerically integrated periodic solutions to the three-body equa-

tions of motion that include a solar sail force. Recall that the di�erential corrections

procedure relies on the state transition matrix, �(tf ; t0), which is obtained by nu-

merically integrating the system of 36 di�erential equations represented by

_�(t; t0) = A(t)�(t; t0) ; �(t0; t0) = I6 : (3.58)

Consistent with the previous discussion, the matrix A(t) appears in the general form

A(t) �

2
64 0 I3

B(t) C

3
75 ;
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where A(t) is expressed in terms of four 3� 3 submatrices. However, the addition of

a solar sail force alters the elements in the submatrix B(t) such that

B(t) �

2
666664
Uxx + axx Uxy + axy Uxz + axz

Uyx + ayx Uyy + ayy Uyz + ayz

Uzx + azx Uzy + azy Uzz + azz

3
777775 ;

where ajk =
@aj
@k
. The expressions for the partial derivatives of ax, ay, and az are

straightforward, and appear in Appendix D. Given the modi�ed elements of matrix

B(t), the state transition matrix is now computed for a trajectory that includes the

e�ects of a solar sail force. Numerically generated halo orbits appear in Figure 3.5

for several values of �. Note that the di�erential corrections process is structured in

this example to maintain a �xed maximum z-value (Az) in all orbits. As with the

approximate solutions, � = 0Æ along the entire orbit, and, thus, the value of  is

irrelevant. For the trajectories presented in Figure 3.5,  is arbitrarily set to zero.

From the example orbits in Figure 3.5, it is apparent that the addition of a solar

sail shifts the libration point, but it can also alter the characteristics of the periodic

orbits. As noted by Nuss [38], for an L1 halo of a given maximum out-of-plane

excursion (Az), an increase in the lightness parameter � results in a corresponding

increase in the in-plane amplitude as well as the period. In the case of L2 halo orbits,

increasing the sail lightness parameter causes a decrease in the in-plane amplitude

and the period. Figure 3.6 illustrates these e�ects for a Sun-Earth L1 halo with an

Az amplitude of 450,000 km.

The result of an increase in the value of the sail lightness parameter for a given

periodic trajectory is a signi�cant change in the size and character of the orbit. This

implies that the characteristics of the entire family of periodic halo orbits will change

as a solar sail force is introduced. For the purposes of this investigation, families of

periodic orbits are computed by �rst generating a near-planar orbit for various values

of �, using the modi�ed third-order approximation to obtain an initial guess, and then

utilizing numerical continuation to produce additional members of the family from

the initial orbit. Recall that the periodic orbits are computed with the assumption
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that the sail orientation is such that � = 0Æ, that is, n̂ remains parallel to r1.

Members of the classical L1 halo family are plotted in Figure 3.7. The plot is

produced using the technique outlined above. The next two �gures, Figure 3.8 and

Figure 3.9, demonstrate how the introduction of a solar sail can alter the shape of

the halo family. Note that the numerical continuation process involves making a

small change in some element of the initial state, and computing a new periodic orbit

from the modi�ed initial state. Thus, to prevent the computation of the new orbit

from converging to the previous orbit, the di�erential corrector is now structured
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such that the element of the initial state that is modi�ed as part of the continuation

process is held �xed during the corrections process. An interesting development is

the appearance of \L1" halo orbits that pass beyond Earth's orbit. (See Figure 3.9.)

Periodic orbits from L2 families appear in Figures 3.10 and 3.11. The classical family

in Figure 3.10 evolves into a family that incorporates a solar sail force in Figure 3.11.

It is apparent that the qualitative \shape" of the L2 family is not as dramatically

a�ected as the shape characteristics of the L1 family by the introduction of a solar

sail.

The periodic orbits in the vicinity of the on-axis libration points are symmetric

about the x̂� ẑ plane. Thus, one method to characterize the shape of a halo family

is to examine the intersection of the family with the plane of symmetry. This reduces

the representation of the family of periodic orbits to a pair of curves (the maximum

ẑ and �ẑ excursions), with each point on the curves corresponding to an individual

orbit. From these simpli�ed representations, the shapes of several families can easily

be compared. Such a comparison appears in Figure 3.12. A set of L1 halo families

is represented for a range of sail lightness parameter values. The orbits are plotted

relative to a libration point-centered coordinate frame such that all of the libration

points coincide, thus, emphasizing the change in family shape rather than family

location. Each family appears as two curves, one positive (intersections with the x̂� ẑ

plane at maximum z), and one negative (the minimum z intersection point along the

orbit). Of particular interest is the evolution of the family such that it appears to

\fold through" itself at maximum z, as � increases; the family transitions from the

\bowl" shape of the classical halo family to a form that originates and terminates at

the x̂ � ŷ plane. A similar representation of the evolution of the L2 family appears

in Figure 3.13. Again, the shape of the L2 family is essentially preserved as the sail

lightness is increased.

3.3.2 Stability

Given the changes in the properties of the halo families under the inuence of a

solar sail force, it is also possible that the stability of the orbits has been altered.
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Orbital stability is of interest for several reasons. The stability characteristics of

a given orbit may inuence the use of such an orbit for mission applications, and

will impact the cost of stationkeeping maneuvers. Changes in the stability from one

section of a family to another also indicate bifurcation points, or intersections with

other families of periodic orbits [43]; these other families expand knowledge of the

solution space.

From Floquet theory [39], it is well known that the stability of a periodic orbit can

be determined by examining the eigenvalues, �i, of the monodromy matrix, de�ned

as the state transition matrix after one period of the motion. The stability criteria

are:

1. j�ij < 1 indicates stability.

2. j�ij > 1 indicates instability.

3. j�ij = 1 provides no stability information concerning the nonlinear system.

A general periodic orbit must possess at least one eigenvalue such that � � 1

[39]. The six eigenvalues associated with a classical periodic halo orbit also appear in

reciprocal, complex conjugate pairs [21]. As a result of the reciprocal pair condition,

the monodromy matrix corresponding to a periodic halo orbit possesses two eigen-

values equal to 1. Thus, the remaining four eigenvalues characterize the stability of

the orbit. Of course, if one of the four eigenvalues is inside the unit circle, its recip-

rocal lies outside the circle. Thus, the most stable con�guration occurs with all six

eigenvalues on the unit circle. The \order of instability" is de�ned as the number of

eigenvalues that are evaluated with magnitude j�j > 1.

The evolution of the stability along the L1 and L2 families appears in Figures 3.14

and 3.15. Comparing Figure 3.14 with Figure 3.12, it is apparent that along some re-

gions of the L1 families the stability information has not been recorded. These regions

indicate orbits for which the monodromy matrix was found to have no eigenvalues

equal to one, at least to the numerical accuracy available. If the numerical result is

indeed correct, this implies that the orbits in question are not periodic. Nevertheless,
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these orbits �t appropriately within the family, meet the periodicity conditions for

perpendicular plane crossings to within the same tolerance as all other orbits in the

family, and can be integrated for multiple revolutions without signi�cant divergence.

Therefore, the monodromy matrix, and any stability information derived from it, is

considered suspect for these orbits, and is not recorded.

To further examine the problem, monodromy matrices for the suspect orbits are

also computed using an alternative method. For this second approach, recall that the

state transition matrix satis�es the equation,

Æx(t) = �(t; t0)Æx(t0) : (3.59)

Thus, if �(t; t0) is partitioned into six-dimensional columns such that

�(t; t0) = [�0
... �1

... �2
... �3

... �4
... �5] ;

and Æx(t0) is assumed to be de�ned in the following form

Æx�(t0) = [� 0 0 0 0 0]T ;

then

Æx0(t) = �(t; t0)Æx�(t0) = ��0 : (3.60)

Of course, equation (3.60) can be rearranged to solve for a column of the state tran-

sition matrix as,

�0 =
1

�

Æx0(t) : (3.61)

Similarly, a modi�cation of the initial condition,

Æx�(t0) = [0 � 0 0 0 0]T ;

yields

�1 =
1

�

Æx1(t) ; (3.62)

and so on. Therefore, a state transition matrix can be numerically computed one

column at a time by adding a perturbation � to a single component of the initial state
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corresponding to the reference trajectory, then numerically integrating the modi�ed

initial state, subtracting the reference �nal state from the integrated result, and �nally

dividing by �. The resulting state transition matrix that is somewhat dependent on

the values selected for the perturbation (�). It is possible to determine values for

the perturbations � such that the monodromy matrices computed using this second

method approximately match the suspect monodromy matrices. Further, through

trial and error, it is possible to determine values of � that generate monodromy

matrices with the required eigenvalue equal to one, for some orbits.

The source of the diÆculties with the computation of the monodromy matrix is

still unresolved. These problems are not encountered in the computation of the orbits

in the L2 families. A future investigation into the numerical issues associated with

computing the monodromy matrix in this regime is clearly warranted.

3.4 Stationkeeping about Nominal Family Members

3.4.1 Proposed Strategy

In practice, unmodelled perturbations and orbit injection errors will result in

drift of a spacecraft from a nominal trajectory. This e�ect is further ampli�ed by

the unstable nature of libration point orbits. Thus, a stationkeeping algorithm is

required to compute corrective maneuvers such that the actual spacecraft trajectory

remains acceptably close to the nominal path. Stationkeeping strategies for libration

point orbits have typically involved computing discrete, impulsive velocity corrections

to be applied with thrusters [23, 25, 44]. However, the introduction of a solar sail

introduces the possibility of using changes in the sail orientation (and potentially

the sail area) to generate various \thrust" magnitudes and directions, and, thus, to

provide stationkeeping capabilities.

The stationkeeping strategy developed here is an adaptation of the libration point

trajectory stationkeeping method originally introduced by Howell and Pernicka [23],

modi�ed such that the stationkeeping maneuvers are computed in terms of sail ori-

entation angles rather than velocity changes. Hence, the resulting stationkeeping

maneuvers are discrete changes in the sail orientation angles, which might occur as



70

infrequently as twice per revolution. Between maneuvers, the sail angles remain con-

stant, and, thus, the sail orientation is �xed relative to the direction of solar radiation

(although it is changing relative to an inertial frame). To adapt the libration point

stationkeeping model, the linear variational equations for motion near a reference

trajectory are extended to include terms for the variations in sail orientation. The

variables that represent changes in the sail orientation are de�ned such that

Æ� = �� �0 ; and Æ =  � 0 ;

where �0 and 0 are the nominal sail angles along the reference trajectory. For

this investigation �0 and 0 are constants. This suggests that the halo orbits from

families such as those in Figures 3.5, 3.8, 3.9, and 3.11 might well serve as reference

trajectories. The variational equations can then be written as

Æ�x� 2Æ _y = UxxÆx + UxyÆy + UxzÆz + ax�Æ� + axÆ ; (3.63)

Æ�y + 2Æ _x = UyxÆx+ UyyÆy + UyzÆz + ay�Æ� + ayÆ ; (3.64)

Æ�z = UzxÆx+ UzyÆy + UzzÆz + az�Æ� + azÆ ; (3.65)

where ajk =
@aj
@k
, that is, the partial derivatives of the sail acceleration along the

reference trajectory, relative to the sail orientation angles (see Appendix E).

To facilitate expression of the linearized system in state space form, the variations

in the orientation variables are incorporated into an augmented variational state

vector, de�ned as follows,

Æx � [Æx Æy Æz Æ _x Æ _y Æ _z Æ� Æ]
T
:

It is assumed that the sail orientation angles remain constant along the trajectory

arc of interest. Such an arc may be anywhere from 1 day to 1 revolution in length.

Thus, the state space form of the modi�ed variational equations can be written as

Æ _x(t) = A(t)Æx(t) ; (3.66)



71

where the 8� 8 matrix A(t) has the general form

A(t) �

2
666664

0 I3 0

B(t) C D(t)

0 0 0

3
777775 ;

and the time-varying submatrix D(t) is 3� 2 with the form

D(t) �

2
666664
ax� ax

ay� ay

az� az

3
777775 :

The solution to the system in equation (3.66) has the form

Æx(tp) = �(tp; tq)Æx(tq) ; (3.67)

where �(tp; tq) is the state transition matrix.

With the addition of the variations in the orientation angles, the state transition

matrix, �(tp; tq), enlarges to become an 8�8 matrix. This matrix is partitioned such

that

�(tp; tq) =

2
666664
Kpq Lpq Epq

Mpq Npq Fpq

0 0 I2

3
777775 ; (3.68)

where the partitions represent the following vector partial derivatives,

Kpq =
@rtp
@rtq

;

Lpq =
@rtp
@vtq

;

Mpq =
@vtp
@rtq

;

Npq =
@vtp
@vtq

;

Epq =
@rtp

@�
;

Fpq =
@vtp

@�
:

The vectors in these expressions are de�ned as follows,

r = [x y z]T ;

v = [ _x _y _z]T ;

� = [� ]T :



72

The partitions Kpq, Lpq, Mpq, and Npq are 3� 3 matrices that together comprise the

equivalent of the standard state transition matrix. The partitions Epq and Fpq are

3 � 2 matrices associated with the e�ect of the sail orientation on the position and

velocity of the spacecraft.

Development of the stationkeeping algorithm originates with a cost function. Let

mi be a 3-element vector representing the deviation of the actual trajectory from

the nominal at some time ti, that is, mi = [Æx(ti) Æy(ti) Æz(ti)]
T . This deviation

is caused by a velocity perturbation, represented by a 3-dimensional velocity error

vector e0 = [Æ _x(t0) Æ _y(t0) Æ _z(t0)]
T , and a position perturbation written in terms

of a 3-element vector p0 = [Æx(t0) Æy(t0) Æz(t0)]
T , both evaluated at time t0. The

deviation is also inuenced by a corrective sail orientation Æ�c = [Æ�c Æc]
T applied

at some time t. For the purposes of this investigation, assume that the correction is

applied at t = t0. The index i denotes a target point, that is, some point downstream

at a future time ti = t0 +�ti when the predicted actual trajectory will be compared

to the nominal. (See Figure 3.16.) The methodology can employ any number of

target points, but for this study, as in [23], two target points are arbitrarily selected.

Given the submatrices that comprise the state transition matrix associated with the

nominal trajectory, the linear approximation for the position deviation at target point

i can be expressed as,

mi
�= Ki0p0 + Li0e0 + Ei0Æ�c : (3.69)

The cost function is then de�ned such that

J [p0; e0; Æ�c] = Æ�

T

cQÆ�c + m
T
1Rm1 + m

T
2 Sm2 ; (3.70)

where the superscript T signi�es a transpose. The weighting matrix Q is symmetric

and positive de�nite, whileR and S are positive semide�nite. Note that the weighting

matrices can be time-varying, but are assumed constant in this initial investigation.

Given the cost function, J , the optimal corrective sail orientation is obtained

by minimizing equation (3.70), that is, determination of the optimal sail variations,
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Figure 3.16. Relationship of the target points to the nominal and actual trajectories

Æ�c = Æ�

�

c , such that
@J

@Æ�c

= 0 :

Using the expression in equation (3.69), the terms in equation (3.70) can be expanded.

Then, the partial derivative of J with respect to Æ�c, yields

@J

@Æ�c

= 2QÆ�c + 2ET
10RL10e0 + 2ET

10RK10p0 + 2ET
10RE10Æ�c

+ 2ET
20SL20e0 + 2ET

20SK20p0 + 2ET
20SE20Æ�c ; (3.71)

and, thus, the optimal corrective sail orientation is evaluated as follows,

Æ�

�

c = �
h
Q + ET

10RE10 + ET
20SE20

i�1
�
h
(ET

10RL10 +ET
20SL20)e0 + (ET

10RK10 +ET
20SK20)p0

i
: (3.72)

The solution of this equation requires the inversion of just a 2� 2 matrix. Note that

the sail is assumed to reorient instantaneously.

3.4.2 Preliminary Results

The evaluation of a stationkeeping strategy is accomplished by introducing vari-

ous errors into a nominal trajectory, and examining the actual trajectory that results
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when stationkeeping maneuvers are applied. For this investigation, the focus is re-

stricted to consideration of the impact of injection, tracking, and orientation control

errors. Note that modeling inaccuracies are not considered. For the simulations, a

zero-mean, Gaussian random number generator is used to compute values represent-

ing the error in each component. Injection errors are modelled as deviations from the

nominal initial conditions, and tracking errors as a random alteration of the integrated

\actual" trajectory data passed to the stationkeeping algorithm. The orientation con-

trol errors represent a lack of precision in the attitude control systems, i.e., execution

errors modelled as random deviations from the desired sail orientation. These random

deviations are added to the desired sail orientation at each time step, to generate the

sail orientation actually used for that step of the numerical integration.

Given a nominal solution, the initial conditions are randomly modi�ed to simulate

the injection error, and then both the nominal and \actual" trajectories are integrated

simultaneously. At various times along the trajectory, the stationkeeping algorithm

will determine that a maneuver, or sail reorientation, is required. Three criteria

determine the timing of the maneuver/reorientation:

1. Input parameter tmin, which de�nes the minimum time between maneuvers.

(Although tmin values up to half a revolution are tested here, this variable can

be used to mimic a sail that nearly continuously changes orientation.)

2. Input parameter dmin, which speci�es the allowable deviation from the nominal

before a maneuver is implemented. (This allows some evaluation of a \tight"

versus a \loose" control approach.)

3. The deviation must be increasing, i.e., the spacecraft is drifting further from

the nominal. (Corrections are only necessary if the unstable mode has been

excited.)

If all three of the conditions are met, the optimal maneuver is computed, and, subject

to random error, implemented.
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For all of the samples, the simulation interval is the equivalent of four revolutions

along the nominal, terminating early if the deviation from the nominal exceeds an

arbitrary limit (in this case 50,000 km). Since the nominal trajectories examined here

are on-axis halo orbits, the baseline cone angle is, of course, � = 0Æ throughout the

orbit. Although the clock angle is nominally completely free, experience demonstrates

that better results are achieved with  near either 90Æ or 270Æ. For this study, the

clock angle is arbitrarily �xed such that  = 85Æ.

The standard deviations for the orbit injection and tracking errors are relatively

large, but consistent with the stationkeeping investigation by Howell and Pernicka

[23]:

�x = 1:5km ; �y = 2:5km ; �z = 15:0km ;

� _x = 1:0mm=s ; � _y = 1:0mm=s ; � _z = 3:0mm=s :

Various estimates for the standard deviation of the orientation control errors are

obtained from the spacecraft pointing accuracies discussed in [45] and [46]. Since

no data on orientation control accuracy for an actual solar sail mission exists, these

estimates are based on the performance of the attitude determination and control

systems used in current spacecraft. The two values used in this study are

�� = 0:01Æ; and �� = 0:001Æ ;

that represent errors in the actual orientation relative to the desired nominal orien-

tation. Simulations using both estimates are structured to investigate the sensitivity

of the stationkeeping strategy to errors in the sail orientation control systems.

A baseline L1 halo orbit with out-of-plane amplitude Az = 200; 000km is used for

evaluation of the stationkeeping strategy. Two di�erent values of sail lightness are

incorporated, one in the feasible range of current solar sail designs (� = 0:055), and

the other representing an extremely low performance sail (� = 0:005). This results in

two di�erent nominal periodic orbits, one for each value of the sail lightness parameter.

(See Figures 3.17 and 3.18.) For each nominal, several di�erent values of tmin, �t1,

and �t2 are examined, although dmin is �xed to zero throughout the investigation.
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Elements of the weighting matrices (based on trial and error) are de�ned with the

values

Q = diag[1� 10�5; 1� 10�5; 1� 10�5] ;

R = diag[1; 1; 1] ;

S = diag[5; 5; 5] :

The values of these weighting matrices correspond to sail orientation angles expressed

in radians, and position deviations expressed in the nondimensional distance units

de�ned previously (equivalent to astronomical units in the Sun-Earth system). In

each case, consistent with Howell and Pernicka's study [23], 100 separate trials are

simulated, each corresponding to a di�erent randomly generated orbit injection error.

(A simple analysis indicates that 100 trials is a suÆcient number to provide at least

\order of magnitude" performance estimates.) The statistics compiled for each case

are presented in Tables 3.1 and 3.2. The stationkeeping algorithm is capable of

maintaining a vehicle reasonably close to the nominal path for both values of the sail

lightness parameter. It is notable that the clock angle, , does not appear to play

a role in the stationkeeping process, although this is not surprising for the on-axis

orbits. Not unexpectedly, increasing the minimum time between maneuvers reduces

the performance. An increase in the magnitude of the orientation control errors

also has a negative e�ect, although controlling the vehicle to remain quite near the

reference orbit is still possible for smaller values of tmin. The overall performance of

the two sails is not directly comparable. The solar sail with a higher sail lightness

(� = 0:055) results in a reference orbit with a period that is signi�cantly longer than

the reference periodic orbit corresponding to the sail de�ned with � = 0:005. Thus,

four revolutions along the �rst nominal halo results in a total ight time that is almost

twice the length of that for the low performance sail.

A similar analysis is also available for L2 orbits. A baseline L2 halo orbit generates

a reference orbit for a sail lightness value of � = 0:01. (See Figure 3.19.) Out-of-

plane amplitude is again Az = 200; 000 km. The elements of the weighting matrices

Q, R, and S are the same as those previously speci�ed for the L1 cases, and the
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orientation control error �� = 0:01Æ is again used. A sample set of 100 trials produced

results similar to L1 applications, as demonstrated in Table 3.3. The stationkeeping

strategy is reasonably successful for L2 orbits, even without \�ne-tuning" of the

various parameters. A more in-depth study of stationkeeping in the vicinity of L1

and L2 is indicated.

These preliminary results appear quite promising. More work on developing and

tuning the strategy outlined here is clearly desirable. The e�ect of additional target

points is not known, and this should be investigated with the objective of further

reducing the magnitude of the deviations from the nominal trajectory. The weighting

matrices can be further investigated for speci�c trajectories, and perhaps using time

varying weights, if necessary. In addition to minimizing the position deviation, the

strategies that seek to minimize the velocity deviations at the target points, such as

the �v strategies introduced in [25], may also prove advantageous. Another possibility

is to exploit the solar sail strategy developed here for minor deviations, in combination

with the original impulsive maneuver strategy from [23] to provide larger corrections

if the deviation becomes excessive. In terms of applications, it is likely that an

easily-manufactured low performance solar sail, perhaps corresponding to � = 0:005,

could be used to generate and maintain halo orbits very near the classical L1 family,

providing a no-propellant, long-term stationkeeping technique for traditional libration

point missions.
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Figure 3.17. Nominal Sun-Earth L1 halo orbit for � = 0:005
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Table 3.1. Stationkeeping results for reference periodic L1 halo orbit incorporating

� = 0.005 (nominal period: 190 days)

�� = 0:001Æ

tmin = 30 days tmin = 60 days tmin = 80 days

�t1 (days) 70 90 130

�t2 (days) 110 130 180

Avg. completed revs 4.0 3.99 3.98

Avg. max. deviation (km) 1,390 2,960 8,370

Avg. Æ� (degrees) 0.0083 0.0075 0.0108

Avg. Æ (degrees) 0.0 0.0 0.0

�� = 0:01Æ

tmin = 30 days tmin = 60 days tmin = 80 days

�t1 (days) 70 90 130

�t2 (days) 110 130 180

Avg. completed revs 4.0 3.95 3.61

Avg. max. deviation (km) 1,860 9,740 23,660

Avg. Æ� (degrees) 0.0125 0.0226 0.0507

Avg. Æ (degrees) 0.0 0.0 0.0
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Figure 3.18. Nominal Sun-Earth L1 halo orbit for � = 0:055
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Table 3.2. Stationkeeping results for reference periodic L1 halo orbit incorporating

� = 0.055 (nominal period: 310 days)

�� = 0:001Æ

tmin = 30 days tmin = 60 days tmin = 80 days

�t1 (days) 70 90 130

�t2 (days) 110 130 180

Avg. completed revs 4.0 3.85 3.87

Avg. max. deviation (km) 7,350 35,840 27,500

Avg. Æ� (degrees) 0.0011 0.0040 0.0016

Avg. Æ (degrees) 0.0 0.0 0.0

�� = 0:01Æ

tmin = 30 days tmin = 60 days tmin = 80 days

�t1 (days) 70 90 130

�t2 (days) 110 130 180

Avg. completed revs 3.59 2.71 2.75

Avg. max. deviation (km) 40,730 49,180 44,880

Avg. Æ� (degrees) 0.0087 0.0089 0.0050

Avg. Æ (degrees) 0.0 0.0 0.0
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Table 3.3. Stationkeeping results for reference periodic L2 halo orbit incorporating

� = 0.01 (nominal period: 160 days)

�� = 0:01Æ

tmin = 30 days

�t1 (days) 70

�t2 (days) 110

Avg. completed revs 3.97

Avg. max. deviation (km) 13,400

Avg. Æ� (degrees) 0.0273

Avg. Æ (degrees) 0.0
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4. O�-Axis Solutions

The equilibrium solutions associated with the di�erential equations that incorporate

a solar sail force are presented and discussed in Chapters 2 and 3. It is apparent from

Figures 2.6 and 2.7 that the on-axis libration points that exist along the x̂-axis form

an extremely small subset of the arti�cial libration points that are available with a

solar sail. The \o�-axis" libration points form a complementary set to the on-axis

subset, and is, by far, the larger of the two sets. The o�-axis libration points o�er the

ability to �x the location of a spacecraft at positions either above or below the plane

of primary motion; new locations within the plane of motion can also be explored as

potential hover points, or as a basis from which new periodic or bounded solutions

might be generated.

It was established in Chapter 2 that the location of an arti�cial libration point is

a function of sail lightness and orientation. Thus, a libration point can be generated

anywhere within the interior of the bounding surface S1, subject to the constraints of

sail lightness values that are currently technologically feasible. The nominal values of

�, �, and  that correspond to the desired libration point can then be determined by

evaluating equations (2.68), (2.69), and (2.70). Given an arti�cial libration point, an

understanding of the motion in the vicinity of the point can be gained by examining

the stability characteristics of the libration point. If the libration point is not asymp-

totically stable, motion that remains bounded in the vicinity of the libration point,

if available, o�ers an alternative for mission scenarios that require the spacecraft to

remain stationary relative to the rotating frame. Bounded orbits in the vicinity of a

libration point may actually be preferred over asymptotic stability for some mission

applications. This chapter reviews the stability and controllability characteristics

of the o�-axis libration points, as presented in McInnes, McDonald, Simmons, and
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MacDonald [34]. In general, the libration points not asymptotically stable, but are

controllable. Thus, a linear state feedback controller is developed, and the perfor-

mance tested in the nonlinear system. Several di�erent trajectories resulting from

the state feedback control are discussed.

4.1 Libration Point Stability

The stability of the libration points can be determined by examining the eigen-

values of the system that results from linearization relative to the equilibrium point.

Recall that, in the classical restricted three-body problem, the state space form of the

variational equations relative to a libration point, from equation (2.26), is written

_
� = A� ; (4.1)

where the constant 6� 6 matrix A is of the form

A �

2
64 0 I3

B C

3
75 :

Once the solar sail force is incorporated into the model, the matrix A retains this

same general form. However, the 3� 3 submatrix B is augmented such that,

B �

2
666664
U
�

xx + a
�

xx U
�

xy + a
�

xy U
�

xz + a
�

xz

U
�

yx + a
�

yx U
�

yy + a
�

yy U
�

yz + a
�

yz

U
�

zx + a
�

zx U
�

zy + a
�

zy U
�

zz + a
�

zz

3
777775 ;

where ajk =
@aj
@k

and a�jk = ajkjLi . Recall that the expressions for the partial deriva-

tives of ax, ay, and az with respect to the position coordinates appear in Appendix D.

Note that this form of the linearized system relative to the libration point di�ers from

that presented in Chapter 3. For values of � other than � = 0Æ, the solar sail accelera-

tion is not conservative, and, thus, the impact of the sail force must be accommodated

as an additional term, rather than incorporated into a modi�ed pseudo-potential.

The eigenvalues of A are solutions to the characteristic polynomial,

P (s) = det(A� sI) =
6X

i=0

cis
i = 0 ; (4.2)
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where the coeÆcients, ci, are

c6 = 1 ;

c5 = 0 ;

c4 = 4� (U�

xx + U
�

yy + U
�

zz + a
�

xx + a
�

yy + a
�

zz) ;

c3 = 2(U�

xy + a
�

xy � U
�

yx � a
�

yx) ;

c2 = (U�

zz + a
�

zz)(U
�

xx + a
�

xx) + (U�

zz + a
�

zz)(U
�

yy + a
�

yy)� (U�

yx + a
�

yx)(U
�

xy + a
�

xy)

+(U�

xx + a
�

xx)(U
�

yy + a
�

yy)� (U�

yz + a
�

yz)(U
�

zy + a
�

zy)

�(U�

xz + a
�

xz)(U
�

zx + a
�

zx)� 4(U�

zz + a
�

zz) ;

c1 = 2(U�

zz + a
�

zz)(U
�

yx + a
�

yx)� 2(U�

zz + a
�

zz)(U
�

xy + a
�

xy)

�2(U�

yz + a
�

yz)(U
�

zx + a
�

zx) + 2(U�

xz + a
�

xz)(U
�

zy + a
�

zy) ;

c0 = (U�

zz + a
�

zz)(U
�

yx + a
�

yx)(U
�

xy + a
�

xy)� (U�

zx + a
�

zx)(U
�

yz + a
�

yz)(U
�

xy + a
�

xy)

+(U�

zx + a
�

zx)(U
�

xz + a
�

xz)(U
�

yy + a
�

yy)� (U�

zz + a
�

zz)(U
�

xx + a
�

xx)(U
�

yy + a
�

yy)

�(U�

xz + a
�

xz)(U
�

zy + a
�

zy)(U
�

yx + a
�

yx) + (U�

yz + a
�

yz)(U
�

zy + a
�

zy)(U
�

xx + a
�

xx) :

The potential for asymptotic stability of an arti�cial libration point can be evaluated

by application of the Routh-Hurwitz stability criterion [47]. Since c5 = 0, there

is always at least one eigenvalue with a real part greater than or equal to zero.

Therefore, the arti�cial libration points are not asymptotically stable. The values of

the remaining eigenvalues are not clear from this analysis, and, likely to depend on

the particular o�-axis point that is examined.

4.2 Bounded Motion

Since asymptotically stable trajectories are not available, alternative solutions

(such as bounded, periodic, and quasi-periodic motion) to achieve the same mission

objectives are required. Unlike the classical restricted three-body problem, which has

only �ve libration points, the addition of a solar sail creates an in�nite number of

potential arti�cial libration points, that cannot be examined individually to determine

their stability properties. Fortunately, a general understanding of the conditions

required for the existence of bounded motion is available. An initial step in obtaining

solutions exhibiting bounded behavior is the construction of an oscillatory �rst-order

approximate solution; such an approach requires the existence of purely imaginary
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eigenvalues. As presented in [34], conditions for the existence of purely imaginary

eigenvalues can be established with the substitution s = i!. Thus, the form of the

characteristic polynomial becomes

P (i!) = �!6 + c4!
4 � ic3!

3 � c2!
2 + ic1! + c0 = 0 : (4.3)

Purely imaginary eigenvalues will exist if there is a consistent solution to equation

(4.3), with ! 2 <. This requires the following relationships to be true, i.e.,

�!6 + c4!
4 � c2!

2 + c0 = 0 ; (4.4)

i!(c1 � c3!
2) = 0 : (4.5)

The three solutions to equation (4.5), ! = 0;+
q
c1=c3;�

q
c1=c3, are not generally

consistent with equation (4.4). Therefore, in general, the linearized system does not

possess purely imaginary eigenvalues. However, consistent solutions can be obtained

by introducing the condition c1 = c3 = 0, that is, e�ectively isolating a subset of

libration points that have the potential for producing bounded motion. This condition

satis�es equation (4.5), and allows consistent solutions to be obtained from equation

(4.4). These solutions are not guaranteed to be real, and, thus, the condition is a

necessary, but not suÆcient, condition for the existence of imaginary eigenvalues.

The requirement that the coeÆcients c1 and c3 be identically zero requires that

(U�

zz + a
�

zz)(U
�

yx + a
�

yx)� (U�

zz + a
�

zz)(U
�

xy + a
�

xy)

�(U�

yz + a
�

yz)(U
�

zx + a
�

zx) + (U�

xz + a
�

xz)(U
�

zy + a
�

zy) = 0 ; (4.6)

U
�

xy + a
�

xy � U
�

yx � a
�

yx = 0 : (4.7)

Since the pseudo-potential is conservative, it is always true that Uxy � Uyx = Uxz �

Uzx = Uyz � Uzy = 0. Thus, equations (4.6) and (4.7) reduce to the set

U
�

zz(a
�

yx � a
�

xy) + a
�

zza
�

yx � a
�

zza
�

xy + U
�

yz(a
�

xz � a
�

zx)

+U�

xz(a
�

zy � a
�

yz) + a
�

xza
�

zy � a
�

yza
�

zx = 0 ; (4.8)

a
�

xy � a
�

yx = 0 : (4.9)
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These equations are satis�ed if axy � ayx = axz � azx = ayz � azy = 0, a result that

implies either � = 0, or

r� a = 0 : (4.10)

Thus, pure imaginary eigenvalues exist only if the solar radiation pressure force is

zero (the classical restricted three-body problem), or it is conservative (i.e., � = 0Æ)

[34].

4.3 Libration Point Control

Recall that each arti�cial libration point corresponds to a speci�c combination

of sail orientation angles. The condition � = 0Æ speci�es an extremely small subset

of the wider range of libration points that are available. Thus, the stability results

derived previously imply that, in general, to remain in the vicinity of an arbitrary

arti�cial libration point requires some kind of stabilizing control. Fortunately, the

solar sail itself can provide that control, by varying the sail orientation angles relative

to the incident solar radiation [30, 34, 35]. This approach is not as exible as it might

be, since it provides just two control variables, while the thrust vector actually has the

three components that can be varied to produce control actions. An additional control

element could be provided by varying the sail lightness parameter, thus, e�ectively

varying the magnitude of the thrust generated by the solar sail. However, this would

require alternately furling and unfurling the sail, which is considered less practical

than simply implementing changes in the orientation, under the conditions that two

control variables are suÆcient. Nevertheless, adjustment of � during ight is not

examined in this study. A continuous-time linear state feedback controller is selected

as a simple \proof-of-concept" for control using only sail orientation variations.

The sail orientation control variables are de�ned such that

Æ� = �� �Li
; and Æ =  � Li

;

where �Li
and Li

are the nominal sail angles corresponding to the libration point

of interest. Incorporating the control variables, the linear variational system from
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equation (4.1) becomes

_
� = A� +PÆ� ; (4.11)

where Æ� = [Æ� Æ]T , and the 6� 2 matrix P has the form

P �

2
64 0

D

3
75 :

As in Chapter 3, the submatrix D corresponds to the partial derivatives of the sail

acceleration with respect to the sail orientation angles. However the elements of the

matrix are evaluated at the libration point, and thus the matrix is constant, and

appears as

D �

2
666664
a
�

x� a
�

x

a
�
y� a

�
y

a
�

z� a
�

z

3
777775 ;

where ajk =
@aj
@k

(see Appendix E), and a�jk = ajkjLi , that is, the partial derivatives

evaluated at the libration point. The controllability of this system can be determined

by from the 6 � 12 controllability matrix Vc = [P AP A2P A3P A4P A5P];

evaluated at the libration point of interest, the matrix should be of rank 6. In general,

if the sail is not oriented parallel to the solar radiation (i.e., if r̂1 �n̂ 6= 0 or equivalently,

� 6= �90Æ), the system will be controllable. It should therefore be possible to construct

a controller to stabilize an arbitrary libration point.

The feedback control is de�ned such that the sail orientation angles, � and , are

functions of the spacecraft position and velocity relative to the libration point. That

is,

Æ� = G� ; (4.12)

where G is the 2 � 6 gain matrix. The closed-loop linearized system from equation

(4.11) is rewritten in the form

_
� = (A+PG)� : (4.13)

The elements of the gain matrix are then selected such that the eigenvalues of the

composite matrix (A + PG) all possess real parts < 0, implying that the system is
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stable. Once a gain matrix has been determined for a given libration point, it can

be used to compute the sail orientation angles at each time step in the numerical

integration of the nonlinear equations of motion. Using the numerically integrated

state, the sail angles are evaluated from the following expressions,

� = �Li
+G11(x� xLi

) +G12(y � yLi
) +G13(z � zLi

)

+G14 _x +G15 _y +G16 _z ; (4.14)

 = Li
+G21(x� xLi

) +G22(y � yLi
) +G23(z � zLi

)

+G24 _x +G25 _y +G26 _z ; (4.15)

where Gjk are the elements of the gain matrix, and (xLi
; yLi

; zLi
) represents the

location of the corresponding nominal libration point relative to the barycenter. This

technique has been successfully used to asymptotically stabilize various arti�cial li-

bration points. An example appear in Figure 4.2. The libration point in this exam-

ple, denoted LA, is arbitrarily selected at (0.8 AU, 0.2 AU, -0.3 AU) relative to the

barycenter. (See Figure 4.1.) The corresponding sail lightness is � = 0:59, and the

nominal sail orientation angles are � = 28:29Æ and  = 179:99Æ. From an arbitrary

set of initial conditions in the vicinity of LA, the asymptotically stable trajectory is

propagated in the nonlinear system, arrives at LA after approximately 200 days, and

remains �xed for the remainder of the integration. The corresponding time history

for the sail orientation angles appears in Figure 4.3. Since the gain matrix is derived

from a linear approximation, this form of the control does not stabilize the entire

nonlinear system. The distance from the libration points within which the linear ap-

proximation remains valid has been determined experimentally to vary for di�erent

libration points, but in some cases extends to approximately 150,000 km.

For some mission objectives, it may be desirable to orbit in the vicinity of a

libration point, instead of remaining �xed at the point. However, the linear state

feedback controller can be adapted to this scenario as well. By selecting the gain

matrix, G, such that the eigenvalues of the composite matrix (A + PG) are all

purely imaginary, an oscillatory linear system is created. The gain matrix can again
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be incorporated into the nonlinear system as speci�ed in equations (4.14) and (4.15).

An arbitrarily selected initial perturbation will then result in a bounded, Lissajous-

type trajectory. By selecting an initial perturbation that is a scalar multiple of one of

the eigenvectors of (A+PG), a single oscillatory mode can be excited, resulting in a

periodic or quasi-periodic orbit depending on the validity of the linear approximation

at the selected distance from the nominal libration point. An example of a quasi-

periodic orbit appears in Figure 4.4. The libration point in this example, denoted LB,

is selected at (0.5 AU, 0.5 AU, 0.5 AU) relative to the barycenter. (See Figure 4.1.)

The corresponding sail lightness is � = 0:83, and the nominal sail orientation angles

are � = 28:37Æ and  = 0:00016Æ. From an initial state generated by a perturbation

relative to the nominal libration point in the direction of one of the eigenvectors of

(A+PG), the quasi-periodic trajectory in the �gure was integrated for 1.5 years in

the nonlinear system. The time history for the sail orientation angles corresponding

to this trajectory appears in Figure 4.5.

A controller to maintain periodic or quasi-periodic trajectories using maneuvers

performed at discrete time intervals was also attempted. The approach used is based

on the \target-point" method of computing Lissajous trajectories developed by Howell

and Pernicka [22]. The target-point algorithm is modi�ed to incorporate sail orienta-

tion information, and periodic orbits generated using continuous control are used to

provide initial guesses. However, the resulting controller is unsuccessful in maintain-

ing a bounded trajectory. Attempts to force a closed orbit resulted in the controlled

trajectory collapsing to the libration point. It is not clear whether this lack of success

is due to an insuÆciently accurate initial guess, or simply lack of suÆcient control

capability. A more complete analysis is necessary.
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Figure 4.1. Locations of the example o�-axis libration points
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Figure 4.2. Example: asymptotically stable trajectory

Initial state relative to LA:

� = +100; 000 km ;
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� = +100; 000 km ;

_
� = +1 m=s ;

_� = �1 m=s ;

_
� = +1 m=s :
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Figure 4.4. Example: quasi-periodic trajectory

Initial state relative to LB:

� = +13; 000 km ;

� = +5; 000 km ;

� = +11; 000 km ;

_
� = �0:19 m=s ;

_� = +14:4 m=s ;

_
� = +5:7 m=s :
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5. Transfers

One challenge in the trajectory design process for an actual mission, is the determi-

nation of a transfer that moves the spacecraft from some Earth parking orbit to a

desired libration point orbit. The inclusion of a solar sail propulsion system brings

with it a large range of available transfer trajectory options. Selecting the optimal

transfer involves the solution of a two-point boundary value problem, and is typically

accomplished using specialized trajectory optimization software.

The work outlined in this chapter focuses on techniques for developing transfer

trajectories between Earth and the periodic orbits that exist in the vicinity of the \on-

axis" libration points that, while not optimal, serve as good baseline transfers and are

a key component in the conceptual development of an end-to-end trajectory design.

The \natural" motion of the spacecraft, that is, the motion with the sail in some

�xed attitude and without variations in the orientation, provides a reasonable starting

point for the transfer design process. A targeting algorithm is then introduced, one

speci�cally de�ned to take advantage of the additional exibility a�orded by the

inclusion of a solar sail. Transfers to the o�-axis libration points or orbits in their

vicinity are not examined, although similar techniques could likely be applied in that

regime.

5.1 Manifolds

From dynamical systems theory [39], it is known that the stable manifold, W s,

associated with a periodic orbit represents the set of all states in the basin of attraction

that converge to the orbit as t!1. Ideally, then, a transfer to a periodic orbit should

at some point intersect and merge with a trajectory that is a member of W s; such

an asymptotic approach implies zero insertion cost. Similarly, the unstable manifold,
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W
u, is the set o� all states that converge to the periodic orbit as t! �1, and, thus,

is associated with departures from the orbit at no cost. Stable and unstable manifolds

have been used in the design of transfer trajectories for libration point missions such

as Genesis [4, 24] and Triana [5].

Recall that the linear variational equations and the monodromy matrix, de�ned as

the state transition matrix after one period of the orbit, can be used to obtain stability

information about a periodic orbit. The eigenvectors of the monodromy matrix that

are associated with the stable eigenvalues (i.e., j�si j < 1) span the stable subspace

E
s. Likewise, the unstable subspace, Eu, is spanned by the eigenvectors associated

with the unstable eigenvalues (�ui ). Near the �xed point that represents a periodic

orbit in a Poincar�e section [39], then, W s and W
u, corresponding to the nonlinear

system, are tangent to the subspaces Es and Eu, respectively. The \local" stable or

unstable manifold, that is, the manifold in the vicinity of a �xed point, can, thus, be

approximated by the stable or unstable eigenspace. In practice, the approximation

for a trajectory that lies on the local stable or unstable manifold associated a �xed

point along a periodic orbit is computed by perturbing the orbit state by some small

amount, �, in the direction of a vector along the stable or unstable eigenvector at

that point. This approximation is then \globalized" by numerically integrating the

perturbed state backward and/or forward in time. This procedure is repeated for

a set of points around the orbit to gain an understanding of the character of the

complete manifold.

Recall that an on-axis \solar sail halo orbit" is generated by �xing the sail orien-

tation such that the sail normal vector (n̂) is always parallel to the Sun-spacecraft

vector (r1), then using a di�erential corrections process to determine an initial state

vector that produces a periodic orbit. For the computation of the stable and unstable

manifolds, the \natural" motion of the spacecraft is de�ned as the trajectory that

results when the sail orientation corresponds to that used in the computation of the

\solar sail halo orbit." Thus, the globalized manifolds for the on-axis halo orbits

are determined for sail angles equal to � = 0Æ and  = 0Æ along the entire length
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of the trajectory. Stable manifolds corresponding to an L1 halo orbit of amplitude

Az = 200; 000km appear in Figure 5.1; this orbit and the set of trajectories represent-

ing the stable manifold are computed for a spacecraft without a solar sail. Now a sail

is introduced through � (for � =  = 0Æ), and the plot in Figure 5.1 can be compared

with the plots in Figures 5.2 and 5.3. This comparison demonstrates the e�ect of

an increasing the sail lightness parameter on the stable manifolds for two solar sail

inuenced Az = 200; 000km halo orbits. Obviously, the manifolds drift further from

the Earth (represented by the dot at x = 1AU, y = 0AU) as � increases.
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5.2 Introducing Maneuvers

5.2.1 General Approach

Transfers to and from libration point orbits are constructed via a multi-step pro-

cess, working \backwards" from the desired halo orbit. The �rst step is the de-

termination of trajectories that represent the stable or unstable manifolds and pass

suÆciently close to Earth such that they are accessible from geocentric parking orbits.

This study focuses on transfers to a halo orbit, although the same methodology can

probably be adapted to generate transfers from a halo as well. Barden [48] identi�ed

a region along the classical halo family, designated the \Earth-Access Region", that

produces \manifold trajectories" useful for transfers. As noted by Nuss [38], and

also observed in Figures 5.2 and 5.3, the region of the entire stable manifold surface

that passes near the Earth shifts away as the sail lightness is increased. To counter

this tendency, maneuvers that steer the spacecraft back towards the Earth must be

introduced.

The approach used in this investigation to determine the placement and magnitude

of the maneuvers is an adaptation of the \target-point" methodology developed by

Howell and Pernicka [22] for the numerical determination of Lissajous trajectories.

This is a two-level iterative process intended to create a bounded trajectory that

possesses with certain, speci�ed characteristics, and is continuous in position and

velocity. Embedded in this scheme is a targeting algorithm that is exploited to design

the transfer, incorporating the sail as part of the control scheme.

Initially, a trajectory representing a path along a manifold surface is split into n

segments, with the states at the beginning and end of each segment de�ned as target

points (numbered 0 to n). In the �rst level of the iterative process, the velocity and sail

orientation at the beginning of each segment are adjusted to target the appropriate

state at the end point of the segment. Thus, the segments are all \patched" together to

create an end-to-end trajectory that is continuous in position, although not necessarily

in velocity. Note that since the initial guess is a trajectory along a manifold that is

already continuous, the �rst iteration at the �rst level of this process does not produce
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any changes in the trajectory. In the second level of this scheme, a linear correction

is applied simultaneously to the position of all target points, while also adjusting the

sail orientation at each target point, to reduce any velocity discontinuities and force

the terminal point of the trajectory closer to the Earth. Since the �rst iteration at

the �rst level of the process introduces no velocity discontinuities, the �rst iteration

at the second level produces corrections corresponding only to the desired change in

the position of the terminal point of the trajectory. The linear corrections generated

by the second level of the process result in a new set of target points, which de�ne

new trajectory segments. The �rst level of the process is then reapplied, to patch

together the new trajectory segments. This process repeats until the terminal point of

the trajectory, corresponding to the origin of the transfer in the \backwards" design

process, is brought to within some acceptable distance of Earth, and the velocity

discontinuities are such that the trajectory is essentially continuous. Thus, although

�ve controls (i.e, the x̂, ŷ, and ẑ velocity components and the sail orientation angles)

are used to allow the targeting process greater exibility in making the intermediate

steps from the initial guess to the �nal transfer trajectory, ideally the resulting transfer

will make use of only two of those controls (i.e., the sail orientation angles). The

resulting transfer is, thus, a trajectory that passes from the Earth to a libration point

orbit, by altering the sail orientation at the target points, and maintaining constant

sail orientation angles along the arcs between target points.

5.2.2 Ensuring Position Continuity

The �rst level of the iterative process is a straightforward application of a di�er-

ential corrections method. Recall from equation (2.47) that the relationship between

changes in the initial and �nal states is written

Æx(tf) = �(tf ; t0)Æx(t0) + _x(tf )Æ(tf � t0) : (5.1)

Using the augmented state vector and state transition matrix that include contribu-

tions from changes in the sail angle, as de�ned in Section 3.4, a linear expression for

the �nal position in terms of the initial velocity, the sail orientation, and the ight
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time can be extracted from equation (5.1):

b = Vu ; (5.2)

where

V = [Lf0 Ef0 v] ; (5.3)

Lf0 =
@rtf

@vt0

; (5.4)

Ef0 =
@rtf

@�

; (5.5)

u = [Æ _x0 Æ _y0 Æ _z0 Æ� Æ Æ(tf � t0)]
T
; (5.6)

b = [Æxf Æyf Æzf ]
T
; (5.7)

and v = [ _x _y _z]T . Then, a result from linear algebra states that the minimum norm

solution to equation (5.2) can be computed by evaluation of the expression

u = VT (VVT )�1b : (5.8)

Thus, equation (5.2) yields the changes in the initial velocity, the sail orientation

angles, and the integration interval that are required to generate the desired �nal

position. Changes in the initial position are not incorporated since the initial position

state is �xed.

From the �rst target point, the equations of motion and the state transition matrix

are numerically integrated over an estimated time interval enroute to the second target

point. In general, the �nal position does not match the target position, and, there-

fore, requires correction. The initial velocity, the sail orientation, and the estimated

integration interval are then adjusted according to equation (5.2). The integration is

restarted at t0 with the new initial state, and proceeds over the new time interval.

This procedure is repeated until the �nal position equals the target position within

some small tolerance. Once continuity is achieved between the �rst two target points,

the process is applied to the segment between the second and third target points, and,

in turn, all of the other segments that comprise the transfer trajectory. The result is

a path that is continuous in position, but includes velocity discontinuities as well as

discrete changes in sail orientation.
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5.2.3 Enforcing Terminal Constraints and Velocity Continuity

Once position continuity is achieved, the task in the second level of the iterative

process is to force the terminal point along the transfer path to meet certain con-

straints, while simultaneously reducing any velocity discontinuities. These objectives

are achieved by manipulating the positions of all n+ 1 target points simultaneously,

while also adjusting the sail orientations and segment integration intervals.

i� 1
i

i + 1�vi

Figure 5.4. Patched transfer trajectory segments

Consider the ith target point as it appears in Figure 5.4. Let the subscript i+

indicate conditions on the segment i! i+1, and subscript i� indicate conditions on

the segment i � 1 ! i. From equation (5.1) as well as the augmented state vector

and state transition matrix, an expression for the relationship between changes in the

initial and �nal states for the segment i� 1! i can be written in the form

2
64 Æri�

Ævi�

3
75 =

2
64 Ki;i�1 Li;i�1 Ei;i�1

Mi;i�1 Ni;i�1 Fi;i�1

3
75
2
666664
Æri�1

Ævi�1

Æ�i�1

3
777775+

2
64 vi�

ai�

3
75 (Æti� � Æti�1) ; (5.9)

where the three-element vectors in equation (5.9) are de�ned as

r = [x y z]T ;

v = [ _x _y _z]T ;

a = [�x �y �z]T ;

� = [� ]T :

Evaluating the �rst vector equation in terms of Ævi�1,

Ævi�1 = �L�1i;i�1Ki;i�1Æri�1 � L�1i;i�1Ei;i�1Æ�i�1
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� L�1i;i�1vi�(Æti� � Æti�1) + L�1i;i�1Æri� : (5.10)

The second vector relationship in equation (5.9) expresses Ævi� as a function of various

variational quantities, including Ævi�1. Substituting equation (5.10) into the Ævi�

expression yields

Ævi� = (Mi;i�1 �Ni;i�1L
�1
i;i�1Ki;i�1)Æri�1 + (Fi;i�1 �Ni;i�1L

�1
i;i�1Ei;i�1)Æ�i�1

+ (ai� �Ni;i�1L
�1
i;i�1vi�)(Æti� � Æti�1) + Ni;i�1L

�1
i;i�1Æri� : (5.11)

Similarly, for the next segment, i! i+ 1,

Ævi+ = �L�1i+1;iKi+1;iÆri � L�1i+1;iEi+1;iÆ�i

� L�1i+1;ivi+1(Æti+1 � Æti�) + L�1i+1;iÆri+1 : (5.12)

If the position and time at point i are constrained to be the same for both segments,

that is, ri+ = ri� and ti+ = ti� , equation (5.11) can be subtracted from equation

(5.12) to obtain a general expression for the variation in the velocity discontinuity at

i, that is,

Æ�vi =
h
Zri;0 Z�i;0 Zti;0 Zri;1 Z�i;1 Zti;1 Zri;2 Z�i;2 Zti;2

i

2
666666666666666666666666664

Æri�1

Æ�i�1

Æti�1

Æri

Æ�i

Æti

Æri+1

Æ�i+1

Æti+1

3
777777777777777777777777775

; (5.13)
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where the Z submatrices are de�ned as

Zri;0 = Ni;i�1L
�1
i;i�1Ki;i�1 � Mi;i�1 ;

Z�i;0 = Ni;i�1L
�1
i;i�1Ei;i�1 � Fi;i�1 ;

Zti;0 = ai� �Ni;i�1L
�1
i;i�1vi� ;

Zri;1 = �L�1i+1;iKi+1;i � Ni;i�1L
�1
i;i�1 ;

Z�i;1 = �L�1i+1;iEi+1;i ;

Zti;1 = Ni;i�1L
�1
i;i�1vi� � ai� + L�1i+1;ivi+1 ;

Zri;2 = L�1i+1;i ;

Z�i;2 = 0 ;

Zti;2 = �L�1i+1;ivi+1 :

Since it is generally desired to force �vi to zero, Æ�vi = ��vi.

The �rst target point, i = 0, must remain �xed on the trajectory path representing

the manifold from which the transfer is initially approximated, to ensure that the

spacecraft ultimately injects into the desired halo orbit. Therefore, the three elements

of r0 are �xed, and the velocity discontinuity at the �rst target point is computed

as �v0 = v0 � vmanifold. As a result, the expression for the variation in the velocity

discontinuity at point 0 is written

Æ�v0 =
h
Z�0;1 Zt0;1 Zr0;2 Z�0;2 Zt0;2

i

2
6666666666664

Æ�0

Æt0

Ær1

Æ�1

Æt1

3
7777777777775
; (5.14)

where, in this case, the submatrices are de�ned as

Z�0;1 = �L�11;0E1;0 ;

Zt0;1 = L�11;0v1 ;

Zr0;2 = L�11;0 ;

Z�0;2 = 0 ;

Zt0;2 = �L�11;0v1 :
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Again, since Ær0 = 0, the matrix Zr1;0 is zero and removed from consideration. Ideally,

the velocity discontinuity at point 0 converges to zero, indicating a zero-cost HOI (halo

orbit insertion) and an asymptotic approach to the halo orbit.

For the purposes of this investigation, it is assumed that the transfer originates

from a circular Earth parking orbit. Therefore, the nth target point, which corre-

sponds to the origin of the transfer in the \backward" design process, is positioned

at a speci�ed altitude with respect to the Earth. Ideally, the ight path angle at the

nth target point will also be zero, thereby minimizing the propellant cost for TTI

(transfer trajectory insertion). These constraints can be expressed mathematically in

terms of the functions

h = fjr2n j � rEarthg � hdesired ; (5.15)

f = r2n � v2n ; (5.16)

where r2n and v2n are the position and velocity vectors of the spacecraft relative to

the Earth at target point n; h is the altitude; and, the ight path angle is f . The

�nal target state is achieved when h = f = 0. The �rst variations in these constraints

are then

Æh =
r2n � Ærn
jr2nj

; (5.17)

Æf = vn � Ærn + r2n � Ævn ; (5.18)

where, from equation (5.11),

Ævn = (Mn;n�1 �Nn;n�1L
�1
n;n�1Kn;n�1)Ærn�1

+ (Fn;n�1 �Nn;n�1L
�1
n;n�1En;n�1)Æ�n�1

+ (an �Nn;n�1L
�1
n;n�1vn)(Ætn � Ætn�1) + Nn;n�1L

�1
n;n�1Ærn :

To generate the desired terminal conditions, the values of h and f must be forced to

zero, thus, Æh = �h and Æf = �f .

The vector equation (5.13) corresponding to each of the target points, equation

(5.14) applied at the �rst target point, as well as the constraint equations (5.17) and
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(5.18), can be combined into a single system of linear equations. For compactness,

the constraint equations are rewritten as

Æh = ZhÆrn ; (5.19)

Æf = Zf;rn�1Ærn�1 + Zf;�n�1Æ�n�1 + Zf;tn�1Ætn�1

+Zf;rnÆrn + Zf;tnÆtn ; (5.20)

where

Zh =
rT
2n

jr2n j
;

Zf;rn�1 = r
T
2n
(Mn;n�1 �Nn;n�1L

�1
n;n�1Kn;n�1) ;

Zf;�n�1 = r
T
2n
(Fn;n�1 �Nn;n�1L

�1
n;n�1En;n�1) ;

Zf;tn�1 = �rT2n(an �Nn;n�1L
�1
n;n�1vn) ;

Zf;rn = v
T
n + r

T
2n
Nn;n�1L

�1
n;n�1 ;

Zf;tn = r
T
2n
(an �Nn;n�1L

�1
n;n�1vn) :

Then, the complete system of linear equations has the form

ZÆ = c ; (5.21)

where the vectors Æ and c are written as

Æ =

2
66666666666666666666666666666666666664

Æ�0

Æt0

Ær1

Æ�1

Æt1

Ær2

Æ�2

Æt2

...

Ærn

Æ�n

Ætn

3
77777777777777777777777777777777777775

; c =

2
66666666666666666664

��v0

��v1

��v2
...

��vn�1

�h

�f

3
77777777777777777775

;
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and the matrix Z has the form

Z =

2
66666666666666666666666666664

Z�0;1 Zt0;1 Zr0;2 Z�0;2 Zt0;2 0 0 0 � � � 0

Z�1;0 Zt1;0 Zr1;1 Z�1;1 Zt1;1 Zr1;2 Z�1;2 Zt1;2 � � � 0

0 0 Zr2;0 Z�2;0 Zt2;0 Zr2;1 Z�2;1 Zt2;1 � � � 0

0 0 0 0 0 Zr3;0 Z�3;0 Zt3;0 � � � 0

� �

� �

� �

0 � � � Zrn�1;0 Z�n�1;0 Ztn�1;0 Zrn�1;1 Z�n�1;1 Ztn�1;1 Zrn�1;2 Z�n�1;2 Ztn�1;2

0 � � � 0 0 0 0 0 0 Zh 0 0

0 � � � 0 0 0 Zf;rn�1 Zf;�n�1 Zf;tn�1 Zf;rn 0 Zf;tn

3
77777777777777777777777777775

:

Assuming n � 2, matrix Z is of dimension (3n + 2)� (6n + 3), Æ is a column vector

of length (6n + 3), and c is a column vector of length (3n+ 2). The minimum norm

solution to the system in equation (5.21) is

Æ = �ZT (ZZT )�1c : (5.22)

With these updated positions, orientations, and time intervals, the �rst level of the

iterative process is reapplied to generate a modi�ed, but continuous, trajectory, one

with reduced velocity discontinuities and a terminal point closer to the desired alti-

tude. This trajectory is then subjected to the second level corrections process again,

to further reduce any velocity discontinuities. The process is repeated until a trajec-

tory is generated that is continuous in position and terminates at the desired altitude;

the velocity discontinuities are reduced as far as possible.

5.2.4 Preliminary Results

The transfer generation algorithm is implemented as described previously. Trajec-

tories are computed for various numbers of target points ranging between 5 and 30,

and using several di�erent manifolds as starting points. To be de�ned as continuous

in position, the maximum allowable deviation from a target point location (i.e., posi-

tion discontinuity) is 15m; this target is always achieved before the process continues.
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The transfer algorithm is generally successful at introducing sail orientation changes

to bring the terminal point of the trajectory nearer to the Earth. An example of a

transfer generated using 15 target points appears in Figure 5.5. The corresponding

time history of the sail orientation angles appears in Figure 5.6, however, note that

velocity discontinuities remain at each target point (maneuvers along are numbered

in the reverse order of the target points due to the \backwards" design process). (See

Table 5.1.) DiÆculties with the algorithm do exist, and successful targeting to low

Earth altitudes is not yet resolved. Perhaps more target points or simply better place-

ment of the target points is critical, or the development of an alternative corrector

is necessary. Nevertheless, the transfer generation algorithm, while not completely

successful, appears to have potential, and merits further investigation.
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Table 5.1. �v time history

Transfer �v's

Maneuver No. Elapsed Time (days) �v (m/s)

0 (TTI) 0 1890.00

1 34.85 24.96

2 54.30 19.71

3 73.37 20.55

4 92.62 18.89

5 113.21 14.10

6 135.55 4.26

7 158.79 8.74

8 181.54 18.73

9 202.09 21.91

10 220.30 21.31

11 239.84 20.17

12 260.99 15.14

13 283.01 7.41

14 304.84 1.47

15 (HOI) 338.26 0.00
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6. Conclusions

6.1 Summary

The addition of a solar sail force to the dynamical model represented in the circular

restricted three-body problem enables the generation of a set of \arti�cial" libration

points. These new libration points are parameterized by the sail lightness, and the

orientation of the sail relative to the solar radiation. The on-axis libration points

are a subset from the total array of arti�cial points that are available; the on-axis

set consists of those libration points that lie along the Sun-Earth line. The collinear

libration points of the classical restricted three-body system, of course, serve as a

basis for this subset of arti�cial points. The on-axis libration points retain many of

the characteristics of the collinear points from which they originate. The similarity

between the on-axis equilibrium points that exist due to the added solar sail force

and the classical collinear libration points allows the construction of an analytical

approximation for periodic orbits in the vicinity of the new libration points. This

approximation is a valuable aid in identifying new families of periodic halo orbits

that incorporate a solar sail force, and that di�er in shape from the classical halo

families.

Variations in the sail orientation can be used to control the spacecraft trajectory.

This fact enables a solar sail to be used as a stationkeeping device for maintaining

on-axis halo orbits. Additionally, sail orientation control allows the creation of either

asymptotically stable arti�cial libration points that exist o� the Sun-Earth line, or

trajectories that remain bounded in the vicinity of such an arti�cial libration point.

Changes in sail orientation also appear promising in the generation of transfers to

and from the halo orbits.
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6.2 Recommendations

There are as yet many unanswered questions concerning the use of solar sails in

the three-body problem. A more in depth study of the on-axis halo families could

resolve the lingering numerical issues, and begin an exploration of the other new

families accessible through the bifurcation points present in the halo families. On-

axis trajectories that are not periodic, but remain bounded, i.e. quasi-periodic, as

well as trajectories involving periodic variations in sail orientation also suggest new

directions for research.

The stationkeeping strategy that is developed in this work can be re�ned by

determining the optimum number of target points, the best practical minimum time

between maneuvers, and the appropriate length for each of the time intervals between

target points. It is also worthwhile to investigate the use of a variable sail lightness

parameter as a control variable, or, more likely, hybrid stationkeeping schemes using

both a sail and impulsive maneuvers.

The dynamics in the vicinity of the o�-axis libration points clearly require much

more study. The control algorithm developed here is a simplistic proof of concept. The

application of optimal control theory and nonlinear controllers would undoubtedly

lead to improved trajectory design capabilities.

Finally, the transfer generation algorithm outlined in Chapter 5 is not fully func-

tional, but shows much promise. Further analysis of this approach is warranted; it

might be further developed to generate initial guesses for more sophisticated opti-

mization schemes. Determination of the optimal number and placement of the target

points would improve the performance of the transfer generation algorithm. The ap-

plication of alternate correctors and di�erent constraints could also lead to further

performance improvements. Additionally, allowing the sail orientation angles to vary

along each segment (e.g., parameterizing the angles as function of time and itera-

tively correcting the parameterization coeÆcients) would increase the versatility of

the algorithm. Determination of the time along the transfer trajectory at which the

sail should be deployed would make the transfer more representative of a practical
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transfer scenario.

6.3 Concluding Remarks

Solar sails o�er many new trajectory options for mission designers. In the context

of multiple gravitational �elds, solar sails allow the extension of existing operational

techniques into regions of space not previously amenable to such methods. However,

there are many practical issues to be overcome, before such missions can be success-

fully carried out. New mission design strategies must be developed, and numerous

mechanical issues, such as those related to the construction, deployment, and control

of sail structures, must be resolved. This study has sought to explore various tech-

niques that may be useful in designing future solar sail missions. However, there are

many facets to this problem, and many avenues of investigation remain open.
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APPENDICES

Appendix A: Second Partial Derivatives of the Three-Body Pseudo-Potential

The following are general expressions for the second partial derivatives of U , the

pseudo-potential. Each derivative is denoted as Ujk =
@U
@j@k

, where j; k 2 (x; y; z).
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Appendix B: CoeÆcients for the Third-Order Analytical Approximation

These equations appear in Richardson [18]. The cn quantities in the expressions

represent coeÆcients in a Legendre polynomial expansion of the Lagrangian, as out-

lined in the papers by Richardson [18, 40].
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where
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and the linearized frequency � is the solution to the following equation:
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Appendix C: Second Partial Derivatives of the On-Axis \Modi�ed Pseudo-

Potential"

The expressions below represent the second partial derivatives of 
, the \modi�ed

pseudo-potential" that incorporates the e�ects of a solar sail with � = 0Æ.. The

notation is 
jk =
@

@j@k

, where j; k 2 (x; y; z).
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Appendix D: Partial Derivatives of the Solar Sail Acceleration Terms Rel-

ative to Position

The expressions below are the partial derivatives of the scalar solar sail acceleration

components with respect to the sail position coordinates. The notation is consistent,

ajk =
@aj
@k
, where j; k 2 (x; y; z). It is assumed that the sail cone and clock angles, �

and , are independent of position.
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Appendix E: Partial Derivatives of the Solar Sail Acceleration Terms Rel-

ative to Orientation

The expressions below represent the partial derivatives of the scalar solar sail

acceleration components with respect to the sail orientation angles. The partials are

denoted such that ajk =
@aj
@k
, where j 2 (x; y; z), and k 2 (�; ).
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