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ABSTRACT

The orbits of interest for potential missions are stable or nearly stable to maintain long

term presence for conducting scientific studies and to reduce the possibility of rapid depar-

ture. Near Rectilinear Halo Orbits (NRHOs) offer such stable or nearly stable orbits that

are defined as part of the L1 and L2 halo orbit families in the circular restricted three-body

problem. Within the Earth-Moon regime, the L1 and L2 NRHOs are proposed as long

horizon trajectories for cislunar exploration missions, including NASA’s upcoming Gateway

mission. These stable or nearly stable orbits do not possess well-distinguished unstable and

stable manifold structures. As a consequence, existing tools for stationkeeping and transfer

trajectory design that exploit such underlying manifold structures are not reliable for orbits

that are linearly stable. The current investigation focuses on leveraging stretching direction

as an alternative for visualizing the flow of perturbations in the neighborhood of a reference

trajectory. The information supplemented by the stretching directions are utilized to inves-

tigate the impact of maneuvers for two contrasting applications; the stationkeeping problem,

where the goal is to maintain a spacecraft near a reference trajectory for a long period of

time, and the transfer trajectory design application, where rapid departure and/or insertion

is of concern.

Particularly, for the stationkeeping problem, a spacecraft incurs continuous deviations

due to unmodeled forces and orbit determination errors in the complex multi-body dynam-

ical regime. The flow dynamics in the region, using stretching directions, are utilized to

identify appropriate maneuver and target locations to support a long lasting presence for

the spacecraft near the desired path. The investigation reflects the impact of various fac-

tors on maneuver cost and boundedness. For orbits that are particularly sensitive to epoch

time and possess distinct characteristics in the higher-fidelity ephemeris model compared to

their CR3BP counterpart, an additional feedback control is applied for appropriate phasing.

The effect of constraining maneuvers in a particular direction is also investigated for the 9:2

synodic resonant southern L2 NRHO, the current baseline for the Gateway mission. The
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stationkeeping strategy is applied to a range of L1 and L2 NRHOs, and validated in the

higher-fidelity ephemeris model.

For missions with potential human presence, a rapid transfer between orbits of interest

is a priority. The magnitude of the state variations along the maximum stretching direction

is expected to grow rapidly and, therefore, offers information to depart from the orbit.

Similarly, the maximum stretching in reverse time, enables arrival with a minimal maneuver

magnitude. The impact of maneuvers in such sensitive directions is investigated. Further,

enabling transfer design options to connect between two stable orbits. The transfer design

strategy developed in this investigation is not restricted to a particular orbit but applicable

to a broad range of stable and nearly stable orbits in the cislunar space, including the Distant

Retrograde Orbit (DROs) and the Low Lunar Orbits (LLO) that are considered for potential

missions. Examples for transfers linking a southern and a northern NRHO, a southern NRHO

to a planar DRO, and a southern NRHO to a planar LLO are demonstrated.
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1. INTRODUCTION

In pursuit for scientific discoveries and a broader understanding of the universe, space mis-

sions are expanding beyond the geocentric space. As a result of expanding technology,

humans are gaining confidence in venturing into deep space with both crewed and robotic

missions. A wide variety of destinations are sought in support of ever-expanding and in-

creasingly complex goals. A much wider range of solutions beyond the Keplerian motion

are leveraged using multi-body dynamical environments in support for space exploration.

In recent times, Lunar missions that exploit such complex multi-body dynamics continue to

generate serious interest among various space organizations across the globe. Moreover, with

increasing research activities in the field of space physics, the investigation of the celestial

body nearest to the Earth, i.e., the Moon, offers significant potential for scientific discoveries.

In addition, with a focus on expanding the human presence in the region, NASA’s Gate-

way mission, formerly the Deep Space Gateway (DSG) or Lunar Orbital Platform-Gateway

(LOP-G) mission, delivers a hub-like facility that is currently planned to move along a Near

Rectilinear Halo Orbit (NRHO) in the lunar vicinity [ 1 ], [ 2 ]. Near rectilinear halo orbits

are members of the halo orbit family in the L1 and L2 (equilibrium points) regions in the

Earth-Moon circular restricted three-body problem [ 3 ], [ 4 ]. A cost-efficient stationkeeping

strategy as well as the ability to transfer from one orbit to another relatively quickly is of

high priority.

1.1 Objective

Motion along an NRHO is characterized by a reasonably close lunar passage and a large

out-of-plane amplitude relative to the Earth-Moon orbit plane, appropriate for investigating

the polar regions of the Moon. In addition, spacecraft along some NRHOs offer a nearly

uninterrupted link for relay communications to various landing sites for planned lunar land-

ing missions [ 5 ], [ 6 ]. The NRHOs are stable or nearly stable as characterized by the linear

variational flow. Due in part to these stability characteristics, NRHOs offer candidate orbits

suitable for any long-term cislunar operations. Some of the dynamical structures such as the

unstable and stable manifolds are either non-existent or not well-defined for the stable or
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nearly stable orbits [  7 ]. As a consequence, various strategies that rely on the unstable and

stable manifold structures for long-term orbit maintenance, or insertion or departure from

the orbit provide diminishing results.

The overarching goal of this investigation is exploring the underlying multi-body dy-

namics to leverage structures that are useful for two contrasting applications, especially for

stable or nearly stable orbits. The stationkeeping problem requires maintaining a spacecraft

near a reference orbit for a significantly long duration. In contrast, a transfer trajectory

design problem relies on rapid insertion and departure from a reference orbit. The research

objectives are met through the following:

1. Understand the flow dynamics in the vicinity of a reference solution that lack well-

defined unstable and stable manifold structures.

Ability to visualize the impact of a state change at an initial time, over some propagated

time downstream, offers insight into the underlying motion in the neighborhood of a

reference trajectory. Certain directions are more sensitive to state changes compared

to the others. Reliable and unsophisticated mathematical tools must be developed to

identify such sensitive directions. A prior information about the sensitivity of the dy-

namical flow assists in developing strategies for stationkeeping and transfer trajectory

design.

2. Effect of underlying dynamics near a reference trajectory for stationkeeping and trans-

fer design applications.

• Stationkeeping Process

A stationkeeping process is designed to overcome any navigational errors and

unmodeled perturbations, thereby ensuring that the spacecraft remains bounded

in the vicinity of a reference orbit for a long duration, and in a cost-effective

way. The understanding of the flow in the neighborhood of a reference solution

is crucial to study the influence of various parameters within the stationkeep-

ing process. This investigation examines a current strategy from the context
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of the dynamical foundations and structures that enable the strategy to gener-

ally succeed. Furthermore, a systematic and straightforward approach to select

parameters suitable for impulsive stationkeeping is explored.

• Transfer Trajectory Design

Perturbations near a stable orbit does not amplify rapidly. However, for transfer

trajectory design applications, a trajectory in the neighborhood that departs rel-

atively quickly, and also arrives swiftly, are desired. This investigation explores

the sensitive directions in the neighborhood of a reference orbit that are then

exploited to design transfers between stable orbits in the cislunar regime.

3. Application for various stable orbits.

Stationkeeping and transfer trajectory design applications exploit certain sensitive di-

rections in the neighborhood of a stable reference orbit. The current investigation

examines the stationkeeping strategy for a range of stable and nearly stable halo or-

bits in the L1 and L2 regions within the Earth-Moon system. Moreover, the transfer

trajectory design methodology offers an infrastructure to transfer between a number

of stable orbits, both planar and three-dimensional.

The substantiation of these objectives yield reliable scheme that enhances the station-

keeping and transfer design process. The approaches illustrated in this investigation offers

promising results that can be expanded for a wide range of orbits in the multi-body regime.

1.2 Previous Contributions

1.2.1 Multibody Dynamics

A simplified two-body planetary motion was postulated by Johannes Kepler (1571 -

1630) as three laws, also known as Kepler’s laws of planetary motion, that enhanced the

heliocentric theory given by Nicolaus Copernicus [  8 ], [ 9 ]. Later, in 1687, Sir Isaac Newton

(1642 - 1727) formulated the Universal Laws of Gravitation in PhilosophiæNaturalis Prin-

cipia Mathematica [ 10 ] that explained Kepler‘s laws. Although a very simplified model, the

two-body problem, in general, is a good approximation of the planetary motion in the helio-
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centric space. Since there are numerous bodies in space, each applying a mutual gravitational

force on the others, a model with a central gravitational body, such as the Sun, is perhaps

not sufficient to explain the complex dynamics of space. Leonhard Euler (1707 - 1783) in

1767 formulated a simple restricted three-body problem [ 11 ], that was more comprehensive

than the two-body problem and overcame some of the challenges of the two-body problem.

The existence of equilibrium points in the nonlinear dynamical regime of Euler’s three-body

problem was derived by Joseph-Louis Lagrange (1736 - 1813) in 1772 [ 12 ]. A number of

astronomers and mathematicians improved the existing models. Carl Gustav Jacob Jacobi

(1804 - 1851) computed the integral of motion in CR3BP, that is now known as Jacobi

Constant or Jacobi integrals [  13 ]. Jules Henri Poincaré (1854 - 1912) formulated a visual-

ization technique to represent different dynamical behavior of the trajectories as noted by

saddle, focus, center or nodes, using maps in 1899 [ 14 ], now identified as Poincaré maps. In

1967, Victor Szebehely‘s Theory of Orbits [ 15 ] summarizes the advancements in the circular

restricted three-body problem and validates theories with appropriate numerical results.

The nonlinear dynamics of the circular restricted three-body problem (CR3BP) offers

different dynamical structures suitable for space missions. Farquhar in 1968, described a 3-

dimensional halo orbit that exists close to the collinear equilibrium points in the Sun-Earth

system [ 16 ]. Such an orbit served as the baseline for the first libration point mission, the

ISEE-3 mission, in 1978. Later in 1973, Farquhar and Kamel, calcluated analytical solutions

to represent quasi-periodic motion along an orbit using Lindstedt-Poincaré approach [ 17 ].

Richardson offered an analytical solution to represent halo orbits for ISEE-3 mission in

1980 [  18 ]. Howell in 1984 developed a numerical computation technique for precise halo

orbit construction [  19 ]. Howell and Pernicka formulated numerical techniques to determine

Lissajous trajectory in CR3BP [  20 ]. Following the success of ISEE missions [  21 ] and further

development of the multi-body dynamical regimes and advancement in technology more

librations missions have been launched. The WIND mission in 1994, the Solar Heliospheric

Observatory (SOHO) in 1995 and the Advanced Composition Explorer (ACE) in 1997 [ 22 ]

have supported helio-physics research while positioned at the Sun-Earth L1 halo orbits.

Furthermore, the Genesis spacecraft [ 23 ] and the Wilkinson Microwave Anisotropy Probe
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(WMAP) [ 24 ] have explored the Sun-Earth L1 and L2 Lagrange point orbits, respectively.

In recent times, with evolving computational techniques, Pavlak describes a method for

generating long baseline solutions in complex space using multiple shooting technique [ 25 ].

With the launch in 2007, the ARTEMIS P1 and P2 (formerly THEMIS) [  26 ] became the

earliest probes to explore the Lagrange point orbits in the Earth-Moon system. The proposed

NASA Gateway mission is planned to operate in a stable orbit in the cislunar space [  1 ], [  2 ].

1.2.2 Orbit Maintenance Strategies

A number of stationkeeping strategies have been developed in support of various libration

point missions in the past. One of the early stationkeeping operations for the ISEE-3 mission

are discussed by Farquhar et al. [ 21 ], [  27 ]. Other studies on ISEE-3 are found in [ 28 ]–[ 32 ].

Rodriguez and Hechler [  33 ] offers insight on SOHO mission design and control while Sharer

et al. offer design and control strategies for the WIND Trajectory [ 34 ]. Other stationkeeping

studies in the Sun-Earth system is found in [  35 ]–[ 37 ]. Some of the early orbit maintenance

strategies in the Earth-Moon system are discussed by Breakwell et al. [ 38 ], [ 39 ], Colombo

[ 40 ], as well as Euler and Yu [  41 ]. Recent investigations on the orbit maintenance strategies

for the ARTEMIS mission were conducted by Folta et al. [  42 ]–[ 44 ] as well as Howell and

Pavlak [ 45 ].

Many of the libration point missions in the past have explored unstable halo orbits as

baseline. As a consequence, a number of stationkeeping strategies exploit the dynamical

structures near the unstable orbits. Howell and Pernicka [  30 ], [  31 ], Howell and Gordon

[ 46 ], [ 47 ], [ 48 ], [ 49 ] as well as Muralidharan [ 50 ] have worked on Target Point Approach

that are proven to be effective along unstable orbits in the Sun-Earth L1 and L2 region.

Existing stationkeeping strategies that are based on manifold theory, for example, Floquet

mode approaches used by a number of authors produce a maneuver to nullify any unstable

components of the perturbations. Gomez et al. [ 51 ], [  52 ], Howell and Keeter [  53 ], Simo et

al. [  54 ], [  55 ], Howell and Pavlak [  45 ], Meng et al. [  56 ], and Muralidharan [  50 ] have used

Floquet mode approach for various applications. Without reliable numerical computation of

manifolds, such an approach cannot generally be leveraged for stationkeeping in support of
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activities in stable or nearly stable orbits. An alternate strategy, one that is based on the

near symmetry of the orbits in the CR3BP system, is widely employed for stationkeeping in

the halo orbit region, including the stable NRHOs [  4 ], [  57 ]–[ 60 ]. The alternate technique is

commonly identified as an x-axis crossing control strategy and is proven to be effective in

low-cost stationkeeping for orbits that lack well-distinguished stable and unstable manifolds.

Other strategies that are applicable for stable orbits are analyzed by Guzzetti et al.

[ 4 ] and Muralidharan [  50 ] using the Cauchy-Green tensor approach. Variants of Linear

Quadratic Regulator and Model Predictive Control techniques are offered by various authors

[ 61 ]–[ 63 ] A summary of few orbit maintenance techniques for libration point orbits has been

provided by Shirobokov et al. [  64 ].

1.2.3 Transfer Trajectory Design

Transfer design applications involving unstable orbits has leveraged the underlying man-

ifold structures to assist in departure and arrival on the orbits, along an almost ballistic

trajectory [  65 ]–[ 69 ]. With the lack of usable manifold structures, transfer to orbits that are

stable have been addressed by alternate strategies, both with low-thrust and impulsive ma-

neuvers. Parish et al. demonstrate low-thrust transfers between Distant Retrograde Orbits

(DROs) and the halo orbits in the Earth-Moon system [ 70 ]. Pritchett et al. use collocation

algorithm for low thrust transfers [ 71 ]. Pino et al. use energy surfaces to identify intermedi-

ate orbits to transition between two orbits with low-thrust engines [  72 ]. Das et al. illustrate

trajectory design techniques using reinforcement learning [  73 ]. McCarty et al. leverage a

low-thrust transfers from NRHO to DRO [ 74 ]. Many transfer options between stable or-

bits using one or more impulsive maneuvers have been demonstrated by several authors.

Vutukuri investigated techniques using intermediate resonant arcs and their manifolds to

transfer between orbits, including those that are stable [  75 ]. Capdevilla and Howell devel-

oped a transfer network linking Earth, Moon, and their triangular libration point regions

using impulsive maneuvers [  76 ]. Zimovan et al. use intermediate dynamical structures us-

ing higher-period orbits as options to transfer between stable orbits [  77 ]. Several transfers
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between NRHOs and Low Lunar Orbits (LLOs) with two or more impulsive maneuvers are

demonstrated in the literature [ 78 ]–[ 80 ].

1.3 Present Work

Distinct unstable, stable and oscillatory modes are either non-existent or not well-defined

for linearly stable orbits [  7 ]. Any existing strategies that are based on manifold theory are

not reliable for stationkeeping or transfer trajectory design process. An alternate strategy

that leverages other dynamical structures are explored in this investigation and demon-

strated for stationkeeping and transfer trajectory design applications. The dynamical flow

along the orbit is visualized using the stretching directions, rather than using stable and

unstable manifolds [  81 ]–[ 83 ]. Variants of the stretching directions are employed for multiple

space applications, for example, identification of stationkeeping maneuvers using a Cauchy-

Green tensor approach [ 4 ], the trajectory design phase for the EQUULEUS mission [ 84 ], [  85 ],

sensitivity analysis along quasi-satellite orbits [  86 ], patch-point placements along sensitive

trajectories [ 87 ], as well as monitoring perturbation growth along trajectories [ 88 ].

The goal for the stationkeeping problem is to maintain a spacecraft in the neighborhood

of a reference trajectory for a long duration. Within the stationkeeping framework, the

stretching directions offer insight on the interactions between parameters, including maneu-

ver locations, time duration between successive maneuvers as well as the target horizon time.

Such information assist in identifying combinations of parameters that facilitates the success

of the stationkeeping algorithm. Further, insights from the stretching directions of the flow

enhance the control algorithm. This investigation examines the current stationkeeping strat-

egy from the context of the dynamical foundations and structures that enable the strategy

to generally succeed. The effect of various parameters on orbit maintenance cost and on the

boundedness of the spacecraft motion near the desired path are explored.

A contrasting application is to depart from the vicinity of a reference path rapidly, as well

as rapid insertion on the orbit. Disposal of logistic modules while avoiding any collisions is

also a concern. Previous transfer trajectory design approaches, between stable orbits, exploit
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intermediate segments of known orbits, resonant arcs as well as manifolds of known unstable

orbits, however, the most productive types of intermediate orbits are not known a priori. In

this investigation, the dynamical flow is visualized using the principal stretching directions.

An alternate strategy that offers reliable departure and arrival analysis from stable orbits

are explored, one that leverages the maximum stretching directions. An effective departure

from the orbit serves as a preliminary step for the disposal problem as well as a basis for

transfers to other spatial locations.

The investigation focuses on developing mathematical tool to characterize the sensitive

directions in form of stretching directions, and utilize the understanding of the dynamical

flow near a reference trajectory to enhance stationkeeping and transfer trajectory design

strategies. The study is summarized as follows:

• Chapter 2

The dynamical flow beyond a two-body conic problem is developed in the circular

restricted three-body problem (CR3BP). The equations of motion for CR3BP are

modeled based on a few fundamental assumptions. The equilibrium solutions and the

limit cycles in the nonlinear system in form of periodic orbits are calculated. An energy-

like constant, that is the integral of motion is defined. Such a quantity determines

the accessible regions for a spacecraft motion. Behavior in the neighborhood of a

reference solution is identified using linear variational equations. A higher-fidelity

model using n-gravitational bodies is formulated to replicate a real-world scenario.

Further, procedures to transform between different coordinate systems are derived.

• Chapter 3

The CR3BP is a nonlinear dynamical system. As a consequence, determining an

accurate initial condition that reaches a desired final state is non-intuitive. Tools

are developed using the Dynamical Systems Theory (DST). A linear State Transition

Matrix (STM) is calculated along a chosen reference solution. Differential correction

techniques utilizes the STM for identification of precise initial conditions. Likewise,

single shooting and multiple shooting techniques for complex trajectory corrections
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are derived. Application of the shooting algorithms in a higher-fidelity model is also

discussed. Such tools are applied for stationkeeping and transfer design process.

• Chapter 4

An overview of the orbit maintenance process is discussed in this chapter. Impact of the

orbit determination process on the state uncertainty of a spacecraft along an NRHO is

identified. Navigational errors and solar radiation pressure errors that influences the

spacecraft motion is summarized. Insight into the Monte Carlo process is provided,

along with an explanation on the impact of sample size on confidence intervals.

• Chapter 5

In this chapter, the interaction between the dynamical flow evolving between two suc-

cessive maneuver locations and the dynamical flow from the maneuver location to the

target is analyzed from the context of the stretching directions. Further, the impact of

the stretching directions along the L1 and L2 NRHOs are analyzed to offer insight on

the performance of the x-axis crossing control strategy. Certain members of the halo

orbit families are particularly sensitive to epoch dates and possess distinct characteris-

tics in the higher-fidelity ephemeris model in comparison to their CR3BP counterpart.

As a result, targeting conditions that are not synchronized and in phase are observed

to be ineffective in stationkeeping. Additionally, certain events, such as eclipse avoid-

ance require a certain phasing. The influence of an additional feedback constraint for

appropriate phasing is investigated within the framework of a stationkeeping problem.

• Chapter 6

A strategy that offers reliable departure and arrival analysis from stable orbits are

explored in this chapter, one that leverages the maximum stretching directions. Impact

of maneuver directions and their location along an NRHO is presented. A strategy

that leverages maneuvers along maximum stretching directions to transfer between

stable orbits is demonstrated. Some examples of transfers between stable orbits such

as, a southern NRHO to a northern NRHO (3D to 3D), a southern NRHO to a DRO

(3D to planar) and a southern NRHO to a LLO (3D to planar) are illustrated.
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• Chapter 7

Some of the concluding remarks from the stationkeeping strategy and the transfer

trajectory design process are detailed. Some peculiar observations are highlighted.

Recommendations for future work are offered.
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2. SYSTEM MODELS

The “two-body problem” represents the behavior of two point masses due to their mutual

gravitational forces. The two-body problem is expressed mathematically with relatively

straight forward differential equations and an analytical solution is available. Any additional

gravitational bodies taken into consideration increases the complexity of the problem and an

analytical solution ceases to exist. Some characteristics of the system behavior are revealed

by numerical propagation of the governing differential equations. The three-body problem

incorporates an additional gravitational source than the two-body problem and serves as a

foundation for more complex motion.

2.1 Circular Restricted Three-Body Problem (CR3BP)

The solar system comprises of infinitely many gravitational bodies that mutually influence

the motion of each other. The motion of a body influenced by ‘n − 1’ other bodies in the

solar system is modeled as the ‘the n-body problem.’ To formulate the n-body problem define

each of the ‘n’ bodies as Pi with mass mi where i = 1, 2, ..., n. Assuming all the n bodies

are spherically symmetric, Newton’s Laws of motion are applied to compute the force acting

on the particle of interest. Let orthonormal unit vectors X̂, Ŷ , Ẑ represent the coordinates

of the inertially fixed frame, I, with O as the inertially fixed base point or the origin. The

vector r̄i describes the position of body Pi with respect to the base point O while the vector

r̄qi describes the position of body Pi with respect to the body Pq as shown in Figure  2.1 .

Therefore, as expressed in [  89 ], the total force acting on the body Pi as a result of all the

other bodies is

F̄i = −G̃
n∑

j=1, j 6=i

mimj

r3
ji

r̄ji (2.1)

such that, G̃ is the scalar gravitational constant given by 6.67408 × 10−11 m3kg−1s−2 [ 90 ]

and F̄i is the force vector acting on body Pi.
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Figure 2.1. Gravitational interactions between n bodies in space.

The motion of a body is systematically expressed in terms of kinematic quantities. Using

Newton’s second law of motion, equation ( 2.1 ) is expressed in terms of the acceleration of

body Pi in the inertial frame, I, as

F̄i = mi ¨̄ri = −G̃
n∑

j=1
j6=i

mimj

r3
ji

r̄ji (2.2)

such that,
¨̄ri = −G̃

n∑
j=1
j 6=i

mj

r3
ji
r̄ji (2.3)

where ¨̄ri represents the acceleration of body Pi due to the gravitational forces of all other

bodies in the n-body system. It is the second derivative of the position vector with respect

to the dimensional time as observed in the inertial frame.

For a system with two or more gravitational bodies, an analytical solution does not exist.

Gaining some insight into the system behavior is challenging but a priority. For the n-body

system, each of the bodies are sensitive to changes in position, velocity and acceleration

due to the influence of all the other bodies in the solar system, hence, a generic equation
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of motion cannot be formulated that is independent of time. A multi-body problem with

selected number of bodies about a fixed epoch date and real time data describing the states,

called the ephemeres model, offers some insight. A less complex, time invariant mathematical

model with three gravitational bodies is formulated with certain assumptions making a

reliable framework to understand the characteristic behavior of the system. The Circular

Restricted Three-Body Problem (CR3BP) is a commonly used approach for formulating the

equations of motion of a body influenced by two other bodies, independent of time. The

solution delivered by the CR3BP model is used as an initial guess for the higher-fidelity

model.

2.1.1 Assumptions

The Circular Restricted Three-Body Problem is a time-invariant specific case of the n-

body problem with a total of three bodies. Equation ( 2.3 ) delivers the expression of an

n-body system, so for n = 3,

¨̄r3 = −G̃
[
m1

r3
13
r̄13 + m2

r3
23
r̄23

]
(2.4)

where the position vectors r̄13 and r̄23 are given as

r̄13 = r̄3 − r̄1 (2.5)

r̄23 = r̄3 − r̄2 (2.6)

such that, r̄i is the position vector of body ‘i’ with respect to the origin. To solve for the

differential equation, time history of r̄1 and r̄2 are to be known, but such information is

not available as states of P1 and P2 are simultaneously influenced by r̄3(t). The three-body

problem requires 18 integrals of motion to be solved simultaneously, i.e., 6 states (3 position

and 3 velocity states) for each of the 3 bodies, but only 10 integrals are known. A two-body

problem has a closed form solution but with the addition of just one more gravitational

body, i.e., n = 3, a closed form solution ceases to exist, however, with certain additional
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assumptions, a refined model is described that illustrates the underlying behavior of a number

of systems. The assumptions are as stated:

• m3 << m1,m2

Let the three bodies P1, P2 and P3 be point mass bodies with masses m1,m2 and m3,

such that m3 << m1,m2. The two bodies P1 and P2 are considered as primaries that

are massive in comparison to the third body, P3. The assumption of an infinitesimally

small body P3 is valid for bodies like a spacecraft, a comet, etc. The assumption is

further extended to m1 < m2 to represent a larger primary body and a smaller primary

body.

• P3 does not influence the motion of P1 and P2

When P3 is modeled as an infinitesimally small body in comparison to the primaries it

is assumed that the gravitational force due to massm3 does not influence the motion of

bodies, P1 and P2, with massesm1 andm2 respectively. This results in an isolated two-

body system with primary body m1 and secondary body m2, for which an analytical

solution is known in form of a conic. P3 is known to coexist within the stable system

of P1 and P2.

• P1 and P2 move on circular orbits about their mutual barycenter

Further it is assumed that the primary bodies, P1 and P2, move in a circular orbit

about their mutual barycenter. This assumption is not necessary but simplifies the

model from an elliptic restricted three-body problem. As a result, the barycenter is

regarded as inertially fixed and treated as the origin for developing the equations of

motion in the circular restricted three-body problem.

To formulate the circular restricted three-body problem, consider the bodies to be ori-

ented as shown in Figure  2.2 . Let orthonormal unit vectors X̂, Ŷ , Ẑ represent the coordinates

of the inertially fixed frame, I, with origin at the barycenter (B) of the primaries. Since

P1 and P2 have a conic solution, the motion of the primaries are fixed in X̂Ŷ plane. The

angular momentum vector of the motion of the primaries is along the positive Ẑ direction.
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Figure 2.2. Three-body orientation in space, with respect to an inertial and
a rotating frame.

2.1.2 Equations of Motion

Since the primaries is assumed to revolve in a circular orbit about their mutual barycenter

observed in the inertial frame, the angular velocity of its motion is fixed. Let θ̇ represent the

angular velocity or the mean motion. The motion of the primaries are defined in the inertial

fixed frame as a function of time, t, as

R̄1 = R1
[
−cos(θ̇t)X̂ − sin(θ̇t)Ŷ

]
(2.7)

R̄2 = R2
[
cos(θ̇t)X̂ + sin(θ̇t)Ŷ

]
(2.8)

where R̄1 and R̄2 are the position vectors from the barycenter towards primary bodies P1

and P2 respectively. The magnitude of each of the vectors R̄1 and R̄2 are described by R1

and R2 respectively. In this investigation, non-bold italicized letters represents the scalar

magnitude of a quantity while the non-bold italicized letters with a bar sign on top repre-

sents a vector quantity. The position vector of the third body P3 denoted by R̄3 is free to

change in all three spatial directions. Computing the states R̄3 and ˙̄R3 in the inertial frame

requires computation of the position and velocity states of the primary bodies at all times.

A rotating coordinate frame, R, that rotates with the primary bodies remove the necessity
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to evaluate the states of the primaries that are explicit functions of time. The energy of the

system in the rotating frame, R, remains conserved as in the inertial frame, I. Define x̂, ŷ, ẑ

as the unit vectors that define the coordinates of the rotating frame of reference, such that x̂

points in the direction from primary body P1 to P2. The direction ẑ points along the angular

momentum of the primaries, also aligned along the positive Ẑ axis. Finally, the direction ŷ

completes the right hand coordinate system.

To further generalize the equations of motions for various three-body systems and mini-

mize the possibility of round-off errors during numerical integration, the terms of the equa-

tions of motion are non-dimensionalized by corresponding characteristic quantities. All

quantities of distance are reduced by the characteristic length, all quantities of mass are

reduced using the characteristic mass and quantities of time with the characteristic time.

The characteristic length, l∗, is defined as the distance between the two primaries such as

l∗ = R1 +R2, (2.9)

the characteristic mass, m∗, is the total mass of the system, given as

m∗ = m1 +m2 (2.10)

and the characteristic time is defined as the reciprocal of the mean motion,

t∗ = 1
θ̇

=
√

l∗3

G̃m∗
(2.11)

where the subscript 1 denotes the characteristic properties of primary P1 while subscript 2

denotes properties of primary P2. Let the system mass ratio, µ, be another defining quantity,

given as,

µ = m2

m1 +m2
= m2

m∗ (2.12)

hence, m2 = µm∗ and m1 = (1 − µ)m∗. The characteristic quantities and the system mass

ratio are sufficient to describe the nature of a system. The circular restricted three-body is
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therefore simplified in the non-dimensional units. The differential equation that governs the

motion of body P3 as given by equation ( 2.4 ), is non-dimensionalized as

¨̄r3 = 1 − µ

r3
13

r̄13 + µ

r3
23
r̄23 (2.13)

where r̄3 is now expressed in the rotating frame as r̄3 = xx̂ + yŷ + zẑ. The vectors r̄13 and

r̄23 given as

r̄13 = r̄3 − r̄1 = (x− µ)x̂+ yŷ + zẑ (2.14)

r̄23 = r̄3 − r̄2 = (x− 1 + µ)x̂+ yŷ + zẑ (2.15)

depends on the location of the primaries along the x̂ axis, i.e., r̄1 = −µx̂ and r̄2 = (1 − µ)x̂.

The derivatives, i.e., ˙̄r3 and ¨̄r3 are with respect to non-dimensional time τ where τ = t/t∗.

To formulate the equations of motion in the rotating frame, the derivatives are taken in

the rotating frame, R, with respect to an inertial frame, I. The Basic Kinematic equation

(BKE) correlates the derivatives in the rotating frame to the inertial frame as

Idr̄3

dτ
=

Rdr̄3

dτ
+ IωR × r̄3 (2.16)

where IωR = θ̇ẑ gives the angular velocity of the rotating frame about ẑ axis. The velocity

of the body P3 therefore becomes

I ˙̄r3 = ẋx̂+ ẏŷ + żẑ + [θ̇ẑ] × [xx̂+ yŷ + zẑ]

= (ẋ− θ̇y)x̂+ (ẏ + θ̇x)ŷ + żẑ
(2.17)

in the rotating frame, R. The second derivative of the position vector r̄3, yields

I ¨̄r3 = (ẍ− 2θ̇ẏ − θ̇2x)x̂+ (ÿ + 2θ̇ẋ− θ̇2y)ŷ + z̈ẑ (2.18)

where I ¨̄r3 is the instantaneous acceleration in the rotating frame. Substituting the equations,

( 2.14 ), ( 2.15 ) and (  2.18 ) into equation (  2.13 ) along with non-dimensional value of mean
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motion, θ̇, that is 1 for CR3BP, yields the three scalar equations of motion for P3 in the

rotating frame, R, given by

ẍ− 2ẏ − x = −1 − µ

d3 (x+ µ) − µ

r3 (x− 1 + µ) (2.19)

ÿ + 2ẋ− y = −1 − µ

d3 y − µ

r3y (2.20)

z̈ = −1 − µ

d3 z − µ

r3 z (2.21)

such that,

d = r13 =
√

(x+ µ)2 + y2 + z2 (2.22)

r = r23 =
√

(x+ 1 − µ)2 + y2 + z2 (2.23)

where d represents the non-dimensional distance from P3 to primary body P1 and r represents

the non-dimensional distance from P3 to smaller primary body P2.

2.1.3 Jacobi Constant

The conservation of energy principle does not apply for a non inertial system. A similar

quantity that is conserved in the rotating frame is of high significance. A potential function

(U) represents the work done to displace a unit mass from infinity to that particular point.

For CR3BP, this is given by,

U = 1 − µ

d
+ µ

r
(2.24)

such that, ∇̄Ui = mi ¨̄ri for a unit mass mi. Similarly a pseudo-potential function (U∗) is

defined such that,

U∗ = U + 1
2
(
x2 + y2

)
= 1 − µ

d
+ µ

r
+ 1

2
(
x2 + y2

)
(2.25)
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where U and U∗ are both functions of only positions and give useful insights about the

motion of the spacecrafts. The scalar equations of motion in equations ( 2.19 ), (  2.20 ) and

( 2.21 ) when rendered as a function of pseudo-potential function, given by

ẍ− 2ẏ = ∂U∗

∂x
(2.26)

ÿ + 2ẋ = ∂U∗

∂y
(2.27)

z̈ = ∂U∗

∂z
(2.28)

indicates that the acceleration in the x and y directions, as in equations (  2.26 ) and ( 2.27 ),

are decoupled from any out of plane components in the z direction; implying that the xy

planar motion evolves independently of the out of plane motion and vice-versa. Any motion

in the orbit plane of primaries continue to remain in the same plane unless any out of plane

maneuver is applied. Both U and U∗ do not remain conserved in the rotating frame.

An energy integral is computed by integrating the dot product of the velocity and the

acceleration components of the third body in motion, due to the gravitational forces exerted

on it by the two primaries. In the rotating frame, this is given by

˙̄r3 · ¨̄r3 = [ẋx̂+ ẏŷ + żẑ] · [ẍx̂+ ÿŷ + z̈ẑ]

= ẋẍ+ ẏÿ + żz̈

= ∂U∗

∂x
ẋ+ ∂U∗

∂y
ẏ + ∂U∗

∂z
ż

= ∂U∗

∂t

(2.29)

which is the time derivative of the pseudo-potential function. The integration of the partials

in equation ( 2.29 ) yields,

˙̄r2
3 = v2 = 2U∗ − C → C = 2U∗ − v2 (2.30)
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here C is the constant of integration and v is the velocity of the third body P3 in the

rotating frame. The constant C, known as Jacobi Constant represents a conserved energy-

like quantity in the rotating frame. An increase in the energy of the system relative to the

rotating frame represents a decrease in the Jacobi constant and vice-versa. Jacobi constant

has various uses in the circular restricted three-body problem. It is used to determine

accuracy of numerical integration by monitoring the change in the value of C, to identify

the change in energy required for transfer trajectories, to understand the energy limits of

families of orbits and many more.

2.1.4 Equilibrium Solutions

Determining equilibrium solutions helps gain further insight into the CR3BP. The equi-

librium solutions correspond to the positions where the third body, free from any initial

acceleration or velocity remains stationary in the rotating frame for an indefinite period of

time. Consequently, all the time derivatives are zero, i.e., ẋ = ẏ = ż = ẍ = ÿ = z̈ = 0. Sub-

stituting this relation into the equations (  2.26 )-( 2.28 ) indicates that the gradient of pseudo-

potential function is zero, i.e., ∇U∗ = 0. Therefore, the equilibrium solutions are solved

using the following equations
∂U∗

∂x
= ∂U∗

∂y
= ∂U∗

∂z
= 0 (2.31)

using numerical schemes. The equilibrium points are also commonly described as Lagrange

points or Libration points, (Li). Each libration points ‘Li’ are found by numerically solving

the equation ( 2.31 ) that yields,

∂U∗

∂x
= −1 − µ

d3
Li

(xLi + µ) − µ

r3
Li

(xLi − 1 + µ) + xLi = 0 (2.32)

∂U∗

∂y
= −1 − µ

d3
Li

yLi − µ

r3
Li

yLi + yLi = 0 (2.33)

∂U∗

∂z
= −1 − µ

d3
Li

zLi − µ

r3
Li

zLi = 0 (2.34)
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where d3
Li

and r3
Li

are the distances from the libration point ‘Li’ to each of the two primaries

while the coordinates of the equilibrium points are (xLi , yLi , zLi).

Each combination of (xLi , yLi , zLi) correspond to a libration point, ‘Li’. Equation (  2.34 )

is satisfied with zLi = 0, thus all libration points lie in the orbit plane of the primaries.

Similarly, yLi = 0, is a solution of the equation ( 2.33 ), hence one or more equilibrium

solutions exists on the rotating x-axis given by (xLi , 0, 0) that satisfies equation ( 2.32 ) as

− 1 − µ

|xLi + µ|3
(xLi + µ) − µ

|xLi − 1 + µ|3
(xLi − 1 + µ) + xLi = 0 (2.35)

but equation ( 2.35 ) has no closed form solution, therefore, roots are computed numerically

that yields three real solutions. Imaginary solutions are neglected as physical locations

cannot be represented by imaginary numbers. The three possible solutions of equation ( 2.35 )

are represented in terms of the displacement from the nearest primary using γi. Coordinates

of the three collinear libration points are given as (xLi , yLi , zLi), such that,

L1 : (1 − µ− γ1, 0, 0) (2.36)

L2 : (1 − µ+ γ2, 0, 0) (2.37)

L3 : ( −µ− γ3, 0, 0) (2.38)

where γi indirectly depends on the value of µ, i.e., different values of γi for different three-

body systems. The values of γi are solved by iterating the equation ( 2.35 ) at each of the

collinear Li, specifically

− 1 − µ

(1 − γ1)2 + µ

γ2
1

+ 1 − µ− γ1 = 0 (2.39)

− 1 − µ

(1 + γ2)2 − µ

γ2
2

+ 1 − µ+ γ2 = 0 (2.40)

1 − µ

γ2
3

+ µ

(1 + γ3)2 − µ+ γ3 = 0 (2.41)
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for different system mass ratio µ. Libration point L1 lies between the two primaries, L2

lies to the right of smaller primary while L3 lies to the left of larger primary as shown in

Figure  2.3 . Each of the libration points are numbered according to the convention followed

in literature.

Besides the three collinear solution, two other equilibrium solutions exists in the CR3BP.

Equations (  2.32 ) and (  2.33 ) are also satisfied simultaneously for d = r = 1 that completes

the equilateral triangle with the distance between the primaries as the side of an equilateral

triangle. As a result, two equilibrium points lie on either side of the x− z plane equidistant

from both the primaries as shown in Figure  2.3 . By virtue of their location, these points are

labelled as triangular or equilateral Libration points. As per the convention, coordinates of

the triangular libration points are

L4 :
(

1
2 − µ,

√
3
2 , 0

)
(2.42)

L5 :
(

1
2 − µ, −

√
3
2 , 0

)
(2.43)

where L4 is located in the positive ŷ region while L5 is located in the negative ŷ region.

2.1.5 Zero Velocity Curves

Within the CR3BP, the motion of P3, under the influence of the two primary bodies, is

bounded by the total energy it possesses. The value of the Jacobi Constant along with the

equilibrium solutions render the boundaries of motion. From equation (  2.30 ), v2 = 2U∗ −C,

leads to the conclusion that the velocity of P3 will become imaginary if C > 2U∗ which

is mathematically possible but physically absurd. The region where the velocity becomes

imaginary is physically inaccessible hence it is termed as the forbidden region. The motion
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Figure 2.3. Equilibrium locations in the CR3BP.

of the third body P3 is confined within the region where C ≤ 2U∗. The boundary occurs

where P3 is theoretically stationary with zero velocity or

C = 2U∗ = 2(1 − µ)
d

+ 2µ
r

+
(
x2 + y2

)
(2.44)

where infinitely many combinations of (x, y, z) satisfy the equation ( 2.44 ) forming a three-

dimensional surface called the Zero Velocity Surface (ZVS). An example of a ZVS in the

Earth-Moon system is illustrated in Figure  2.4 .

A two-dimensional curve formed out of a cross section of the ZVS is called the Zero

Velocity Curves (ZVC). To examine a planar motion, a cross section of the Zero Velocity

Surface is considered along the x − y plane forming a Zero Velocity Curve representing the

boundary for the planar motion. The Zero Velocity Curves for different energy levels (or dif-

ferent Jacobi values) decide the boundaries of motion for P3 in the plane. Each equilibrium

point corresponds to a Jacobi Value (CLi). As the ZVCs evolve for different Jacobi values, it
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Figure 2.4. Zero Velocity Surface in the Earth-Moon system for C = 3.2.
(Earth and Moon not to scale)

is insightful to monitor the changes in the ZVCs as it crosses each CLi . Figure  2.5 illustrates

the evolution of ZVCs for different Jacobi values in comparison to the Jacobi values at the

Lagrange points mentioned as CLi for the Earth Moon (EM) system, and its impact on the

accessible regions in space.

The Jacobi constant at the Lagrange points, CLi , are critical factors that impact the

shape of the ZVCs. The changing geometry is as explained:

• CL1 < C

For an energy level less than at L1, i.e., CL1 < C, the third body P3 is bounded within

the vicinity of either one of the primary bodies as indicated in Figure  2.5(a) . If P3

is initially present near main primary then it continues to remain in the vicinity of

the main primary. Similarly, if P3 is present near the second primary then it remains

bounded near the second primary. The energy of P3 is not high enough to cross the
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Forbidden Region

(a) CL1 < C

Forbidden Region

(b) CL2 < C < CL1

Forbidden Region

(c) CL3 < C < CL2

Forbidden Region

Forbidden Region

(d) CL4,5 < C < CL3

Figure 2.5. Zero Velocity Curves in the x−y plane for different Jacobi values
in the Earth-Moon (EM) system.

forbidden region near the Lagrange point L1 to transit from the vicinity of one primary

body to the other.

• CL2 < C < CL1

For ZVCs with Jacobi values between the Jacobi at L1 and L2, as seen in Figure  2.5(b) ,

a gateway appears near L1 offering connections between the two primaries. The body

P3, however still does not possess enough energy to escape to outer space.
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• CL3 < C < CL2

With increase in energy level more than L2, gateway opens up near L2 allowing P3 to

escape to outer space near the second primary. Forbidden region still persists towards

the left of the main primary, thus access to outer space is possible only along the

positive x direction.

• CL4,5 < C < CL3

The ZVC splits near L3 at Jacobi level CL3 opening gateway to outer space near L3 as

well. In this range of Jacobi values, P3 has enough energy to move out of the vicinity

of both the primaries in either direction. The forbidden regions eventually contracts

towards L4 and L5.

• C < CL4,5

For lower Jacobi values less than at L4 or L5, the ZVC ceases to exist in the x − y

plane. This does not imply that P3 is free to move anywhere, it just means that

P − 3 is free to traverse anywhere in the planar space but there are still out-of-plane

regions that are inaccessible. It is important to note that at this range of Jacobi values

the Zero Velocity Surface splits into two distinct surfaces at L4 and L5 in the out-of-

plane directions. With a decrease in C values, the two distinct Zero Velocity Surfaces

continues to shrink in the direction away from the x− y plane.

The Zero Velocity Surfaces provides practicable information especially for mission design.

For example, a maneuver is performed to increase the energy level to reach from one primary

to another by opening a gateway near L1, similarly an energy reduction maneuver facilitates

capture in the vicinity of the primaries by closing the gateways near L1 and L2.

2.2 Linearized Model

Any nonlinear system is difficult to analyze. A linearized model offers understanding of

the local behavior of the system in the vicinity of equilibrium solutions. The behavior of

certain states in the nonlinear system close to an already known solution is predicted using

the linearized model without actually requiring to propagate the selected states. With the

same intention the equations of motion of CR3BP are linearized about its equilibria.
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2.2.1 Linearized Variational Equations of Motion

The motion in the circular restricted three-body problem is governed by coupled, second

order nonlinear differential equations that does not have a closed form analytical solution.

Linearized solutions are generated near the equilibrium points to realize the local behav-

ior. All the six states are perturbed about the equilibrium points to develop the linearized

equations of motion. Let (xeq, yeq, zeq) represent the location of the equilibrium points and

(ξ, η, ζ) be the perturbations in (x̂, ŷ, ẑ) directions respectively such that,

x = xeq + ξ (2.45)

y = yeq + η (2.46)

z = zeq + ζ (2.47)

where (x, y, z) are the new states in the vicinity of the equilibrium points. For any state q,

such that q = qeq +δq, where δq is a small deviation from reference solution qeq, the derivative

is expressed as

q̇ = f(q, t) (2.48)

which is approximated to the first order derivative term using Taylor Series. As a result,

equation ( 2.48 ) becomes,

˙qeq + δ̇q ≈ f(qeq + δq, t) = f(qeq, t) + ∂f

∂q

∣∣∣∣∣
qeq

dq +H.O.T.s (2.49)

where, H.O.T.s represents the higher order terms that are neglected here for approximat-

ing the integration to first order, assuming perturbations are very small. The first order

approximation yields

δq̇ = ∂f

∂q

∣∣∣∣∣
qeq

δq = A(t)δq (2.50)

where A(t) is known as the Jacobian Matrix and contains the partials of f with respect to

state q. Using equation (  2.50 ), the time derivatives of the position and velocity states near

equilibrium points in CR3BP is also written in the same form,
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ẋ = ẋeq + ξ̇ = ξ̇ (2.51)

ẏ = ẏeq + η̇ = η̇ (2.52)

ż = żeq + ζ̇ = ζ̇ (2.53)

ẍ = ẍeq + ξ̈ = ξ̈ (2.54)

ÿ = ÿeq + η̈ = η̈ (2.55)

z̈ = z̈eq + ζ̈ = ζ̈ (2.56)

since [ẋeq, ẏeq, żeq, ẍeq, ÿeq, ÿeq]T = 0̄, as the equilibrium points are stationary in CR3BP. The

variational equations are developed by taking the derivatives of the equations (  2.26 ), (  2.27 )

and ( 2.28 ) and expressed in terms of pseudo potential function, U∗, as

ξ̈ − 2η̇ = U∗
xxξ + U∗

xyη + U∗
xzζ (2.57)

η̈ + 2ξ̇ = U∗
yxξ + U∗

yyη + U∗
yzζ (2.58)

ζ̈ = U∗
zxξ + U∗

zyη + U∗
zzζ (2.59)

where each U∗
ij = ∂2U∗

∂i∂j
are the second order partials of U∗ with respect to the directions

expressed as the subscripts. For each i, j ∈ {x, y, z}, the partials are expanded as

U∗
xx = 1 − 1 − µ

d3 − µ

r3 + 3(1 − µ)(x+ µ)2

d5 + 3µ(x− 1 + µ)2

r5 (2.60)

U∗
yy = 1 − 1 − µ

d3 − µ

r3 + 3(1 − µ)y2

d5 + 3µy2

r5 (2.61)

U∗
zz = −1 − µ

d3 − µ

r3 + 3(1 − µ)z2

d5 + 3µz2

r5 (2.62)

U∗
xy = 3(1 − µ)(x+ µ)y

d5 + 3µ(x− 1 + µ)y
r5 = U∗

yx (2.63)

U∗
xz = 3(1 − µ)(x+ µ)z

d5 + 3µ(x− 1 + µ)z
r5 = U∗

zx (2.64)
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U∗
yz = 3(1 − µ)yz

d5 + 3µyz
r5 = U∗

zy (2.65)

where d, r and µ retain their original definitions.

In the CR3BP, the natural motion of P3 is represented by 6 state variables, [ξ, η, ζ, ξ̇, η̇, ζ̇]T .

The linearized variational equations of motion are expressed in first order state space form

as



ξ̇

η̇

ζ̇

ξ̈

η̈

ζ̈



=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗
xx U∗

xy U∗
xz 0 2 0

U∗
yx U∗

yy U∗
yz −2 0 0

U∗
zx U∗

zy U∗
zz 0 0 0





ξ

η

ζ

ξ̇

η̇

ζ̇



(2.66)

that is numerically integrated to determine the 6 states required to express the motion of

a spacecraft uniquely. For ease of representation, if δq̄ denotes the states [ξ, η, ζ, ξ̇, η̇, ζ̇]T ,

then δ ˙̄q = A(t)δq̄ portrays equation (  2.66 ), such that A(t) is the 6x6 Jacobian matrix that

is reduced to smaller 3x3 submatrices as,

A(t) =

 O3×3 I3×3

UXX Ω3×3

 (2.67)

where O, I, UXX and Ω are 3x3 submatrices of 6x6 Jacobian matrix in equation (  2.66 ).

Here, O denotes a zero matrix while I indicates an identity matrix.

2.2.2 Stability of the Equilibrium Points

The stability charactersitics of the linearized equations of motion facilitates the analysis

of the local motion near the equilibrium points. There are numerous ways to define the

stability of a solution depending on the objective of the given problem. An equilibrium point
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is considered stable if the motion of a body that is subjected to any small perturbations

remains bounded in the near neighborhood of the equilibrium point. The definition of

the stability in this case is in lieu with Lyapunov Stability Criteria. Mathematically, an

equilibrium point ψe is Lyapunov Stable if for all ε > 0 there exists δ > 0, such that if at

time, t = 0, ||ψ(0) − ψe|| < δ, then for t ≥ 0, ||ψ(t) − ψe|| < ε. Alternatively, if an initial

perturbation δ is given about the equilibrium point then subsequent motion should remain

bounded within a defined ε. Furthermore, the solution is said to be asymptotically stable

if the solution satisfies the Lyapunov Stability, and, for an initial perturbation within some

δ > 0, i.e., at t = 0, ||ψ(0) − ψe|| < δ, there exists,

lim
t→∞

||ψ(0) − ψe|| = 0 (2.68)

indicating a convergent behavior.

The Lyapunov stability of a linearized system defined as δ ˙̄q = Aδq̄, is computed by

inspecting the eigenvalues of the Jacobian Matrix A (assuming A constant). The eigenvalues

λi are the roots of the characteristics equation of A for which the determinant ||λI −A|| = 0

is evaluated. A system is classified as unstable, marginally stable or asymptotically stable

based on the eigenvalues. The criteria are

• Unstable: If at-least one of the eigenvalues have a positive real part, i.e., R(λi) > 0,

then the linearized system is unstable. The corresponding nonlinear system is also

unstable.

• Marginally Stable: If all of the eigenvalues are purely imaginary, i.e., R(λi) = 0,

then the linearized system is marginally stable. A marginally stable linearized system

is bounded but not asymptotically stable. No conclusions can be made about the

stability of the corresponding nonlinear system.

• Asymptotically Stable: If all of the eigenvalues have negative real part, i.e., R(λi) <

0, then the linearized system is marginally stable. The corresponding nonlinear system

is stable in the local vicinity.
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The linearized equations of motion are computed about the equilibrium points to assess

the stability. The equilibrium points computed in section  2.1.4 indicate that all of them lie

in the plane of the primaries, i.e., z = 0. Therefore, partials given in equations (  2.64 ) and

( 2.65 ) become U∗
xz = U∗

yz = U∗
zx = U∗

zy = 0. The linearized equations in (  2.57 ) - (  2.59 ) are

simplified to three equations

ξ̈ − 2η̇ = U∗
xxξ + U∗

xyη (2.69)

η̈ + 2ξ̇ = U∗
yxξ + U∗

yyη (2.70)

ζ̈ = U∗
zzζ (2.71)

with fewer number of partials. The linearized equations of motion about the equilibrium

solutions expressed in equations (  2.69 ) - (  2.71 ) indicate that the motion of spacecraft in the

out-of-plane direction, i.e., z direction given in (  2.71 ) is decoupled from equations (  2.69 )

and ( 2.70 ) that relate to the in-plane motion. Subsequently implying that the motion in the

out-of-plane direction evolves independent of the motion in the plane of primaries.

Since the equation (  2.71 ) is decoupled from the equations (  2.69 ) and (  2.70 ), the out

of plane motion and the in-plane motion are analyzed independently. For all equilibrium

points, U∗
zz < 0, hence out of plane motion in the vicinity of all equilibrium points undergo

simple harmonic motion like a spring mass system. Moreover, the eigenvalues λz = ±iωz =

±i
√

|U∗
zz|, implying marginal stability with the frequency of the out-of-plane motion given by

ωz =
√

|U∗
zz|. For Lagrange points L4 and L5, the value of |U∗

zz| = 1, i.e., ωz = 1, hence the

period of the out-of-plane motion ℘ = 2π/ωz = 2π (in non-dimensional unit) which is same

as the period of the primaries. For variational in-plane motion about the equilibrium points,

the states are given by δq̄ = [ξ, η, ξ̇, η̇]T such that,

δ ˙̄q = Axyδq̄ (2.72)

Axy =

 O2×2 I2×2

UXX,2×2 Ω2×2

 (2.73)
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where Axy denotes the Jacobian matrix of the in-plane motion, with submatrices as

UXX,2×2 =

 U∗
xx U∗

xy

U∗
yx U∗

yy

 (2.74)

Ω2×2 =

 0 2

−2 0

 (2.75)

while O2×2 is a 2 × 2 zero matrix and I2×2 is a 2 × 2 identity matrix. The eigenvalues of

the in-plane system near the equilibrium points are the roots of the characteristic equations

given by determinant ||λI − Axy|| = 0, i.e.,

λ4 + (4 − U∗
xx − U∗

yy)λ2 + (−2U∗
xy + 2U∗

yx)λ+ (U∗
xxU

∗
yy − U∗

xyU
∗
yx) = 0 (2.76)

where the values U∗
xx, U∗

xy and U∗
yx are different for different equilibrium points. Consequently,

each equilibrium point has different stability properties that are analyzed separately.

2.2.3 Motion near the Collinear Equilibrium Points

The collinear equilibrium points L1, L2 and L3 lie along the x-axis. Since yLi = zLi = 0,

some of the terms in the linear variational equations of motion are nullified in the vicinity

of these collinear Lagrange points, i.e., U∗
xy = U∗

yx = 0. Thus, the characteristic equation for

the in-plane motion as in equation ( 2.76 ) simplifies to

λ4 + (4 − U∗
xx − U∗

yy)λ2 + (U∗
xxU

∗
yy) = 0 (2.77)

with fewer variables. The eigenvalues corresponding to the system are the roots of the

characteristic equations that are given by,

λ1,2 = ±
√

−β1 + (β2
1 + β2

2)1/2 (2.78)

λ3,4 = ±
√

−β1 − (β2
1 + β2

2)1/2 (2.79)
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where, for simplicity β1 and β2 are defined as

β1 = 2 −
U∗

xx + U∗
yy

2 (2.80)

β2
2 = −U∗

xxU
∗
yy (2.81)

that are functions of the pseudo-potential evaluated at the corresponding equilibrium point

Li. Further, for additional simplicity, define

s =
√
β1 + (β2

1 + β2
2)1/2 (2.82)

β3 = s2 + U∗
xx

2s (2.83)

as constants for representation. The analytical solution of the variational equations in terms

of the position along x and y directions near the equilibrium points are expressed as

ξ =
4∑

i=1
Aieλit (2.84)

η =
4∑

i=1
Bieλit (2.85)

where Ai and Bi are coefficients corresponding to stimulated eigenvector with λi as the

corresponding eigenvalue. Here, Ai and Bi are related to each other as

Bi = αiAi (2.86)

αi = λ2
i − U∗

xx

2λi
(2.87)

because of coupled xy motion. To identify the motion along a particular direction, the

linearized variational model is perturbed along the corresponding eigenvector direction. It

is important to note here that λ3,4 = ±is where s is as defined in equation (  2.82 ) implying

that λ3,4 are purely imaginary indicating marginal stability, while λ1,2 exists as positive

and negative real pair. A periodic solution in the linearized system exists only along the

eigenvalues λ3,4, therefore any component of perturbations are nullified along directions

56



corresponding to eigenvalues λ1,2 that potentially destabilizes the system due to its unstable

component. Henceforth, conditions such that, A1 = A2 = 0 are set to modify equations

( 2.84 ) and ( 2.85 ) to

ξ = A3eλ3t + A4eλ4t (2.88)

η = B3eλ3t +B4eλ4t = α3A3eλ3t + α4A4eλ4t (2.89)

resulting in a solution may potentially be periodic in the vicinity of the collinear libration

points. On evaluating, A3 and A4 in terms of s, α3, ξ0, η0, the analytical representation of the

periodic behavior of the motion of the spacecraft in the vicinity of the collinear equilibrium

points are given by

ξ = ξ0 cos(s(τ − τ0)) + η0

β3
sin(s(τ − τ0)) (2.90)

η = η0 cos(s(τ − τ0)) − ξ0β3 sin(s(τ − τ0)) (2.91)

ξ̇ = −ξ0s sin(s(τ − τ0)) + η0

β3
s cos(s(τ − τ0)) (2.92)

η̇ = −η0s sin(s(τ − τ0)) − ξ0β3s sin(s(τ − τ0)) (2.93)

where, τ represents the non-dimensional time. The linearized variational equations of motion

are developed given the initial perturbation in position (ξ0, η0) and in velocity (ξ̇0, η̇0), in

the x and y directions respectively at initial non-dimensional time τ0. The time period of

formed orbit is given by

℘ = 2π

s
(2.94)

as expressed in non-dimensional time.

2.2.4 Motion near the Triangular Equilibrium Points

Similar to collinear libration points, analytical linearized variational equations of motion

are used to leverage the dynamics in the proximity of the triangular libration points. The out-
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of-plane motion is decoupled from the in-plane motion, and hence, they evolve independently.

As discussed in section  2.2.2 , the period of the out-of-plane motion is same as the period of the

primaries about the barycenter. While, the in-plane motion is given by the characteristic

equation given in equation (  2.76 ). For equilibrium points L4 and L5, the partials of the

pseudo-potential functions are evaluated as

U∗
xx = 3

4 (2.95)

U∗
yy = 9

4 (2.96)

U∗
xy = U∗

yx = ±3
√

3
2

(
µ− 1

2

)
(2.97)

where U∗
xy and U∗

yx are positive for L4 and negative for L5. On substituting these in equation

( 2.76 ), the characteristic equations for the in-plane motion becomes,

λ4 + λ2 + 27
4 µ (1 − µ) = 0 (2.98)

that is a function of the system mass ratio, µ. The roots of the characteristic equation are

computed as

λ1,2 = ±
√

1
2 (−1 +√

g) (2.99)

λ3,4 = ±
√

1
2 (−1 −√

g) (2.100)

such that,

g = 1 − 27µ (1 − µ) (2.101)

is a constant value defined for simplicity.

The eigenvalues that determine the stability of the system depends on the value of g that

is a function of system mass ratio µ, therefore the stability characteristics of the triangular
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equilibrium points in various three-body systems are different. The stability characteristics

alter at certain critical system mass ratios as explained.

• 0 < g < 1 or 0 < µ < 0.03852

On careful inspection, it is evident that for all values of 0 < µ < 0.03852, λ1,2 and λ3,4

are purely imaginary, hence the motion of the third body about the triangular equi-

librium points is periodic in linear sense. The eigenvalues are represented in terms of

their frequencies, i.e., λ1,2 = ±iω1 and λ3,4 = ±iω2, where ω1 is the smaller frequency

that corresponds to long period motion (℘ = 2π/ω1) and ω2 is the larger frequency

that corresponds to short period motion (℘ = 2π/ω2). The motion near the Lagrange

points L4 and L5 are a linear combination of the short period motion and the long

period motion. Stability in the nonlinear system is however not determined. The char-

acteristics remain same for 0.96148 < µ < 1 except that the positions of the primaries

bodies are interchanged.

• g = 0 or µ = 0.03852

At this critical mass ratio, λ1,2 = λ3,4 = ±
(
1/

√
2
)
i, which means that one of the short

period or long period motion is eliminated. Additionally in the linear model, repeated

imaginary eigenvalues results in an unstable system.

• g < 0 or 0.03852 < µ

For any three-body system with mass ratio µ such that, 0.03852 < µ (or µ < 1 −

0.03852 = 0.96148), the eigenvalues exists in the form

λ1,2 = ±
√

1
2 (−1 +√

g) = ±
√

1
2 (−1 ± iδ) (2.102)

λ3,4 = ±
√

1
2 (−1 −√

g) = ±
√

1
2 (−1 ∓ iδ) (2.103)

where√
g = ±iδ. The eigenvalues for this range of µ value system exist in the form

λi = p+ iq, with two positive real and two negative real part, making the system unsta-
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ble. Nevertheless, initial conditions selected wisely in the direction of the eigenvector

corresponding to the negative real eigenvalue results in an asymptotically stable linear

system in the local vicinity of the equilibrium points. The third body undergoes a

spiral motion eventually approaching the triangular equilibrium point.

• g ≥ 1 or µ ≤ 0, 1 ≤ µ

Such mass ratio indicates negative mass for either of the primary body. Such system

cannot exist physically.

2.3 Higher-Fidelity Ephemeris Model

The circular restricted three-body problem fundamentally captures the motion of a space-

craft due to concurrent gravitational interaction with two main primary bodies. The pres-

ence of other non-finite gravitational bodies affects the motion of the spacecraft. The higher

fidelity model is a more accurate representation of the complex dynamical regime, that ex-

hibits characteristics similar to the CR3BP, and used to represent accurate trajectory designs

and compute orbit maintenance costs with reduced errors. Using the n-body relative equa-

tions of motion, a more accurate representation of the spacecraft motion is rendered, one

that accommodates the time-varying relative location of the celestial bodies in modeling

the gravitational forces acting on the spacecraft. DE421 planetary ephemerides from NASA

Jet Propulsion Laboratory (JPL) is used to identify the position and velocity of different

celestial bodies used in simulating in the higher-fidelity model. The inclusion of precise orbit

eccentricities and inclination in the ephemeris model improves the authenticity of the solu-

tions unlike in the lower fidelity CR3BP model where such parameters are either ignored or

assumed constant.

2.3.1 n-body Dynamical Model

For improved accuracy, the governing equations of motion of the body of interest is

derived in the n-body dynamical regime. The additional higher-fidelity force terms enhances

the solution over the restricted three-body problem. The objective of the ephemeris model is
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to investigate the motion of a body Pi in an n-body gravitational model. In section  2.1 , the

differential equations of motion of a n-body model are written with respect to an inertially

fixed base point. Since the DE421 planetary ephemerides data provides relative location of a

celestial body with respect to another, it is practically convenient to formulate the equations

of motion with respect to a central body Pq as portrayed in Figure  2.6 . The central body

is denoted by subscript q, the object of interest or the spacecraft as i, while the remaining

of the n bodies are labeled as j. The vector r̄qi represents the relative position of spacecraft

with respect to the central body.

𝑌

መ𝑍

ҧ𝑟𝑞𝑛

ҧ𝑟𝑞𝑖

ҧ𝑟𝑞𝑗

𝑋

𝑃𝑗 (𝑚𝑗)

𝑃𝑞 (𝑚𝑞)

𝑃1 (𝑚1)

𝑃𝑛 (𝑚𝑛)

ҧ𝑟𝑞1

ҧ𝑟𝑛𝑖

ҧ𝑟1𝑖

ҧ𝑟𝑗𝑖

𝑃𝑖 (𝑚𝑖)

Figure 2.6. Geometry of the n-body problem.

A second order vector differential equation that governs the motion of the spacecraft

relative to the central body is derived using the instantaneous position vectors r̄ij and r̄qj, as

demonstrated in Figure  2.6 , as

¨̄rqi = −G̃(mi +mq)
r3

qi
r̄qi + G̃

n∑
j=1

j6=i,q

mj

(
r̄ij

r3
ij

− r̄qj

r3
qj

)
(2.104)

where the vector r̄qj is directly obtained from DE421 ephemerides data while the vector r̄ij

is obtained by vector operation, i.e.,
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r̄ij = r̄qj − r̄qi (2.105)

where the vector r̄qi is the position of the spacecraft relative to the central body. Addition-

ally, r̄ij = −r̄ji denotes the relative location of the perturbing body Pj with respect to the

body of interest Pi.

The n-body equations of motion as given in equation (  2.104 ) are expressed in dimensional

units, however, for practical use and ease of numerical computation, these terms are non-

dimensionalized using corresponding characteristic quantities of the most relevant CR3BP

system. The accuracy of this model is further improved by additional force models such as

Solar Radiation Pressure and J2 perturbations incorporated into Equation ( 2.104 ), i.e.,

¨̄rqi = −G̃(mi +mq)
r3

qi
r̄qi + G̃

n∑
j=1

j6=i,q

mj

(
r̄ij

r3
ij

− r̄qj

r3
qj

)
+ aSRP r̂Sun,i + %̄J2,qi (2.106)

such that −G̃(mi +mq)
r3

qi
r̄qi is the dominant gravitational acceleration due to body Pq, while

−G̃mj
r̄ij

r3
ij
is the direct perturbing acceleration and G̃mj

r̄qj

r3
qj

is the indirect perturbing accel-

eration due by body Pj on spacecraft Pi. The sum of the direct and indirect perturbing

acceleration, i.e., −G̃mj

(
r̄ij

r3
ij

− r̄qj

r3
qj

)
is the resultant net gravitational acceleration on space-

craft Pi due to body Pj. The quantity aSRP r̂Sun,i is the acceleration due to solar radiation

pressure acting on the spacecraft in the direction away from the Sun, and, finally, %̄J2,qi is

the J2 perturbing acceleration on the spacecraft due to oblateness of body Pq. It is further

assumed that the J2 perturbing accelerations due to non-central bodies are negligible and

therefore not included in Equation ( 2.106 ).

In a circular restricted three-body problem, the coordinate system is defined about the

barycenter of the two primary bodies P1 and P2, and, therefore, it is sometimes convenient
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to compare the magnitude of gravitational forces acting on the spacecraft with respect to

the barycenter. Such gravitational acceleration quantities are given by

¨̄rBi = (1 − µ)¨̄r1,i + µ¨̄r2,i (2.107)

where ¨̄rP1i and ¨̄rP2i are values calculated using Equation (  2.106 ) for central bodies P1 and

P2 respectively. The magnitudes of gravitational forces thus determined, offer insight into

the most influencing forces that must be considered while modeling a real scenario.

2.3.2 Solar Radiation Pressure

The effect of the solar radiation pressure (SRP) on a spacecraft depends on its mass,

sectional area facing the Sun, and the coefficient of reflectivity. Of course, the orientation of

the spacecraft impacts the acceleration due to SRP, however, unless the specific dimensions

and the orientation of the spacecraft is unknown it is challenging to model the effects of

SRP. A simple and convenient cannonball model is assumed to model the spacecraft. An

equivalent spherical model overcomes the effect of the orientation of the spacecraft as the

sectional area facing the Sun is a constant. The effect of an additional perturbing force due

to solar radiation pressure (SRP) acting on the spacecraft surface is trivial if modeled as

a point mass. In reality, however, the area of the spacecraft is non-zero. For a spacecraft

with a perfectly reflective surface, the mass to area ratio, σ∗
MAR = 1.53 × 10−3 kg/m2 is the

critical value at which the solar radiation pressure acting on the spacecraft is exactly equal

to the gravitational force acting due to the Sun. A dimensionless sail lightness parameter

βsail (or sail loading parameter) is defined as

βsail = σ∗
MAR

σMAR

(2.108)

that is effectively the ratio between the solar radiation pressure acting on the spacecraft to

the gravitational force due to the Sun [  91 ], [ 92 ]. The value of βsail = 0, represent a point
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mass object. The acceleration due to the solar radiation pressure acting on the spacecraft is

given as

aSRP = βsail

(
Cr

2

)
G̃MS

R2
S−s/c

cos2(α) n̂sail (2.109)

where, α is the angle between the direction of incident photons and the normal to the

surface of the spacecraft, n̂sail is the direction normal to the surface of the spacecraft, G̃ is

the universal gravitational constant, MS is the mass of the Sun, RS−s/c is the distance from

the Sun to the spacecraft while Cr is a material parameter such that 0 ≤ Cr ≤ 2 where

Cr = 2 indicates perfectly reflective surface while Cr = 0 indicates perfectly light absorbing

surface [  91 ], [  92 ]. For convenience, it is assumed that the surface of the spacecraft is perfectly

reflective, i.e., Cr = 2, and the maximum area of the spacecraft is facing the Sun at all times,

i.e., α = 0o, consequently incorporating the maximum impact of the solar radiation pressure.

Of course, errors in SRP is simulated by altering the coefficient of reflectivity, Cr, and the

sectional area of the spacecraft facing the Sun. In general, if the mass to area ratio (σMAR)

of the spacecraft is small, i.e., a less dense spacecraft, then the effect of the SRP is more

prominent.

2.4 Coordinate Frame

Newton’s laws of motion hold true in an inertial frame of reference; one that is not

accelerating [  93 ]. In other words, the center of mass of a system of interacting bodies is at

rest or in uniform motion for Newton’s laws of motion to be applicable. In true sense, there

is no such location that is non-accelerating, unless the center of the universe is considered to

be one. Also, the inertial frame is chosen for convenience to address a particular problem.

For events that span over a billion years, a frame fixed at the center of the universe is an

appropriate choice. For events that span under a million years, the center of the galaxy is

a decent choice to place the origin of an inertial frame. A mission scenario that spans over

a few years, an inertial frame at the center of the solar system is a sufficient choice. For

the kinematics problems, one that span over a few seconds, the Earth itself is considered

non-accelerating. Depending on the time-span of the problem of interest, an inertial frame is
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defined such that the effect of the Coriolis force is negligible, as the angular rate of rotation

over the time-span is insignificant.

Space missions typically span for a few years and for such a time-span the center of the

solar system is assumed to be non-accelerating. As a consequence, the motion of a space-

craft is captured using Newton’s equations of motion expressed relative to an inertial frame

defined with an origin at the center of the solar system. An accurate representation of the

inertial frame is crucial for consistency and accuracy for representation of spacecraft motion

among various researchers and organizations across the globe. Fundamentalkatalog (FK) is

a series of six astrometric catalogues of high precision positional data for a small selection

of stars that defines a celestial reference frame and offers a standard coordinate system for

measuring positions of stars [  94 ]. The fifth of the series update, FK5 J2000, calibrated rel-

ative to 1535 stars, is defined with the Earth mean equator and equinox of J2000.0 epoch

(1 Jan 2000 12:00:00.000 TDB). FK5 J2000 model, or commonly J2000 model, use optical

methods based on positional data of the stars to identify the reference frame. With more

sophisticated calibration using interferometry, the International Celestial Reference Frame

(ICRF) is more accurate than the FK5 J2000 model that is derived from optical calibration.

Very-long-baseline interferometry (VLBI) approaches track extra-galactic quasars and offer

more precise measurements, hence, supersedes the FK5 J2000.0 version. The orientation of

the ICRF frame and the FK5 J2000 frame are fairly consistent and only differ by a few arc-

radians. For implementing the Newton’s relative equations of motion, the relative planetary

positions are retrieved from Spice Kernals provided by NASA JPL. As per the Spice Kernals

user guide, ’J2000’ essentially denotes the updated ICRF frame [ 95 ].

2.5 Coordinate Frame Transformations

The circular restricted three-body problem is formulated in the coordinate frame that

rotates along with the primaries. With respect to an inertial frame, such a frame appears

to be rotating at a rate equal to the angular velocity of the primaries about its barycenter,

hence, commonly denoted as the rotating frame. The motion of a spacecraft relative to the

primaries is not easily perceived in the inertial frame. Furthermore, the ephemeris data is
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expressed in the inertial coordinate frame. It is crucial to transform position and velocity

states from one coordinate frame to the other, to visualize the motion of a spacecraft in

each of the frames. The apparent motion in one frame may not reveal its behavior in the

other frame, therefore, regardless of the frame in which the trajectory is computed, for visual

understanding coordinate transformation of the states becomes necessary.

2.5.1 Correlating the Inertial and Rotating Coordinate Frames

A straight forward approach to correlate states in one frame to another is to use a

transformation matrix that is multiplied directly to the states in one frame to get the states

in the other frame. Figure  2.2 indicates the relation between the rotating frame and the

inertial frame. The rotating coordinate frame, R, is labelled using unit vectors x̂, ŷ, ẑ (small

letters) while the inertial coordinate frame, I, is labelled using unit vectors X̂, Ŷ , Ẑ (capital

letters). The angle that relates frame R to frame I given by θ, that is a function of non-

dimensional time, such that, θ = θ̇τ = τ , as θ̇ = 1 for CR3BP in non-dimensional units. The

Direction Cosine Matrix (DCM) defined as ICR,

ICR =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (2.110)

that transforms the position states in the rotating frame to the inertial frame as


rX

rY

rZ

 = ICR


rx

ry

rz

 (2.111)

where the superscript R in ICR indicates that the column vector of the states in the rotating

frame is multiplied to the DCM. Similarly, a direction cosine matrix RCI is used to convert

the states in inertial frame to rotating frame where RCI =
[

ICR
]−1

.
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Since velocity components are derivatives of position with respect to time the conversion

from inertial frame to rotating frame requires an additional consideration. Either using

the equation ( 2.16 ) or by taking the derivative of equation ( 2.111 ) with respect to non-

dimensional time, the velocity between the two frames is related as


vX

vY

vZ

 = IĊR


rx

ry

rz

+ ICR


vx

vy

vz

 (2.112)

where IĊR indicates derivative of each element of ICR with respect to non-dimensional time.

A combined, total transformation matrix is established that converts both the position and

velocity states from the rotating frame to the inertial frame as



rX

rY

rZ

xX

xY

xZ



=

 ICR O3x3

IĊR ICR





rx

ry

rz

vx

vy

vz



(2.113)

where O3x3 is a 3 × 3 zero matrix. Similarly, full states from inertial frame is converted to

the rotating frame using the inverse of 6 × 6 DCM used in equation ( 2.113 ).

2.5.2 Correlating the Inertial J2000 and Rotating Coordinate Frames

Transitioning from an Inertial J2000 frame to a rotating frame is comparable to the

transformation in section  2.5.1 except that the planetary ephemerides information is also

incorporated to enable the transformation. Since the barycenter of the two main primary

bodies P1 and P2 is not inertially fixed, it is not possible to introduce the rotation matrix

with respect to the barycenter. Instead, it is convenient to convert to a primary centered ro-
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tating frame centered at the main primary body P1. The instantaneous position and velocity

of the smaller primary with respect to the main primary obtained from DE421 ephemerides

data is used to convert the frame.

The rotating frame is derived from the available relative positions of primaries from the

ephemerides data. Let the vector

R̄ = r̄12 =


rX

rY

rZ

 (2.114)

be the instantaneous position of smaller primary with respect to the main primary obtained

from DE421 Ephemerides in the primary centered inertial frame. In the rotating frame the

smaller primary is always directed along the positive x-axis of the rotating frame while z-

axis corresponds to the direction of the angular momentum and y-axis completes the dextral

coordinate system. Using the same principle, the instantaneous rotating frame is defined as

x̂ = R̄

||R̄||
(2.115)

ẑ = R̄ × V̄

||R̄ × V̄ ||
(2.116)

ŷ = ẑ × x̂ (2.117)

where R̄ and V̄ are the instantaneous position and velocity vectors of smaller primary body

P2 with respect to the main primary P1, expressed in the primary centered inertial J2000
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frame. The instantaneous transformation matrix to convert position in primary centered

rotating frame to inertial J2000 frame is given by

ICR =
[
x̂ ŷ ẑ

]
=


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (2.118)

where each Cij represents the (i, j)-th term of the transformation matrix ICR. The DCM,
ICR, transforms the position of a body represented in the primary centered rotational frame

to the primary centered inertial J2000 frame as


XP C

YP C

ZP C

 = ICR


xP C

yP C

zP C

 (2.119)

such that, the subscript PC denotes that the vectors in rotating and inertial frame of refer-

ence are with respect to primary center.

Contradictory to the circular restricted three-body problem, the angular velocity in an

ephemeris model is not constant, instead, it is a time variant function. The instantaneous

angular velocity defined as

θ̇ = h

||R̄||2
= R̄ × V̄

||R̄||2
(2.120)

is used to relate the velocity of the body of interest in the primary centered rotating frame

to the primary centered inertial J2000 frame.
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The Basic Kinematic Equation (BKE) is used to correlate the velocity of the body of

interest P3 in the primary centered rotating frame to the velocity in the primary centered

inertial frame. It is mathematically expressed as

Idr̄13

dτ
=

Rdr̄13

dτ
+ IωR × r̄13 (2.121)

where subscript 1 denotes the primary body. For simplicity, this is denoted in the primary

centered system where all measurements of the spacecraft are taken with respect to this

primary body, hence, r̄P C = r̄13. Therefore, the Basic Kinematic equation is expressed

alternatively as
Idr̄P C

dτ
=

Rdr̄P C

dτ
+ IωR × r̄P C (2.122)

Idr̄P C

dτ
= (ẋP C − θ̇yP C)x̂+ (ẏP C + θ̇xP C)ŷ + żP C ẑ (2.123)

where IωR = θ̇ẑ represents the angular velocity of the instantaneous primary centered rotat-

ing frame to the primary centered inertial J2000 frame. Equation (  2.123 ) is used to correlate

velocity in the inertial frame to the position and velocity states in the primary centered

rotational frame. When expressed in the matrix form, equation (  2.123 ) becomes


ẊP C

ẎP C

ŻP C

 =


θ̇C12 −θ̇C11 0 C11 C12 C13

θ̇C22 −θ̇C21 0 C12 C22 C23

θ̇C32 −θ̇C31 0 C13 C32 C33





xP C

yP C

zP C

ẋP C

ẏP C

żP C



(2.124)

where velocity states in the inertial frame are now a function of both position and velocity

states in the rotating frame. Combining equations ( 2.119 ) and (  2.124 ) provides a 6 × 6

transformation matrix that converts the three position and three velocity states of the body

of interest in the primary centered rotational frame to the primary centered inertial J2000

frame in a single step, i.e.,
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XP C

YP C

ZP C

ẊP C

ẎP C

ŻP C



=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C32 C33 0 0 0

θ̇C12 −θ̇C11 0 C11 C12 C13

θ̇C22 −θ̇C21 0 C12 C22 C23

θ̇C32 −θ̇C31 0 C13 C32 C33





xP C

yP C

zP C

ẋP C

ẏP C

żP C



(2.125)

where the transformation matrix is a function of Cij obtained from equation (  2.118 ) and θ̇

obtained from equation (  2.120 ). Since the bottom left 3×3 matrix is dimensional due to the

presence of θ̇ that is measured in rad/s, the entire transformation is done in the dimensional

units. Once transformed, the vectors is non-dimensionalized for convenience. Similar to the

transformation procedure in the circular restricted model, the states in the primary centered

J2000 inertial frame is converted to the primary centered rotating frame by taking the inverse

of the transformation matrix, as required.
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3. DYNAMICAL SYSTEMS THEORY

From the mission perspective, it is vital to deduce an initial condition that drives the space-

craft to the desired final states. The nonlinear equations of motion of the Circular Restricted

Three Body Problem does not provide the observability to estimate the initial state to reach

a particular target. The desired final state may be close to observed final state along any

baseline trajectory. The initial conditions can be modified in infinite ways out of which

only one true initial condition would drive to the target, thus it is highly unlikely that a

chosen starting condition drives to the desired end. The Dynamical Systems theory provides

intuitive schemes to predict the right conditions that leads to the desired final states.

3.1 State Transition Matrix

The State Transition Matrix (STM) is a linear operator that correlates the initial vari-

ation about the baseline solution to the variation at the end. It is a fundamental tool that

predicts the changes in states at the final time due to certain minute changes in initial con-

dition contemplated in the linear sense. Similar to linearizing the nonlinear equations of

motions of CR3BP about its equilibria, linearization is exercised along a fixed baseline/ref-

erence trajectory using Taylor series expansion to develop the State Transition Matrix.

The State Transition Matrix is formulated by considering the flow of a trajectory nearby

a reference trajectory. Let the reference trajectory be represented by the asterisks(∗) symbol,

the initial initial state vector x̄∗
0 is propagated for time, t, to a final state x̄∗(t). Let a nearby

varied trajectory, with isochronous correspondence, be obtained by perturbing the initial

states of the reference trajectory and propagating for the same time, t, as demonstrated in

Figure  3.1 . Let the initial condition of the perturbed solution be denoted by

x̄0 = x̄∗
0 + δx̄0 (3.1)
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where δx̄0 is the small perturbation applied at the initial time. The new initial condition

drives the solution to a new final state x̄(x̄0, t) such that,

x̄(x̄0, t) = x̄∗(x̄∗
0, t) + δx̄(t) (3.2)

where δx̄(t) is the small variation about the reference solution at time, t, while the elements

within the brackets, (x̄0, t) and (x̄∗
0, t) are the initial state vector they were propagated from,

and the time of propagation. Since x̄0 = x̄∗
0 + δx̄0, equation ( 3.2 ) becomes,

x̄(x̄∗
0 + δx̄0, t) = x̄∗(x̄∗

0, t) + δx̄(t) (3.3)

where all the vectors are presented purely in terms of states of the nearby reference solution

and the corresponding perturbation at anytime t. First order Taylor expansion applied to

equation ( 3.3 ) as

x̄∗(x̄∗
0, t) + ∂x̄

∂x̄0
δx̄0 +H.O.T.s = x̄∗(x̄∗

0, t) + δx̄(t) (3.4)

to compute the linear State transition Matrix. Since approximation only up to first oder is

required, the higher order terms H.O.T.s are neglected to yield

∂x̄

∂x̄0
δx̄0 ≈ δx̄(t) (3.5)

where the partial ∂x̄
∂x̄0

is the n×n sensitivity matrix or the State Transition Matrix which is

a linear correlation between the initial variation to the variation at the final time computed

along some baseline trajectory. The perturbation vectors δx̄0 and δx̄(t) are n × 1 matrices

that relates to the variation in the n states measured along the reference trajectory at initial

time t0 and final time t respectively.

Specifically for the circular restricted three-body problem where there are 6 states in-

clusive of 3 position and 3 velocity states, the State Transition Matrix is of the size 6 × 6.
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𝛿 ҧ𝑥(𝑡)

Figure 3.1. Baseline/Reference solution and isochronous variations.

The partials in the STM is calculated by propagating the states along the reference orbit for

time, t, as

φ(t, t0) = ∂x̄(t)
∂x̄0

=



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0



(3.6)

where [x, y, z, ẋ, ẏ, ż]T are the final states along the reference orbit propagated using initial

conditions, [x0, y0, z0, ẋ0, ẏ0, ż0]T . At time t = t0, since the initial and final states along the

reference trajectory is the same, the STM φ(t0, t0) = I6×6, a six-dimensional identity matrix,

mathematically this describes the derivative of the initial states with respect to itself. The

6 × 6 STM can be written in a more compact form, by collectively representing the position

states r and velocity states v as
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φ(t, t0) =

 φrr φrv

φvr φvv

 (3.7)

where φrr is the partial of final position states to initial position states, φrv relates final

velocity states to initial position states, φvr relates final position states to initial velocity

states and finally φvv is the partial of final velocity states to initial velocity states.

To perform certain conditions, state correction process is performed with the help of

STM information. The partials of the state transition matrix is also integrated numerically

along with the equations of motion in the CR3BP model, and in higher fidelity model. The

differential equations that govern the partials of the STM are

φ̇(t, t0) = d

dt

∂x̄

∂x̄0
= ∂ ˙̄x
∂x̄0

(3.8)

that is essentially the partials of the derivative of the final states with respect to the initial

states. From equation (  2.50 ), ˙̄x = A(t)x̄, hence equation ( 3.8 ) is reduced to

φ̇(t, t0) = ∂A(t)x̄
∂x̄0

= A(t) ∂x̄
∂x̄0

(3.9)

φ̇(t, t0) = A(t)φ(t, t0) (3.10)

that produces a 6 × 6 matrix φ̇(t, t0), producing 36 scalar partial differential equations.

Combined with the 6 equations of motion, a total of 42 partial differential equations are

numerically propagated to get the time history of the actual states and the partials of the

final states with respect to the initial states.

The State Transition matrix being a linear operator, the accuracy substantially depends

on the initial variation, that is expected to be small. A large initial variation may amplify

the error in the final solution as the linear STM may no longer be capable of accurately

predicting the flow. In general, when predicting the desired initial or final states, the baseline
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trajectory is updated continuously to minimize variation every successive step. The accuracy

of the STM increases as variation diminishes. The same principal concept is applied in the

Differential Correction process

3.2 Differential Correction Process

Targeting a desired state is one of the most sought after tasks especially for trajectory

design and optimization. Differential correction process is a scheme that facilitates targeting

certain final conditions. Since STM is a linear operator that estimates the final variation due

to some initial variation about a baseline solution, Differential Correction process involving

the State Transition Matrix is exploited to target the required end conditions for trajec-

tory design in the CR3BP. Finally, an iterative process is applied till demanded tolerance is

reached.

Several schemes are available for implementing the Differential Correction Process. The

method of free variables and constraints as carried out by many other researchers have been

used throughout this investigation[ 96 ], [  97 ], [  98 ]. The method employs the Newton-Raphson

approximation technique which uses the truncated Taylor expansion to the first order [ 99 ].

The method is formulated by considering a design variable vector X̄ with n free variables

which are subjected to updates. Vector X̄ is defined as a column vector,

X̄ =



X1

X2

...

Xn


(3.11)

where X1, X2, ... , Xn may be position states, velocity states, time and/or any other relevant

design variables. The constraint vector F̄ (X̄) defined as a column vector
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F̄ (X̄) =



F1(X̄)

F2(X̄)
...

Fm(X̄)


(3.12)

is subjected to m different constraints F1(X̄), F2(X̄) through Fm(X̄) which may be com-

bination of continuity constraints, altitude constraints, energy constraint or any other user

defined constraint that are a function of the defined state variables X̄. Taylor series expan-

sion of F̄ (X̄) with free variable at initial time X̄0 results in

F̄ (X̄) = F̄ (X̄0) +DF̄ (X̄0)
(
X̄ − X̄0

)
+H.O.T.s (3.13)

where the higher order terms, H.O.T.s, are neglected as Newton-Raphson method truncates

the Taylor series expansion to only the first order term. Additionally, the aim of this method

is to update the free design variable till X̄ drives the constraint vector F̄ (X̄) = 0. Hence

equation ( 3.13 ) reduces to

0̄ ≈ F̄ (X̄0) +DF̄ (X̄0)
(
X̄ − X̄0

)
(3.14)

where DF̄ (X̄0) is the Jacobian matrix of size m× n as

DF̄ (X̄0) = ∂F̄ (X̄0)
∂X̄0)

=


∂F1
∂X1

. . . ∂F1
∂Xn

... . . . ...
∂Fm

∂X1
. . . ∂Fm

∂Xn

 (3.15)

that consists of the first order partials of each of the constraint vector Fi with respect to

each of the state variables Xj, such that i ∈ {1, ...,m} and j ∈ {1, ..., n}.
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For a linear problem, a single step is sufficient for Differential correction process to update

the free design vector that drives the constraint vector to zero, however, for a nonlinear

problem, iterative approach is applied to drive the constraint vector below the specified

tolerance level. The updated design variable after every successive iteration is used as the

new initial condition for the baseline solution upon which the Newton’s method is applied

again. To incorporate the iterative strategy equation (  3.14 ) is modified to

F̄ (X̄j) +DF̄ (X̄j)
(
X̄j+1 − X̄j

)
= 0̄ (3.16)

where j is the number of iterations performed and X̄j+1 is the updated free variable after

j-th iteration that serves as the initial condition for the updated baseline solution. If the

number of design variables n and number of constraints m are equal i.e n = m, then a unique

solution exists for X̄j+1,

X̄j+1 = X̄j −
[
DF̄ (X̄j)

]−1
F̄ (X̄j) (3.17)

such that,
[
DF̄ (X̄j)

]−1
is perfectly invertible. If there are more design variables than the

number of constraints i.e. n > m the system is under-determined, infinitely many solutions

exits. A potential solution,

X̄j+1 = X̄j −DF̄ (X̄j)T
[
DF̄ (X̄j) DF̄ (X̄j)T

]−1
F̄ (X̄j) (3.18)

is computed using minimum norm solution. On the contrary, if there are less design variables

than the number of constraints i.e. n < m the system is over-determined, no solutions exits.

Using the least squares approach, a conceivable solution is computed as

X̄j+1 = X̄j −
[
DF̄ (X̄j)T DF̄ (X̄j)

]−1
DF̄ (X̄j)T F̄ (X̄j) (3.19)

that produces the minimum error. Least squares approach is used in several other places

such as curve fitting and optimization where errors are to be minimized. Using the Newton’s

method, the solutions are likely to converge every successive iteration and is continued till

required tolerance is achieved.
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3.3 Single Shooting

The state transition matrix is utilized to achieve various end conditions in the CR3BP. As

its name suggests, Single shooting technique implies correcting a single reference transfer arc

to target a predefined end condition. Since the STM is not self-starting, a baseline solution is

generated upon some initial conditions over which the STM is computed and single shooting

algorithm is applied. The technique is illustrated in detail involving a fixed time target and

a variable time target scheme.

3.3.1 Fixed Time Position Target

The most common application of Single shooting technique involving the STM in CR3BP

is to target a desired position from an initial location. As in Figure  3.2 , let the initial position

be defined as r̄0 and the predefined target position be r̄d. The initial velocity v̄old drives the

reference trajectory to final position x̄ at time T . Since this is a fixed time position target,

the desired trajectory should take exactly ‘T ’ time to travel from r̄0 to r̄d with no constraint

on the arrival velocity at the target location. The initial position r̄0 being fixed, the aim

is to determine the required change in velocity components i.e. ∆v maneuver required to

achieve r̄d at time T .

To apply the Differential Correction scheme, free variables and constraints have to be

defined distinctly. Let the free design variables be expressed as the three initial velocity

components i.e.

X̄ =


ẋ0

ẏ0

ż0

 (3.20)
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T

T

Figure 3.2. Single shooting technique with fixed time position target.

that is updated every iteration till it drives to desired state r̄d at time T with some tolerance.

Here, r̄d = [xd, yd, zd]T . Similarly, the constraint vector F̄ (X̄),

F̄ (X̄) =


x(T ) − xd

y(T ) − yd

z(T ) − zd

 (3.21)

is defined as the difference between the positions at the end of the reference trajectory and

the desired state. As the solution approaches the desired solution, F̄ (X̄) tends to zero. The

corresponding Jacobian matrix for the fixed time position target is

DF̄ (X̄) =


∂F1
∂X1

∂F1
∂X2

∂F1
∂X3

∂F2
∂X1

∂F2
∂X2

∂F2
∂X3

∂F3
∂X1

∂F3
∂X2

∂F3
∂X3

 =


∂x(T )
∂ẋ0

∂x(T )
∂ẏ0

∂x(T )
∂ż0

∂y(T )
∂ẋ0

∂y(T )
∂ẏ0

∂y(T )
∂ż0

∂z(T )
∂ẋ0

∂z(T )
∂ẏ0

∂z(T )
∂ż0

 (3.22)
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where the partials for DF̄ (X̄) constitute the STM defined in equation ( 3.6 ), therefore

DF̄ (X̄) =


φ14 φ15 φ16

φ24 φ25 φ26

φ34 φ26 φ36

 (3.23)

where each φij corresponds to the element in the ith row and jth column of the 6 × 6 STM.

Here, DF̄ (X̄) is same as the φvr matrix defined in equation ( 3.7 ). Once the free design

vector X̄, constraint vector F̄ (X̄) and the Jacobian matrix DF̄ (X̄) is defined, the Newton’s

equation is applied to find the required update. In this case, the number of variables and

the number of constraints are equal hence a unique solution exists. The appropriate update

to the reference solution is computed as δX̄,

δX̄ = −[DF̄ (X̄)]−1F̄ (X̄) (3.24)

from equation ( 3.17 ). After every successive iteration, the reference solution is updated as

X̄j+1 = X̄j + δX̄ (3.25)

till the desired tolerance level is attained. The Differential Correction process computes vari-

ation using linear approximation while CR3BP is a nonlinear problem, therefore no matter

how many iterations are performed, the reference trajectory will never be exactly equal to the

desired solution. With every successful iteration, constraint vector F̄ (X̄) diminishes hence

the numerical process can be terminated once the norm ||F̄ (X̄)|| is within the permissible

tolerance.

3.3.2 Variable Time Position Target

Unlike for fixed time position target, as shown in Figure  3.3 , the time of flight from

the initial position to the desired position is not constrained to be the same as the time
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of flight of the reference trajectory, hence this is a variable time position target problem.

The method only tries to find one possible trajectory that satisfies both the initial and final

position states.

ҧ𝑥 ( ത𝑋𝑜𝑙𝑑,T)

ത𝑋𝑜𝑙𝑑 =[ ҧ𝑟0, ҧ𝑣𝑜𝑙𝑑 ]

ҧ𝑟𝑑

ത𝑋𝑛𝑒𝑤 =[ ҧ𝑟0, ҧ𝑣𝑛𝑒𝑤 ]

𝑇

𝑇𝑛𝑒𝑤

Figure 3.3. Single shooting technique with variable time position target.

For any targeting scheme, free variables and constraints are to be defined appropriately.

The time of flight T becomes an additional design variable hence,

X̄ =



ẋ0

ẏ0

ż0

T


(3.26)

is defined as the new free variable vector. The goal is only to achieve the predefined position

states at the end hence the end conditions still remains the same. As a result there is

82



no modifications to the constraint vector F̄ (X̄). Nonetheless, DF̄ (X̄) is altered due to a

different design vector X̄, thus

DF̄ (X̄) =


∂x(T )
∂ẋ0

∂x(T )
∂ẏ0

∂x(T )
∂ż0

∂x(T )
∂T

∂y(T )
∂ẋ0

∂y(T )
∂ẏ0

∂y(T )
∂ż0

∂y(T )
∂T

∂z(T )
∂ẋ0

∂z(T )
∂ẏ0

∂z(T )
∂ż0

∂z(T )
∂T

 =


φ14 φ15 φ16 ẋ(T )

φ24 φ25 φ26 ẏ(T )

φ34 φ26 φ36 ż(T )

 (3.27)

where an additional column of the derivative of the position states with respect to time are

also included. DF̄ (X̄) is no longer a square matrix. There are more design variables than

the number of constraints, hence, infinitely many solutions exists. One such solution can be

found using the minimum norm approach. The update to the reference can be computed to

be,

δX̄ = −DF̄ (X̄)T
[
DF̄ (X̄) DF̄ (X̄)T

]−1
F̄ (X̄) (3.28)

as mentioned in equation ( 3.18 ). The iterative process is continued till acceptable tolerance

is reached.

The single shooting technique is illustrated using position target scheme. The application

is not limited to just position target. The design vector, the constraint vector and the corre-

sponding Jacobian matrix can be modified to target any combinations of position, velocity

and/or any other relevant quantity. The technique is although restricted to only single target

vector. To target multiple conditions, more robust methods like multiple shooting technique

is applied.

3.4 Multiple Shooting

A single shooting technique has vast applications, however, when the trajectory passes

through regions of higher sensitivities, this technique struggles to converge. In such cases, few

intermediate patch points are incorporated through which the trajectories should traverse

before reaching the desired end condition. Multiple shooting is a strategy to cumulatively use

single shooting technique to target two adjacent patch points forming a sub-arc as described
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in Figure  3.4 . The process is continued till a transfer trajectory is created from the initial

location to the final state that is continuous in position and velocity at each of the updated

patch points within some acceptable tolerance. The patch points are free to move around in

any directions in the phase space. Similar to single shooting technique, the final state can

be achieved either through a fixed time target strategy or a variable time target strategy.

ҧ𝑥2
𝑡 ҧ𝑥1

ҧ𝑥3
𝑡 ҧ𝑥2

ҧ𝑥𝑛
𝑡 ҧ𝑥𝑛−1

ҧ𝑥1

ҧ𝑥2

ҧ𝑥3

ҧ𝑥𝑛−1

ҧ𝑥𝑛

𝑇1

𝑇2
𝑇𝑛−1

(a) Intermediate Sub-arcs

ҧ𝑥1

ҧ𝑥𝑛

(b) Final Converged Trajectory

Figure 3.4. Concept of multiple shooting target algorithm.

3.4.1 Fixed Time Multiple Shooting

Similar to a fixed time single shooting process where the time between the starting point

and the end point is fixed, in fixed time multiple shooting the time of flight between any two
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successive patch points is fixed. Identical to formulating the single shooting technique, free

design variables and constraints are to be defined for the multiple shooting target algorithm.

The free design variables at all the defined patch points are accumulated into one stacked

vector. It is considered that the states at each of the patch points are free to be updated

every iteration i.e. x̄i according to Figure  3.4(a) . The design variable X̄ is therefore a 6n

sized vector,

X̄ =



x̄1

x̄2

...

x̄n


(3.29)

where each x̄i is a column vector with position and velocity states at that patch point. The

sub-arcs have to be continuous in position and time at the intermediate patch points in order

to achieve a smooth trajectory between the initial and final point as the solution converges.

Hence the constraint vector F̄ (X̄) is defined as

F̄ (X̄) =



x̄t
2(x̄1) − x̄2

x̄t
3(x̄2) − x̄3

...

x̄t
n(x̄n−1) − x̄n


(3.30)

where each x̄t
j+1(x̄j) are the states achieved by propagating state vector x̄j as the initial

condition for fixed predefined time. Since the trajectory originates at the initial point there

is no constraint at x̄1, so the length of the constraint vector is 6(n− 1). The corresponding

Jacobian Matrix becomes

DF̄ (X̄) =



(
∂x̄t

2
∂x̄1

− ∂x̄t
2

∂x̄1

) (
∂x̄t

2
∂x̄2

− ∂x̄t
2

∂x̄2

)
. . . . . .(

∂x̄t
n

∂x̄n−1
− ∂x̄t

n

∂x̄n−1

) (
∂x̄t

n

∂x̄n
− ∂x̄t

n

∂x̄n

)

 (3.31)
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that is reduced to more revealing form by correlating the partials to the STM, as

DF̄ (X̄) =


φ2,1 −I6×6

. . . . . .

φn,n−1 −I6×6

 (3.32)

where each φi+1,i, is the 6 × 6 State transition Matrix computed between ith patch point to

(i + 1)th patch point. Newton’s method is used to update position and velocity states the

patch points and iterated till acceptable level of accuracy is obtained.

3.4.2 Variable Time Multiple Shooting with Additional Constraints

Alike variable time single shooting process, where the time between initial time and the

desired final state is not constrained, in variable time multiple shooting, the time of flight

between two successive patch points is not constrained. To consider a time variable multiple

shooting technique, let the time of flight between each patch points be Ti as in Figure  3.4(a) ,

that can be considered as a design variable additional to its position and velocity states.

Hence a total of 7n− 1 design variable exists for this case i.e.

X̄ =



x̄1

x̄2

...

x̄n

T1

...

Tn−1



(3.33)

where each Ti represents the time of flight between ith patch point and (i+1)th patch point.

To represent a more specific problem, like a trajectory with predefined Jacobi constant, or
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trajectory with fixed starting point and/or fixed end point or any other criterion, Multiple

shooting technique provides the leverage to add additional constraints to represent the same.

Let ‘C’ denote any additional constraint besides the ones defined for fixed time multiple

shooting, such that upon convergence C = 0. Hence, the constraint vector F̄ (X̄) becomes

F̄ (X̄) =



x̄t
2(x̄1) − x̄2

x̄t
3(x̄2) − x̄3

...

x̄t
n(x̄n−1) − x̄n

C


(3.34)

where C is an added constraint that is a function of the state variables at any one or more

patch points. The Jacobian matrix in this variable time multiple shooting method with

added constraints defined as DF̄ (X̄),

DF̄ (X̄) =



φ1,2 −I6×6 ˙̄xt
2

. . . . . . . . .

φn−1,n −I6×6 ˙̄xt
n

∂C
∂x̄1

. . . . . . ∂C
∂x̄n

∂C
∂T1

. . . ∂C
∂Tn−1


(3.35)

contains additional partials that represents time derivatives with respect to free variables as

well as partials of ‘C’ with the states at all patch points and corresponding time of flights.

The additional partials that ˙̄xt
i represents the time derivative of x̄i with respect to the time of

flight from (i− 1)-th to i-th patch point i.e. ˙̄xt
i = ∂x̄i/∂Ti−1. For every iteration, the update

can be computed by taking direct inverse or minimum norm depending on the dimensions

of the Jacobian Matrix.
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4. ORBIT MAINTENANCE OPERATIONS

A spacecraft is expected to traverse along a nominal path that is designed to satisfy various

mission requirements. Due to unmodeled perturbations the spacecraft deviates away from

the reference path, besides the unstable nature of certain libration point orbits amplifies the

deviation in both position and velocity states with time. An impulsive stationkeeping strat-

egy is introduced to deliver regular orbit maintenance maneuvers that secures the spacecraft

within an acceptable region near the reference path. The stationkeeping algorithm computes

an impulsive maneuver that potentially sustains the spacecraft in the neighborhood of the

reference path throughout the mission duration. Minimizing the propellant usage required

for stationkeeping maneuvers is a priority for increased life of the space mission.

4.1 Representation of Reference Orbit

A known precise nominal path is convenient to simulate a mission scenario. Prior studies

have illustrated ways to compute precise halo orbits in the circular restricted three-body

problem [  18 ]–[ 20 ], [  100 ], [  101 ]. The orbits are determined by propagating the nonlinear

equations of motion and corrected using differential correction schemes [ 19 ]. Computing

Lissajous orbits and quasi-halo orbits in the vicinity of the libration points is challenging as

they are not precisely periodic. Howell and Pernicka [ 20 ] use a two-level patching algorithm

to patch trajectories of arbitrary duration to form a continuous trajectory that form the

quasi-periodic orbits. Pavlak and Howell [  45 ] use a multiple-shooting technique to generate

a continuous trajectory by patching intermediate trajectory segments. The application of

these strategies are extended in the higher-fidelity ephemeris model as well.

To simulate a real mission scenario, a precise periodic, like a halo orbit in CR3BP, may

not be ideal, primarily due to other perturbing forces in space that is non-periodic. A more

accurate trajectory that resembles a real nominal path is generated by numerically converg-

ing a continuous trajectory in the higher fidelity ephemeris model, and serves as a baseline

trajectory for stationkeeping operations.

88



Halo orbits are a type of family of 3-dimensional periodic trajectories that exist near the

L1 and L2 libration points in the circular restricted three-body problem [ 19 ]. Within the

Earth-Moon system, the L1 and L2 halo orbits are explored as potential destinations for a

long-term facility in cislunar space. Specifically for the Gateway mission, a southern L2 halo

orbit is the current focus. The family of the L1 and L2 southern halo orbits in the Earth-

Moon system are plotted in Figure  4.1 . Some members of the L1 and L2 halo families with

close lunar passage and high out-of-plane amplitudes are stable or nearly stable based on a

variational linear stability analysis [  3 ]. Define the stability index to measure the stability

characteristics of a periodic orbit such that

νi = 1
2

(
λi + 1

λi

)
(4.1)

where λi are the eigenvalues from the monodromy matrix, i.e., the state transition matrix

over precisely one orbital period. Here, νi is defined in the form of Joukowski transformation

(also referred as Zhukovsky transformation) of λi [ 102 ]. Figures  4.2(a) and  4.2(b) describes

the evolution of the stability indices as a function of perilune radii for members of the L1

and L2 halo orbits, respectively. For stable orbits, the absolute value of stability index is

less than or equal to one, i.e., |νi| ≤ 1. The Near Rectilinear Halo Orbits (NRHOs) are

a subset of the halo orbit family that are stable or nearly stable orbits, as measured us-

ing the stability index, the range of which is marked in Figure  4.2 . Within Figure  4.1 the

orbits colored in red are the NRHOs in both the L1 and the L2 families. Only the halo

orbits that do not intersect the Moon’s surface are plotted in the configuration space. The

periods of the NRHOs range across a block of values such that some of these orbits ex-

hibit different resonance properties. For the stationkeeping analysis, orbits are selected with

different perilune radius distances including those that demonstrates simple resonance ratios.

The cislunar orbits in the CR3BP are modeled based on the gravitational forces due to

the Earth and the Moon at a fixed relative distance from each other, expressed relative to

their mutual barycenter. However, the time-variant relative distance between the Earth and

the Moon as well as effects of other bodies not considered in the CR3BP affect the motion
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Figure 4.1. L1 and L2 halo orbits in the Earth-Moon system.

of the spacecraft substantially. The initial conditions of an orbit in the CR3BP when prop-

agated in the higher fidelity model does not result in a closed orbit, due to perturbations

caused by unmodeled forces including gravitational force of other celestial bodies. Figure

 4.3 illustrates the net perturbing accelerating acting along the 9:2 synodic resonant southern

L2 NRHO and the 3:1 L2 synodic resonant southern L2 NRHO, due to the effects from a

number of celestial bodies, relative to an observer at the Earth-Moon barycenter. Clearly

for both the orbits, the gravitational forces due to the Earth, the Moon and the Sun are

the most dominant, which is followed by the Solar Radiation Pressure (SRP). Here Solar

Radiation Pressure is calculated based on an assumed cannonball model for the spacecraft

with mass 25848 kg, a projected area of 50 sq.m. and a perfectly reflective surface with coef-

ficient of reflectivity Cr = 2; such values are consistent with the dimensions of the Gateway

spacecraft in literature [  4 ], [ 58 ]. Similar effects are observed on a range of halo orbits. The

effect of the J2 perturbing accelerating due to the Moon increases briefly during an orbit,

especially when the spacecraft is close to the periapsis, however it is insignificant for most

duration along the orbit. In addition, the effect of Moon’s J2 perturbing acceleration is
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(a) L1 halo family

(b) L2 halo family

Figure 4.2. Stability indices for different halo orbits in the Earth-Moon system.

more significant along the 9:2 synodic resonant southern L2 NRHO with a smaller perilune

radius of 3200 km while considerably lower in the case of the 3:1 synodic resonant southern

L2 NRHO with a larger perilune radius of 15000 km. Due to the large variations in the

effect of J2 perturbing accelerations due to the Moon along different reference orbits, i.e.,

notable for some orbits while insignificant for the others, it is omitted while generating the

reference trajectory. However, any state perturbations caused due to the effects of J2 per-

turbing acceleration is compensated by running simulations with larger uncertainties in state

measurements. The fidelity of the model is enhanced by adding the effect of a large number

of celestial bodies but too many additional bodies is computationally intensive and may

91



be nontrivial, especially when simulations that incorporates additional orbit determination

errors. Based on the order of magnitude of different net perturbing accelerations as well as

prior investigations in the literature, gravitational forces due to the Earth, the Moon and the

Sun, as well as Solar Radiation Pressure (SRP) are the most dominant forces on the Earth-

Moon halo orbits in the L1 and L2 region and considered sufficient for this analysis [ 61 ].

The effect of any additional forces are minimal, however, consistent with other stationkeep-

ing literature, gravitational force due to Jupiter is also included [ 4 ], [ 57 ]. Ephemeris data is

incorporated using the DE421 model. Once the significant perturbing forces are determined

in the higher-fidelity ephemeris model, multiple revolutions of the CR3BP orbit are stacked

and corrected using a multiple shooting algorithm for position and velocity continuity [ 103 ].

The iterative procedure produces a quasi-periodic trajectory in the higher-fidelity model that

resembles the geometry of the corresponding orbit defined in the CR3BP. The natural tra-

jectory in the ephemeris model offers a virtual reference solution that serves as an anchor for

stationkeeping operations; the entire virtual reference is updated over time as appropriate.

To accommodate the updated reference, infrequent long horizon orbit correction maneuvers

are easily incorporated as a part of the stationkeeping algorithm. A virtual reference trajec-

tory generated in the higher-fidelity ephemeris model by incorporating the dominant forces

for the L2 southern NRHO with perilune radius 3200 km, that serves as the baseline for

the Gateway mission is plotted in Figure  4.4 , in three different views, including the rotating

frame of view, R, the Moon-centered inertial view as well as the Earth-centered inertial view.

The patch points from the CR3BP halo orbit is used as an initial guess to converge a

continuous trajectory in the higher fidelity ephemeris model that serves as a baseline for

performing stationkeeping operations. The baseline trajectories for the southern L1 and L2

NRHOs, including the 9:2 synodic resonant L2 NRHO that is the current choice for the

Gateway mission, are constructed for about 1 year duration. The length of the trajectory

roughly corresponds to 40-50 orbit periods and is sufficient for simulating mission duration

with additional target horizon times. The epoch date at the halo orbit injection (HOI) is

assumed to be January 13, 2023 UT1: 00:00:00.0 (Julian Date: 2459957.5). The transition

halo orbits, with perilune radii roughly between 10,000 to 22,000 km, are constructed for
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(a) 9:2 synodic resonant southern L2 NRHO with a perilune radius 3200 km.

(b) 3:1 synodic resonant southern L2 NRHO with a perilune radius 15000 km.

Figure 4.3. Net perturbing acceleration along different NRHO expressed
relative to the Earth-Moon barycenter.

duration about 0.5 years. Each of the transition halo orbit baseline trajectories are generated

with variable epoch dates at the halo orbit injection (HOI) to investigate the effect of epoch

dates on stationkeeping.
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(a) Rotating frame of view (b) Moon-centered inertial view

(c) Earth-centered inertial view

Figure 4.4. L2 NRHO with perilune radius 3200 km in the higher-fidelity
ephemeris model.
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As the spacecraft advances with time it may drift away from the nominal path due to

unmodeled forces and uncertainties. It is crucial to continuously assess the spacecraft states

relative to the virtual reference path, that is obtained from converging in the higher fidelity

system, in form of tabular listings of time, position and velocity states. It is computationally

expensive to store large data sets as well retrieve the large data every time to compare the

true spacecraft states to the reference. Howell and Pernicka [  30 ], [  31 ] stored data points

spaced within 1.1 days for the Sun-Earth libration point orbits. There has been substantial

literature on the type of curve that is used to retrieve interpolated data accurately. Richard-

son [ 18 ] uses a complete 13th order analytical Fourier series representation of the halo orbit.

Howell and Pernicka [  30 ], [  31 ] use Akima cubic spline interpolation while Howell and Gordon

[ 46 ], [ 47 ] analyze different interpolating schemes and conclude that cubic splines especially

Akima cubic splines gave smoother representation. Within the Earth-Moon halo orbits un-

der investigation here, states and times are stored as data points placed at an interval of

5 minutes. Since the data points are placed in a mere 5 minutes interval, cubic spline in-

terpolation offers fairly accurate results with errors well within the uncertainties in orbit

determination. The accuracy of linear interpolation is also observed to be satisfactory near

the apoapsis region. Nevertheless, to not compromise on the accuracy of state estimation in

sensitive regions, a cubic spline interpolation technique is employed throughout this investi-

gation. For consistency, the constants or parameters used throughout this investigation are

retrieved from Adaptive Trajectory Design (ATD) software, while spacecraft characteristics

are retrieved from literature [ 4 ], [ 57 ]. The values are summarized in table  4.1 .

4.2 Orbit Determination

Uncertainty in navigation is a major contributor to the stationkeeping cost. The mag-

nitude of uncertainty impacts the stationkeeping cost proportionally. For many missions in

the cislunar vicinity the spacecraft position and velocity are tracked by Earth-based stations,

that generally measure range and range rate (also known as Doppler) quantities [ 104 ]–[ 110 ].

Of course the tracking stations on the Earth take measurements angular displacement, rate

of angular displacement, relative astronomical quantities, etc., to precisely determine the

states of the spacecraft. In addition, spacecraft-based sensors are also capable of orbit de-
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Table 4.1. Constants used for stationkeeping applications.

Standard Gravitational Parameter
µ̃ = G̃M , km3/s2

Sun 132712197035.766
Earth 398600.432896939280908555
Moon 4902.800582147764544061
Jupiter 126686535.0

Characteristic quantities
Earth-Moon system

µ [ndim] 0.012150585609624
l∗ [km] 385692.50
t∗ [s] 3770841.526670390

Spacecraft characteristics
Mass 25848 kg
Proj. Area 50 sq.m
Cr 2

termination. For this investigation, however, range and range rate quantities are considered

to measure uncertainty in state estimation.

The Earth-based stations record multiple observations of each quantities, range and range

rate of the spacecraft, at different time intervals. The uncertainty covariance derived from

the range and range rate measurements offer insight into the uncertainty in each of the po-

sition and velocity quantities. A batch least squares filter and a sequential Kalman filter are

two of the commonly used signal-processing filters for orbit determination. It is assumed

that there are no uncertainty in the measurements of the latitude and longitude coordinates

of the Earth-based tracking station, therefore the range and range rate measurements ex-

pressed with respect to the center of the Earth offer the same uncertainty covariance as that

wih respect to the ground station. Further, the mass of the celestial bodies, gravitational

constant, etc are regarded as consider parameters.
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Kalman filter has been used for orbit estimation, as early as the Apollo mission [ 111 ],

[ 112 ]. The batch least squares filter and the sequential Kalman filter have been widely

applied in the orbit determination problem ever since, and shown comparable results, as

documented in literature [ 46 ], [ 113 ]. In recent times, batch least squares filter and Kalman

filter techniques have been applied for orbit determination on the ARTEMIS mission in the

Earth-Moon L1 and L2 libration point orbits. Batch least squares technique require rela-

tively lower number of observations as opposed to a sequential Kalman filter in reducing

the uncertainty covariance. A batch least squares approach, however, requires storage of

all the prior observations to compute the covariance, resulting in larger memory usage in

comparison to a sequential Kalman filter. For this investigation, a sequential Kalman filter

is implemented considering the benefit of not having to store prior observations.

The spacecraft motion along a trajectory is defined by the six states, x̄ = [x, y, z, ẋ, ẏ, ż]T.

A Kalman filter is modeled to correlate observations, range and range rate, to state change.

The system is modeled as

δx̄k+1 = Akδx̄k + wk (4.2)

δȳk = Hkδx̄k + εk (4.3)

where Ak = φ(tk+1, t), while δȳk is the measurement residue vector, δȳk = [δR, δṘ]T,

where measurements are in range R and range rate, Ṙ. Any linear change in the states is

represented as δx̄ = [δx, δy, δz, δẋ, δẏ, δż]T. The quantity wk is the process noise such that

E[wk] = 0 and E[wkwT
k ] = Q. The matrix Hk is known as the measurement matrix and εk

is the measurement noise. Since it is assumed that there are no uncertainties in the location

of the tracking station, the measurements relative to the center of the Earth yield the same

covariance. The range and range rate values are determined to be,

R =
√

(x+ µ)2 + y2 + z2 (4.4)

Ṙ = (x+ µ)ẋ+ yẏ + zż

R
(4.5)
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as a result, the measurement matrix, Hk, is the Jacobian, Hk(i, j) = ∂ȳi
∂x̄j

. The measurement

noise, εk, is assumed to be white, with mean, E[εk] = 0, and variance , E[εkε
T
k ] = R. The

covariance in state estimation is given by

Pk|k−1 = E[(x̄k − ˆ̄xk)(x̄k − ˆ̄xk)T] (4.6)

where, ˆ̄xk is the estimate of x̄k prior to the k-th observation, but after k − 1 observations

are recorded. Also,

Pk|k = E[(x̄k − ˜̄xk)(x̄k − ˜̄xk)T] (4.7)

is defined such that, Pk|k covariance in state estimation after k-th observation is made. The

quantity ˜̄xk is the estimate of x̄k after the k-th observation is available. The covariance

matrix is propagated as

Pk|k−1 = Ak−1Pk−1|k−1AT
k−1 + Q (4.8)

along with the system dynamics. With an additional observation,

Pk|k = (Pk|k−1 + HT
k R−1Hk)−1 (4.9)

the state covariance is updated, incorporating the measurement covariance. With no a priori

information, Pk|k−1 is initialized with a very large value.

The linear state transition matrix is accepted to be fairly accurate when propagated over

short time duration. In a typical orbit determination problem, observations are recorded

in short time intervals, hence, for the simplicity of the problem, it is assumed that there is

no process noise, i.e, E[wkwT
k ] = Q = 0. Tracking precision in terms of range and range

rate uncertainty has improved over the years. The uncertainty in range and range rate

measurements for some past missions are listed in Table  4.2 . With modern sophisticated

technology 1σ error in range measurements lower than 10 m is achievable. Similarly, 1σ

error in range rate or Doppler measurement under 1 mm/s is common for recent missions.

A conservative 1σ error in range and range rate error of 10 m and 1 mm/s respectively is

considered for this investigation.
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Table 4.2. Tracking errors for various missions.

Sl. No. Range (1σ) Range rate (1σ) Mission Type Year Reference
1 15.24 m 15.24 cm/s Apollo 1963 [ 104 ]
2 1 km 1 mm/s Voyager 1983 [ 114 ]*
3 15 m 3 mm/s SOHO 1992 [ 46 ]
4 0.6 m 0.3 mm/s TOPEX/POSEIDON 1994 [ 115 ]**
5 3 m 0.3 mm/s Low Lunar Orbit 1997 [ 105 ]
6 2-5 m 0.1 mm/s Interplanetary (ESA) 2004 [ 116 ]
7 1-2 m 0.1 mm/s Interplanetary (ESA) 2004 [ 116 ]
8 5 m 1 mm/s SELENE satellites 2011 [ 106 ]
9 10 m 1 mm/s LRO 2012 [ 107 ]

10 10 m 3 mm/s at USN LRO 2014 [ 108 ]
1 mm/s at DSN

11 1 m 1 mm/s CE-5T1 2018 [ 110 ]
12 3 m 1 cm/s Chang’E-4 2019 [ 109 ]
13 10 m 1 mm/s Here

*Measurements taken near Jupiter
**Measurements through Tracking and Data Relay Satellite System (TDRSS)

The orbit of interest for the Gateway mission is the 9:2 synodic resonant NRHO with

perilune radius approximately 3200 km. The uncertainty in state estimation for a spacecraft

along the Gateway is considered here. Without loss of generality, it is assumed that the

spacecraft is injected on the NRHO at the apoapsis. With no a priori information, the state

covariance is initialized as P1|0 → ∞, or some very large number, at the apoapsis. In cases

where an a priori covariance is known, then P1|0 can be initialized to that a priori covariance

value. A few observations are allowed before the state covariance, Pk|k, becomes a meaningful

quantity. Certainly, most of the orbit determination process yields a covariance matrix with

non-zero correlation coefficient, where change in one state quantity influences the other, how-

ever, for simplicity, consider, σx =
√
Pk|k(1, 1), σy =

√
Pk|k(2, 2) and so on. To collectively

measure position uncertainty and velocity uncertainty as a whole, define root mean square

(RMS) quantity, σRMS−position =
√
σ2

x + σ2
y + σ2

z and σRMS−velocity = √
σẋ2 + σẏ2 + σż2 . The

plot in Figure  4.5 describes the derived position and velocity uncertainties along each of the
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x, y and z directions for a spacecraft along the 9:2 synodic southern NRHO with tracking

data collected at an interval of 4 hours. The simulation is continued till the spacecraft has

traversed at least half of the time period of the orbit, roughly 3.5 days, to yield a meaningful

covariance. Not surprisingly, since the position states along the x direction does not change

as widely as along the y and z directions, the error levels in position along the x direction

is significantly lower than the y and z directions. Further, based on the dynamics along the

orbit, the spacecraft traverses more gradually closer to the apoapsis region than the periapsis

region, therefore, more observations are recorded near the apoapsis region resulting in lower

uncertainty in position and velocity states. Similarly, sparse observations near the periapsis

region increases the uncertainty level.

Tracking interval affects the uncertainty level significantly. Shorter intervals yield more

observations spaced closer to each other resulting in relatively lower uncertainty in state

measurements, however, taking too many observations is not always feasible. There exists a

trade-off between the uncertainty level and the number of observations. Figure  4.6 demon-

strates the uncertainly in along the position and velocity states, expressed in root mean

square quantity, for different tracking intervals ranging from 1 observation per hour to ob-

servations spaced at 24 hours interval. As discussed, uncertainty is lower in the apoapsis

region, where most of the stationkeeping maneuvers are likely. The observations spaced at 1

hour interval yields a smoother curve for uncertainty levels along the orbit, while the curve

corresponding to observations spaced 24 hours apart is coarse. For the range of tracking

intervals tested for the 9:2 synodic NRHO, a 1σ position uncertainty less than 0.3 km and a

1σ velocity uncertainty less than 0.3 cm/s is achievable. Of course, additional observations

reduce the uncertainty values and may be recorded for operational reasons. For this investi-

gation, a conservative 3σ uncertainty in position ranging from 1 km to 10 km is considered.

Similarly, a conservative 3σ uncertainty in velocity is chosen between 1 cm/s to 10 cm/s.

4.3 Unmodeled Orbit Determination Errors

A spacecraft experiences perturbations persisting from its launch, due to several fac-

tors like atmospheric drag, limitations of the measuring apparatus, additional gravitational
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(a) Position uncertainty (1σ)

(b) Velocity uncertainty (1σ)

Figure 4.5. Position and velocity uncertainty derived from range and range
rate measurements taken at 4 hours intervals, along the 9:2 synodic resonant
southern L2 NRHO.

bodies, magnetic field of earth, charged particles, solar radiation pressure, etc. Besides,

modeling errors also result in the spacecraft‘s true path being different from the reference

path. Despite all these potential challenges, the primary focus of a stationkeeping process

is to sustain the spacecraft near the reference trajectory beyond the orbit injection phase.

Any uncertainty in the measurement of the position and the velocity states of the spacecraft
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(a) Position uncertainty (1σ)

(b) Velocity uncertainty (1σ)

Figure 4.6. Position and velocity uncertainty derived from range and range
rate measurements taken at various time intervals, along the 9:2 synodic res-
onant southern L2 NRHO.

is called orbit determination errors. Orbit injection error, tracking or navigation errors and

maneuver execution error are the significant contributors to uncertainty in state measure-

ments, and considered in this investigation. These errors are inevitable due to limitations

in the orbit determination equipment and thrusting abilities. The magnitude of these er-

rors are controllable by using better quality and sophisticated instruments, but cannot be

102



completely eradicated. If not addressed, these errors potentially destabilizes the motion of a

spacecraft. These errors are stochastic in nature, thus cannot be modeled into the system.

However, for simulating a stationkeeping operation these stochastic errors are incorporated

as state perturbations, and a maneuver is delivered to overcome such quantities. Based on

the evolution of these stochastic orbit determination errors are broadly classified into the

three types.

4.3.1 Orbit Injection Errors

For convenience, the orbit injection is considered as the starting of the stationkeeping

process. As the spacecraft approaches the end of the transfer trajectory an orbit injection

maneuver is applied to inject the spacecraft into a long-horizon reference orbit. Undoubt-

edly, the injection is not accurate due to limitations in the thruster performance and tracking

instruments that measures the spacecraft states. Consequently, the resulting position and

velocity states immediately after the orbit injection is considered perturbed from the refer-

ence states.

To incorporate the orbit injection/insertion error, the reference position and velocity

states are perturbed by a fixed magnitude in an arbitrary direction. A Gaussian random

number generator is used to perturb the magnitude of position and velocity states. The mean

of the magnitude of perturbation is considered zero while the standard deviation is chosen

based on the knowledge of the existing hardware. Similarly, a Gaussian random number

identifies an arbitrary direction. The perturbed position and velocity states are propagated

as the actual trajectory or the true path of the spacecraft, along which maneuvers are

delivered. Of course, there are multiple ways of generating perturbed position and velocity

states for simulation, and may offer comparable results.

4.3.2 Tracking or Navigation Errors

As the spacecraft traverses along the orbit, the earth based tracking stations derive the

position and velocity states of the spacecraft at discrete intervals, better known as tracking
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intervals. Due to limitations in the orbit determination process, the states are never known

to absolute precision. A stationkeeping strategy is expected to deliver a reasonable maneuver

to maintain the spacecraft in the neighborhood of the virtual reference solution despite of

the tracking errors.

To simulate the tracking error, position and velocity states along the true propagated

path are perturbed by a fixed magnitude in an arbitrary direction, similar to the orbit

insertion error. Again, the perturbed position and velocity states are propagated as the

actual trajectory or the true path of the spacecraft. Similar to orbit injection errors, tracking

or navigation errors may be incorporated in multiple ways, and likely offer comparable

results.

4.3.3 Maneuver Execution Errors

The stationkeeping algorithm computes a corrective maneuver at regular intervals to

maintain the spacecraft near a close proximity to the virtual reference solution. However,

the computed maneuver and the implemented maneuver is never exact, typically due to lim-

itations in thrusting. To incorporate this inaccuracy, the computed maneuver is perturbed

by a fixed magnitude in an arbitrary direction.

A summary of various state estimation errors used within this investigation to simulate

stationkeeping operations are given in Table  4.3 . Two different error levels are considered

for orbit insertion and navigation. The range of uncertainties considered are consistent with

the quantities determined in section  4.2 , derived through signal processing using Kalman

filter where uncertainties in measurement quantities in form of range and range rate data

are converted to state uncertainties.

4.4 Solar Radiation Pressure Errors

Solar radiation pressure (SRP) is introduced into the model to simulate the spacecraft

motion, however, the exact orientation of the spacecraft is unknown, hence SRP errors
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Table 4.3. State estimation errors.

Uncertainty Type Low Error High Error

Orbit Injection Mean : 0 km, 0 cm/s Mean : 0 km, 0 cm/s
3σ : 1 km, 1 cm/s 3σ : 10 km, 10 cm/s

Navigation Mean : 0 km, 0 cm/s Mean : 0 km, 0 cm/s
3σ : 1 km, 1 cm/s 3σ : 10 km, 10 cm/s

Maneuver Execution 0.03 cm/s (fixed)

are introduced to simulate a perturbing force. Uncertainties in the projected area of the

spacecraft facing the Sun and the coefficient of relfectivity Cr are consistent with literature

[ 4 ], [ 57 ]. The approach of considering SRP as perturbing term may inflate the stationkeeping

cost, but gives an upper bound to the propellant consumption. In fact, if the fidelity of the

model is improved by considering exact attitude dynamics for solar radiation pressure in the

model the annual stationkeeping cost is expected to deflate.

Table 4.4. Solar Radiation Pressure errors.

Uncertainty Type Error Level
Proj. Area Mean : 0 km, 1σ : 5%

Cr Mean : 0 km, 1σ : 10%

4.5 Stationkeeping Algorithm

A mission has several phases that roughly encompasses launch, parking orbit, transfer

trajectory, stationkeeping and departure. For simplicity, a stationkeeping phase is assumed

to commence as soon as the spacecraft is injected in to the desired orbit. In the stationkeep-

ing phase regular orbit maintenance maneuvers are delivered to sustain a spacecraft near the

desired orbit for a relatively long duration. The spacecraft deviates away from the reference

path due to unmodelled dynamics and limitations in orbit determination. To simulate a real

mission stationkeeping scenario, various errors are introduced on purpose. The halo orbits
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have gained a lot of focus for upcoming missions, in such cases, the halo orbit injection

(HOI) is assumed to be the starting point for the stationkeeping process. Based on the

understanding of the thrusters, orbit injection error is introduced with a certain standard

deviation. The position and the velocity magnitudes are perturbed with a random number

generated using Gaussian probability distribution corresponding to standard deviation of

orbit injection error, in any arbitrary direction. The spacecraft naturally deviates from the

desired orbit due to the errors in the states, requiring frequent stationkeeping maneuvers to

maintain the spacecraft within a specific bounds near the nominal path. The exact states of

the spacecraft are never known to 100% precision due to limitations in orbit determination,

hence at every maneuver locations the states are deliberately perturbed corresponding to the

orbit determination error levels. Various stationkeeping algorithms exists that determines

the corrective maneuver to ensure the spacecraft is in close vicinity to the nominal path.

In this investigation, an x-axis crossing control approach determines the magnitude and the

direction of the corrective maneuver. Additional maneuver execution errors are introduced

and the states are updated and propagated. In the higher-fidelity ephemeris model the addi-

tional solar radiation pressure errors are also Incorporated while propagating the dynamical

equations of motion. The states are propagated till the subsequent maneuver location and

the process is repeated till the end of the mission duration. After simulating till the end of

mission duration, the magnitude of all implemented maneuvers within the mission duration

are tallied to estimate the stationkeeping costs. For a stochastic process, multiple Monte

Carlo simulations are conducted to estimate the mean and standard deviation of the annual

stationkeeping costs.

For stationkeeping algorithm used throughout this investigation, if the spacecraft drifts

unacceptably far from the reference, 10000 km for this investigation, the simulation is ceased

immediately and the computed costs for that particular iteration is ignored. A 10000 km

drift in position quantity is a reasonable choice along the NRHO that is comparable to

departure estimated by Momentum Integral [  4 ], [ 57 ]. A new seed for the random numbers are

introduced and the simulations are continued. Throughout this investigation, two different

levels of orbit determination errors are used, as detailed in Table  4.3 .
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4.6 Monte Carlo Simulation

Stationkeeping algorithm uses random sampling errors to represent uncertainties in or-

bit determination and maneuver execution that is then propagated in a nonlinear regime.

Estimating the mean maneuver cost is not possible using an analytical approach. Due to

the stochastic nature, it is convenient to use Monte Carlo simulations to determine the

probabilistic mean. The quality of the solution obtained using the Monte Carlo process is

assessed by the closeness of the observed solution to the true solution. When the true mean

to a problem is known, the sample sizes are adjusted to meet the desired accuracy of the

observed mean. In the case of a stochastic stationkeeping process, the true solution itself

is unknown. It is therefore challenging to decipher the appropriate sample size required to

estimate a mean value that is close enough to the true value. A sample size about 20 or 30

is generally too small to get a solution with reasonable confidence level for comparison. On

the other hand, having too many simulations, adds very little information at high computa-

tional expense, one that is ineffective. An appropriate sample size is desired that provides

substantially high confidence level making comparison effective.

Many authors in the past have used about 50, 100, 300, 500 or even 1000 Monte Carlo

runs depending on their problems. Some researchers do offer a qualitative reasoning on the

appropriate number of Monte Carlo runs or specify the standard deviation at the end of the

simulation [  25 ], [  46 ]–[ 50 ]. Sample size determination is vital for Monte Carlo simulations.

Muralidharan [  117 ] elaborates the process of determining the right sample size based on

the accepted confidence intervals. The strategy had been adopted by Gordon [  47 ] for his

station-keeping application. For a trial that produces observations κ1, κ2, ..., κn, the mean,

κ̄ and the standard deviation, Sκ, of the samples can be computed by

κ̄ = 1
n

n∑
i=1

κi (4.10)

S2
κ = 1

n− 1

n∑
i=1

(κi − κ̄)2 (4.11)
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where n is the sample size. The mean computed from the samples may not be exactly equal

to the true mean, therefore, the variance of the computed mean, σ2
κ̄, is defined as

σ2
κ̄ = S2

κ
n

(4.12)

that is a function of the variance of the samples S2
κ. A superior quality Monte Carlo simula-

tion estimates the computed mean, κ̄, close to the true mean, µκ. The confidence level of the

computed mean provides the probability that the true mean lies within a certain bounded

region about the computed mean. As demonstrated in Figure  4.7 , let the lower control limit

and the upper control limit of the bounded region be denoted as LCL and UCL respectively.

Mathematically, LCL and UCL are defined as

[LCL, UCL] = κ̄ ± t̃n−1σκ̄ ≈ κ̄ ± zcσκ̄ ≈ κ̄ ± zc
Sκ√
n

(4.13)

where t̃n−1 and zc are quantities that defines the percentage confidence levels. Since the true

distribution is unknown, the observations are in form of a Student’s T-distribution, where

t̃n−1 is the corresponding t-score for degrees of freedom, n− 1, in a two-sided T-test. As the

sample size n → −infty, the Student’s T-distribution tends to a Normal distribution , i.e.,

t̃n−1 → zc. The relation between percentage confidence level and the corresponding sigma

limit is provided in table  4.5 [ 117 ]. As the sample size increases, the gap between LCL and

UCL becomes narrower, consequently, the computed mean approaches the true mean. The

half width, h, between LCL and UCL, also referred to as ‘precision’ by some researchers, is

a deciding factor on the number of Monte Carlo runs. The precision or half width is defined

as

h = UCL− LCL

2 = zc
Sκ√
n

(4.14)

that inversely depends on the number of iterations. Large number of iterations will produce

a more precise result at the cost of immense computational time. The number of simulations

actually required is in fact a function of the preferred precision level. The precision or the

half width, h, desired may be an absolute parameter or a relative parameter in comparison

to the mean. The number of Monte Carlo runs are estimated as follows:
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• Absolute Precision

Assuming that the precision of the required solution is given in terms of the permissible

absolute error, α. In other words, for the chosen confidence level, true mean should be

within κ̄ ± α, thus

h = α = zc
Sκ√
n

→ n =
(
zcSκ

α

)2
(4.15)

• Relative Precision

If the precision of the required solution is given in terms of the permissible relative

error (α%). In other words, for the chosen confidence level, true mean should be within

κ̄ ± (α/100)κ̄, thus

h = α

100κ̄ = zc
Sκ√
n

→ n =
(

100zcSκ

ακ̄

)2
(4.16)

Either of equations ( 4.15 ) or (  4.16 ) can be used to compute the required number of Monte

Carlo simulations that yields computed mean that would be close to the true mean within

the accepted confidence level. The sample size, n, depends on the accepted sigma limit, zc,

the permissible absolute or relative error, α, the present computed mean, κ̄ and standard

deviation of the samples tested, Sκ.

LCL UCL

𝜇𝜘

ҧ𝜘

Figure 4.7. Precision in a stochastic process.
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Table 4.5. Percentage confidence level and corresponding sigma limits and T-score.

Confidence Level (%) Z-score / Sigma Limit (zc) t̃100−1 t̃1000−1

68.26 1 1.005 1.000
95 1.96 1.984 1.962

95.45 2 2.025 2.003
99 2.58 2.626 2.581

99.73 3 3.078 3.008
99.99 3.89 4.055 3.906

Estimating the appropriate sample size for the Monte Carlo runs is challenging. It is

observed that at least 30 runs are required to stabilize the variance in a Monte Carlo process

for stationkeeping applications. Monte Carlo method is a probabilistic mean computation

technique based on stochastic sampling hence no fixed number of runs or value of precision

is defined. The termination of a Monte Carlo process is based on the precision demanded

by the user to evaluate the data appropriately. Either based on a predefined precision level,

the sample size is estimated using the procedures discussed, or, the standard deviation of

the estimated mean be specified along with the computed mean to provide the essence of

the actual distribution.
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5. IMPULSIVE STATIONKEEPING STRATEGY

Any type of spacecraft mission requires regular orbit maintenance operations for long-term

sustainability. The orbits in this investigation are particularly subject to sensitive dynamics

that perturb spacecraft from the desired path. In this investigation, stationkeeping opera-

tions maintain the spacecraft in the vicinity of a long horizon virtual reference solution that

is generated incorporating science constraints as well as phase constraints such as eclipse

avoidance [  4 ], [  57 ]. The virtual reference is updated over time as appropriate. Several sta-

tionkeeping techniques are evaluated on the Earth-Moon L1 and L2 orbits, i.e., Lyapunov

and halo orbits, both stable and unstable [  4 ], [ 57 ], [ 59 ]–[ 61 ], [ 64 ], [ 103 ], [ 118 ]. Since the

Gateway mission is planned for launch in the early 2020s and expected to operate in the 9:2

synodic resonant NRHO, with a radius of periapsis approximately 3200 km from the Moon, it

serves as a baseline trajectory to test the efficiency of a control strategy for stationkeeping on

NRHOs. Of course, the control strategy must also be applicable to other low perilune radius

NRHOs. This investigation focuses on leveraging the underlying dynamics to improve the

control algorithm and parameter selection process, as well as determine the annual cost for

stationkeeping, thereby estimate the propellant requirement for a desired mission duration.

5.1 Overview of x-axis Crossing Control Approach

Recent analyses have focused on the x-axis crossing control algorithm and a formulation

that is applied for a number of successful missions [  60 ], [  118 ]. It is also currently employed

for analysis in support of the Gateway mission [  4 ], [  57 ], [  119 ]. The x-axis control strategy

generally relies on the symmetry of the NRHOs across the xz plane in the rotating frame of

reference. In the CR3BP, the rotating ẋ value along the orbit at the xz plane crossing is zero.

The notion of a zero value for the rotating ẋ velocity component at the xz plane crossing is

exploited for orbit maintenance operations. Due to complex dynamics in the higher-fidelity

ephemeris model, the natural trajectory that resembles the NRHO does not possess a precise

value of ẋ = 0 at the xz plane crossing, hence, it is further constrained that the rotating ẋ

value along the actual trajectory matches the ẋ value along a long horizon virtual reference

path at the xz plane crossing that is within an acceptable tolerance.
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The stationkeeping operation is a sequential process. A baseline trajectory is introduced

that acts as a long horizon virtual reference solution. From previous investigations [ 4 ], [ 57 ],

it is seen that targeting xz plane crossings near the periapsis region yields low stationkeeping

costs. The algorithm also targets the rotating ẋ value at subsequent xz plane crossings along

the evolving path. The ẋ values at each of the xz plane crossings near the periapsis on the

long horizon virtual reference solution are initially recorded. The spacecraft state is origi-

nally introduced at the halo orbit injection epoch and additional white noise in both position

and velocity states, and with specified mean and variance is subsequently incorporated. In

the ephemeris model, additional uncertainty in solar radiation pressure is introduced with

errors in the coefficient of reflection Cr and the surface area of the spacecraft model. The

perturbed states are propagated to a predetermined maneuver location, generally closer to

the apoapsis region, and a maneuver ∆v̄ is computed to meet the goal of achieving the ẋ

value along the virtual baseline at a specified downstream xz plane crossing, within some

predefined tolerance, that is, 0.45 m/s, consistent with the literature [  4 ]. The target xz

plane crossing may be the 1st, 2nd, ..., nth crossing, increasing further downstream along the

propagated trajectory. If the targeting process fails to compute a successful maneuver that

meets the goal for a specified target, the target horizon time is reduced and the process is re-

peated again until a successful maneuver is computed. In this investigation, however, target

horizon is fixed to analyze the impact of a fixed target horizon on the maneuver magnitude

and direction. Additional white noise modelled as maneuver execution error is incorporated

into the maneuver and implemented. Along the subsequent path, the states are updated

and further perturbed with navigational errors and solar radiation pressure errors and the

procedure is continued till the end of the mission duration or some specified duration. In

contrast, if none of the target horizon times delivers a successful maneuver, the particular

simulation is considered as failed. The simulation is also tagged as failed if the spacecraft

deviates more than 10000 km from the virtual reference solution at any time. Additional

tuning parameters is introduced such as minimum value of |∆v̄| that is deliverable and mini-

mum deviation to compute a maneuver. The total sum of the maneuvers |∆v̄| over each run

is recorded. Since white noise is generated randomly, a Monte Carlo simulation is performed

over 100 runs and the mean cost is estimated [  103 ]. With a sample size of 100, a sufficient
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level of precision is achieved while estimating the mean, i.e., the 95% confidence intervals for

the mean are the same order of magnitude as the orbit determination errors. Such precision

is sufficient for this analysis [  46 ], [  50 ]. The total cost is then linearly extrapolated over one

year to estimate an annual maintenance cost. In certain sample cases, the virtual refer-

ence solution is updated incorporating infrequent orbit correction maneuvers, also known

as long-horizon stationkeeping maneuvers. The long-horizon stationkeeping maneuvers are

application specific. The costs to update the long horizon orbit may be added to the annual

stationkeeping cost estimate.

5.2 Principal Stretching Directions

A linear mapping of state perturbations near a reference trajectory is reliable to design

appropriate control algorithms, as well as to leverage the characteristic dynamical behavior

in the vicinity of the reference path. The Cauchy-Green tensor (CGT) is a function of

the state transition matrix (STM) and yields valuable information concerning the linearized

variational dynamical flow in the vicinity of a reference solution [  81 ], [  120 ]. While the STM,

φ, relates the variation of each individual state over time such that φ(t, t0) = ∂x̄(t)
∂x̄0

, the CGT

relates the evolution of the perturbations represented as a material volume over time. The

STM evaluated along a reference trajectory, x̄∗(t), maps the initial perturbation, δx̄0, to the

final perturbed states, δx̄f , as a linear correlation, i.e.,

δx̄f = φ(tf , t0)δx̄0 (5.1)

where, t0 and tf are the initial and final epochs. The isochronous perturbations are measured

relative to this reference path as δx̄(t) = x̄(t) − x̄∗(t). The CGT, or simply ‘C’ is evaluated

as

C(tf , t0) = φ(tf , t0)Tφ(tf , t0) (5.2)

and defines the deformation, as a product of the transpose (superscript T) of the state

transition matrix, φ, with itself. Physically, CGT renders the square of the magnitude of

the final deformation to the initial deformation as
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||δx̄f ||2 = δx̄T
f δx̄f = δx̄T

0 φ(tf , t0)Tφ(tf , t0)δx̄0 = δx̄T
0 C(tf , t0)δx̄0. (5.3)

The growth or decay of the quantity ||δx̄f ||2 describes the sensitivity of the trajectory to

the initial perturbation, δx̄0, however, when the size of an initial perturbation is undefined,

the sensitivity information is directly extracted from CGT. The eigen-decomposition of the

CGT, or the singular value decomposition of the STM, yields details about directions and

magnitudes for the stretching of the flow.

In a dynamical system, the flow as emulated in terms of a material volume, is character-

ized primarily by the elongation and orientation of the volume. The flow for any volume is

visualized either using the eigen-decomposition or the singular value decomposition of the

corresponding matrices. The eigen-decomposition of the CGT yields the eigenvalues λi and

the eigenvectors Vi. For a linear system, the contraction or expansion of the local phase

space is captured by σi corresponding to the directions in Vi. Note that σi equals
√
λi. The

singular value decomposition (SVD) of the STM, reveals the same critical details about the

flow in the phase space but with additional directional information in Ui. Mathematically,

the STM is decomposed into the matrices, U, Σ and V, such that,

UΣV∗ = φ(tf , t0) (5.4)

where, the columns of U yield the stretching directions at the final epoch. For a square

matrix, φ, there is associated a diagonal matrix, Σ, with the magnitude of the stretching

along different directions in descending order, i.e.,

Σ =



σ1

σ2

. . .

σn


(5.5)

such that, σ1 > σ2 > . . . > σn. The matrix V then provides the principal stretching di-
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rections at the initial time along the propagated arc. The matrices Σ and V essentially

supply the same details, acquired using an eigenvalue decomposition of C, while U offers

additional information captured from singular value decomposition, also derivable from the

Cauchy-Green tensor. The matrices U and V are mutually orthogonal. Figure  5.1 illus-

trates the contraction or expansion along different flow directions with the example of a

two-dimensional system transitioned through the SVD or the CGT. Consider a unit circle

in the phase space near a point along an initial reference path that undergoes deformation

and evolves into a stretched ellipse. The evolution of this unit circle into an ellipse is a

combination of translation and rotation. The matrices U and V supply the rotation infor-

mation while the matrix Σ yields information concerning linear translation. The columns

of the matrix V represented by Vi indicate the principal directions at the initial time that

evolve into Ui (the columns of matrix U). The diagonal elements of the matrix Σ, or σi, indi-

cate the stretching along corresponding principal directions. The Cauchy-Green tensor and

the singular value decomposition fundamentally provides the same information, therefore,

used to linearly approximate the attainable region in the vicinity of a reference trajectory.

Precise applications of the principal stretching directions are discussed for two contrasting

applications in this investigation. Effect of principal stretching directions on stationkeeping

maneuvers are discussed in subsection  5.3.1 , while chapter  6 discusses leveraging stretching

directions for orbit departure and trajectory design applications.

𝕍1

𝕍2 𝕌2

𝕌1

ℂ = 𝜙𝑇𝜙
𝜎2

𝜎1

Figure 5.1. Principal stretching directions.
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5.3 Stationkeeping Parameters

The stationkeeping algorithm depends on various parameters that influence the annual

cost and the boundedness of a spacecraft trajectory near the virtual reference solution.

The stationkeeping parameters that are user-defined impact its performance. For orbit

maintenance using the x-axis control approach, three factors that impact the overall cost

and deviation from reference path are explored in this investigation. The selection of these

parameters offer a basis to understand the evolution of the underlying dynamical flow near

the NRHO that enables the x axis crossing control strategy to succeed.

• Coast duration

Currently, the stationkeeping process is based on impulsive maneuvers and, hence,

between two successive maneuvers the spacecraft coasts under the natural dynamics.

The minimum time duration between two successive maneuvers is defined as the coast

duration. It is generally expected that, for a stable orbit, maneuvers with wider spac-

ing are effective in reducing costs, in contrast to an unstable orbit that may require

maneuvers spaced more closely for effective orbit maintenance. In addition, NRHOs

frequently possess close lunar passages, a nonlinear effect that influences the dynamical

flow near the reference orbit over time.

• Maneuver location

Not all locations around the orbit offer the same characteristic properties. Some loca-

tions are notably more sensitive depending on the proximity to different gravitational

bodies. These sensitive locations may offer maximum benefits if stationkeeping ma-

neuvers are implemented accurately [ 121 ]. However, the primary function of a sta-

tionkeeping maneuver is to overcome error build-ups due to limitations in the orbit

determination process and errors due to modeling and prior maneuvers. These sensi-

tive locations often increase the measurement uncertainty, therefore, precise maneuvers

are impossible in practice. These drawbacks, coupled with errors in maneuver execu-

tion, results in these sensitive regions being inferior maneuver locations as errors in

the sensitive regions amplify rapidly over time. Identifying such regions in advance is

particularly helpful for NRHO stationkeeping.

116



• Target horizon

The length of time between the maneuver location and the targeted xz plane crossing

near the periapsis region is denoted the target horizon. Since the target horizon is

user defined, the target is placed at the first xz plane crossing near the periapsis,

or any subsequent crossing near the next periapsis downstream. Since the target

location is an xz plane crossing, the target horizon is labelled in terms of the number of

revolutions downstream from the maneuever location. A precise maneuver is generated

by targeting the rotating ẋ value at the specified xz plane crossing using a single

shooting process. It is generally reliable to target a sensitive region, e.g., the periapsis

region, to yield the most economic maneuver. Guzzetti et al. suggest the same principle

based on their results by targeting the xz plane crossings near the periapsis [  4 ]. A

longer target horizon, i.e., targeting further downstream, is expected to produce lower

maneuver magnitudes, however, mission requirements or constraints may necessitate

shorter target horizons.

The inter-dependency of the parameters, i.e., coast duration, maneuver location and

target horizon, is illustrated in the flowchart in Figure  5.2 . The simultaneous interactions

between the flow evolving from one maneuver location to the next along a coast arc and the

flow evolution from the maneuver location to the target determines the performance of the

maneuver.

5.3.1 Effect of maneuver location and coast duration

The spacecraft coasts under the natural dynamics between two successive impulsive ma-

neuver locations, and the time interval is termed the coast duration. The flow between the

maneuver locations then determines the impact of the deviations in the initial states that

are propagated downstream to the end states where the subsequent maneuver is generated.

The dynamics of the flow in the circular restricted three-body problem as well as in the

ephemeris model are complex, however, for small perturbations in a linear model that are

reflective of the unmodelled forces and errors in the orbit determination process, predictions

of the flow variations in the vicinity of a reference trajectory using the state transition matrix
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Figure 5.2. Stationkeeping parameter effects flowchart.

is generally reliable for these NRHOs. The Cauchy-Green tensor (CGT) is a function of the

STM and aids in visualizing linear flow by decomposing it into different mutually orthogonal

directions, along which components of perturbations grow independent of the other. The

linear flow is typically visualized using eigen-decomposition or Cauchy-Green tensor. Since

the primary trajectory of interest is the NRHO in the Earth-Moon system that are almost

stable, the Cauchy-green tensor decomposition is used to monitor the growth in magnitude

of perturbations in different orthogonal flow directions, thereby overcomes the shortcomings

of the Eigen-structure to explain the flow in regions that lack definitive manifold structures.

Since maneuvers are allowed anywhere along the orbit (multiple maneuvers per orbit or mul-

tiple orbits between maneuvers) the understanding of the mutual impact of the maneuver

location and coast duration is critical. The Cauchy-Green tensor decomposes the flow into

different orthogonal stretching directions providing necessary information about the growth

of perturbations in each of the decomposed, mutually independent, orthogonal directions.

A maneuver is potentially delivered anywhere along a range of locations on the orbit,

hence, identifying precise maneuver locations is a key input for the analysis. Maneuver

locations and trajectory segment lengths are, thus, denoted in terms of a mean anomaly
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and an osculating true anomaly. The quantities, mean anomaly and true anomaly, are used

to represent locations along conic orbits in the two-body problem, however, a similar form

in the CR3BP are reliable to uniquely identify locations along an orbit. Since the NRHO

is a closed orbit in the CR3BP, the mean anomaly is defined as a fraction of an orbit the

spacecraft has traversed since the most recent periapsis, i.e.,

θMA = 2π
t

℘
rad = 360 t

℘
deg (5.6)

where ℘ is the time period for the selected orbit while t is the time of propagation beyond the

most recent instantaneous periapsis location (i.e., closest passage at the Moon) as defined in

the circular restricted three-body problem. The quantity 2π/℘ is called the mean motion.

Since the NRHO is not a Keplerian orbit, an osculating true anomaly, θT A, is only a math-

ematical representation defined with respect to a central body, i.e., the Moon [  122 ]. The

mean anomaly quantifies the relative locations in terms of the actual time of propagation

while true anomaly offers the geometric interpretation of locations as noted in Figure  5.3 .

Since NRHOs are highly eccentric, i.e., NRHOs have significantly larger apolune radius than

perilune radius, measurements using mean anomaly makes it convenient to express locations

on the orbit of different sizes as a direct function of the actual time of propagation while

osculating true anomaly provides a geometric interpretation as shown in Figure  5.3 . In the

case of NRHOs apoapsis occurs at 180 degrees and periapsis at 0 and 360 degrees respec-

tively in both mean anomaly and osculating true anomaly scales. The coast duration is also

defined in similar manner as the change in the mean anomaly or the osculating true anomaly

past the maneuver location. In mean anomaly, for example, 180 degree coast arc signifies

that the spacecraft states are propagated for 0.5 time period past the maneuver location.

The flow between the nth and (n+ 1)th impulsive maneuvers, at time tn and tn+1 respec-

tively, is measured by the state transition matrix evaluated along the coast segment, i.e., ϕC ,

such that ϕC = φ(tn+1, tn). Without loss of generality, assume, tn = t0, the initial time at

which the maneuver is implemented, and tn+1 = tf , as the final time along the propagated
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(a) Mean Anomaly (b) Osculating True Anomaly

Figure 5.3. Definition of locations along NRHO.

natural trajectory segment. In the stationkeeping problem, however, only the initial velocity

terms are controllable, hence tracking the flow generated by the 6×6 state transition matrix

ϕC is inconsequential. Specific submatrices of ϕC defined by

ϕC =

ϕC,r,r ϕC,r,v

ϕC,v,r ϕC,v,v

 =


∂r̄f

∂r̄0

∂r̄f

∂v̄0

∂v̄f

∂r̄0

∂v̄f

∂v̄0

 (5.7)

yield more relevant characteristics. For example, the 3 × 3 dimensional submatrix, ϕC,r,v,

maps the initial velocity perturbation, δv̄0, to the final position change, δr̄f , and the 3 × 3

dimensional submatrix, ϕC,v,v, maps the initial velocity perturbation, δv̄0, to the final velocity

change, δv̄f . Also, combined, the 6 × 3 dimensional submatrix ϕC,rv,v, that is constructed as

ϕC,rv,v =

ϕC,r,v

ϕC,v,v

 (5.8)

and maps the initial velocity perturbation, δv̄0, to the final position and velocity state change,
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δr̄f and δv̄f . This matrix yields significant characteristics, as only the initial velocity states,

δv̄0, are subject to change. The sensitivity of the orbit states to initial velocity changes is

measured by monitoring the magnitude of maximum stretching, σ1, corresponding to each

of the ϕC,r,v, ϕC,v,v and ϕC,rv,v submatrices. The values of the largest stretching magnitude,

σ1, corresponding to each of the ϕC,r,v, ϕC,v,v and ϕC,rv,v submatrices for various combina-

tions of maneuver locations and coast durations along the 9:2 synodic resonant orbit with

perilune radius 3200 km is plotted in Figure  5.4 . Not surprisingly, the maximum stretching

magnitudes corresponding to ϕC,v,v and ϕC,rv,v, the submatrices that include velocity pertur-

bations at the final time, are significantly larger than the maximum stretching magnitudes

corresponding to ϕC,r,v, suggesting that the velocity changes generally require tight control.

Due to such behavior, the flow described by the ϕC,v,v and ϕC,rv,v submatrices offer mea-

surements to identify sensitive regions along the orbit. Since the stationkeeping algorithm

is required to reduce the successive maneuver magnitudes, the stretching direction from the

ϕC,v,v submatrix, that monitors the final velocity change, is incorporated throughout this

investigation. Further, as is evident from Figure  5.4 , trajectory segments that terminate

close to or originate near the periapsis regions are highly sensitive to perturbations, i.e., hot-

ter shades in the map, hence, maneuvers are generally avoided in such regions. The cooler

shades in the map, highlight the likely regions suitable for defining the maneuver locations.

Of course, not all components of the maneuver lie along the largest stretching direction,

however, the magnitude of largest stretching provides the maximum magnitude of state

change that could result from any maneuver of a given magnitude. In addition to the

maneuver, any error in maneuver execution also amplifies in the same manner. The lighter

regions in the schematic, as in Figure  5.4 indicates a larger stretching compared to the darker

regions. For a particular orbit, the L2 southern NRHO with perilune radius 3200 km, a sharp

light-colored contour is visible across the figures corresponding to measurements in mean

anomaly. These contours represent the trajectory segments that originates or terminates

close to the periapsis region, for example, a trajectory segment that originates at a maneuver

location at 180 degree θMA or θT A, i.e. the apoapsis, when propagated for a coast duration of

180 degrees approaches the periapsis region that is highly sensitive. Any small perturbations
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(a) Maximum stretching along ϕC,r,v for
measurements in mean anomaly

(b) Maximum stretching along ϕC,r,v for
measurements in osculating true anomaly

(c) Maximum stretching along ϕC,v,v for
measurements in mean anomaly

(d) Maximum stretching along ϕC,v,v for
measurements in osculating true anomaly

(e) Maximum stretching along ϕC,rv,v for
measurements in mean anomaly

(f) Maximum stretching along ϕC,rv,v for
measurements in osculating true anomaly

Figure 5.4. Maximum stretching magnitude along different submatrices of
the state transition matrix, ϕC , on L2 NRHO with perilune radius 3200 km.
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along the trajectory segment amplifies as much as e8 times, if it were to be aligned along

the largest stretching direction, on the contrary, a trajectory segment originating at the

same maneuver location when propagated for 360 degrees, i.e. the spacecraft approaches the

following apoapsis, the error amplification is low indicated by the darker regions in Figure

 5.4 . The trend is similar along any NRHO that has close lunar passage. For unstable halo

orbits, that are farther away from the primary body, a more gradual change is observed, if

a map similar to Figure  5.4 is generated. It is preferred to apply a maneuver at a location

indicated by darker regions in the map, to ensure that the spacecraft remains in tight vicinity

to the reference trajectory when propagated downstream for the specified coast duration.

The darker regions on the map therefore establishes the practicable regions for maneuver

placements.

5.3.2 Effect of maneuver location and target horizon

In an effective stationkeeping strategy, the flow between the maneuver location and the

target determines the maneuver characteristics. As previously introduced, for an x-axis

control strategy, the rotating ẋ value at different downstream xz plane crossings near the

periapsis region serves as a target parameter. The stationkeeping control effort is based on

the idea that a 3-dimensional maneuver is implemented at the current time that satisfies the

required target conditions. Mathematically, this is then represented by

∆ẋf =
[
ϕT,44 ϕT,45 ϕT,46

]
∆v̄0 =

[
ϕT,44 ϕT,45 ϕT,46

]

∆ẋ0

∆ẏ0

∆ż0

 (5.9)

where, ∆ẋf is the change in the rotational ẋ value at the target xz-plane crossing and

∆v̄0 = [∆ẋ0, ∆ẏ0, ∆ż0]T defines a column vector with three scalar independent control

variables that comprise the impulsive maneuver. Finally, [ϕT,44 ϕT,45 ϕT,46] is the appropriate

submatrix of the 6×6 state transition matrix, ϕT . The subscripts, i and j, in ϕT,ij, indicate the

element in ϕT in the ith row and jth column. Moreover, ϕT is the state transition matrix from

the maneuver location to the target, i.e., ϕT = φ(tT arget, t0). The time difference between
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t0 and tT arget is the target horizon time. Define M̄ = [ϕT,44 ϕT,45 ϕT,46]T as a 3 × 1 column

vector and, therefore, ∆ẋf = M̄T∆v̄0. One of the most useful options for the stationkeeping

process is minimizing the propellant costs, hence, a minimum norm solution that delivers

the smallest maneuver is generally an appropriate choice for this problem. Since the control

equation ∆ẋf = M̄T∆v̄0 is equivalent to the dot product between M̄ and the ∆v̄0 vector,

the maneuver magnitude is deduced as

|∆ẋf | = |M̄ ||∆v̄0| cosϑ −→ |∆v̄0| = |∆ẋf |
|M̄ | cosϑ

(5.10)

where cosϑ is the angle between M̄ and the ∆v̄0 vectors. Of course, M̄ includes components

of the state transition matrix ϕT but ∆v̄0 and ϑ are variables. In any case, the smallest

maneuver |∆v̄0| is generated only if cosϑ = 1, i.e., ϑ = 0o or ∆v̄0 vector is aligned in the

direction of M̄ . Therefore, a minimum norm solution for stationkeeping renders a maneuver

magnitude of

|∆v̄0|min−norm = |∆ẋf |
|M̄ |

(5.11)

in the direction of M̄ . The maneuver magnitude that is generated depends on the change in

the rotational velocity ∆ẋf , which varies with time, however, the maneuver magnitude as a

function of the initial perturbation is a better metric, i.e.,

|∆v̄0|min−norm = |B̄T∆x̄0|
|M̄ |

≤ |B̄T||∆x̄0|
|M̄ |

(5.12)

where ∆ẋf = B̄T∆x̄0 with B̄ = [ϕT,41 ϕT,42 ϕT,43 ϕT,44 ϕT,45 ϕT,46]T as the submatrix of ϕT

that relates the initial state perturbation that delivers a final ẋ change. Define an initial

perturbed state, ∆x̄0 = [∆x0, ∆y0, ∆z0, ∆ẋ0, ∆ẏ0, ∆ż0]T, as a result of position and

velocity errors in the orbit determination process as well as modeling errors. The inequality

in equation ( 5.12 ), is then represented in the standardized form as

|∆v̄0|min−norm

|∆x̄0|
≤ |B̄|

|M̄ |
(5.13)
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and offers an upper bound on the magnitude of the stationkeeping maneuver required to

overcome any unit initial perturbation at specific target horizons in a linear sense. A plot

of |B̄|
|M̄ | for different targets, i.e., 1st, 2nd and 7th xz plane crossings near the periapsis region

is represented in Figure  5.5 for an L2 NRHO with perilune radius 3200 km. The value of

|B̄|/|M̄ | for combinations of maneuver locations along the orbit and coast durations are

plotted as a colormap (in a logarithmic scale) for a number of target horizons, and range

from e0.5 to e2. For different target horizons, maneuver locations along the orbit offer distinct

characteristics. A lower value of |B̄|
|M̄ | suggests that the executed maneuver requires a smaller

magnitude maneuver in that region. From Figures  5.5(e) and  5.5(f) , it is evident that when

targeting the 7th xz plane crossing, there exists a wide range of maneuver locations, i.e.,

the dark blue regions, that result in low maneuver magnitudes compared to targeting the

rotating ẋ at the 1st or 2nd xz plane crossings as in Figures  5.5(a) ,  5.5(b) ,  5.5(c) and  5.5(d) .

The ratio |B̄|/|M̄ | offers the upper bound on the value of the maneuver magnitude that

is required given a specified initial perturbation, however, the direction of the maneuver is

governed by the direction of the M̂ vector. The direction of the maneuver is an important

parameter that supplies an assessment for the efficiency of the maneuver in maintaining the

spacecraft in the vicinity of the reference path. The stretching directions for the submatri-

ces of the STM along the coast segment, ϕC , are available; such a quantity offers insight

for predicting a maneuver that likely results in the spacecraft deviating from the reference

trajectory. Geometrically, if the maneuver direction M̂ is aligned in the most stretching

direction V1, with σ1 > 1, then the executed maneuver produces the maximum change in

the state by the time corresponding to the following maneuver location thereby increasing

the spacecraft deviation from the reference. In contrast, the maneuver direction M̂ that

is aligned perpendicular to the most stretching direction, V1, reduces the deviation at the

following maneuver location. If the stretching along the directions associated with σ2 and σ3

are less than a nondimensional value of 1, then the plane represented by the V2 −V3 vectors

defines a restoring plane. If only σ3 < 1, then the direction along the V3 vector is a restoring

direction. The restoring plane or the restoring direction is vital as deviations at the end of

the propagated arc diminish in comparison to deviations at the beginning. The maneuvers,
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(a) Target: 1st xz plane crossing near periapsis.
Measurement: Mean anomaly.

(b) Target: 1st xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

(c) Target: 2nd xz plane crossing near periapsis.
Measurement: Mean anomaly.

(d) Target: 2nd xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

(e) Target: 7th xz plane crossing near periapsis.
Measurement: Mean anomaly.

(f) Target: 7th xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

Figure 5.5. Ratio of maximum maneuver magnitude per magnitude of the
initial state deviation, |B̄|/|M̄ |, for different target horizons. Reference orbit:
L2 NRHO with perilune radius 3200 km.
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when executed in the restoring plane or along the restoring direction, reduces the spacecraft

deviation at the downstream locations, thereby maintaining the spacecraft boundedness. A

map for the direction between the maneuver and the most stretching direction for different

combination of maneuver location and coast duration for three different target horizons is

presented in Figure  5.6 , for an L2 NRHO with perilune radius 3200 km. Regions such that

the maneuver and the most stretching direction are almost perpendicular facilitate efficient

maneuvers.

It is sometimes intuitive to deliver a maneuver along the most stretching direction, how-

ever, such is the case where the subsequent maneuver location and the target are the same.

A small change in the velocity components at the initial time and in the largest stretching

direction result in the largest change at the final time. Thus, a small maneuver is required

to satisfy the target condition. So, when the target and the subsequent maneuver location

are the same, satisfying the target conditions is equivalent to reducing state errors at the

subsequent maneuver location. However, in the x-axis crossing control approach, the target

is the rotating xz plane near the periapsis region, while the maneuver locations are closer

to apoapsis. The flow between two successive maneuver locations that defines the stretch-

ing directions evolves independently from the flow between the maneuver location and the

selected target. Subsequently, a maneuver (that meets the ẋ = ẋref constraint at the target

xz plane crossing within some predefined tolerance) is calculated independently of the dy-

namical flow until the following maneuver location. In case, the computed maneuver aligns

with the maximum stretching direction, the state change at the following maneuver location

is amplified.

In this investigation, the maneuver directions are identified from the context of an x-

axis control strategy, one that targets only one state (i.e., the rotating x velocity) of the

three position and three velocity states. For such a strategy the maneuver direction, M̂ ,

is predicted in a straightforward manner that consists of elements of the state transition

matrix, without much impact of the initial state perturbations. It is possible to isolate

the maneuver directions for a similar approach, one that targets the rotating y-velocity, as
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(a) Target: 1st xz plane crossing near periapsis.
Measurement: Mean anomaly.

(b) Target: 1st xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

(c) Target: 2nd xz plane crossing near periapsis.
Measurement: Mean anomaly.

(d) Target: 2nd xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

(e) Target: 7th xz plane crossing near periapsis.
Measurement: Mean anomaly.

(f) Target: 7th xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

Figure 5.6. Estimated angle between maneuver direction and the most
stretching direction V1(ϕC,v,v) for different target horizons. Reference orbit:
L2 NRHO with perilune radius 3200 km.
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demonstrated in section  5.6.2 , as well as a modified version of the x-axis crossing control

strategy with direction constrained maneuvers, as described in section  5.6.3 . The ability to

identify the maneuver directions just based on the dynamics along the orbit, without much

impact of the initial state perturbations, enables a comparison with the stretching directions

to investigate the impact of the maneuver downstream without performing Monte Carlo

simulations. If two or more conditions (in position and velocity) are targeted the resulting

maneuver magnitude and direction cannot be predicted without a priori information on

initial position and velocity perturbations unlike using equation  5.10 . For such a case, the

analyses is more complex and modifications to the process described in this investigation

may be required.

5.4 L2 Near Rectilinear Halo Orbits

With a focus on expanding the human presence in the region, NASA’s Gateway mission,

formerly the Deep Space Gateway (DSG) or Lunar Orbital Platform-Gateway (LOP-G)

mission, delivers a hub-like facility that is currently planned to move along a Near Rectilinear

Halo Orbit (NRHO) near the L2 region in the Earth-Moon system [ 1 ], [ 2 ]. Besides, the NRHO

is close to the L2 portal and offers uninterrupted relay communications to any potential

lunar landing sites on the side farther from the Earth. Halo orbits near the L2 portal also

facilitates departures for any interplanetary missions. With several scientific opportunities,

NRHOs in the L2 region of the Earth-Moon system remain a popular choice. A systematic

and straightforward approach to sustain spacecraft along the L2 NRHOs is desired.

5.4.1 Conventional approach: Maneuvers at apoapsis

For orbit maintenance operations as simulated in the ephemeris model by Davis et al.

[ 57 ] as well as Guzzetti et al. [  4 ] for Earth-Moon L2 NRHOs, maneuvers are implemented

once per revolution, generally at (or near) the apoapsis. Since the period of the NRHO is

approximately one week, implementing maneuvers only in the apoapsis region provides am-

ple time for orbit determination. The annual stationkeeping costs estimated by targeting the

rotating ẋ value at the xz plane crossing 6.5 revolutions ahead (i.e., the target horizon) pro-
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duces the most efficient result, for various orbit determination error levels, both in position

and velocity. A similar result is observed for simulations in the CR3BP model. Of course,

larger orbit determination errors resulted in larger orbit maintenance cost. The intuition

that a longer target horizon consistently produces a lower maneuver cost, is not necessarily

true for all the L2 NRHO, however. For the L2 NRHO with a radius of periapsis 3200 km,

the current baseline for the Gateway, the target horizon at 1.5 revolutions results in several

failed set of Monte Carlo trials or a high maintenance costs, irrespective of the magnitude

of the ODE errors and the model, CR3BP or ephemeris model. Contrary to targeting a

1.5 rev target horizon, other target horizons produce successful cases, particularly a target

horizon of 6.5 revs downstream. The results from Davis et al. [  57 ] and Guzzetti et al. [  4 ]

are analogous to this observation.

In the conventional x-axis control approach, once the maneuvers are executed at (or

near) the apoapsis, the spacecraft is allowed to coast till the subsequent apoapsis where the

next maneuver is generated and, and most often implemented. Since maneuvers induce a

change in the state at the apoapsis, the effect of an implemented maneuver at the follow-

ing apoapsis is vital. If the maneuver is implemented in the most stretching direction, the

spacecraft experiences a larger deviation when it reaches the subsequent apoapsis and the

phenomenon continues till the deviation is sufficiently magnified and the spacecraft is es-

caping. The flow defined by the Cauchy-Green tensor provides the magnitude and direction

of the stretching, as available from the components of the monodromy matrix between two

consecutive apoapses computed along a virtual reference orbit. For the L2 NRHOs, orbits

with perilune radius between 2000-9000 km and with one maneuver per orbit, executed at

the apoapsis, i.e., maneuver location at θMA = 180o and a coast arc of 360o (1 time period),

there exists one stretching direction and two non-stretching directions forming a restoring

plane as demonstrated by [  82 ]. The plot in Figure  5.7 summarizes the stretching as com-

puted from the monodromy matrix for certain members of the NRHO family. For the orbit

of interest, the 9:2 synodic L2 resonant orbit with perilune radius 3200 km, the current

baseline for the Gateway mission, and with maneuvers at apoapsis (θT A = θMA = 180o and

coast arc of 360o), the three stretching directions possess magnitudes of stretching such that

130



σ1 = 2.34, σ2 = 0.78 and σ3 = 0.25. Since σ1 > 0, the directions deduced from V1 and U1

correspond to direction of the perturbation growth at the initial and final times, respectively.

In contrast, σ2, σ3 < 1, therefore directions V2, V3 at the initial time and U2, U3 at the final

time are restoring directions where the magnitude of the perturbation diminishes over the

propagated time. It is to be noted that the directions V1, V2 and V3 are perpendicular. For

the L2 NRHO orbits with perilune radius between 2000-9000 km and with one maneuver per

revolution, near apoapsis, there exists a stretching direction and a restoring plane, therefore,

ensuring maneuvers that are perpendicular to the stretching direction that establishes the

stability of the maneuvers.
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Figure 5.7. Magnitude of stretching, σi, along different Ui directions for
various NRHOs in the L2 region.

The maneuver direction as compared to the stretching and restoring directions play an

important role in determining the efficiency of the stationkeeping scheme. If successive

maneuvers are implemented that are aligned closely to the V1 direction, the magnitude of

change in the state increases over time. On the contrary, any maneuvers that are aligned

perpendicular to the V1 direction, in the restoring V2 −V3 plane, the magnitude of the per-

turbation does not grow significantly over the propagated time, hence, a better success rate

for stationkeeping is achieved. When targeting different xz plane crossings near the periap-
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sis region, i.e., downstream at 0.5 rev, 1.5 rev, and subsequent target horizons, a different

maneuver direction, M̂ , is computed. The angle between the direction of the maneuver M̂

and the most stretching direction of ϕC,v,v for different target horizons, are summarized for

an L2 NRHO with perilune radius 3200 km in Figure  5.8 . A curve is also included for the

angle between the direction of the maneuver M̂ and the most stretching direction of ϕC,rv,v.

Both these curves demonstrate a similar pattern, but as noted previously, comparing with

ϕC,v,v is useful for halo orbits that are notably sensitive to velocity perturbations. When tar-

geting 1.5 revs ahead, the angle between the maneuver and the most stretching direction for

ϕC,v,v is approximately 50 degrees, while for the 6.5 rev target horizon the angle is nearly 90

degrees. For target horizons where the angle is almost perpendicular to the most stretching

direction, i.e., aligned with the restoring plane, the state variations at the initial time do not

induce a large final variation, hence, the spacecraft remains bounded closer to the reference

trajectory. In contrast, at the 1.5 rev target horizon, the maneuver possesses a significant

component in the most stretching direction that results in amplification of the state variation

at the final time for a specific initial state perturbation. In such a case, the deviation size

and the maneuver size continuously increase with time and, eventually, divergence from the

virtual reference trajectory occurs.

Figure 5.8. Angle between maneuver and most stretching direction for the
9:2 synodic resonant NRHO with perilune radius 3200km.
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The maneuver direction, M̂ , is determined from the elements of the state transition ma-

trix (ϕT ) that reflect the flow from the maneuver location to the target such that M̄(t) =

[ϕT,44 ϕT,45 ϕT,46]T. Any location that is situated some time past the maneuver location is a

potential target. For such a target, the maneuver direction is computed from the elements

of ϕT that is a continuous function of time. For the 9:2 synodic resonant L2 NRHO and the

case where the maneuvers are located only at apoapsis locations, the direction between the

most stretching direction and any potential target along the orbit may be represented as a

continuous function of time as illustrated in Figure  5.9 . The conventional x-axis algorithm,

however, targets only specific xz plane crossings that are periapsis locations in the CR3BP.

Such locations are marked at discrete intervals of 0.5 rev, 1.5 rev and so on. Since dynamics

near periapsis change rapidly the curves appear in form of spikes but they are continuous

curves. Besides, the angle between measurement is restricted between 0o − 90o, i.e., value of

95o and 85o are equivalent (they just switch the direction). As a consequence, the continuous

curve appears to bounce of the 90o limit. Although the angle between the most stretching

direction and the maneuver generated by targeting the 1.5 rev target (approximately 50o)

appear distinct from other target horizons typically used for stationkeeping, each value are

a result of the discretization along a continuous curve.

The maneuvers are based, of course, on the states along the actual trajectory nearby

the baseline path and may not precisely align with the angles in Figure  5.8 , therefore, the

angle between the actual maneuvers as compared to the most stretching direction that result

from Monte Carlo simulations are plotted in Figures  5.10 and  5.11 for both the CR3BP as

well as the ephemeris model, with low and high orbit determination errors respectively. For

each of the target horizons, i.e., 0.5 rev, 1.5 rev and subsequently, the angle between the

actual maneuvers and the most stretching direction V1 are well estimated in Figure  5.8 . For

the ephemeris case, due to the complex dynamics, the angles do not precisely coincide with

the estimated values, but do follow the underlying pattern. The maneuvers as viewed in

configuration space in Figure  5.12 for both the CR3BP and the ephemeris case, demonstrate

distinctly different directions for the 1.5 rev target horizon and the 6.5 rev target horizon. Not

surprisingly, a larger variance is observed for maneuvers in the ephemeris model as compared
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Figure 5.9. Angle between most stretching direction and M̂(t) as a continu-
ous function of time for the 9:2 synodic resonant NRHO with perilune radius
3200km. Here M̄(t) = [ϕT,44 ϕT,45 ϕT,46]T.

to the CR3BP model. In addition, the stretching direction as well as the restoring plane that

are estimated using the underlying CR3BP dynamics are plotted in Figure  5.12(a) , for the

L2 NRHO with 3200 km perilune radius. Clearly, the direction of the maneuvers computed

for different target horizons influences the performance of the stationkeeping algorithm. Not

surprisingly, the characteristics of the flow along the orbit delivers a poor performance for

the 1.5 rev target horizon, as the maneuvers include a significant component in the most

stretching direction. In contrast, the 6.5 rev target horizon proves superior for the L2 NRHO

with perilune radius 3200 km, as maneuvers are closely aligned with the restoring plane.

The same type of analyses applied to other L2 NRHOs. In the conventional x-axis control

approach, the status of the target condition determines the effectiveness of the maneuvers

to maintain the spacecraft within the close vicinity of a virtual reference trajectory over

time. The flow from the maneuver location to the target determines the direction and the

magnitude of the maneuvers. As noted, although the maneuver magnitude depends on the

initial error, the ratio of the maximum maneuver magnitude for an unit initial perturbation

is deterministic in the linear sense. Similarly, the direction of the maneuver with respect
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(a) CR3BP model

(b) Ephemeris model

Figure 5.10. Angle between the actual maneuver and the most stretching
direction V1(ϕC,v,v) for the 9:2 synodic resonant L2 NRHO with perilune radius
3200 km. Low orbit determination error (3σ: 1 km and 1 cm/s) case.

to the most stretching direction is available for any NRHO under investigation. The ma-

neuver magnitude and direction offers a control metric, that reflects the effectiveness of the

maneuver and assists in an informed selection for the target horizon. The angle between the

estimated maneuver and the most stretching direction appears in Figure  5.13(a) across vari-

ous NRHOs. Clearly, for the range of NRHOs under investigation, the 1.5 rev target horizon
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(a) CR3BP model

(b) Ephemeris model

Figure 5.11. Angle between the actual maneuver and the most stretching
direction V1(ϕC,v,v) for the 9:2 synodic resonant L2 NRHO with perilune radius
3200 km. High orbit determination error (3σ: 10 km and 10 cm/s) case.

is not recommended, as maneuvers (as typically computed) possess a significant component

in the most stretching direction that deviates away from the virtual reference trajectory over

time. Depending on the orbit of interest, selecting 6.5 rev, 4.5 rev and 2.5 rev target horizons

offer good performance. Similarly, the map in Figure  5.13(b) indicates that targeting the 1.5

rev horizon offers lower leverage in terms of the maneuver magnitude required to overcome
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(a) CR3BP

(b) Ephemeris

Figure 5.12. Maneuvers in configuration space for L2 NRHO with perilune
radius 3200 km. Low orbit determination error (3σ: 1 km and 1 cm/s) case.
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unit initial perturbations thereby resulting in larger maneuvers costs. Again, target horizons

other than 1.5 rev, for NRHOs with perilune radius 3000 km or larger, offers good leverage,

i.e., relatively smaller maneuver magnitude required to overcome unit initial perturbations.

Targeting further downstream beyond 6.5 rev horizon is computationally intensive and does

not necessarily yield any substantial improvements in stationkeeping costs. Other NRHOs,

independently evaluated, may offer flow patterns that differ from the 9:2 synodic resonant

NRHO in the L2 region, and different target horizons may yield a different performance.

The spacecraft is maintained along the orbit at the expense of propellant cost used for de-

livering impulsive maneuvers, also known as stationkeeping cost. The annual stationkeeping

cost is estimated by running Monte Carlo runs with a different seed for orbit determination

errors and maneuvers execution errors that are assumed to be a Gaussian distribution. The

annual cost generated from individual Monte Carlo runs may not be resemble a Gaussian

distributed, nevertheless, the mean of the distribution, i.e., the estimate of the annual sta-

tionkeeping cost, is still Gaussian under the central limit theorem [  123 ]. With about 100

Monte Carlo runs, the standard error of the mean is reduced to 10% of the standard errors of

the observations. Additionally, with sample size 100, the Student-T distribution and Normal

(Gaussian) distribution are comparable, hence,

σκ̄ = Sκ√
100

= Sκ

10 (5.14)

where, σκ̄ is the standard error of the estimated mean. The annual stationkeeping cost along

the L2 NRHO with 3200 km perilune radius for different Monte Carlo runs are plotted in

Figure  5.14 for high orbit determination error. Target horizon of 6.5 rev is considered for

the measurements. The black asterisk (*) corresponds to the sample cost generated for a

particular Monte Carlo run, while bold blue line corresponds to the running mean annual

cost. Dotted red and green lines corresponds to +1.96σκ̄ and −1.96σκ̄ values respectively.

The interval between the red and green dotted lines corresponds to the 95% confidence

interval of the estimated mean. The range of 95% confidence intervals for the mean are the
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(a) Angle between maneuver and most stretching direction

(b) Maximum maneuver magnitude per unit initial deviation (max value capped at 1.2)

Figure 5.13. Maneuver effectiveness for different target horizon for different
NRHOs in the L2 region.

same order of magnitude as the orbit determination errors. Such a precision is sufficient for

the analysis.

The x-axis approach is a loose control strategy that targets only two of the seven states

(including time), i.e., the rotating ẋ component at y = 0, thus providing low cost station-
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Figure 5.14. Annual stationkeeping cost with 95% confidence interval
(±1.96σmean) estimated using Monte Carlo runs. Example: L2 NRHO with
perilune radius 3200 km, with 6.5 rev target horizon.

keeping solutions. For different NRHOs, the annual orbit maintenance costs are computed

for both low (3σ: 1 km and 1 cm/s) and high (3σ: 10 km and 10 cm/s) orbit determination

error levels in Tables  5.1 and  5.2 , respectively. Annual costs are estimated from the Monte

Carlo simulations, each trials involving propagation of trajectories for duration of approxi-

mately 240 days. Certain cases, specific to the baseline orbit for the Gateway mission are

propagated for a duration of 300 days. It is evident that increased uncertainty in orbit

determination increases the orbit maintenance costs. For a particular orbit, irrespective of

the orbit determination error levels, the annual stationkeeping costs generated by targeting

relatively longer horizon times, i.e., 4.5, 5.5 and 6.5 revs, are not significantly different. For

the very short target horizon of 0.5 rev, a significantly higher cost of operation is observed

in contrast to targeting a longer time horizon. As noted earlier, no Monte Carlo runs yield

successful maneuvers for a target horizon of 1.5 rev.

5.5 L1 Near Rectilinear Halo Orbits

Near rectilinear halo orbits that originate in the L1 region are also potential candidates

for space exploration missions. Although the NRHOs in the L1 region demonstrate stability
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Table 5.1. Annual orbit maintenance cost, κ̄, and 95% confidence interval,
±1.96σκ̄, in [m/s] with low orbit determination error level (3σ: 1 km and 1
cm/s).

Perilune radius [km] Target horizon [rev]
0.5 1.5 2.5 3.5 4.5 5.5 6.5

3200 0.28 DNC 0.18 0.13 0.14 0.15 0.16
± 0.02 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00

4000 0.29 DNC 0.18 0.13 0.14 0.15 0.15
± 0.02 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00

4800 0.32 DNC 0.16 0.13 0.15 0.15 0.15
± 0.02 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00

5645 0.45 DNC 0.16 0.13 0.15 0.14 0.15
± 0.03 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00

6400 0.58 DNC 0.17 0.13 0.15 0.15 0.16
± 0.05 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00

7200 0.72 DNC 0.18 0.13 0.16 0.15 0.15
± 0.12 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00

* DNC - Did not converge

characteristics similar to the L2 NRHOs, at least in terms of the linear variational flow.

They do not, however, mirror all the properties of L2 NRHOs. In the L2 NRHOs, as per-

ilune radius decreases, the apolune radius also decreases, however, as the perilune radius of

L1 NRHOs decrease, the apolune radius initially decreases and then increases rapidly, form-

ing high out-of-plane amplitudes [ 3 ]. Stationkeeping maneuvers to maintain spacecraft in

the neighborhood of a virtual reference solution depend on the maneuver locations and the

target horizon times, rather than the stability index. The interaction between flow evolving

between one maneuver to the other and the flow evolution from maneuver location to target

are different across the NRHOs in the L1 family in comparison to the L2 family. Observa-

tions and results obtained for L2 NRHOs are not always preserved for the L1 family.

A Cauchy-Green tensor assists in visualizing the flow of the magnitude of the state

vectors in the neighborhood of a virtual reference trajectory by again decomposing the

evolution of the variations into different stretching directions that are orthogonal to each
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Table 5.2. Annual orbit maintenance cost, κ̄, and 95% confidence interval,
±1.96σκ̄, in [m/s] with high orbit determination error level (3σ: 10 km and 10
cm/s).

Perilune radius [km] Target horizon [rev]
0.5 1.5 2.5 3.5 4.5 5.5 6.5

3200 5.84 DNC 1.81 1.02 0.96 0.90 0.91
± 0.32 ± 0.12 ± 0.04 ± 0.03 ± 0.03 ± 0.03

4000 3.78 DNC 1.86 0.92 0.90 0.89 0.91
± 0.41 ± 0.18 ± 0.03 ± 0.03 ± 0.03 ± 0.03

4800 3.73 DNC 1.58 0.93 0.86 0.85 0.82
± 0.47 ± 0.15 ± 0.04 ± 0.03 ± 0.03 ± 0.03

5645 4.53 DNC 1.43 0.86 0.85 0.82 0.86
± 0.58 ± 0.11 ± 0.03 ± 0.03 ± 0.03 ± 0.10

6400 7.16 DNC 1.42 0.88 0.80 0.81 0.83
± 0.93 ± 0.12 ± 0.03 ± 0.03 ± 0.03 ± 0.19

7200 7.45 DNC 1.66 0.88 0.81 0.78 0.78
± 0.92 ± 0.14 ± 0.04 ± 0.03 ± 0.03 ± 0.07

* DNC - Did not converge

other, such that, the flow along each of the decomposed directions evolves independent of

the other. The number of directions with a magnitude of stretching, σi > 1, is labelled as

the stretching subspace. For a 3-dimensional flow, the number of stretching subspace varies

between 0 and 3. A 0-dimensional stretching subspace is a characteristic of regions where

the magnitude of perturbation always diminishes along a propagated arc, irrespective of the

direction of maneuver. If the dimensions of stretching subspace is 1, there exists a single

direction along which perturbations grow while a restoring plane exists where perturbations

diminish downstream. Similarly, a 2-dimensional stretching subspace indicates a plane along

which perturbations expand and then one restoring direction. Finally, all directions in a 3-

dimensional stretching subspace amplify perturbations, certainly causing a larger variations

downstream. Any maneuvers in the region with a 3-dimensional stretching subspace must be

avoided. Figure  5.15 offers maps that correspond to the dimensions of the stretching subspace

for flow originating and terminating at different locations along the orbit, computed for a

perilune radius 3200 km (L2 NRHO) and a perilune radius 4000 km (L1 NRHO), respectively.
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The maps are plotted in both mean anomaly as well as the osculating true anomaly. The

characteristics of the other L1 and L2 NRHOs are similar to the members plotted in Figure

 5.15 . Clearly, there is a distinct difference in the number of stretching subspaces over different

maneuver locations, described in terms of mean anomaly, for the L1 NRHO as compared

to L2 NRHO. These subtle differences cause variations in the stationkeeping performance

between the L1 NRHO family versus the L2 NRHO family. Note that, the number of

stretching subspaces for a combination of maneuver location and coast durations affect the

performance of stationkeeping maneuvers. The x-axis control stationkeeping strategy in the

conventional form as applied for the L2 NRHOs is inadequate for the L1 NRHOs. It is

therefore, an option to place one or more maneuvers along an orbit, at locations along the

orbit that maybe symmetric or asymmetric across the line joining the apsides.

5.5.1 Symmetric one-maneuver location per orbit

Implementing a single maneuver along an orbit, on an axis of symmetry, i.e., at apoapsis

(θMA = θT A = 180o), is convenient for stationkeeping. From the map in Figure  5.15 , there

exists only a 1-dimensional stretching subspace for an L2 NRHO with perilune radius 3200

km, corresponding to maneuver at 180o mean anomaly and a coast duration of 360o. Hence, a

maneuver away from the most stretching direction is likely to offer long-term stability. Other

low perilune L2 NRHOs also possess similar characteristics. In contrast, the magnitudes of

stretching, σi, along different L1 NRHOs, are plotted in Figure  5.16 for flow between two

successive apoapses. Unlike the L2 NRHOs with a 1-dimensional subspace for flow between

two successive apoapsis, there exists a 2-dimensional stretching subspace for L1 NRHOs with

low perilune radii. Therefore, ensuring a maneuver away from the most stretching direction

is not sufficient for long-term stability. A maneuver is effective if it is perfectly aligned in

the restoring direction, i.e., mutually perpendicular to both the elongating directions, the

maximum stretching direction and the intermediate stretching direction. However, targeting

the xz plane crossing near the periapsis regions does not deliver maneuvers precisely along

the restoring direction. Further, if the magnitude of stretching in the intermediate stretching

direction is not significantly larger than 1, maneuvers perpendicular to the most stretching

direction are still unlikely to maintain the spacecraft near the virtual reference solution
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(a) Rp 3200 L2 NRHO (Mean Anomaly) (b) Rp 3200 L2 NRHO (True Anomaly)

(c) Rp 4000 L1 NRHO (Mean Anomaly) (d) Rp 4000 L1 NRHO (True Anomaly)

Figure 5.15. Number of stretching subspaces for different combinations of
maneuver locations and coast durations.

for a sufficiently long time as variations increase gradually over time. Perhaps, maintaining

spacecraft for a shorter duration may still be possible. Nevertheless, as seen in Figure  5.16 , for

L1 NRHOs with magnitude of σ2 > 1, which is significant, any component of maneuvers along

the intermediate stretching direction amplifies over time substantially, causing divergence

from the baseline trajectory. A single maneuver implemented per orbit at the apoapsis is not

generally an efficient choice for the L1 NRHOs. Maintaining a spacecraft along a sufficiently

long horizon reference trajectory with stationkeeping maneuvers delivered at apoapsis is an

effective choice for the L2 NRHOs but not so effective for the L1 NRHOs.
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Figure 5.16. Magnitude of stretching, σi, along different Ui direction for
various L1 NRHOs.

5.5.2 Symmetric two-maneuver locations per orbit

A maneuver executed at the apoapsis on an L1 NRHO may not be efficient, however,

implementing two maneuvers per orbit offer more possibilities. An option is to deliver

the two maneuvers at locations that are symmetric about the apoapsis. Figure  5.17(b) 

corresponds to the map for several combinations of maneuver location and coast duration,

as well as the associated angle from the most stretching direction, for the L1 NRHO with

perilune radius 4000 km described in terms of osculating true anomaly. The map is generated

by targeting the 1st xz plane crossing near the periapsis. Of course, several combinations

may exist, but an effective strategy introduces both maneuvers, or at least one with an

almost 90o angle between the most stretching direction and the maneuver direction. One

such combination is denoted with white dots in Figure  5.17(b) , represented osculating true

anomaly. In this case, maneuvers are selected at 150o and 210o values of osculating true

anomaly, corresponding to the x-coordinate of the white dots. Note that the maneuver

locations are symmetrically located 30o in osculating true anomaly before and after the

apoapsis. The y-coordinate of each of the white dots corresponds to the coast duration till the

subsequent maneuver location. For visual simplicity, the angle swept by the spacecraft along

the orbit as a result of the selected maneuvers are represented in terms of white dotted lines.

The maneuver at 210o is aligned almost perpendicularly to the most stretching direction, and
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offers the most useful choice. Since maneuvers are symmetric about apoapsis, the maneuver

location at 150o osculating true anomaly (TA) is complementary and there are no degrees

of freedom for its selection. The maneuver at 150o TA possess a significant component in

the stretching directions but since the propagated trajectory traverses through the apoapsis

region, the resulting instability is limited. The short horizon maneuvers generated at 150o

and 210o are a plausible combination. Figure  5.17(a) is complimentary to Figure  5.17(b) 

but plotted in mean anomaly scale for reference. The symmetric two-maneuver locations for

an L1 NRHO with a perilune radius 4000 km in the configuration space is plotted in Figure

 5.18 along a long-horizon reference trajectory in the CR3BP and the ephemeris model.

Not surprisingly, the maneuver locations at a specified osculating true anomaly is more

dispersed in the ephemeris model but they resemble the geometry of the maneuver locations

in the CR3BP. Since maneuvers may include a component in the intermediate stretching

direction (eg., the maneuver at 210o osculating true anomaly) with a stretching magnitude

marginally greater than 1, perturbations do grow, but at a very low rate. Some long-term

simulations result in trajectories deviating from the virtual reference solution as the corrective

stationkeeping maneuvers with a component in the intermediate stretching direction does

amplify the variations; an occasional long horizon manuever overcomes such predictable

behavior. For the L1 NRHO with 4000 km perilune radius, maps similar to Figure  5.17 

for longer target horizons may not necessarily offer suitable combinations for two-maneuver

locations symmetric about the apoapsis that are conducive for stationkeeping. Application

to different NRHOs and different target horizons yield different maps, for which feasible

solutions employing a strategy for symmetric two-maneuver per orbit may or may not exist,

hence cannot be generalized. The analyses are based on the dynamics along an orbit in the

CR3BP model and therefore may not precisely reflect the behavior in the ephemeris model,

however, the CR3BP offers a fairly reliable initial guess.

5.5.3 Symmetric three-maneuvers per orbit

Due to the existence of more than one stretching directions for a number of combinations

of maneuver locations and coast durations in the case for L1 NRHOs as described in Figure

 5.15(c) , finding maneuver combinations suitable for stationkeeping in L1 NRHOs are more
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(a) Mean Anomaly (b) True Anomaly

Figure 5.17. Symmetric two-maneuvers per orbit locations for L1 NRHO
with perilune radius 4000 km. Maneuvers at 74.46o and 285.54o Mean Anomaly
or 150o and 210o osculating True Anomaly. Map generated by targeting ro-
tating x-velocity at 1st xz plane crossing.

(a) CR3BP (b) Ephemeris

Figure 5.18. Symmetric two-maneuver locations for an L1 NRHO with per-
ilune radius 4000 km placed at 150o and 210o osculating True Anomaly in the
configuration space along a long-horizon reference orbit in the CR3BP and the
ephemeris model.
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challenging than the L2 NRHOs. A three-maneuver combination is an attempt to further

exploit the region within the map in Figure  5.17 . A combination of three-maneuvers per

orbit that are symmetric about the apoapsis is an extended version of the case with two-

maneuvers per orbit that are located symmetric about the apoapsis. This case is equivalent

to selecting a two-maneuver combinations located symmetric across the apoapsis, along with

an additional maneuver exactly at the apoapsis. Figure  5.19 corresponds to a three-maneuver

combination noting the maneuver locations and coast durations, as well as the associated

angle described in terms of osculating true anomaly from the most stretching direction, for

the L1 NRHO with perilune radius 4000 km. The map is presented in both mean anomaly as

well as in osculating true anomaly scale. The map is generated by targeting the 1st xz plane

crossing near the periapsis. In comparison to the symmetric two-maneuver per orbit case in

Figure  5.17(b) , the time duration for propagation after the maneuver at 150o is essentially

halved (from 4.610 days to 2.305 days) to accommodate a maneuver at the apoapsis, as in

the case of symmetric three-maneuver per orbit case in Figure  5.19(b) . A three-maneuver

combination decreases the time of propagation after the maneuver at 150o TA to the subse-

quent maneuver at 180o TA. The reduction in the time post maneuver, one with a significant

component in the stretching direction, is essentially a trade-off between an added maneuver

at 180o TA and reducing deviation. A symmetric three-maneuver locations at 150o, 180o

and 210o osculating true anomaly for an L1 NRHO with a perilune radius 4000 km in the

configuration space is plotted in Figure  5.20 along a long-horizon reference trajectory in the

CR3BP and the ephemeris model. Again, feasibility is not generalized as the maps are a

reflective of a particular NRHO, as well as the maneuver location, coast duration and the

target horizon time.

The number of maneuvers per orbit is a design choice and hence, more than three ma-

neuvers per orbit is also an option. As noted previously, several combinations of maneuver

locations is straightforwardly generated through different maps for different halo orbits and

different target horizon times. Some maps offer feasible combinations for a greater number

of maneuvers per orbit. Nevertheless, too many maneuvers along a nearly stable NRHO may

be redundant. Further, maneuvers placed closer to each other may not provide ample time
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(a) Mean Anomaly (b) True Anomaly

Figure 5.19. Symmetric three-maneuvers per orbit locations for L1 NRHO
with perilune radius 4000 km. Maneuvers at 74.46o, 180o and 285.54o Mean
Anomaly or 150o, 180o and 210o osculating True Anomaly. Map generated by
targeting rotating x-velocity at 1st xz plane crossing.

(a) CR3BP (b) Ephemeris

Figure 5.20. Symmetric three-maneuver locations for an L1 NRHO with
perilune radius 4000 km placed at 150o, 180o and 210o osculating True Anomaly
in the configuration space along a long-horizon reference orbit in the CR3BP
and the ephemeris model.

149



for orbit determination. In theory, the strategy as discussed is applicable for cases with a

higher number of maneuvers per orbit as well, but they are not explored here.

5.5.4 Asymmetric one-maneuver location per orbit

Asymmetric placement of maneuver locations offer a larger trade-space for feasible so-

lutions than the symmetric counterpart, due to more flexibility in exploring regions of the

map. If only one maneuver is implemented every orbit and not placed at the apoapsis,

the placement is asymmetric. In such a case, the coast duration must be 360o, repeating

the location in configuration space over every revolution, hence, the region to explore on

the map is restricted to a line along the y-coordinate for 360o coast duration. It is then

straightforward to identify a maneuver location where a maneuver is aligned perpendicular

to the maximum stretching direction. For example, Figure  5.21 corresponds to an asymmet-

ric single maneuver location for the L1 NRHO with perilune radius 8000 km placed at 150o

osculating TA. The maps are described in terms of both mean anomaly and osculating true

anomaly. The map is generated by targeting the 2nd xz plane crossing near the periapsis. In

this case, at 150o osculating TA, a maneuver is aligned perpendicular to the most stretching

direction, hence, offering a reasonable maneuver location. An asymmetric one-maneuver

location at 150o osculating true anomaly for an L1 NRHO with a perilune radius 8000 km

in the configuration space is plotted in Figure  5.22 along a long-horizon reference trajectory

in the CR3BP and the ephemeris model. Again, maps are a reflective of the NRHO and the

target horizon time; as a result, they may or may not be conducive to single maneuver per

orbit cases.

5.5.5 Asymmetric two-maneuvers per orbit

A larger degree of freedom exists in selecting asymmetric maneuver locations on an

NRHO, that likely results in effective maneuvers. The maneuver locations are complemen-

tary, i.e., the sum of their coast durations must add to 360o, for maneuvers that are expected

to repeat every revolution. With higher flexibility, multiple combinations of maneuver loca-

tions are possible on the same map. Figures  5.23 ,  5.25 and  5.27 correspond to three different
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(a) Mean Anomaly (b) True Anomaly

Figure 5.21. Asymmetric one-maneuver per orbit location for L1 NRHO
with perilune radius 8000 km. Maneuver at 131.61o Mean Anomaly or 150o

osculating True Anomaly. Map generated by targeting rotating x-velocity at
2nd xz plane crossing.

(a) CR3BP (b) Ephemeris

Figure 5.22. Asymmetric one-maneuver location for an L1 NRHO with per-
ilune radius 8000 km placed at 150o osculating True Anomaly in the con-
figuration space along a long-horizon reference orbit in the CR3BP and the
ephemeris model.
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cases of asymmetric two-maneuver combinations for the L1 NRHO with perilune radius 8000

km described in terms of osculating true anomaly. Again, the maps are plotted in both mean

aanomaly and osculating true anomaly. The map is generated by targeting the 2nd xz plane

crossing near the periapsis, and favorable to illustrate an asymmetric two-maneuver combi-

nation. Not all target horizon times offer maps conducive to two-maneuver combinations.

Figure  5.23 offers plausible maneuver locations at 142o and 180o in osculating true anomaly

values, while Figure  5.25 introduces maneuver locations at 139o and 194o true anomalies,

and finally, Figure  5.27 reciprocates maneuver locations at 133o and 201o true anomalies.

Each of these combinations for an asymmetric two-maneuver locations for an L1 NRHO

with a perilune radius 8000 km in the configuration space is plotted in Figures  5.24 ,  5.26 

and  5.28 along a long-horizon reference trajectory in the CR3BP and the ephemeris model.

These are only three distinct sample cases that are selected from the map, however, many

such combinations are possible. Once again, despite a larger flexibility in the selection of

the maneuver locations, feasibility of maneuver combinations depend on the individual maps

that are generated for an NRHO and a target horizon time and are not easily generalized.

For the L2 NRHOs there exists a greater number of combinations of maneuver locations

and coast durations that have only one dimension stretching subspace as described in Figure

 5.15(a) . One such combination suitable for stationkeeping is to implement maneuvers once

every orbit, at the apoapsis, away from the most stretching direction. Furthermore, targeting

significantly downstream is favorable. However, for the range of L1 NRHOs, a maneuver ev-

ery revolution delivered at the apoapsis does not necessarily maintain the spacecraft near the

reference trajectory as the maneuver may have a component in the intermediate stretching

direction, that amplifies with time. Depending on the L1 NRHO of interest and a different

target horizons, a map for the angle between the maneuver and the most stretching direction

is generated. One or more combinations of maneuver locations from the map are identified,

that may or may not be symmetric across the apoapsis. Table  5.3 lists the estimated annual

stationkeeping costs for various L1 NRHOs, for different maneuver locations, coast dura-

tions and target horizon time. The values are estimated by propagating a trajectory for

duration of 180 days. For an NRHO, for example, L1 NRHO with 5000 km perilune radius,
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(a) Mean Anomaly (b) True Anomaly

Figure 5.23. Asymmetric two-maneuvers per orbit locations for L1 NRHO
with perilune radius 8000 km. Case with maneuvers at 107.66o and 180o

Mean Anomaly or 142o and 180o osculating True Anomaly. Map generated by
targeting rotating x-velocity at 2nd xz plane crossing.

(a) CR3BP (b) Ephemeris

Figure 5.24. Asymmetric two-maneuver location for an L1 NRHO with per-
ilune radius 8000 km placed at 142o and 180o osculating True Anomaly in the
configuration space along a long-horizon reference orbit in the CR3BP and the
ephemeris model.
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(a) Mean Anomaly (b) True Anomaly

Figure 5.25. Asymmetric two-maneuvers per orbit locations for L1 NRHO
with perilune radius 8000 km. Case with maneuvers at 94.56o and 199.32o

Mean Anomaly or 139o and 194o osculating True Anomaly. Map generated by
targeting rotating x-velocity at 2nd xz plane crossing.

(a) CR3BP (b) Ephemeris

Figure 5.26. Asymmetric two-maneuver location for an L1 NRHO with per-
ilune radius 8000 km placed at 139o and 194o osculating True Anomaly in the
configuration space along a long-horizon reference orbit in the CR3BP and the
ephemeris model.
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(a) Mean Anomaly (b) True Anomaly

Figure 5.27. Asymmetric two-maneuvers per orbit locations for L1 NRHO
with perilune radius 8000 km. Case with maneuvers at 61.22o and 210.43o

Mean Anomaly or 133o and 201o osculating True Anomaly. Map generated by
targeting rotating x-velocity at 2nd xz plane crossing.

(a) CR3BP (b) Ephemeris

Figure 5.28. Asymmetric two-maneuver location for an L1 NRHO with per-
ilune radius 8000 km placed at 133o and 201o osculating True Anomaly in the
configuration space along a long-horizon reference orbit in the CR3BP and the
ephemeris model.
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there exists numerous combinations of target horizons and maneuver combinations that yield

successful stationkeeping. The examples demonstrated for the L1 NRHO with 5000 km per-

ilune radius include, symmetric and asymmetric placement of maneuver locations about the

apoapsis, one or more maneuvers per orbit, and target horizons ranging from the first xz

plane crossing to the fifth xz plane crossing. Similar combinations exists for other L1 NRHOs

as well. Outcomes for the L1 NRHOs with perilune radius ranging from 4000 km to 8000

km are demonstrated in Table  5.3 . Of course, as discussed, many several combinations of

maneuver locations and target horizon time are possible for stationkeeping. Longer target

horizons may offer maps conducive to some but not all the cases discussed (symmetric and

asymmetric maneuver locations as well as one or more maneuvers every orbit).

Table 5.3. Annual stationkeeping cost [m/s] along L1 NHROs

Perilune Target
Sym/Asym # ∆v̄/rev

Maneuver Annual Cost [m/s]
radius xz-plane Locations Low ODE High ODE
[km] crossing # [TA] Mean κ̄ 1.96σκ̄ Mean κ̄ 1.96σκ̄
4000 1 Sym 2 150, 210 2.21 0.21 6.25 0.44
4000 1 Sym 3 150, 180, 210 1.19 0.12 7.79 0.47
4000 3 Asym 1 188 0.74 0.09 1.61 0.11
5000 1 Sym 2 145, 215 2.47 0.22 5.46 0.26
5000 1 Sym 3 145, 180, 215 1.18 0.11 6.83 0.31
5000 1 Sym 2 150, 210 1.88 0.18 6.30 0.44
5000 1 Sym 3 150, 180, 210 1.21 0.13 7.73 0.49
5000 2 Asym 1 164 0.46 0.02 2.11 0.23
5000 5 Sym 1 180 0.20 0.01 0.72 0.02
6000 1 Sym 2 145, 215 2.31 0.25 6.47 0.39
6000 1 Sym 3 145, 180, 215 1.11 0.08 7.63 0.48
6000 2 Asym 1 160 0.52 0.03 2.24 0.18
7000 2 Asym 1 156 0.56 0.02 1.91 0.15
7000 5 Asym 1 171 0.20 0.01 0.78 0.03
8000 2 Asym 1 150 0.65 0.03 1.86 0.13
8000 2 Asym 2 142, 180 0.40 0.02 2.89 0.12
8000 2 Asym 2 133, 201 0.41 0.02 2.85 0.14
8000 2 Asym 2 139, 194 0.46 0.02 2.92 0.17

5.6 Alternate Control Strategies and Constraints

5.6.1 Phase control approach

Precise orbit control is expensive and may be nontrivial. The conventional x-axis con-

trol approach is effective in maintaining the spacecraft in the vicinity of a virtual reference
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solution at a relatively low cost. By only targeting two of the seven states, that is, the y

and ẋ quantities, ample flexibility in targeting results in the spacecraft remaining loosely

bounded in the neighborhood of the virtual reference trajectory that is originally generated

over a significantly longer duration, at a low cost. However, the low cost stationkeeping solu-

tions generated by the conventional approach do not necessarily synchronize in phase space

with the virtual reference trajectory, resulting in the actual trajectory lagging or leading the

virtual reference in time space. Figure  5.30(a) illustrates the time difference between the

actual trajectory and the virtual reference measured at periapsis over different Monte Carlo

simulations, i.e., cases with different seeds for random errors to mimic an uncertainty in orbit

determination. The phase difference between the actual trajectory and the virtual reference

path increases either positively or negatively over time. If the baseline trajectory is gener-

ated to satisfy any eclipse avoidance properties or any other phase constraints, the phase

shift between the actual and reference trajectories may impede the mission objectives. To

overcome such a scenario, additional restrictions are imposed on the x-axis control algorithm

to generate maneuvers that align with the appropriate phasing for the actual trajectory. For

controlling phase shift, Davis et al. [  119 ] target the rotating ẋ value as well as the periapsis

altitude simultaneously. With the updated strategy a decrease in the rate of phase shift

is observed. For any cases, where the spacecraft states have deviated significantly, a long

horizon orbit correction maneuver is implemented to drive the states to the virtual reference

trajectory. An alternate approach with time shift feedback is explored here.

To maintain the correct phasing between the actual trajectory and the virtual reference

path, a phase constraint is delivered either at periapsis, or apoapsis, or even the xz-plane

crossing, as they are complimentary. Since the x-axis control approach targets a condition

at the xz-plane crossing, additional phase control constraints at the xz-plane crossing satisfy

the requirement. A fixed time targeting scheme is incorporated that targets conditions at

the xz-plane crossing to occur at the same time, relative to the virtual reference, at the

corresponding xz-plane crossing. All trajectories neighboring a reference solution that cross

the xz plane crossings at the same time as the reference trajectory are considered to be in-

phase. In contrast, certain neighboring trajectories when propagated downstream for a fixed
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time duration equivalent to the time evolved along the reference trajectory at the xz plane

crossing, are either leading or lagging as described in Figure  5.29 . The leading or the lagging

trajectories are identified by a positive or a negative change in the yf position relative to the

reference trajectory, i.e., the ∆yf component. A maneuver that compensates for the ∆yf

quantity ensures appropriate phasing between the virtual reference solution and the actual

trajectory, one that incorporates regular stationkeeping maneuvers. As formulated by [ 82 ],

a feedback constraint is formulated as

∆yf − ẏf∆t0 =
[
ϕT,24 ϕT,25 ϕT,26

]
∆v̄0 =

[
ϕT,24 ϕT,25 ϕT,26

]

∆ẋ0

∆ẏ0

∆ż0

 (5.15)

and is solved along with the control equation as in equation ( 5.9 ) to compute the required

maneuver. Here, the final time of propagation, tf = tT arget = t∗xz is the time along the vir-

tual reference trajectory at the appropriate xz plane crossing. The term ẏf∆t0 in equation

( 5.15 ) is a feedback term to compensate for the adjustment in the phase difference detected

at the apoapsis where the maneuver is implemented. Additionally, ∆yf corresponds to the

difference in y position between the actual and the reference trajectory at the end of the

propagated arc. For a trajectory with no phase difference, ∆t0 = 0 and ∆yf = 0. With

an iterative process, the states are updated to drive the left side of equation (  5.15 ) to zero.

The maneuver generated with an additional phase constraint bounds the spacecraft motion

in the vicinity of the virtual reference trajectory in the time states as well.

Using a phase control approach, the phase shift between the actual trajectory and the

virtual reference is minimized. Since the virtual reference is generated satisfying any added

eclipse or phase constraint, the actual trajectory does not violate any phase constraint, to

within a few seconds tolerance. Figure  5.30(b) demonstrates the efficacy of the phase control

approach to minimize the time shift at periapsis for 100 Monte Carlo trials completed on

the L2 NRHO with perilune radius 3200 km. The time difference, measured at the periapsis
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Figure 5.29. Phase control approach formulation.

location is low, in contrast to Figure  5.30(a) using the conventional x-axis control approach.

The annual orbit maintenance cost for stationkeeping with active phase control approach

is higher than the conventional approach as flexibility is reduced. Not surprisingly, an addi-

tional constraint equation that is solved simultaneously with the control equation decreases

the range of the solution space and results in a higher cost for operations. The phase con-

trol approach is notably efficient when the target horizon is sufficiently long. The approach

produces favorable solutions for the 9:2 synodic resonant L2 NRHO when targeting 6.5 rev,

5.5 rev, 4.5 rev and 2.5 rev downstream. Although considerably better phasing than the

conventional approach, diminishing returns are observed at 3.5 rev target horizon time. For

short target horizons, i.e., 0.5 rev and 1.5 rev, the stiffer targeting conditions using a phase

control approach do not generate satisfactory results. Due to an additional constraint, an

increase in the annual maintenance cost is detected. The costs for various L2 NRHOs under

consideration are listed in Tables  5.4 and  5.5 for low and high orbit determination errors,

respectively. Marginal increases in costs are apparent as the perilune radius of the NRHOs

increase.
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(b) Phase control approach

Figure 5.30. Phase shift measured at periapsis with and without phase con-
trol for L2 NRHO with perilune radius 3200 km. Target horizon: 6.5 rev. Case
with high ODE level (3σ: 10 km and 10 cm/s).

The conventional x-axis control approach for the L1 NRHOs is not observed to be as

effective as the L2 NRHOs, primarily due to the multiple stretching subspaces between the

two successive maneuver locations along an L1 NRHO. As a result, combination of one or

more maneuvers along every orbit, placed either symmetrically or asymmetrically across the

apoapsis have shown to be effective for stationkeeping. Phasing errors still exists for cases

with one or more maneuvers along the orbit, and irrespective of their locations on the orbit.

The phasing control constraints, as discussed previously, are effective for many of the L1
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Table 5.4. Annual orbit maintenance cost, κ̄, and 95% confidence interval,
±1.96σκ̄, in [m/s] with low ODE level (3σ: 1 km and 1 cm/s) and phase
constraints

Perilune radius [km] Target horizon [rev]
0.5 1.5 2.5 3.5 4.5 5.5 6.5

3200 DNC DNC 0.24 0.33 0.26 0.30 0.31
± 0.01 ± 0.02 ± 0.01 ± 0.01 ± 0.01

4000 DNC DNC 0.24 0.27 0.29 0.34 0.33
± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01

4800 DNC DNC 0.23 0.27 0.33 0.37 0.34
± 0.00 ± 0.01 ± 0.01 ± 0.01 ± 0.01

5645 DNC DNC 0.24 0.32 0.39 0.41 0.36
± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01

6400 DNC DNC 0.26 0.42 0.51 0.50 0.39
± 0.01 ± 0.02 ± 0.01 ± 0.02 ± 0.01

7200 DNC DNC 0.33 0.57 0.61 0.52 0.38
± 0.01 ± 0.06 ± 0.02 ± 0.02 ± 0.01

* DNC - Did not converge

NRHOs that include maneuvers at one or more maneuver locations along the orbit that may

or may not be symmetric across the apoapsis. The annual stationkeeping costs with active

phase control are estimated for the L1 NRHOs, for both low and high orbit determination

errors, and listed in Table  5.6 . Of course, a longer target horizon is certainly beneficial for

the phase control approach as it provides ample flexibility for trajectory corrections rather

than a shorter target horizon. In some cases with an active phase control, the spacecraft

motion remained bounded in the vicinity of the reference solution more tightly in contrasts

to simulations without any phase constraints. Inclusion of phase constraints are illustrated

for one or more maneuvers every orbit, and those that may or may not be located symmetric

across the apoapsis. Nevertheless, for the L1 NRHOs, performing maneuvers once every rev-

olution at the apoapsis with an active phase control may still be an effective option despite

the conventional algorithm without phase constraints not delivering promising results. The

case is however not simulated here.
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Table 5.5. Annual orbit maintenance cost, κ̄, and 95% confidence interval,
±1.96σκ̄, in [m/s] with high ODE level (3σ: 10 km and 10 cm/s) and phase
constraints.

Perilune radius [km] Target horizon [rev]
0.5 1.5 2.5 3.5 4.5 5.5 6.5

3200 DNC DNC 2.02 2.51 1.98 2.28 2.62
± 0.06 ± 0.18 ± 0.05 ± 0.07 ± 0.07

4000 DNC DNC 1.91 2.00 2.06 2.23 2.13
± 0.05 ± 0.07 ± 0.06 ± 0.07 ± 0.07

4800 DNC DNC 1.80 1.89 2.03 2.31 2.09
± 0.06 ± 0.09 ± 0.07 ± 0.11 ± 0.05

5645 DNC DNC 1.77 2.08 2.19 2.33 1.99
± 0.05 ± 0.12 ± 0.09 ± 0.10 ± 0.07

6400 DNC DNC 1.79 2.46 2.49 2.31 2.09
± 0.06 ± 0.19 ± 0.16 ± 0.09 ± 0.10

7200 DNC DNC 1.85 2.84 2.74 2.47 2.14
± 0.08 ± 0.33 ± 0.20 ± 0.20 ± 0.08

* DNC - Did not converge

Table 5.6. Annual stationkeeping cost [m/s] along L1 NHROs with phase control.

Perilune Target
Sym/Asym # ∆v̄/rev

Maneuver Annual Cost [m/s]
radius xz-plane Locations Low ODE High ODE
[km] crossing # [TA] Mean κ̄ 1.96σκ̄ Mean κ̄ 1.96σκ̄
4000 1 Sym 2 150, 210 0.53 0.01 4.38 0.11
4000 1 Sym 3 150, 180, 210 0.69 0.02 6.16 0.14
4000 3 Asym 1 188 0.31 0.01 1.36 0.05
5000 1 Sym 2 145, 215 0.57 0.01 4.48 0.11
5000 1 Sym 3 145, 180, 215 0.65 0.01 5.93 0.14
5000 1 Sym 2 150, 210 0.54 0.01 4.55 0.13
5000 1 Sym 3 150, 180, 210 0.67 0.01 6.18 0.16
5000 2 Asym 1 164 1.26 0.15 5.70 0.62
5000 5 Sym 1 180 0.28 0.01 1.28 0.04
6000 1 Sym 2 145, 215 0.54 0.01 4.39 0.12
6000 1 Sym 3 145, 180, 215 0.66 0.02 6.01 0.15
6000 2 Asym 1 160 1.22 0.12 6.30 0.71
7000 2 Asym 1 156 1.43 0.15 6.39 0.57
7000 5 Asym 1 171 0.29 0.01 1.35 0.04
8000 2 Asym 1 150 1.30 0.12 7.58 0.73
8000 2 Asym 2 142, 180 2.03 0.22 8.89 0.77
8000 2 Asym 2 133, 201 2.62 0.27 9.13 0.59
8000 2 Asym 2 139, 194 2.06 0.18 9.94 0.56
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5.6.2 Targeting rotating y velocity

The x-axis control offers a loose control strategy to maintain a spacecraft near the vicin-

ity of a nominal baseline by targeting the rotating ẋ component at some xz plane crossing

downstream. However, targeting the ẋ value is not a necessary condition for stationkeeping

rather a user-defined choice. Targeting the ẏ value is explored as an alternative, and syn-

onymously labelled as a ẏ-control strategy. As discussed in section  5.3 , the flow between

the maneuver location over the coast duration does not define the maneuver characteristics,

rather the flow the between the maneuver location to the target determines the maneuver

characteristics. Consequently, the stretching directions that are identified for the flow be-

tween two successive maneuver location over the coast arc remains unchanged for different

types of control strategy. Similar to targeting the ẋ value in the x-axis control approach,

different maps that demonstrate the evolution of the magnitude and direction of the maneu-

ver delivered by the ẏ-control strategy offer reliable insight on its effectiveness.

The ẏ-control stationkeeping approach delivers a 3-dimensional maneuver that targets

the rotating y-velocity value at the xz plane crossing downstream. Mathematically, this is

represented by

∆ẏf =
[
ϕT,54 ϕT,55 ϕT,56

]
∆v̄0 =

[
ϕT,44 ϕT,45 ϕT,46

]

∆ẋ0

∆ẏ0

∆ż0

 (5.16)

where, ∆ẏf is the change in the rotating ẏ value at the target xz-plane crossing and ∆v̄0 =

[∆ẋ0, ∆ẏ0, ∆ż0]T defines a column vector with three scalar independent control variables

that comprise the impulsive maneuver. Moreover, [ϕT,54 ϕT,55 ϕT,56] is the corresponding sub-

matrix of the state transition matrix, ϕT . For convenience, define M̄y = [ϕT,54 ϕT,55 ϕT,56]T

as a 3 × 1 column vector and, therefore, ∆ẏf = M̄T
y ∆v̄0. For the purpose of comparison,

define, M̄x = M̄ , where M̄ is as defined previously for the x-axis control algorithm that tar-

gets the rotating ẋ value. Again, one of the goal for the stationkeeping process is reducing
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the propellant costs, hence, a minimum norm solution that delivers the smallest maneuver

is defined as

|∆v̄0|min−norm = |∆ẏf |
|M̄y|

(5.17)

in the direction of M̄y. The maneuver magnitude as well as the maneuver direction, both

reflect the quality of the maneuver. Each of the maneuver magnitude and the maneuver

direction are analyzed, and eventually compared to the results from the conventional x-axis

control approach.

The direction of maneuver estimated by the ẏ-control does not explicitly depend on the

initial perturbation however the maneuver magnitude is a direct function of the initial state

perturbation. The maneuver magnitude as a function of the initial perturbation is expressed

as an inequality as,

|∆v0|min−norm =
|B̄T

y ∆x̄0|
|M̄y|

≤ |B̄T||∆x̄0|
|M̄y|

(5.18)

where ∆ẏf = B̄T
y ∆x̄0 with B̄y = [ϕT,51 ϕT,52 ϕT,53 ϕT,54 ϕT,55 ϕT,56]T as the submatrix of ϕT .

The inequality in equation ( 5.18 ) is represented in the normalized form as

|∆v̄0|min−norm

|∆x̄0|
≤ |B̄y|

|M̄y|
(5.19)

such that the upper limit varies depending on the target horizon chosen for estimating the

stationkeeping maneuver. The upper bound on the ratio of maneuver magnitude to the mag-

nitude of initial state perturbation offers the leverage the maneuver generates. A smaller

upper limit provides more leverage to the maneuver as a small maneuver magnitude is re-

quired to overcome a unit initial state perturbation. A plot of |B̄y |
|M̄y | for different targets, i.e.,

1st, 2nd and 7th xz plane crossings near the periapsis region is represented in Figure  5.31 

for an L2 NRHO with perilune radius 3200 km. For different target horizons, maneuver
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locations along the orbit offer distinct characteristics. A lower value of |B̄y |
|M̄y | suggests that

the maneuver generated produces a smaller magnitude in that region. From Figures  5.31(e) 

and  5.31(f) , it is evident that when targeting the 7th xz plane crossing, there exists a wide

range of maneuver locations that result in low maneuver magnitudes. In general, irrespective

of the target horizon, the locations along the orbit close to the apoapsis regions offer deliver

smaller maneuver magnitude to overcome a unit perturbation, hence appropriate for maneu-

ver placement. Similar observation is observed in the conventional x-axis control approach

as well.

The direction of the maneuver delivered by the ẏ-control algorithm is another important

parameter that yields an assessment for the efficiency of the maneuver in maintaining the

spacecraft in the vicinity of the reference path. The stretching directions for the submatrices

of the STM along the coast segment, ϕC , are available. As noted previously, the maneuvers,

when executed in the restoring plane or along the restoring direction, reduces the spacecraft

deviation at the downstream locations, thereby maintaining the spacecraft boundedness. A

map for the direction between the maneuver, M̂y, and the most stretching direction, V1,

for different combination of maneuver location and coast duration for three different target

horizons is presented in Figure  5.32 , for an L2 NRHO with perilune radius 3200 km. Each

of the maps offer distinct regions where the maneuver and the most stretching direction are

almost perpendicular; such regions facilitate efficient maneuvers.

Without loss of generality, define, ∆v̄(x) as the maneuver delivered by the conventional

x-axis control that is aligned in the direction M̄ or M̄x, while, ∆v̄(y) is the maneuver deliv-

ered by the ẏ-control that is aligned in the direction M̄y. The direction of the maneuvers

determines how states evolve along a propagated trajectory. The components of M̄x and

M̄y vectors vary along the underlying state transition matrix, ϕT , that is a function of the

target horizon time. Consequently, at different target horizon times, there is a change in

the direction of the maneuver that targets the ẋ value and the ẏ value, given by the M̄x

and M̄y vectors, respectively. If the angle between the ∆v̄(x) in comparison to ∆v̄(y) are

aligned perpendicular to each other, i.e., mathematically in the null space of one another, a
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(a) Target: 1st xz plane crossing near periapsis.
Measurement: Mean anomaly.

(b) Target: 1st xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

(c) Target: 2nd xz plane crossing near periapsis.
Measurement: Mean anomaly.

(d) Target: 2nd xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

(e) Target: 7th xz plane crossing near periapsis.
Measurement: Mean anomaly.

(f) Target: 7th xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

Figure 5.31. Ratio of maximum maneuver magnitude per magnitude of the
initial state deviation, |B̄y|/|M̄y|, for different target horizons. Reference orbit:
L2 NRHO with perilune radius 3200 km. Target: rotating ẏ value.
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(a) Target: 1st xz plane crossing near periapsis.
Measurement: Mean anomaly.

(b) Target: 1st xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

(c) Target: 2nd xz plane crossing near periapsis.
Measurement: Mean anomaly.

(d) Target: 2nd xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

(e) Target: 7th xz plane crossing near periapsis.
Measurement: Mean anomaly.

(f) Target: 7th xz plane crossing near periapsis.
Measurement: Osculating true anomaly.

Figure 5.32. Estimated angle between maneuver direction, predicted by
the ẏ-control, and the most stretching direction V1(ϕC,v,v) for different target
horizons. Reference orbit: L2 NRHO with perilune radius 3200 km.
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maneuver along the M̄x direction does not compensate for any change in the ẏ value, and

vice versa. Depending on the type of the target condition, it is likely that the change in

state measurements either in the ẋ value or the ẏ value increase over time, eventually the

spacecraft deviates from virtual reference orbit. Alternatively, if the angle between the ∆v̄(x)

maneuver in comparison to the ∆v̄(y) maneuver are aligned anti-parallel to each other, i.e.,

opposite to one another, correction of the ẋ value aggravates the error in the ẏ value, and

vice versa. Such cases are not ideal for stationkeeping. Perhaps, if the angle between the

maneuver that targets the ẋ value and the ẏ value are aligned parallel to each other, a ma-

neuver that corrects any deviations along the ẋ value, i.e., in the M̄x direction, automatically

tends to compensate for any change in the ẏ value, and vice-versa. Such cases are suitable

for stationkeeping. Figure  5.33 indicates the angle between the M̄x and M̄y vectors for var-

ious target horizon times, representing the angle between the maneuver that targets the ẋ

value and the ẏ value, respectively. For shorter target horizon times, there is a larger angle

between the M̄x and M̄y vectors, therefore the ẏ-control maneuvers does not substantially

overcome the ẋ value perturbations. Note that, in the CR3BP model, major gravitational

accelerations are in the x direction, therefore perturbations along the ẋ component increases

rapidly with time if not corrected regularly. At target horizon times of 5.5 revs and 6.5 revs,

the M̄x and M̄y vectors are almost aligned in the same direction, therefore, the ẏ-control

maneuvers compensates for any ẋ value perturbations at the xz plane crossing, making it a

better option for stationkeeping.

The direction between the maneuvers ∆v̄(x) and ∆v̄(y) offers an insight into the effects

of state perturbations at the target xz plane crossing, specifically, if the maneuver that tar-

gets the ẏ value compensates for perturbation along the ẋ values, and vice versa. However,

the effect of state perturbations at the subsequent maneuver location is determined by the

alignment between the maneuver direction and the stretching directions. In Figure  5.34 ,

the angle between the maneuver computed using the ẏ-control approach, i.e., ∆v̄(y), with

the most stretching direction is plotted for various target horizon times. For reference, the

angle between the maneuver computed using the conventional x axis control algorithm, that

targets the rotating ẋ value, with the most stretching direction is also shown. For shorter
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Figure 5.33. Angle between maneuver estimated by targeting the ẋ value
compared to targeting the ẏ value for various target horizons.

target horizon such as 0.5 rev and 1.5 revs, there is a significant component of the maneu-

ver, ∆v̄(y), in the most stretching direction causing growth in state perturbations over time.

Shorter target horizons are not suitable for stationkeeping using the ẏ-control approach. Al-

most perpendicular alignment between ∆v̄(y) and V1 for longer target horizons are likely to

offer better control of the spacecraft near the virtual reference trajectory, however, does not

guarantee a success, rather effect of multiple parameters simultaneously affect the success of

the control algorithm.

The dynamics in the CR3BP offer insight into the underlying dynamics that enables pre-

diction of the effectiveness of a stationkeeping control strategy, however, actual simulations

in the higher-fidelity ephemeris model yield actual stationkeeping performance. Red asterisks

(*) in Figure  5.35 demonstrates the alignment of actual ∆v̄(y) with the most stretching direc-

tion in comparison to the angle predicted in the CR3BP. Of course, the figure also includes

cases where the spacecraft diverged away from the reference trajectory, indicated by large

dispersion from the predicted angle in the CR3BP. Nevertheless, the actual angle predicted

in the higher-fidelity ephemeris model that includes orbit determination and model errors
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Figure 5.34. Angle between different estimated maneuvers (∆v̄(x) and ∆v̄(y))
and the most stretching direction in CR3BP for the 9:2 synodic resonant L2
NRHO with perilune radius 3200 km.

resembles the estimate in the CR3BP model. Figure  5.35 corresponds to the case with low

orbit determination errors (3σ: 1 km and 1 cm/s). Similar trend is observed for high orbit

determination errors (3σ: 10 km and 10 cm/s) as well, but with marginally larger dispersion

and a few more diverged cases.

The annual stationkeeping costs delivered by an algorithm is a vital metric. The mean

annual stationkeeping costs, κ̄, and the half width of a 95% confidence interval, 1.96σκ̄,

computed using the ẏ-control algorithm is listed in Table  5.7 . A 95% confidence interval of

the mean cost is thus given by κ̄ ± 1.96σκ̄. A 2.5 rev target horizon is effective for station-

keeping in cases with low ODE levels, however, does not generate enough successful trials for

high ODE levels. Only if majority of the trials are successful in maintaining the spacecraft

near the virtual reference solution over the simulated mission duration, it is considered a

converged case. The 3.5 rev target horizon does not offer successful stationkeeping for either

low ODE or high ODE. A larger |B̄y|/|M̄y| ratio at the 3.5 rev target horizon in comparison

to 2.5, 4.5, 5.5 and 6.5 rev may results in larger maneuver magnitude to overcome any initial

perturbation and may likely cause poor stationkeeping performance. Targeting 4.5 rev xz
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Figure 5.35. Angle between actual maneuvers, ∆v̄(y), and most stretching
direction V1(ϕC,v,v) for the 9:2 synodic resonant L2 NRHO with perilune radius
3200 km. Low orbit determination error (3σ: 1 km and 1 cm/s) case.

plane crossing maintains the spacecraft near the virtual reference orbit at a higher annual

cost. Stationkeeping using ẏ-control approach is effective for 5.5 revs and 6.5 revs target and

offers comparable results to the conventional x axis crossing control algorithm for both low

and high orbit determination error levels.

An effective stationkeeping strategy ensures that a consistent maneuver is generated over

time and the spacecraft does not deviate rapidly from the baseline trajectory. The maneuver

history for the ẏ-control algorithm, that targets the ẏ value at the xz plane crossing, as well

as the deviation history measured at the apoapsis location, for a target horizon time of 6.5

revs, are demonstrated in Figures  5.36(a) and  5.36(b) , respectively. The maneuver history

and the deviation history are represented in box plot, such that the upper limit the box

corresponds to the 75th percentile distribution. The width of the box corresponds to the

intermediate 50% distribution. The maneuver magnitude is consistently under 1 cm/s for

the range of simulated mission duration, for case with low ODE levels. The deviation his-

tory indicates that the spacecraft is well bounded near the virtual reference solution for the

simulated duration. A similar trend in maneuver history and deviation history is measured
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Table 5.7. Estimated mean annual orbit maintenance cost and half width
of 95% confidence interval (1.96σκ̄) measured in [m/s] for both low and high
orbit determination error levels. Algorithm: ẏ-control.

Target Horizon [rev] Low ODE High ODE
Mean, κ̄ 1.96σκ̄ Mean, κ̄ 1.96σκ̄

0.5 DNC DNC DNC DNC
1.5 DNC DNC DNC DNC
2.5 2.33 0.32 DNC DNC
3.5 DNC DNC DNC DNC
4.5 1.19 0.18 9.86 1.51
5.5 0.15 0.00 1.06 0.07
6.5 0.15 0.00 1.21 0.09

* DNC - Did not converge

for high ODE levels that target the 5.5 rev and 6.5 rev xz plane crossing.

A stationkeeping strategy that targets the ẏ value at the xz plane crossing is demon-

strated. Certain target horizons are conducive to stationkeeping. It is observed that at 5.5

rev and 6.5 rev target horizon, the direction of the ẏ-control approach is aligned with the

maneuver computed using the conventional x axis crossing control approach. Due to such

correlation, the maneuver that targets the ẏ value automatically compensates for the ẋ value,

and vice versa. The success of the conventional x axis control at 6.5 rev target horizon is also

attributed to the correlation with the ẏ-control algorithm, as the maneuver compensates for

the ẏ along with targeting the rotating ẋ value.

5.6.3 Direction-constrained maneuvers

Mission specifications and spacecraft attitude configurations may require maneuvers to

be delivered along a certain direction. These direction-constrained stationkeeping maneuvers

meet the same targeting conditions downstream similar to the conventional algorithm. In

this investigation, stationkeeping maneuvers computed by targeting the rotating ẋ value

at various xz plane crossings are constrained to exist in a specific direction given by unit
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(a) Maneuver history.

(b) Deviation history.

Figure 5.36. Stationkeeping performance using ẏ-control approach that tar-
gets the 6.5 rev xz plane crossing. Reference orbit: L2 NRHO with perilune
radius 3200 km.

vector K̂. For convenience, the direction-constrained maneuvers are labelled as ∆v̄[K̂] that

are parallel or anti-parallel to the direction K̂. Here, unit vector K̂ represents some specific

directions that may be either of the rotating co-ordinate frame directions, x̂, ŷ, or ẑ, Vehicle

Local Coordinate Axes in the velocity V̂ , normal N̂ , or co-normal Ĉ directions, or any other
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mission specific directions. The direction-constrained maneuvers are computed from the

x-axis control approach by modifying the target equation ( 5.9 ), such as

∆ẋf =
[
ϕT,44 ϕT,45 ϕT,46

]
∆v̄0 =

[
ϕT,44 ϕT,45 ϕT,46

]

∆ẋ0

∆ẏ0

∆ż0

 (5.20)

where ∆v̄0 is aligned along any K̂-direction, i.e., ∆v̄0 ⇔ ∆v̄[K̂]. By incorporating different

direction constraints the corresponding maneuver directions and magnitudes are modified,

some of which are detailed. Maneuvers that may be aligned in either of the rotating coordi-

nate directions are computed directly from the corresponding elements of the state transition

matrix, ϕT , such that

• x̂-direction maneuvers

∆ẋf =
[
ϕT,44

] [
∆ẋ0

]
, ∆ẏ0 = 0, ∆ż0 = 0 (5.21)

• ŷ-direction maneuvers

∆ẋ0 = 0, ∆ẋf =
[
ϕT,45

] [
∆ẏ0

]
, ∆ż0 = 0 (5.22)

• ẑ-direction maneuvers

∆ẋ0 = 0, ∆ẏ0 = 0, ∆ẋf =
[
ϕT,46

] [
∆ż0

]
(5.23)

Similarly, Vehicle Local Coordinate Axes defined by the Velocity Normal Co-normal (VNC)

Frame may also offer an appropriate choice for delivering stationkeeping maneuvers. The di-

rections in the VNC frame are derived quantities that require transitioning from the rotating

coordinate frame. Since the NRHOs have close proximity to the Moon, the local dynamics

represented in the Vehicle Local Coordinate Axes is measured relative to the Moon as the
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central observing body. The coordinate frame transformation between the rotating frame

and the VNC frame is given by the following equations,

V̂ = v̄0

||v̄0||
(5.24)

Υ̂ = r̄0 − r̄Moon

||r̄0 − r̄Moon||
(5.25)

N̂ = V̂ × Υ̂ (5.26)

Ĉ = V̂ × N̂ (5.27)

where r̄Moon = [1 − µ, 0, 0]T is the translational quantity in non-dimensional units. Here,

r̄0 and v̄0 are position and velocity vectors of the spacecraft along the NRHO in the rotat-

ing coordinate frame centered at the Earth-Moon barycenter. Of course, the VNC frame

changes its orientation continuously along the NRHO, however, for maneuvers delivered

at the apoapsis, the orientation of the VNC frame relative to the rotational frame at the

apoapsis as described in Figure  5.37 offers insight. Figure  5.37 corresponds to the 9:2 synodic

resonant southern L2 NRHO, that is the current baseline for NASA’s Gateway mission. For

ease of understanding, the vectors that almost point in the same directions are colored in

pairs, i.e., V̂ -direction and ŷ-direction are anti-parallel and thus colored in red, Ĉ-direction

and ẑ-direction colored in green, and finally, N̂ -direction and x̂-direction are similar and

thus colored in black. The dotted axes represents the VNC frame while solid bold lines rep-

resents vectors in the rotating coordinate frame. A maneuver in either of V̂ N̂ Ĉ directions is

perpendicular to the other two directions, as a result dot product with the two orthogonal

directions are zero. The concept is leveraged to compute maneuvers along a specific VNC

frame direction in the following equations,

• V̂ -direction maneuvers


∆ẋf

0

0

 =


ϕT,44 ϕT,45 ϕT,46

N̂T

ĈT

∆v̄0 =


ϕT,44 ϕT,45 ϕT,46

N̂T

ĈT




∆ẋ0

∆ẏ0

∆ż0

 (5.28)
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• N̂ -direction maneuvers


∆ẋf

0

0

 =


ϕT,44 ϕT,45 ϕT,46

V̂ T

ĈT

∆v̄0 =


ϕT,44 ϕT,45 ϕT,46

V̂ T

ĈT




∆ẋ0

∆ẏ0

∆ż0

 (5.29)

• Ĉ-direction maneuvers


∆ẋf

0

0

 =


ϕT,44 ϕT,45 ϕT,46

V̂ T

N̂T

∆v̄0 =


ϕT,44 ϕT,45 ϕT,46

V̂ T

N̂T




∆ẋ0

∆ẏ0

∆ż0

 (5.30)

Maneuvers along any of the V̂ N̂ Ĉ directions may be beneficial from the operations perspec-

tive. Mathematical considerations yield maneuvers that lie along the restoring plane and

offer less rapid departure. Note that the restoring plane exists only if the dimension of the

stretching subspace is one. The maneuvers in the restoring plane are likely to offer relatively

better stationkeeping performance than the cases where the maneuvers have significant com-

ponent in the most stretching directions. The maneuvers in the restoring plane directions

are computed from a mathematical outlook and may not have any direct correlation to the

operational point-of-view. The maneuver satisfies two equations simultaneously,

∆ẋf

0

 =

ϕT,44 ϕT,45 ϕT,46

V1(ϕC,v,v)T

∆v̄0 =

ϕT,44 ϕT,45 ϕT,46

V1(ϕC,v,v)T



∆ẋ0

∆ẏ0

∆ż0

 (5.31)

one that targets the rotating ẋf value and the other that meets the direction-constraints.

The formulation considers that any maneuvers in the restoring plane are orthogonal to the

maximum stretching direction. Fine tuning on the orientation between the maneuver and
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the restoring directions, if they exists, are a choice. Define, α2 and α3 as scalar weights that

influences the maneuvers to lie along a preferred direction, such that,

∆v̄0 = α2V2 + α3V3 (5.32)

that is solved along the with conventional x-axis crossing control scheme, such as,

∆ẋf

0̄3×1

 =

ϕT,44 ϕT,45 ϕT,46 0 0

I3×3 −V2 −V3



∆v̄0

α2

α3

 (5.33)

=

ϕT,44 ϕT,45 ϕT,46 0 0

I3×3 −V2 −V3





∆ẋ0

∆ẏ0

∆ż0

α2

α3


(5.34)

where the two additional unknown quantities α2 and α3 are evaluated along with the three

scalar components of the maneuver. The equations for direction-constrained maneuvers only

offer a mathematical solution that may or may not be conducive for stationkeeping. Ma-

neuvers may be constrained along any other directions as per the missions requisites, an

alternate equation governs such a constraint and may be formulated in the same manner.

Stationkeeping maneuvers are computed by targeting the rotating ẋ value at specific

xz plane crossings downstream. As discussed, the flow from the maneuver location and

the target determines the magnitude and direction of the maneuver. With no additional

constraints, other than targeting the rotating ẋ value and y = 0 at the xz plane crossing, by

convention, a minimum norm approach yields a solution that minimizes the propellant cost.

A minimum norm solution is effective for stationkeeping for several target horizon times. As

the direction of the maneuvers are constrained, consequently the magnitude of the maneuvers
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Figure 5.37. V̂ N̂ Ĉ directions and x̂ŷẑ directions along an NRHO, at apoapsis.

are altered to meet the target conditions. Let the direction of the maneuver be constrained

in the direction K̂, representative of any of the x̂, ŷ, ẑ, V̂ , N̂ , Ĉ directions and the restoring

plane (the column space of vectors V2 − V3). The direction K̂ may also represent any other

directions as required. Recall equation  5.10 that determines the magnitude of the maneuver

for the x-axis control stationkeeping,

|∆ẋf | = |M̄ ||∆v̄0| cosϑ −→ |∆v̄0| = |∆ẋf |
|M̄ | cosϑ

(5.35)

where the parameter cosϑ is set to 1 to identify the maneuver with the smallest magnitude

in the conventional approach, i.e., the minimum norm maneuver. Once the direction of the

maneuver is fixed, the value of the parameter cosϑ is no longer 1, and the change in the

value of cosϑ affects the maneuver magnitude. Consider the ratio of maneuver magnitude

for the maneuver along the direction K̂ to the minimum norm solution as

|∆v̄0|K̂
|∆v̄0|min−norm

= 1
cosϑ

(5.36)
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where, |∆v̄0|K̂ is the magnitude for maneuver that is constrained along the K̂ direction.

The angle ϑ is the measured between the K̂ direction and the M̂ direction (the direction

along minimum norm solution is computed). Figure  5.38 demonstrates the value of angle

ϑ with respect to different directions along which maneuvers may be constrained. Certain

directions, such as the ẑ and Ĉ directions have a significant the angle to the minimum norm

solution at multiple target horizons, while any maneuvers in the x̂ and N̂ directions have only

small change in angle from a minimum norm maneuver especially at longer target horizons.

More importantly, the value 1/cosϑ is the amplification in the maneuver magnitude that

is constrained along the K̂ direction as opposed to the one that minimizes the propellant

cost. Figure  5.39 illustrates the value 1/cosϑ for maneuvers along different directions. Not

surprisingly, maneuver directions with smaller angle ϑ in Figure  5.38 , results in little ampli-

fication in amplification in maneuver magnitude as in Figure  5.39 . In contrast, maneuver

along directions with very large angle ϑ, such as the maneuvers along the ŷ and the V̂ di-

rections for 2.5 revs target horizon, generates a large maneuver magnitude compared to the

minimum norm solution that targets hte same target horizon. Similarly, maneuvers along

the ẑ and the Ĉ directions consistently produce larger maneuver magnitudes, almost 5 to 10

times larger than their minimum norm counterpart. Figure  5.39 assists in identification of

the effects of constraining the maneuver direction on the maneuver costs.

Figure 5.38. Angle between direction-constrained maneuvers and minimum
norm maneuver.
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Figure 5.39. Direction-constrained maneuver magnitude relative to the min-
imum norm maneuver.

The effects of constraining maneuver directions on the stationkeeping maneuver costs

are identified by inspecting the angle between the constrained maneuver direction to the

direction of the minimum norm solution, i.e., the M̂ direction (the components of the vec-

tor M̄ are elements of the linear STM from the maneuver location to the target). The

boundedness of the spacecraft near the reference orbit is also an important aspect of station-

keeping. Such effects are monitored by identifying the direction between the maneuver, K̂,

and the maximum stretching direction, V1. Of course, this is applicable to maneuvers that

are constrained along any K̂ direction. Figure  5.40 demonstrates the angle between various

direction-constrained maneuvers and the maximum stretching direction. Not surprisingly,

the maneuvers in the restoring plane are perpendicular to the maximum stretching direction.

For maneuvers that are fixed along any K̂ direction, the angle between the maneuver and the

maximum stretching direction remains a constant for any target horizon. Maneuvers along

x̂, ẑ, N̂ and Ĉ directions have a significant component away from the maximum stretching

direction in contrast to maneuvers along ŷ and V̂ directions.

Analyses in the CR3BP, along the dynamical flow near a reference NRHO offers signif-

icant information on the behavior of certain maneuver types. Figure  5.39 offers insight on

the magnitude of direction-constrained maneuvers while Figure  5.40 reflects on the behavior

of a trajectory in the vicinity of the reference orbit with maneuvers aligned in specific direc-
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Figure 5.40. Angle between direction-constrained maneuvers and the maxi-
mum stretching direction.

tions. Of course, each of Figures  5.39 and  5.40 aid in understanding the dynamical flow in

the CR3BP model, actual stationkeeping operations are performed in more complex envi-

ronments with additional gravitational and non-gravitational forces. Figure  5.41 illustrates

the alignment of the stationkeeping maneuvers that are constrained along each of the V̂ N̂ Ĉ

directions in the higher-fidelity ephemeris model with respect to the maximum stretching

directions, for a range of target horizons. Unlike in the CR3BP, the angle between the ma-

neuver direction and the maximum stretching direction is no longer a constant, instead, a

range of values are observed. Despite the dispersion in the angle between the maneuvers

and the maximum stretching direction in the ephemeris model, the effects predicted in the

CR3BP, as in Figure  5.40 , still demonstrate the underlying dynamics. To further understand

the behavior of the direction-constrained maneuvers, consider sample stationkeeping cases

simulated for maneuvers constrained along each of the V̂ N̂ Ĉ directions for the 9:2 synodic

resonant southern L2 NRHO. These sample cases are simulated for 6.5 rev target horizon.

Figure  5.42 describes the orientation of the maneuvers in the configuration space. The ma-

neuvers are scaled appropriately across each subplots for comparison. The magnitude of

stationkeeping maneuvers constrained along each of the V̂ N̂ Ĉ directions are illustrated in

Figure  5.43 . The observations in Figure  5.43 are synonymous to the predictions in Figure

 5.39 . Maneuvers constrained in the normal N̂ direction that is closely aligned with the

minimum norm solution (maneuvers generated through minimum norm solution is along
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the M̂ direction) generates a smaller ∆v̄ in comparison to maneuvers constrained in the V̂

and Ĉ directions. Again, maneuvers along the V̂ directions are of relatively smaller mag-

nitudes compared to maneuvers in the Ĉ directions. Such behavior observed in the plots

in Figure  5.43 are reflected in Figure  5.39 . Further, the effect of the direction-constrained

maneuvers on the spacecraft boundedness near the reference trajectory are demonstrated in

Figure  5.44 for maneuvers constrained along each of the V̂ N̂ Ĉ directions. Among the three

cases, spacecraft experiences a larger deviation over time when maneuvers are constrained

along the V̂ direction. State changes along the V̂ direction experiences larger stretching till

the subsequent maneuver location due to close alignment of the maneuvers in the V̂ direc-

tion with the maximum stretching direction, as reflected in Figure  5.40 . The angle between

each of the N̂ and Ĉ direction, and the maximum stretching direction is comparable, conse-

quently the actual spacecraft deviations for stationkeeping cases simulated are comparable.

The Figures  5.43 and  5.44 are maneuver history and deviation history, respectively, recorded

for stationkeeping simulations with low orbit determination errors, and follow the behavior

predicted in the CR3BP as in Figures  5.39 and  5.40 . As the orbit determination error levels

are increased, behavior in the ephemeris model start to deviate away from the predictions

in the CR3BP.

Figure 5.41. Actual angles between maneuvers along each of V̂ N̂ Ĉ directions
and the maximum stretching directions along the 9:2 synodic resonant NRHO.
Target horizon: 6.5 revs downstream. Low orbit determination error (3σ: 1
km and 1 cm/s) case.
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(a) V̂ -direction (b) N̂ -direction

(c) Ĉ-direction

Figure 5.42. Maneuvers along each of V̂ N̂ Ĉ directions in the configuration
space. Target: 6.5 rev xz plane crossing. Reference orbit: L2 NRHO with
perilune radius 3200 km. Low orbit determination error (3σ: 1 km and 1
cm/s) case.

183



(a) Maneuvers along V̂ -direction

(b) Maneuvers along N̂ -direction

(c) Maneuvers along Ĉ-direction

Figure 5.43. Stationkeeping maneuver history for direction constrained ma-
neuvers along each of V̂ N̂ Ĉ directions that targets the 6.5 rev xz plane cross-
ing. Reference orbit: L2 NRHO with perilune radius 3200 km. Low orbit
determination error (3σ: 1 km and 1 cm/s) case.
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(a) Maneuvers along V̂ -direction

(b) Maneuvers along N̂ -direction

(c) Maneuvers along Ĉ-direction

Figure 5.44. Deviation history for direction constrained maneuvers along
each of V̂ N̂ Ĉ directions that targets the 6.5 rev xz plane crossing. Reference
orbit: L2 NRHO with perilune radius 3200 km. Low orbit determination error
(3σ: 1 km and 1 cm/s) case.
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Direction-constrained maneuvers may or may not be conducive for stationkeeping. Cer-

tain directions that are closely aligned with the M̂ direction (directions along the minimum

norm solution) are likely to generate maneuvers of smaller magnitude to meet the target

conditions. Similarly, maneuvers along certain directions that are closely aligned to the

maximum stretching direction experience rapid departure from the reference trajectory over

time. Any direction that is closely aligned with the M̂ direction and orthogonal to the

maximum stretching direction simultaneously is among the most suitable directions for sta-

tionkeeping maneuver. Such are the cases for maneuvers generated using the conventional

minimum norm solutions at longer target horizons (2.5 revs to 6.5 revs), as well as maneuvers

constrained along the x̂ and/or N̂ direction, again for longer target horizons (2.5 revs to 6.5

revs). In summary, stationkeeping costs for the 9:2 synodic resonant southern L2 NRHO

simulated for various direction-constrained maneuvers with low and high orbit determination

error levels are listed in Tables  5.8 and  5.9 , respectively. As discussed, certain directions are

conducive for stationkeeping and thus produce low stationkeeping costs while maintaining

the spacecraft in the vicinity of the virtual reference solution. Spacecraft may experience

continuous deviation from the reference trajectory as maneuvers are performed along specific

directions, in such cases stationkeeping operations may not be successful as orbit determi-

nation error levels increase, as deviations amplify rapidly. Maneuvers along the x̂ and/or

N̂ directions are effective for stationkeeping for a range of target horizons. A significantly

large maneuver magnitude is required to meet the target conditions when constrained along

the ŷ and/or V̂ directions. Moreover, state deviations along the ŷ and V̂ directions increase

rapidly as they are aligned close to the maximum stretching direction. Stationkeeping ma-

neuvers along the ŷ and the V̂ directions are effective only for very long target horizons and

long term stationkeeping is less likely. A large maneuver magnitude is delivered along the ẑ

and the Ĉ directions to meet the target conditions, while being oriented significantly away

from the most stretching direction. Performance of maneuvers aligned along either of the ẑ

and the Ĉ directions, thus are intermediate to that of the cases for x̂ (also N̂) directions and

for the ŷ (also V̂ ) directions.

186



Table 5.8. Annual orbit maintenance cost, κ̄, and 95% confidence interval,
±1.96σκ̄, in [m/s] for direction constrained maneuvers with low ODE level (3σ:
1 km and 1 cm/s). Reference orbit: 9:2 synodic resonant southern L2 NRHO
with 3200 km perilune radius.

Maneuver Target horizon [rev]
Direction 0.5 1.5 2.5 3.5 4.5 5.5 6.5
Min. Norm 0.28 0.18 0.13 0.14 0.15 0.16

(Conventional) ± 0.02 ± 0.02 ± 0.00 ± 0.00 ± 0.00 ± 0.00

x̂
0.49 0.19 0.15 0.15 0.15 0.15

± 0.01 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00

ŷ
0.31 0.35 0.32 0.34

± 0.01 ± 0.01 ± 0.01 ± 0.01

ẑ
2.60 2.23 2.99 2.41

± 0.13 ± 0.07 ± 0.15 ± 0.06

V̂
0.31 0.34 0.37

± 0.01 ± 0.01 ± 0.01

N̂
0.75 0.19 0.17 0.16 0.16 0.16

± 0.02 ± 0.01 ± 0.00 ± 0.01 ± 0.00 ± 0.00

Ĉ
0.58 0.74 0.58 0.59 0.61

± 0.02 ± 0.03 ± 0.02 ± 0.02 ± 0.01
Restoring 0.25 0.27 0.16 0.23 0.14 0.25 0.19
Plane ± 0.01 ± 0.01 ± 0.01 ± 0.02 ± 0.01 ± 0.03 ± 0.01

< empty cell > - Did not converge

Targeting conditions 1.5 rev downstream offers distinct behavior in comparison to other

target horizon using the conventional scheme that employs a minimum norm solution. It is

identified that such a behavior is a result of maneuver direction having a significant compo-

nent in the most stretching direction. In contrast maneuvers restricted in the restoring-plane

are likely to offer close boundedness of the trajectories near the reference orbit, as perturba-

tions are not expected to grow rapidly along the restoring-plane. Figure  5.45 demonstrates

the deviation history in the form of a box-plot for trajectories maintained using minimum

norm approach and using maneuvers restricted in the restoring-plane direction that targets

the 1.5 rev xz plane crossing downstream. Clearly, maneuvers restricted in the restoring-

plane direction cause trajectories to be more closely maintained to the reference path in
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Table 5.9. Annual orbit maintenance cost, κ̄, and 95% confidence interval,
±1.96σκ̄, in [m/s] for direction constrained maneuvers with high ODE level
(3σ: 10 km and 10 cm/s). Reference orbit: 9:2 synodic resonant southern L2
NRHO with 3200 km perilune radius.

Maneuver Target horizon [rev]
Direction 0.5 1.5 2.5 3.5 4.5 5.5 6.5
Min. Norm 5.84 1.81 1.02 0.96 0.90 0.91

(Conventional) ± 0.32 ± 0.12 ± 0.04 ± 0.03 ± 0.03 ± 0.03

x̂
4.23 1.61 1.04 1.13 1.05 1.03

± 0.34 ± 0.11 ± 0.03 ± 0.05 ± 0.04 ± 0.04

ŷ
2.44 2.15 2.25

± 0.09 ± 0.06 ± 0.07

ẑ
16.27 25.75 16.71

± 0.54 ± 1.82 ± 0.51

V̂
2.28 2.43

± 0.07 ± 0.07

N̂
4.53 1.70 1.07 1.16 1.06 1.03

± 0.34 ± 0.10 ± 0.03 ± 0.05 ± 0.04 ± 0.04

Ĉ
5.88 6.65 4.03 4.16 3.92

± 0.34 ± 0.52 ± 0.13 ± 0.15 ± 0.13
Restoring 2.03 1.94 1.36 1.92 1.36 1.61 1.25
Plane ± 0.12 0.10 ± 0.09 ± 0.13 ± 0.10 ± 0.13 ± 0.07

< empty cell > - Did not converge

comparison to the maneuvers delivered using the minimum norm approach that is conven-

tionally used for stationkeeping. In the ephemeris model, the maneuvers are constrained in

the restoring-plane identified by the flow between two successive apoapsis computed instan-

taneously (the trajectory is not precisely a closed periodic trajectory). Figure  5.46 demon-

strates the alignment of the maneuvers delivered by targeting the 1.5 rev xz plane crossing

in the ephemeris model. For reference, the most stretching direction and the restoring-plane

identified in the CR3BP are also plotted. Magnitude of any state change along the restoring

plane do not amplify over time, however, any maneuver restricted in the restoring-plane

is away from M̂ direction (the direction of the minimum norm solution for 1.5 rev target

horizon) hence a larger magnitude of velocity state change is intermittently introduced every

188



revolution, one that may continuously drive increasing velocity state change every revolution.

Of course, targeting conditions 1.5 rev downstream does not deliver reliable stationkeeping

if a minimum norm solution is calculated. An alternate approach that delivers a maneuver

in a different direction, preferably away from the stretching direction that targets the 1.5 rev

xz-plane crossing may still result in successful stationkeeping, an example is demonstrated

using maneuvers restricted in the restoring-plane. Targeting an alternative condition at 1.5

rev xz-plane crossing may also yield a different maneuver magnitude and direction that is

potentially suitable for stationkeeping, however, such a condition does not qualify as an

x-axis control algorithm and therefore not explored in this investigation.

5.6.4 Uncorrelated position and velocity uncertainties

In a real mission scenario, the position and velocity state uncertainties are derived quan-

tities based on observations that may be in the form of range and range rate measurements

as described in section  4.2 . Depending on the uncertainty in measurements and tracking

intervals, the position and velocity uncertainties change subsequently. The position and ve-

locity uncertainties are likely to be coupled as a result of the orbit determination process,

however, a variable range of position and velocity uncertainties and its effects on stationkeep-

ing offers a reliable information on the sensitivities along an orbit. Such an information may

help decide the number of observations and the duration of tracking intervals that may be

desired to meet the budgeted stationkeeping costs. Figure  5.47 offers an estimate of annual

stationkeeping costs to maintain a spacecraft along the 9:2 synodic resonant southern L2

NRHO. The cases are simulated by targeting 6.5 rev horizon, considering variable position

and velocity errors that are uncorrelated. The stationkeeping costs increase more rapidly

with increasing velocity uncertainties rather than position uncertainties, and consistent with

the sensitivity analysis measured using the maximum stretching directions as in Figure  5.4 .

5.6.5 Minimum maneuver magnitude constraints

It may not be feasible to perform extremely small maneuvers, moreover, they may be

redundant. The thrusters along a spacecraft may have a certain minimum |∆v̄| magnitude
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(a) Maneuvers using minimum norm approach

(b) Maneuvers in restoring-plane direction

Figure 5.45. Deviation history for trajectories maintained using maneu-
vers delivered using minimum norm solution and maneuvers restricted in the
restoring-plane direction, each targets the 1.5 rev xz plane crossing in the
CR3BP. Reference orbit: L2 NRHO with perilune radius 3200 km. Low orbit
determination error (3σ: 1 km and 1 cm/s) case.

that is deliverable. A minimum |∆v̄| magnitude is incorporated into the stationkeeping

algorithm, to estimate the performance of the stationkeeping process and investigate the

impact on the annual stationkeeping costs and the length of each ballistic segments in the

process. Figure  5.48 offers an estimate of the annual stationkeeping costs for cases with

a range of minimum |∆v̄| magnitude constraints and state uncertainties in position and

velocity. The values are estimated along a 9:2 synodic resonant southern L2 NRHO with

an approximate perilune radius of 3200 km. For simplicity, position errors, quantified in
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Figure 5.46. Stationkeeping maneuvers constrained in the restoring-plane
delivered by targeting the 1.5 rev xz plane crossing for the 9:2 synodic resonant
NRHO in the ephemeris model. Low orbit determination error (3σ: 1 km and
1 cm/s) case.

Figure 5.47. Annual stationkeeping cost for various uncorrelated combina-
tions of position and velocity uncertainty on L2 NRHO with perilune radius
3200 km.
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km, and velocity errors, quantified in cm/s, are considered to be coupled with the same

order of magnitude. Figure  5.49 corresponds to the number of apoapsis where a maneuver

is performed as a result of the |∆v̄| magnitude constraints, measured as a percentage of the

total number of apoapsis along the trajectory. The annual stationkeeping costs increases with

the minimum |∆v̄| magnitude constraints, and across increasing state uncertainties. Since

a spacecraft is expected to remain fairly close to the reference orbit in cases with low state

errors such as 3σ of 0.1 km and 0.1 cm/s, a minimum |∆v̄| magnitude constraints as high

as 5 cm/s results in stationkeeping maneuvers performed at less than 20% of the apoapsis

along the trajectory. Even at relatively high state errors such as 3σ of 10 km and 10 cm/s, a

minimum |∆v̄| magnitude constraints as high as 5 cm/s results in stationkeeping maneuvers

performed at less than 40% of the apoapsis along the trajectory, but consistently large

maneuvers cause an increase in annual stationkeeping costs. Not surprisingly, a minimum

|∆v̄| = 0 case results in maneuvers being performed at all the apoapsis.

5.7 Nonlinear Effects

The periapsis region along an NRHO is very sensitive due to its close proximity to the

Moon. As a consequence, targeting rotating x velocity component along an NHRO near the

periapsis is susceptible to high nonlinear effects that may offset maneuver estimation that

rely on linear state transition matrix. To visualize the nonlinear effects near the periapsis

along the 9:2 synodic resonant L2 NRHO, velocity perturbations that are of the same order

of magnitude as the orbit determination errors are introduced at the apoapsis and propa-

gated for specific durations of 0.5 rev, 1.5 rev, and so on that corresponds to the periapsis

location along the reference NRHO. Figures  5.50(a) and  5.50(b) describe the effects of veloc-

ity perturbation of sizes 1 cm/s, similar to 3σ levels for low ODE, and 10 cm/s, similar to 3σ

levels for high ODE, introduced at the apoapsis and propagated for the specific durations.

Clearly, the surface of perturbed states at final time are non-Gaussian and multimodal. For

comparison, a linear STM is Gaussian and unimodal. Not surprisingly, the nonlinear effects

are more dominant in Figure  5.50(b) that corresponds to larger perturbation size than in

Figure  5.50(a) . Besides, for both these cases, larger time horizon also contributes to the

nonlinear effects being more prominent. The perturbation due to 6.5 rev of the NRHO is
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more pronounced and overlays perturbations at other target horizons. In the stationkeeping

algorithm, that targets states at time horizon as high as 6.5 revs, the effect of the nonlinear

dynamical flow may restrict linear state transition matrix from accurately determining the

Figure 5.48. Annual stationkeeping cost for various minimum maneuver
magnitude constraints and combinations of position and velocity uncertainty
on L2 NRHO with perilune radius 3200 km.

Figure 5.49. Percentage of apoapses where maneuvers are executed for var-
ious minimum maneuver magnitude constraints and combinations of position
and velocity uncertainty on L2 NRHO with perilune radius 3200 km.
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correction maneuvers. It is worth exploring the effectiveness of the entire differential correc-

tions process in accurately determining the maneuvers despite the nonlinear effects.

(a) Initial |∆v̄| = 1 cm/s

(b) Initial |∆v̄| = 10 cm/s

Figure 5.50. End of trajectory segments that are propagated for different
time horizons with initial velocity perturbations of a fixed magnitude in arbi-
trary directions, implemented at the apoapsis.

In the x-axis crossing control stationkeeping strategy, the time of propagation of a per-

turbed trajectory is not exactly equal to the time from the apoapsis to the corresponding

target location along the reference orbit. Rather, all trajectories are allowed to propagate till
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the xz plane crossing; an event that may or may not be in phase with the virtual reference

trajectory. Figures  5.51 and  5.52 demonstrate the phase shift and the change in the rotating

ẋ value of the actual perturbed trajectories relative to the virtual reference trajectory, each

recorded at the xz plane crossing at various target horizon times. Figure  5.51 corresponds

to trajectories with an initial velocity perturbation of magnitude 1 cm/s while Figure  5.51 

corresponds to trajectories with an initial velocity perturbation of magnitude 10 cm/s. In

both these figures, a positive phase shift from the reference is analogous to a trajectory that

takes more time to reach the xz plane crossing, or considered lagging relative to the reference

solution. Similarly, a negative phase shift from the reference is equivalent to a trajectory

that takes less time to reach the xz plane crossing, or considered leading relative to the

reference solution. A correlation seems to exist between the phase shift experience by a per-

turbed trajectory and the change in the rotating ẋ value at a particular xz plane crossing.

Nonlinear effects are less profound for an initial velocity perturbation of magnitude 1 cm/s,

comparable to low ODE levels, as in Figure  5.51 , for the range of target horizons considered.

A profound nonlinear correlation is observed for case with an initial velocity perturbation

of magnitude 10 cm/s, comparable to high ODE levels, as in Figure  5.52 , especially for the

longer target horizons. The accuracy of a linear STM to deliver maneuver that targets the xz

plane crossing 6.5 revs, subject to high ODE errors, serve as the limiting case to understand

the underlying nonlinear effects. Cases with low velocity errors and shorter target horizon

times adheres to the limiting case.

The angle between a maneuver and the maximum stretching direction governs the effec-

tiveness of the strategy. The maximum stretching direction is computed along the coast arc,

that is generally not longer than a period in length, a linear STM thus offers reliable mea-

surements. It is the maneuver that is calculated along the arc propagated for a longer target

horizon time, where nonlinear dynamics affects the maneuver calculation. It is observed in

Figure  5.53 that for the case of 9:2 synodic resonant L2 NRHO, any perturbations along the

maximum stretching directions are almost the extremas along the change in ẋ values as well

as the change in phase relative to the reference trajectory, in both the leading and lagging

directions despite the non-Gaussian shape of the error correlation surface. As a consequence,
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Figure 5.51. Correlation between phase shift and change in ẋ value at various
xz plane crossing, for trajectories propagated with initial velocity perturba-
tions of a fixed 1 cm/s magnitude in arbitrary directions, implemented at the
apoapsis.

a maneuver that targets any compensate errors that lie anywhere along the error correlation

surface, is bounded by the information captured by the maximum stretching directions esti-

mated in a linear sense. Consider a case, where the maximum stretching directions does not

correspond to the extremas of the error correlation surface, there may exists cases where a

maneuver delivered is away from the maximum stretching direction, that by intuition may

restrict perturbation growth between two successive maneuver locations, but may have large

offset in ẋ values and/or phase shift relative to the reference trajectory measured at xz plane

crossings further downstream. As a result, despite the maneuver being aligned away from the

maximum stretching direction, the spacecraft eventually deviates away from the reference

orbit due to large phase shift and/or large change in ẋ value relative to the reference orbit

that may be difficult to target.

The shape and orientation of the error correlation surface as in Figures  5.51 and  5.52 

influence the phasing errors typically observed in the x-axis crossing control approach. In

the conventional stationkeeping strategy, only the rotating ẋ quantity is targeted, without

actively controlling any phase shift. Independent of the orbit determination error levels,
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(a) Zoomed out view

(b) Zoomed in view

Figure 5.52. Correlation between phase shift and change in ẋ value at various
xz plane crossing, for trajectories propagated with initial velocity perturba-
tions of a fixed 10 cm/s magnitude in arbitrary directions, implemented at the
apoapsis.

the elliptical shape of the error correlation surfaces as in Figures  5.51 and  5.52 for 0.5 rev

and 1.5 rev target horizon times are almost horizontal, i.e., the semi-major axis is almost

along the y = 0 line (x-axis) in these figures. Similarly, for longer target horizon times, the

ellipses are oriented such that the semi-major axis is away from the y = 0 line (x-axis). For

the error correlation surfaces that are almost horizontal ellipses, a maneuver that targets
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Figure 5.53. Nonlinear correlation between phase shift and change in ẋ value
at 6.5 rev xz plane crossing, along with crossings of trajectories propagated
with initial velocity perturbations of fixed 10 cm/s magnitude in the maximum
stretching directions.

the rotating ẋ quantity, i.e., ∆ẋ ≈ 0, may have a large range of phase errors that are not

compensated. Cases that target 0.5 rev and 1.5 revs are prone to larger phase errors than

targeting the longer target horizons, where a corrective maneuver that compensates for the ẋ

value automatically compensates some component of the phase errors as well, i.e., for longer

target horizon times ∆ẋ ≈ 0 line in Figures  5.51 and  5.52 have a smaller range of phase errors.

In general, it is expected that a single shooting technique to estimate the stationkeeping

maneuver is less effective when targeting states that are significantly downstream, such as

6.5 rev, due to nonlinear effects resulting from close lunar passages along the path. In the

x-axis crossing control approach, a maneuver is calculated using a single shooting technique

that employs a Newton-Raphson iterative scheme, one that solves for linear state updates.

Although the updates are based on a linear state transition matrix, the nonlinear equa-

tions of motion are propagated to ensure convergence criteria at the target are met. With

small perturbations typical of a stationkeeping problem nearby a known reference trajec-

tory, a Newton-Raphson scheme yields a quadratic convergence [ 99 ]. In cases with quadratic

convergence, the first iteration formulated in terms of a linear STM that is the major up-
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date, while the following iterations results in significantly smaller updates. From Figures

 5.10(a) and  5.11(a) , that are reflective of the CR3BP dynamics, it is evident that even for

longer target horizon times such as 6.5 revs downstream, the angle estimated for the maneu-

ver calculated from the linear STM (equivalent to the first update of the Newton-Raphson

scheme), as denoted by the blue curve, reasonably captures the effect in comparison to the

actual maneuvers noted by the red asterisks (*), that is, reflective of the nonlinear dynamics.

Accordingly, the maps in Figures  5.8 ,  5.10 and  5.13 that offer linear predictions sufficiently

capture the underlying dynamics over this range of target horizons.

5.8 L1 and L2 Transition Halo Orbits

Transition halo orbits are members of the halo orbit families in the L1 and L2 region,

loosely identified with perilune radius between 10000 km to 22000 km that, when transi-

tioned from CR3BP to a higher-fidelity ephemeris model exhibits large variation in apse

angles [ 57 ], [ 75 ]. An apse angle is described as the shift in the periapsis or the apoapsis

of the orbit in the higher-fidelity model in comparison to the orbit in the CR3BP [ 3 ]. The

range of orbits that exhibit large variation in apse angles typically exists as the transition

occurs from stable NRHOs with relatively low perilune radius to the unstable members of

the halo orbit family with relatively larger perilune radius. Some of the transition halo orbit

members exhibit a simple resonance with the Earth-Moon sidereal and synodic periods. In

the L2 family, the NRHO with an approximately 15000 km perilune radius is labelled as the

3:1 synodic resonant orbit, i.e., three revolutions of the orbit corresponds to one synodic time

period of the Moon around the Earth. Figure  5.54 illustrates the L2 NRHO with a 15000 km

perilune radius transitioned from the CR3BP to an ephemeris model on different starting

epoch dates in the month of May in 2023. Clearly, the natural trajectories corresponding to

each epoch exhibit different geometry in configuration space, with large dispersion in apse

angles, indicating the sensitivity of the orbit states as epoch time is varied. In particular,

for the 3:1 synodic orbit, some similarity in geometry appears in 9-10 day intervals that

roughly correspond to the time per revolution along the orbit in the CR3BP system [ 75 ].

Other transition orbits in the L1 and L2 family display similar characteristics. Clearly, al-

ternative strategies are possible to transition such orbits. But, to assess the stationkeeping
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challenges, assume sample ephemeris trajectories such as those in Figure  5.54 . As a result of

such sensitivity, stationkeeping along these transition halo orbits is challenging and requires

modifications to the conventional impulsive stationkeeping algorithm.

May 01, 2023 May 02, 2023 May 03, 2023 May 04, 2023 May 05, 2023 May 06, 2023

May 07, 2023 May 08, 2023 May 09, 2023 May 10, 2023 May 11, 2023 May 12, 2023

May 13, 2023 May 14, 2023 May 15, 2023 May 16, 2023 May 17, 2023 May 18, 2023

May 19, 2023 May 20, 2023 May 21, 2023 May 22, 2023 May 23, 2023 May 24, 2023

May 25, 2023 May 26, 2023 May 27, 2023 May 28, 2023 May 29, 2023 May 30, 2023

Figure 5.54. Dispersion in apse angle for L2 NRHO with perilune radius
15000 km in CR3BP (black) and higher-fidelity ephemeris model (red) con-
verged for different starting epoch dates in May 2023. All projections are in
yz view in the rotating frame; trajectory direction is clockwise.

To investigate the influence of the underlying reference trajectory on the x axis cross-

ing control approach for stationkeeping, a sufficiently long reference trajectory is designed

systematically and consistently. The generation of a natural trajectory in the higher-fidelity
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ephemeris model is accomplished in a consistent manner, considering the sensitivity of the

CR3BP states to the epoch time for transition halo orbits. A periodic orbit in the CR3BP

is subdivided into 10 segments, equally spaced in time. The beginning node along each

trajectory segment serves as a patch point for the multiple shooting process. To generate a

natural trajectory approximately 12 time-periods in length, 12 revolutions of the orbit in the

CR3BP are selected, and ‘stacked’ on top of each other, yielding a total of 121 patch points

that serve as the initial conditions for the multiple shooting process. For consistency, the

first patch point is selected at the apoapsis location in the CR3BP model. Further, it is con-

strained that the location of first patch point is in the xz-plane. Through a Newton-Raphson

iterative process, as demonstrated in the literature, a natural trajectory is constructed that

is continuous in position and velocity states, as well as in time [  103 ]. Of course, the geometry

of the natural trajectory varies with the epoch date corresponding to the first patch point,

a case for the L2 NRHO with 15000 km is demonstrated in Figure  5.54 . The length of the

natural trajectory in the ephemeris model provides a sufficiently long duration to examine

stationkeeping capabilities.

Davis et al. have investigated stationkeeping capabilities on the transition halo orbits

using the conventional x-axis control approach, with a single maneuver per orbit near the

apoapsis, one that targets the rotating ẋ value at certain xz-plane crossings further down-

stream [  57 ]. It is observed that, using this approach, only certain baseline solutions are

conducive to long-term orbit maintenance. In addition, simulations for orbit determination

errors larger than 3σ of 0.3 km and 0.3 cm/s, resulted in trajectories diverging from the

virtual reference solution, and consequently produced fewer successful stationkeeping cases.

Similar results are observed in this investigation as well. Upon careful observation, it is

clear that the position and velocity states along the transition halo orbits are sensitive to

epoch dates and, therefore, stationkeeping operations must also target the necessary timing

conditions at the corresponding epochs, i.e., the actual trajectory must be in phase with the

baseline trajectory.
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In literature, it is observed that the phase difference between the actual spacecraft tra-

jectory and the virtual baseline trajectory increases either positively or negatively over time,

when maneuvers are implemented using the conventional x-axis control algorithm [  82 ], [  119 ].

For transition halo orbits that are sensitive to epoch time, any phase shift between the ac-

tual and reference trajectories may impede the stationkeeping operations. To overcome such

sensitivities, additional phase constraints are introduced. Muralidharan and Howell have

demonstrated that a phase control approach, as detailed in section  5.6.1 , is effective for or-

bit maintenance in the transition halo orbits [  83 ]. Again, in any case, if the spacecraft has

deviated significantly from a virtual reference trajectory, an occasional long horizon orbit

correction maneuver is implemented to shift the states to a new long horizon virtual reference

trajectory.

A low-cost stationkeeping maneuver is generated typically by targeting further down-

stream to allow sufficient time to achieve the target conditions. The phase control approach

applied on the 3:1 synodic resonant L2 NRHO with perilune radius 15000 km, a reference

trajectory that falls within the transition halo orbit range, by targeting the 1st xz-plane

crossing near the periapsis is less effective in terms of cost and the number of successful

cases compared to targeting the 2nd xz-plane crossings near the periapsis, for both low and

high orbit determination levels. Targeting the 2nd xz-plane crossing is successful in main-

taining the spacecraft near the virtual reference orbit even with high orbit determination

errors (3σ of 10 km and 10 cm/s), which is a considerable improvement compared to the con-

ventional x-axis control algorithm that is effective only for certain virtual reference orbits for

very low orbit determination levels with 3σ of 0.3 km and 0.3 cm/s, in position and velocity

respectively. Due to the sensitivity of the transition halo orbits, the perturbed initial states

when propagated for a time duration equivalent to 6.5 revs of the reference orbit no longer

adheres to the geometry of a halo orbit. A single shooting differential correction process

faces a challenge with relatively longer target horizons, such as 6.5 rev downstream.

The sensitivity of the stationkeeping process on a reference orbit is measured by mon-

itoring the stationkeeping performance along two reference orbits of the same NRHO with

202



the same epoch constructed using different approaches. A comparison of annual station-

keeping costs on two set of reference solutions is plotted in Figure  5.55 for the 3:1 synodic

L2 NRHO with perilune radius 15000 km for different epoch dates in the month of May in

2023 described by the x-coordinate. The annual costs are estimated over 100 Monte Carlo

simulations, consistent with the cases discussed previously. The set of reference orbits la-

belled as Sample 1, is generated by stacking 12 revolutions of the CR3BP orbit with 10 patch

points along each orbit spaced equally in time, as detailed previously. In contrast, Sample 2

is generated by stacking 25 revolutions of the CR3BP orbit with 10 patch points along each

orbit spaced equally in time. In both sample cases, the first node is constrained to be on

the xz-plane. Not surprisingly, the stationkeeping cost is sensitive to the virtual reference

trajectory. Hence, a direct cost comparison between trajectories constructed on two different

epoch dates or using a different sequence of stacking operations, is not practical, as they are

based on distinct natural baseline trajectories.

Figure 5.55. Annual stationkeeping cost comparison for reference orbits con-
structed on same epoch dates through different approaches. Case: 3:1 synodic
resonant L2 NRHO with perilune radius 15000 km with low orbit determina-
tion error level (3σ: 1 km and 1 cm/s).

The stationkeeping costs estimated on the transition halo orbit is, of course, impacted by

the underlying natural trajectory that serves as the virtual reference trajectory. Although,

the mean estimated cost associated with the stationkeeping for a specific trajectory is not

very useful, the range of mean stationkeeping costs associated with the same orbit con-
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structed over different epoch dates may yield more relevant details. Figures  5.56(a) and

 5.56(b) summarizes the projected annual orbit maintenance cost along different halo orbits

in the transition region estimated by running 100 Monte Carlo simulations. Each curve

represents a transition halo orbit in the L1 and L2 regions. The x-coordinate along these

curve represents the epoch date at the halo orbit injection, i.e., the first node of the stacking

sequence. The y-coordinate of the curve is the estimated mean stationkeeping costs com-

puted for that epoch date. These simulations are conducted for a mission duration of 90

days. For low orbit determination errors, majority of the stationkeeping simulations across

different orbits remains bounded near the virtual reference solutions, simulated over a range

of epoch dates in the month of May 2023. A few trajectories do depart from the virtual

reference solution. The worst performing case, L2 halo orbit with 21000 km on May 26,

2023, does include at least 80% simulations that remain bounded. In general, the annual

stationkeeping cost across different halo orbits are generally in the range between 0.3 m/s

and 5 m/s, for low orbit determination errors. In contrast, with higher orbit determination

errors, the success rate is at least 60% successful Monte Carlo trials, across different orbits

simulated over a range of epoch dates. The worst performing case for high orbit determi-

nation errors, the L1 halo orbit with 18000 km on May 13, 2023, includes only 16% Monte

Carlo trials that successfully maintain the spacecraft near the virtual reference solution over

the mission duration. Again, roughly, annual stationkeeping cost across different halo orbits

are typically in the range of 1.5 m/s to 16 m/s, for high orbit determination errors. Station-

keeping performance are reflective of the underlying baseline orbit and a direct comparison

between two different transition halo orbits and on different epoch dates is inconsequential,

however, identification of the range of stationkeeping costs for various transition halo orbits

are valuable.
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(a) Low orbit determination error (3σ: 1 km and 1 cm/s)

(b) High orbit determination error (3σ: 10 km and 10 cm/s)

Figure 5.56. Annual stationkeeping cost [m/s] for different transition halo
orbits in the L1 and L2 families.
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6. DEPARTURE AND TRANSFER TRAJECTORY DESIGN

With the long term potential of NASA’s Lunar Gateway mission, there is a growing interest

in accessing nearby stable cislunar orbits for various mission scenarios. Of course, the Near

Rectilinear Halo Orbits (NRHOs) in the L1 and L2 regions of the Earth-Moon system offer

potential candidates suitable for any long term presence. These NRHOs are stable or nearly

stable as characterized by the linear variational flow in the circular restricted three-body

problem (CR3BP) [  3 ], [  4 ], and offer distinct characteristics such as reasonably close lunar

passages and large out-of-plane amplitudes relative to the Earth-Moon orbit plane, appro-

priate for investigating the polar regions of the Moon. Similar to the NRHOs, the Distant

Retrograde Orbits (DRO) offer a range of stable orbits in the Earth-Moon system. The

DROs are potential hosts for proposed propellant depot, that reduces costs for accessing

various cislunar orbits and enable transfer options to interplanetary orbits [  124 ], [  125 ]. The

Lunar Distant Retrograde Orbit (DRO) approximately 70,000 km from the Moon served as

the baseline for the once proposed Asteroid Redirect Mission (ARM) [  126 ]. The Low Lunar

Orbits (LLO) offer close coverage of the Lunar surface, crucial for various science missions.

With the increasing number of mission scenarios and with a potential human presence, an

important capability is transfers between various locations of interest relatively quickly and

cost efficiently. Disposal of logistic modules while avoiding any collisions is also a concern.

Manifolds have been used extensively for orbit departure and trajectory design, however,

the lack of well-distinguished stable and unstable manifold structures on orbits that are

nearly stable is a challenge. Previous transfer trajectory design approaches between stable

orbits exploit intermediate segments of known orbits, resonant arcs as well as manifolds of

known unstable orbits [  72 ], [  73 ], [  75 ]–[ 77 ], however, the most productive types of intermediate

orbits are not known a priori. In this investigation, the dynamical flow is visualized using

the principal stretching directions. An alternate strategy that offers reliable departure and

arrival analysis from stable orbits are explored in this investigation, one that leverages the

maximum stretching directions. An effective departure from the orbit serves as a preliminary

step for the disposal problem as well as a basis for transfers to other spatial locations.
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6.1 Orbit Departure

NASA’s Gateway mission is to be maintained for a sufficiently long duration along the

9:2 synodic resonant orbit in the L2 southern NRHO family. The NRHO that is the current

baseline is almost stable. While an almost stable orbit is suitable for reducing the station-

keeping costs [  4 ], [  57 ], [  82 ], [  83 ], it is challenging to get the spacecraft and/or the discarded

logistic modules away from the reference orbit [  127 ]. Ability to depart from the vicinity of

the baseline orbit is required for various reasons, including transfers to other orbits/regions

of interest as well as discarding logistic modules away from the baseline orbit to avoid any

potential collisions with the in-orbit spacecraft. This investigation focuses on leveraging the

maximum stretching direction as a tool to depart the vicinity of a nearly stable NRHO,

and provide an alternative to exploiting manifolds for departure. Manifolds offer a suitable

highway architecture to access and depart the orbit, but for highly unstable orbits. As the

stability of the orbit increases, the functionality of the manifolds reduces for such applica-

tions. The orbit departure problem considered in this investigation serves as the preliminary

step to the disposal problem, and as a basis for transfers to other spatial locations.

6.1.1 Momentum Integral

Momentum integral is a parameter defined to identify the periodicity and boundedness

of a trajectory [ 4 ]. Mathematically, it is the line integral of the position vector along a

trajectory, i.e.,

MI(t) =
∫ t

t0
x(τ)ẋ(τ) + y(τ)ẏ(τ) + z(τ)ż(τ)dτ (6.1)

where, position vector is defined relative to the Earth-Moon barycenter in the CR3BP frame.

For a time-invariant system like the higher-fidelity ephemeris model where states are not pre-

cisely periodic, momentum integral is not perfectly periodic, however, remains bounded along

a trajectory that resembles the geometry of an orbit. Momentum integral evaluated along

trajectories in the neighborhood of the reference trajectory provides a suitable measurement

to assess their boundedness. Figure  6.1 demonstrates the behavior of a perturbed trajectory,

colored as red, relative to the reference trajectory, colored as black, in the configuration

space. Figure  6.2 quantifies the momentum integral evaluated along the trajectories shown
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in Figure  6.1 . Clearly, the evolution of momentum integral along the periodic reference path

and the perturbed path are reflective of the motion in the configuration space. The reference

trajectory is perfectly periodic, and the value of momentum integral corresponds to the same

behavior. However, the perturbed trajectory, colored in red, undergoes motion similar to

the reference trajectory for certain duration before departing significantly away from the

reference motion. Consider, the reference trajectory represented by Γ, and the perturbed

trajectory as Γ̃. A metric, defined as

∆MI(t) = |MIΓ̃(t) − MIΓ(t)| (6.2)

that is the absolute value of the difference between the momentum integral evaluated along

the actual perturbed path and the reference path, serves well, to quantify the departure of

the actual perturbed path relative to the reference path. Consistent with the previous liter-

ature [ 127 ], a spacecraft is considered to have departed the vicinity of the reference path as

the value of ∆MI exceeds 10−1, however, the specific value best suited for defining departure

is dependent on each problem. For the current application, using 10−1 for the threshold

is adequate. The departure of the perturbed trajectory, shown in Figure  6.1 , is quantified

relative to the reference trajectory in terms of ∆MI in Figure  6.3 . Based on the threshold,

the ∆MI at the end of the propagated segment is larger than 10−1, hence considered to have

departed the vicinity of the reference NRHO.

Stretching directions computed from various submatrices of the state transition matrix

yield relevant information. As in the case of the stationkeeping problem, since only the initial

velocity states, δv̄0, are subject to change, the submatrices that maps the impact of initial

velocity are relevant. Besides, the NRHOs are sensitive to velocity state changes, hence, it is

important to quantify final velocity state changes. The 3 × 3 dimensional submatrix, ϕC,v,v,
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Figure 6.1. Trajectory deviating from the reference 9:2 synodic resonant L2
NRHO with a perilune radius 3200 km.

maps the initial velocity perturbation, δv̄0, to the final velocity change, δv̄f . Also, combined,

the 6 × 3 dimensional submatrix ϕC,rv,v, where

ϕC,rv,v =

ϕC,r,v

ϕC,v,v

 (6.3)

that maps the initial velocity perturbation, δv̄0, to the final position and velocity state

change, δr̄f and δv̄f , yields significant characteristics. Figure  6.4(a) illustrates the maximum

stretching direction, V1, corresponding to submatrix ϕC,v,v while Figure  6.4(b) describes the

maximum stretching direction, V1, that corresponds to submatrix ϕC,rv,v in the configuration

space. Clearly, the maximum stretching directions computed from either of the submatrices

ϕC,v,v or ϕC,rv,v that include the final velocity state change are aligned in a similar direction.

Since the submatrix ϕC,rv,v offers information that includes both the final position and final
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Figure 6.2. Momentum integral evaluated along a periodic orbit and a per-
turbed trajectory.

Figure 6.3. Difference in momentum integral between a periodic orbit and a
perturbed trajectory.

velocity state change, it is a superior metric than the submatrix ϕC,v,v, thus selected for anal-

ysis for the orbit departure problem. For the stationkeeping problem, where the requirement

is to minimize the maneuver costs without actively trying to maintain close boundedness to

the reference orbit the stretching directions from the submatrix ϕC,v,v is appropriate. For

analyses, the stretching directions are divided into two sets based on their orientation in con-

figuration space and labelled as type ’A’ and type ’B’, and are plotted in Figures  6.5(a) and

 6.5(b) , respectively. The type ’A’ maximum stretching directions are loosely characterized

pointing away from the local velocity direction while type ’B’ maximum stretching direc-
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tions have component in the local velocity direction. The naming convention is consistent

throughout this investigation. Trajectories when propagated after maneuvers along each of

type ’A’ and type ’B’ directions behave differently as observed in Figures  6.6(a) and  6.6(b) ,

respectively. Naturally, their departure characteristics measured in terms of ∆MI in Figures

 6.7(a) and  6.7(b) are different. Depending on the locations along the NRHO, maneuvers

along type ’A’ or type ’B’ directions may offer rapid departure. More distinct behavior be-

tween trajectories after maneuvers along type ’A’ or type ’B’ directions is observed as the

maneuver magnitude increases, and are detailed in this analyses.

(a) Stretching directions from ϕC,v,v(℘, 0) (b) Stretching directions from ϕC,rv,v(℘, 0)

Figure 6.4. Stretching directions computed using different submatrices of ϕC(℘, 0).

Invariant manifolds have been leveraged extensively for trajectory design applications

and disposal [  65 ], [  128 ]–[ 132 ]. Although the manifold theory is effective for unstable orbits,

relatively stable orbits do not possess well distinguished manifolds and making it less feasible.

Since a lot of focus is on the Gateway mission, examples in this investigation are based

on the baseline orbit under consideration. The unstable manifolds along the 9:2 synodic

resonant southern L2 NRHO with an approximate perilune radius of 3200 km is plotted
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(a) Stretching directions ’A’ (b) Stretching directions ’B’

Figure 6.5. Maximum stretching directions for the 9:2 synodic resonant L2
southern NRHO.

in Figure  6.8(b) . For comparison, the maximum stretching directions at the corresponding

locations along the 9:2 synodic resonant southern L2 NRHO are plotted in Figure  6.8(a) .

For each of the plots in Figure  6.8 as well as in this investigation, locations on the NRHO are

represented in terms of osculating true anomaly. Clearly, the unstable manifold directions

and the maximum stretching directions are distinct. An alternate strategy that leverages

maneuvers delivered in the maximum stretching direction is considered in this investigation.

Departures along the unstable manifolds offer a reference, to compare the effectiveness of

leveraging the maximum stretching directions. Trajectories along the unstable manifold

directions are propagated for a duration of 10 revs of the reference NRHO, approximately

equal to 65.73 days. These trajectories in the configuration space is plotted in Figure  6.9(a) ,

where the color of each trajectory corresponds to the osculating true anomaly location at

which the states along the unstable manifolds are propagated. The corresponding absolute

difference in momentum integral evaluated along each of these trajectories relative to the

reference NRHO are shown in Figure  6.9(b) . For reference, the threshold value of ∆MI =

10−1 is also displayed, to identify the departed trajectories. A simplified way of classifying
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(a) Trajectories propagated after maneuver along direction ’A’

(b) Trajectories propagated after maneuver along direction ’B’

Figure 6.6. Trajectories propagated with maneuvers in the maximum stretch-
ing directions.
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(a) Direction ‘A’

(b) Direction ‘B’

Figure 6.7. Change in the momentum integral for trajectories relative to the
reference orbit.

the departed trajectories is by identifying the time at which the trajectory exceeds the

∆MI = 10−1 criterion. Some departed trajectories may revert back to ∆MI < 10−1 values

due to the underlying nonlinear motion, however, for simplicity, only the time at which

the first departure condition is satisfied is recorded. Figure  6.9(c) describes the time for

the trajectories along the unstable manifold directions for departure. The blue and the

red data points correspond to the two unstable manifold directions at a given osculating

true anomaly location on the orbit. For certain osculating true anomaly values, either only

one or no data points are recorded, indicating that either only one or none of the unstable
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manifolds propagated at that true anomaly does not depart the vicinity of the NRHO for the

propagated time duration, respectively. Also, Figure  6.9(d) offers the value of ∆MI = 10−1

at the end of 65.73 days (10 revs of the reference orbit) of propagation, to identify if the

trajectories remain departed. In general, for most true anomaly values, a trajectory along

the unstable manifold direction takes at least 50 days to be considered departed.

(a) Principal stretching directions (b) Unstable manifold directions

Figure 6.8. Maximum stretching directions and unstable manifold directions
at various locations along the 9:2 synodic resonant L2 NRHO with perilune
radius 3200 km.

A maneuver along the maximum stretching direction impacts the maximum change in

the state magnitude at the end of the propagated arc. In most applications, within tra-

jectory design or disposal, a specific time duration for the propagation may be unknown.

For simplicity, the maximum stretching directions are computed along with the monodromy

matrix. Of course, for applications with a known time of propagation, maximum stretching

directions may be computed over the known propagation duration. The maximum stretching

direction computed over a monodromy matrix, inherently assumes that a maneuver deliv-

ered at current time causes significantly large step-off over a period of propagation, which

consequently aids in rapid departure from the stable orbit.
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(a) Configuration Space

(b) |∆MI|

Figure 6.9. Departure characteristics leveraging the unstable manifolds. Ref-
erence orbit: 9:2 synodic resonant L2 NRHO with a perilune radius of 3200
km.
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(c) Time for departure

(d) |∆MI| at t = 10℘

Figure 6.9. Departure characteristics leveraging the unstable manifolds. Ref-
erence orbit: 9:2 synodic resonant L2 NRHO with a perilune radius of 3200
km. (continued)
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Unlike leveraging the unstable manifolds, an actual maneuver is delivered along the max-

imum stretching direction, along different locations on the NRHO. Similar to the unstable

manifolds, there exists two sets of maximum stretching directions, that are labelled as type

’A’ and type ’B’, as demonstrated in Figures  6.5(a) and  6.5(b) . Initial maneuvers of different

magnitudes results in different final state changes. Figures  6.10(a) ,  6.10(b) ,  6.10(c) ,  6.10(d) ,

 6.10(e) and  6.10(f) demonstrate the effect of maneuvers of magnitudes 1 m/s, 2 m/s, 4 m/s,

8 m/s, 16 m/s and 100 m/s as viewed in configuration space. In these figures, maneuvers

are delivered along maximum stretching directions indicated in both type ’A’ and type ’B’.

It is to be noted that the Jacobi constant along the unstable manifolds is consistent with the

reference NRHO, however, with the delivery of an additional maneuver along the maximum

stretching direction, the Jacobi constant of the perturbed trajectory is no longer the same as

the reference orbit. Besides, the Jacobi constant or the energy along the trajectory in Type

’A’ direction and Type ’B’ direction at the corresponding osculating true anomaly location

may be different. An increase or decrease in energy of the trajectory does not correlate

directly to the rate of departure. The change in the momentum integral evaluated along

each of the perturbed trajectories, ones with maneuvers along the maximum stretching di-

rections given in Figures  6.11(a) ,  6.11(b) ,  6.11(c) ,  6.11(d) ,  6.11(e) and  6.11(f) for maneuver

magnitudes of 1 m/s, 2 m/s, 4 m/s, 8 m/s, 16 m/s and 100 m/s, respectively, offers a better

assessment of the orbital departures. The direction of the implemented maneuver, i.e., type

’A’ or type ’B’ directions are more crucial in identifying departing trajectories along with

the magnitude of maneuvers. Similar to identifying the time of departure for unstable orbits

as in Figure  6.9(c) , the time at which the departure conditions are satisfied are recorded for

trajectories that incorporate maneuvers delivered along the maximum stretching directions.

Figures  6.12(a) ,  6.12(b) ,  6.12(c) ,  6.12(d) ,  6.12(e) and  6.12(f) , correspond to the times of

departure, for cases with maneuver magnitudes of 1 m/s, 2 m/s, 4 m/s, 8 m/s, 16 m/s and

100 m/s, respectively. These times correspond to the first time the |∆MI| value exceeds

the 10−1 line in Figures  6.11(a) ,  6.11(b) ,  6.11(c) ,  6.11(d) ,  6.11(e) and  6.11(f) , respectively.

In Figure  6.11(a) , maneuvers of magnitude 1 m/s are delivered along type ’A’ (colored in

blue) and type ’B’ (colored in red) directions, and across different location on the NRHO

are successful in departing over the propagated duration. Certain trajectories depart as
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rapidly as 7 days after the onset of the propagation, while most of the trajectories depart

within 50 days of the initiation of propagation. Such departure times are easily assessed in

comparison to departing along unstable manifold that require at least 50 days to depart.

Type ’A’ directions are loosely aligned away from the orbit velocity directions while type ’B’

directions include significant components in the velocity direction. With an increase in the

maneuver magnitudes, the behavior of the trajectories with maneuvers along the type ’A’

and type ’B’ maneuver direction bifurcates, and are evident from Figures  6.13(a) ,  6.13(b) ,

 6.13(c) ,  6.13(d) ,  6.13(e) and  6.13(f) that describes the value of |∆MI| for a sufficiently long

propagation duration, 65.73 days (10 revs of the reference orbit) in this case. Clearly, with

an increase in the magnitude of maneuvers that are delivered along type ’A’ (colored in blue)

and type ’B’ (colored in red) directions, the behavior. For a significantly large maneuver

magnitude of 100 m/s as in Figure  6.12(f) , most trajectories along type ’A’ direction do not

depart the NRHO vicinity in the propagated time duration. By virtue of the direction of

maneuver, a loss in energy results in the trajectories getting captured in the lunar vicinity,

rather in the Earth-Moon vicinity. Trajectories propagated with a 100 m/s maneuver magni-

tude along the type ’A’ directions, at locations near the Moon, gets captured to Lunar conic

orbits as illustrated in Figure  6.14(a) . In contrast, the maneuvers along type ’B’ directions

elevates the rate of departure, and most trajectories depart within 10 days of propagation.

Especially for larger maneuver magnitudes, the stark contrast between the behavior of tra-

jectories after maneuvers are delivered in type ’A’ and type ’B’ directions, are evident as in

Figure  6.11(a) . The |∆MI| value for trajectories that leverage type ’A’ maneuver directions

offer periodic behavior and boundedness, while |∆MI| value for trajectories that leverage

type ’B’ maneuver directions increase rapidly before approaching an asymptotic behavior as

the spacecraft continuously deviates away from the Earth-Moon vicinity in spiral behavior

when observed in the rotating frame of view.

Maneuvers along velocity, normal and co-normal (VNC) directions to assist in departure

are investigated by Davis et al. [ 133 ]. Maneuvers delivered along the rotating velocity

directions of the NRHO, implemented close to the periapsis region, offers faster departure

[ 133 ]. A similar trend is observed in this investigation, where maneuvers delivered along the
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(a) |∆v̄| = 1m/s

(b) |∆v̄| = 2m/s

Figure 6.10. Trajectories deviating from the reference orbit after maneuvers
along the maximum stretching directions. Maneuver location: variable true
anomaly. Time of propagation: 10℘ (65.73 days). Reference orbit: 9:2 synodic
resonant L2 NRHO with a perilune radius of 3200 km.
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(c) |∆v̄| = 4m/s

(d) |∆v̄| = 8m/s

Figure 6.10. Trajectories deviating from the reference orbit after maneuvers
along the maximum stretching directions. Maneuver location: variable true
anomaly. Time of propagation: 10℘ (65.73 days). Reference orbit: 9:2 synodic
resonant L2 NRHO with a perilune radius of 3200 km. (continued)
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(e) |∆v̄| = 16m/s

(f) |∆v̄| = 100m/s

Figure 6.10. Trajectories deviating from the reference orbit after maneuvers
along the maximum stretching directions. Maneuver location: variable true
anomaly. Time of propagation: 10℘ (65.73 days). Reference orbit: 9:2 synodic
resonant L2 NRHO with a perilune radius of 3200 km. (continued)
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(a) |∆v̄| = 1m/s

(b) |∆v̄| = 2m/s

(c) |∆v̄| = 4m/s

Figure 6.11. Change in the momentum integral with time for trajectories de-
viating from the reference orbit after maneuvers along the maximum stretching
directions, measured at the end of the propagated segment. Maneuver loca-
tion: variable true anomaly. Reference orbit: 9:2 synodic resonant L2 NRHO
with a perilune radius of 3200 km.
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(d) |∆v̄| = 8m/s

(e) |∆v̄| = 16m/s

(f) |∆v̄| = 100m/s

Figure 6.11. Change in the momentum integral with time for trajectories de-
viating from the reference orbit after maneuvers along the maximum stretching
directions, measured at the end of the propagated segment. Maneuver loca-
tion: variable true anomaly. Reference orbit: 9:2 synodic resonant L2 NRHO
with a perilune radius of 3200 km. (continued)
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(a) |∆v̄| = 1m/s

(b) |∆v̄| = 2m/s

(c) |∆v̄| = 4m/s

Figure 6.12. Time for departure for trajectories perturbed from the reference
NRHO with maneuver of different magnitudes along the maximum stretching
directions. Maneuver location: variable true anomaly. Reference orbit: 9:2
synodic resonant L2 NRHO with a perilune radius of 3200 km.
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(d) |∆v̄| = 8m/s

(e) |∆v̄| = 16m/s

(f) |∆v̄| = 100m/s

Figure 6.12. Time for departure for trajectories perturbed from the reference
NRHO with maneuver of different magnitudes along the maximum stretching
directions. Maneuver location: variable true anomaly. Reference orbit: 9:2
synodic resonant L2 NRHO with a perilune radius of 3200 km. (continued)
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(a) |∆v̄| = 1m/s

(b) |∆v̄| = 2m/s

(c) |∆v̄| = 4m/s

Figure 6.13. Value of |∆MI| for trajectories deviating from the reference orbit
measured at the end of the propagated segment. Maneuver location: variable
true anomaly. Time of propagation: 10℘ (65.73 days). Reference orbit: 9:2
synodic resonant L2 NRHO with a perilune radius of 3200 km.
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(d) |∆v̄| = 8m/s

(e) |∆v̄| = 16m/s

(f) |∆v̄| = 100m/s

Figure 6.13. Value of |∆MI| for trajectories deviating from the reference orbit
measured at the end of the propagated segment. Maneuver location: variable
true anomaly. Time of propagation: 10℘ (65.73 days). Reference orbit: 9:2
synodic resonant L2 NRHO with a perilune radius of 3200 km. (continued)
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(a) Quasi-periodic trajectories near Moon

(b) Bounded momemtum integral

Figure 6.14. Bounded quasi-periodic motion near Moon.
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type ’B’ directions that is aligned close to the rotating velocity direction is more conducive

to rapid departure. Maximum stretching direction type ’B’ are more conducive to rapid

departure relative to type ’A’, however, for smaller maneuver magnitudes even type ’A’

directions offer departure with marginally larger time of flight.

6.2 Transfer Trajectory Design

Ability to depart an orbit serves as a preliminary step to design transfers between two

regions in space. In a nonlinear system it is challenging to determine initial states that

drives the spacecraft to the desired final location. Transfers between stable regions in space

have utilized intermediate arcs of known orbits, including resonant orbits, and also underly-

ing manifold structures of nearby unstable orbits. Although in the nonlinear regime of the

CR3BP there are numerous solutions that may offer suitable options for transfers, having

a preconceived notion of the intermediate structures to explore is nontrivial. Furthermore,

transfer options may be restricted to evolve along the underlying structures that are in-

corporated. Direct transfers that use a shooting algorithm to transfer between orbits are

also considered in the literature, however, having a suitable initial guess for the shooting

algorithm may not be intuitive, thus, the applications of direct transfers may be restricted

to orbits that are nearby in the configuration space. Besides, having only two maneuvers

along the transfer arc, i.e., a departure and an arrive maneuver may not necessarily be the

cost-effective option. Maps offer useful information by reducing the number of free variables.

In this investigation, for stable orbits, in the absence of well-defined unstable and stable

manifold structures, maneuvers are delivered along the maximum stretching directions and

the updated states are propagated until a pre-selected hyperplane crossing. Selection of

an hyperplane is application specific. For maps used in this investigation, position coordi-

nates at the hyperplane crossings are recorded. Velocity components may be incorporated

as glyphs if necessary, however not included in this work [  134 ], [  135 ]. A combination of tra-

jectory crossings and manifold crossings are also an option subject to the type of departure

and arrival orbit and their stability characteristics. It is desirable for transfer trajectory

design process to select an appropriate combination of crossings of the departure arcs and

the arrival arcs at the hyperplane, with small discontinuity in the position and the velocity
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states. An optimization scheme is introduced to generate a continuous transfer between the

departure orbit to the arrival orbit that leverages the departure and arrival arc determined

from the map. A schematic representation of the transfer trajectory optimization process is

illustrated in Fig.  6.15 . For reference, orbit colored in cyan is the departure orbit while orbit

in magenta is the arrival orbit. The intermediate departure arc and arrival arc are colored

in blue and red, respectively. In this investigation, the transfer design process employs three

impulsive maneuvers, ∆v̄dep to transition from the departure orbit to the departure arc, an

intermediate maneuver, ∆v̄int, to progress from the departure arc to the arrival arc, and

finally ∆v̄arr to transition from the arrival arc to the arrival orbit. One of the requirements

for a space mission is to minimize the propellant consumption, consequently reducing the

size of the maneuvers. An optimization scheme minimizes the cost function, J , given by

min J = |∆v̄dep| + |∆v̄int| + |∆v̄arr| (6.4)

=
√

∆v̄T
dep∆v̄dep +

√
∆v̄T

int∆v̄int +
√

∆v̄T
arr∆v̄arr (6.5)

i.e., the sum of total maneuver magnitudes, ∆v̄. Here,

∆v̄dep = v̄dep−arc(t = 0) − v̄dep−orbit(t = τ1) (6.6)

∆v̄int = v̄arr−arc(t = 0) − v̄dep−arc(t = ToFdep) (6.7)

∆v̄arr = v̄arr−orbit(t = τ2) − v̄arr−arc(t = ToFarr) (6.8)

such that ToFdep is the time of flight along the departure arc while ToFarr is the time of

flight along the arrival arc. The total time of flight for the transfer is the sum of ToFdep and

ToFarr. The initial and the final position states are constrained to remain on the departure

and arrival orbits, respectively. In the optimization process, the departure position states

and the arrival position states are free to advance along the orbit and may be different from

the initial guess. To constraint the departure and the arrival position states on the orbit,

additional τ constraint is incorporated, such that τ1 and τ2 are certain time durations from

a fixed location on the departure and arrival orbits, respectively. Locally optimal solutions

are generated that resemble the geometry predicted by the initial guess.
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Figure 6.15. Schematic for transfer trajectory optimization.

6.2.1 Transfers between L2 southern 9:2 synodic resonant NRHO to L2 north-
ern 9:2 synodic resonant NRHO

The 9:2 synodic resonant orbit in the southern and northern L2 NRHO families are a

current focus for various mission scenarios, primarily due to close passages near the polar

regions of the Moon and the relatively stable nature of the orbit. The time period, Ja-

cobi constant and the stability indices of the NRHOs of interest are listed in Table  6.1 .

Clearly, the magnitudes of the stability indices showcase their almost stable characteristics.

A transfer between the two stable orbits are leveraged using maneuvers delivered along the

maximum stretching directions. Due to very small unstable eigenvalue for the flow along

these NRHOs, the rate of departure is very low. As observed in Figure  6.9(c) , leveraging

manifold structures may take a significantly longer duration to depart. Besides, for stable

orbits, leveraging manifold structures may not even be an option. Maneuvers are delivered

along the maximum stretching direction at various locations along the orbit, measured in

terms of an osculating true anomaly [ 82 ], [  83 ]. Maneuvers of fixed magnitudes are delivered

along both sets of maximum stretching direction, type ’A’ and type ’B’, and the updated

states are propagated for a significantly long duration. These trajectories intersect with the

selected hyperplanes on multiple occasions. Each crossings at the hyperplane are recorded

to generate a comprehensive map. For the transfer between the L2 southern 9:2 synodic

resonant NRHO and the L2 northern 9:2 synodic resonant NRHO, two different hyperplanes

are considered, the xy-plane and the xz-plane. A 2-sided plane crossings are recorded, i.e.,

in the positive and the negative velocity directions. Figure  6.16(a) demonstrates the cross-
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ings of each of these trajectories propagated from various locations along the NRHO orbits

to the z = 0 hyperplane, i.e., on the xy plane. Similarly, Figure  6.16(b) demonstrates the

crossings on the y = 0 hyperplane, i.e., on the xz plane. Blue asterisks (*) correspond to

the crossings along the departure arcs that are propagated from the 9:2 synodic resonant L2

southern NRHO forwards in time, while red asterisks (*) correspond to crossings along ar-

rival arcs from the 9:2 synodic resonant L2 northern NRHO that are propagated backwards

in time. Along a forward propagated segment, the maximum stretching directions are com-

puted from the matrix ϕC,rv,v(℘, 0). In contrast, for a backwards propagated segment, the

maximum stretching directions are computed from the matrix ϕC,rv,v(0, ℘). Here, ℘ is the

time period of the 9:2 synodic resonant southern and northern L2 NRHO. Common practise

for transfer trajectory design is to transition from the departure arc to the arrival arc at the

hyperplane, an appropriate choice is to select a combination of a departure crossing and an

arrival crossing on the hyperplane with a small state change, in position and velocity. The

maps in Figure  6.16 are generated by propagating departure arc and arrival arc following

maneuver of size |∆v̄| = 1 m/s. Maps that result from other |∆v̄| values also offer conducive

transfers. Besides, the |∆v̄| value along the departure arc and the arrival arc need not be

of the same magnitude. In the case of transfers between southern and northern NRHO of

the same size, the |∆v̄| value along the departure arc and the arrival arc are considered the

same to exploit the underlying similarity and symmetry in the maps.

Table 6.1. Orbital parameters for 9:2 synodic resonant NRHO with 3200 km
perilune radius

Period [days] 6.572983112436425
Jacobi Constant 3.046884268549730

Stability Indices
-1.312122132349322
0.686856822471390

1

Combinations of departure and arrival arc crossings on the maps as in Figure  6.16 near

the Moon offer interior transfers, i.e., loosely characterized by the trajectory remaining in
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(a) xy-plane crossing map

(b) xz-plane crossing map

Figure 6.16. Two sided plane crossing maps. Blue asterisks (*) correspond
to departure arcs from southern NRHO propagated forwards in time, while
red asterisks (*) correspond to arrival arcs from northern NRHO propagated
backwards in time. Map for |∆v̄| = 1 m/s.

the proximity of the region of interest [  136 ]. Of course several combinations of departure and

arrival arcs are possible. These combination offer reliable initial guess for transfer trajectory

design. The combination of departure and arrival crossings on the maps may not be contin-

uous in position and velocity. An optimization scheme, as illustrated previously, is adopted

to generate a continuous transfer with three maneuvers, ∆v̄dep, ∆v̄int and ∆v̄arr. Figures

 6.17 and  6.18 are examples of locally optimal interior transfer that have similar geometry
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in the configuration space but have marginally different time of flight. A different geometry

of transfer that exploits motion along the L1 axial orbit is obtained in Figure  6.19 . Figure

 6.20 offers another geometry of transfer that has multiple loops in the L1 and L2 side of the

Moon. The initial guess for each of the locally optimal interior transfers in Figures  6.17 ,

 6.18 ,  6.19 and  6.20 are identified from the map in Figure  6.16(a) that is generated based

of departure and arrival maneuver magnitude of 1 m/s. Of course, the optimal maneuvers,

|∆v̄dep| and |∆v̄arr|, may not be precisely the same as the initial guess, i.e., 1 m/s. For cases

with small position and velocity discontinuity on the hyperplane crossing maps yield locally

optimal solutions that are relatively closer to the initial guess, in contrast to cases where the

departure and arrival crossings on the map that have larger discontinuity. The maneuver

costs as well as the time of flight for each of the transfers in Figures  6.17 ,  6.18 ,  6.19 and  6.20 

are detailed in Table  6.2 . The osculating true anomaly locations along the departure and

arrival orbits for the locally optimal transfers are also listed in Table  6.2 .

Figure 6.17. Isometric view of an optimal transfer between L2 southern 9:2
synodic resonant NRHO to L2 northern 9:2 synodic resonant NRHO. View for
Case 1 transfer.
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Figure 6.18. Isometric view of an optimal transfer between L2 southern 9:2
synodic resonant NRHO to L2 northern 9:2 synodic resonant NRHO. View for
Case 2 transfer.

Trajectories that leave the proximity of the region of interests are loosely characterized

as exterior transfer [  136 ]. Hyperplane crossing maps similar to Figure  6.16 are generated for

departure and arrival maneuver magnitude of 20 m/s aligned in the maximum stretching

directions, type ’A’ and type ’B’. Of course, maps of other maneuver magnitudes may also

offer transfer trajectory options. The primary motive of this investigation is to demonstrate

maximum stretching direction as a tool to assist in transfer trajectory design rather than

to determine the most cost-efficient transfer. On the y = 0 hyperplane map, i.e., xz plane

crossing map, a combination of departure and arrival arc crossings towards the negative

x-direction are selected, one that has relatively low position and velocity discontinuity. The

selected combination of departure and arrival arc crossing offers an initial guess that is opti-

mized, to reduce maneuver costs and determine a trajectory continuous in position. Figure

 6.21 is a locally optimal transfer between the 9:2 synodic resonant southern L2 NRHO to

the 9:2 synodic resonant northern L2 NRHO that leverages an exterior type transfer as
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Figure 6.19. Isometric view of an optimal transfer between L2 southern 9:2
synodic resonant NRHO to L2 northern 9:2 synodic resonant NRHO. View for
Case 3 transfer.

explained. The transfer has a single loop geometry around the Earth-Moon system. An-

other combination of departure and arrival arc crossings towards the positive x-direction

are selected on the y = 0 hyperplane map, i.e., xz plane crossing map, with a relatively

low position and velocity discontinuity. The initial guess is optimized to deliver a locally

optimal transfer trajectory as in Figure  6.22 . The optimal trajectory double loop geometry

around the Earth-Moon system in contrast to single loop geometry for optimal transfer in

Figure  6.21 . Not surprisingly, the time of flight for transfer shown in in Figure  6.22 is longer,

however, the overall maneuver costs for both the exterior type transfers demonstrated here

are comparable. The details of the maneuver costs, time of flight and the osculating true

anomaly of the departure and arrival locations on the corresponding orbits are listed in Table

 6.2 . The exterior type transfers demonstrated here are generated from 20 m/s maneuvers

delivered along the maximum stretching directions, therefore, trajectories depart or arrive

the vicinity of the NRHOs more rapidly, and likely to offer shorter time of flight transfer
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Figure 6.20. Isometric view of an optimal transfer between L2 southern 9:2
synodic resonant NRHO to L2 northern 9:2 synodic resonant NRHO. View for
Case 4 transfer.

options. The time of flight and the maneuver costs associated with the transfers are influ-

enced heavily by the combinations selected on the hyperplane crossing maps rather than the

initial guess of the departure and arrival maneuver magnitudes alone. Since the 9:2 synodic

resonant southern and northern NRHO have the same energy, in theory a ballistic transfer

may exist.

An infinitely many transfer trajectory design options are possible, both interior type and

exterior type. Different combinations of departure and arrival arc crossings on different hy-

perplanes offer different solutions. In addition, various magnitudes for departure and arrival

maneuvers alter the hyperplane crossing maps thus yielding alternate solutions. The exam-

ples in this investigation demonstrate the capability of leveraging the maximum stretching

directions for transfer trajectory design to transition between relatively stable orbits. Some

of the transfer geometries are consistent with low-thrust transfers available in the literature,

along with some that leverage resonant structures [ 71 ], [ 72 ], [ 75 ], [ 136 ].
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Figure 6.21. Isometric view of an optimal transfer between L2 southern 9:2
synodic resonant NRHO to L2 northern 9:2 synodic resonant NRHO. View for
Case 5 transfer.

Figure 6.22. Isometric view of an optimal transfer between L2 southern 9:2
synodic resonant NRHO to L2 northern 9:2 synodic resonant NRHO. View for
Case 6 transfer.
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Table 6.2. Optimal transfers between 9:2 synodic resonant southern L2
NRHO to 9:2 synodic resonant northern L2 NRHO.

Parameter
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Figure Figure Figure Figure Figure Figure

 6.17  6.18  6.19  6.20  6.21  6.22 

|∆v̄dep| [m/s] 3.59 2.05 0.88 10.12 27.32 112.34
|∆v̄int| [m/s] 0.00 0.00 0.00 0.00 188.55 0.00
|∆v̄arr| [m/s] 3.59 2.27 0.88 10.04 27.39 112.36

|∆v̄T otal| [m/s] 7.18 4.33 1.76 20.17 243.25 224.70
ToFdep [days] 50.08 54.95 61.10 62.35 36.99 58.44
ToFarr [days] 50.08 54.68 61.07 62.19 36.99 58.43
ToFT otal [days] 100.16 109.62 122.17 124.54 73.98 116.87
TAdep [deg] 175.52 154.68 164.57 148.27 67.13 193.02
TAarr [deg] 174.84 201.88 195.39 207.49 292.59 166.97

Initial conditions subsec. subsec. subsec. subsec. subsec. subsec.
 B.1.1  B.1.2  B.1.3  B.1.4  B.1.5  B.1.6 

6.2.2 Transfers between L2 southern 9:2 synodic resonant NRHO to Distant
Retrograde Orbit (DRO)

The Lunar Distant Retrograde Orbits are also a choice for upcoming missions, primarily

due to their proximity to the Moon and stable nature of the orbits. The family of the

distant retrograde orbits in the Earth-Moon system and their corresponding stability indices

are presented in Figure  6.23 . Clearly they present a range of orbits that are stable or

nearly stable. Here, a transfer between the two stable orbits, the 9:2 synodic resonant

southern L2 NRHO and the 70,000 km Lunar DRO, are leveraged using initial guesses from

maneuvers delivered along the maximum stretching directions. The DRO of interest has

a periapsis distance of 70,000 km from the Moon, measured along the x-axis towards the

Earth. The time period, Jacobi constant and the stability indices of the NRHOs of interest

are listed in Table  6.3 . Clearly, the magnitudes of the stability indices indicate that the

orbits are stable in nature, therefore, no unstable manifold structures exist. Similar to the

southern NRHO to northern NRHO transfers, a map is generated with maneuvers that are
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delivered along the maximum stretching directions at various locations along the orbit. The

maximum stretching directions along the 70,000 km DRO is demonstrated in Figure  6.24 

along a forwards propagated segment and a backwards propagated segment, both for one

time period. Along a forwards propagated segment, the maximum stretching directions

are computed from the matrix ϕC,rv,v(℘, 0) and displayed in Figure  6.24(a) , while for a

backwards propagated segment, the maximum stretching directions are computed from the

matrix ϕC,rv,v(0, ℘) as in Figure  6.24(b) . The quantity ℘ is the time period of the DRO. For

the DRO, due to relatively consistent angular rate of rotation along the orbit measured with

respect to the Moon, Mean Anomaly serves as a simple metric to determine the spacecraft

location along the orbit. Maneuvers of fixed magnitudes are delivered along both the sets of

maximum stretching direction, type ’A’ and type ’B’, for both the NRHO and the DRO, and

the updated states are propagated for a significantly long duration. The DRO being planar,

all the states lie in the xy plane. A z = 0 hyperplane, i.e., the xy plane is incorporated

with all trajectories emerging from the DRO propagated backwards in time, and all the xy

plane crossings for the trajectories emerging from the NRHO propagated forwards in time.

A semi-automatic scheme determines a departure arc and an arrival arc at the hyperplane

crossing. Within a region of interest on the hyperplane crossing map, the algorithm solves

for the value of

J =

∣∣∣∣∣∣∣∣
 α∆r̄

(1 − α)∆v̄


∣∣∣∣∣∣∣∣

for each combinations of departure and arrival states on the hyperplane. A combination

that minimizes the value of J is preferred. Here, ∆r̄ and ∆v̄ are the position and velocity

discontinuities between the departure arc and the arrival arc at the hyperplane crossing,

while α is a scaling factor to selectively control the position and velocity discontinuity. For

crossings that are further away from the primary bodies, the optimization algorithm com-

pensates for a relatively larger position error hence a relatively smaller α ∈ [0.5, 0.9] is used.

For crossings that are closer to the primary bodies, a smaller position discontinuity is es-

sential for the optimization algorithm, hence a value of α ≥ 0.9 is favorable. Multiple maps

are generated by propagating departure arcs and arrival arcs following maneuvers of various

|∆v̄| sizes; an example is provided in Figure  6.25 . Different combinations of the departure
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and the arrival crossings on the maps offer different transfer geometries, some examples are

illustrated in this investigation. For the transfer between the 3200 km L2 NRHO and the

70,000 km DRO, each possessing a different energy level, a ballistic transfer does not exist.

A theoretical minimum |∆v̄| is required to raise the energy level from the NRHO to meet

the energy level for the DRO. The value of theoretical minimum |∆v̄| offers an estimate of

the minimum maneuver magnitude that must be delivered at various locations along the

departing NRHO to meet the energy level for the arriving DRO [  75 ]. For a transfer between

the 9:2 synodic resonant L2 NRHO to the planar 70,000 km DRO, the theoretical minimum

|∆v̄| value along the departing NRHO is illustrated in Figure  6.26 . A larger maneuver mag-

nitude is required closer to the apoapsis along the NRHO to meet the energy for the DRO

in contrast to departing closer to the periapsis.

Table 6.3. Orbital parameters for 70,000 km DRO

Period [days] 13.934122483289999
Jacobi Constant 2.928898812886901

Stability Indices
-0.716865210258674
0.106755614801400

1

Certain combinations of the departure and arrival arc crossings on the hyperplane that

are near the Moon, as in Figure  6.25 , offer interior type transfers. There are infinitely many

combinations of departure and arrival arcs that are possible. A selected combination offers

reliable initial guess for transfer trajectory design between the NRHO and the DRO. An

optimization scheme generates a continuous transfer with three maneuvers, ∆v̄dep, ∆v̄int and

∆v̄arr. Figures  6.27 ,  6.28 and  6.29 are examples of locally optimal interior transfer where

the spacecraft remains in the Lunar vicinity. The initial guess corresponding to Figure  6.27 

is extracted from a map generated by propagating trajectories from the NRHO with a ma-

neuver of magnitude 1 m/s along the maximum stretching directions, similarly trajectories

are propagated backwards in time from the DRO along the maximum stretching direction
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(a) Orbits in configuration space

(b) Stability Index

Figure 6.23. Distant Retrograde Orbits in the Earth-Moon system.

with a maneuver of 1 m/s. Figure  6.28 is an outcome of map corresponding to maneuvers

of magnitude 5 m/s and 20 m/s delivered on the NRHO and the DRO, respectively. Finally

a map with a maneuver magnitude of 20 m/s delivered on both the NRHO and the DRO,

yields a geometry that resembles Figure  6.29 . As stated previously, the optimal maneuvers,

|∆v̄dep| and |∆v̄arr|, may not precisely be the same as the initial guesses, nor precisely aligned

along the maximum stretching directions. The maneuver costs as well as the time of flight

for each of the transfers in Figures  6.27 ,  6.28 and  6.29 are listed in Table  6.4 . The osculating
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(a) ϕC,rv,v(℘, 0) (b) ϕC,rv,v(0, ℘)

Figure 6.24. Maximum stretching direction along the 70,000 km DRO prop-
agated forwards and backwards in time.

true anomaly locations along the departure NRHO and the mean anomaly location on the

arrival DRO for the locally optimal transfers are also listed. For the transfers between two

NRHOs that are alike in the energy, in theory a |∆v̄| = 0 transfer exists, however, for the

transfer between the 3200 km L2 NRHO and the 70,000 km DRO that have different energy

levels, a |∆v̄| = 0 transfer does not exist. A theoretical minimum |∆v̄| is calculated, such

that |∆v̄| = 35.48 m/s must be delivered at the periapsis of the NRHO or |∆v̄| = 261.86

m/s at the apoapsis of the NRHO to meet the energy of the DRO [ 75 ].

Intersections of the departure and arrival arcs on the hyperplane further away from the

Moon offer exterior transfers. Hyperplane crossing maps similar to Figure  6.25 are generated

for departure and arrival maneuver magnitude of 20 m/s and 40 m/s along the NRHO and

the DRO, respectively. The maneuvers are delivered in the maximum stretching directions,

type ’A’ and type ’B’. Two different combinations of departure and arrival crossings on the

map yield transfer geometries as observed in Figures  6.30 and  6.32 . In contrast, an optimal
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Figure 6.25. Two sided plane crossing maps. Blue dots (.) correspond to
departure arc crossings from southern NRHO propagated forwards in time
with |∆v̄| = 5 m/s, while red dots (.) correspond to arrival arcs from DRO
propagated backwards in time with |∆v̄| = 20 m/s.

Figure 6.26. Theoretical minimum maneuver magnitude required along dif-
ferent locations on the 9:2 synodic resonant NRHO to meet the energy of the
70,000 km DRO.
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Figure 6.27. Interior type locally optimal transfer between L2 southern 9:2
synodic resonant NRHO to 70,000 km DRO (Case 1).

Figure 6.28. Interior type locally optimal transfer between L2 southern 9:2
synodic resonant NRHO to 70,000 km DRO (Case 2).

exterior type geometry in Figure  6.31 is extracted from an initial guess on the map gener-

ated by maneuvers of magnitude 20 m/s to depart the NRHO and arrive on the DRO. Maps

generated by other maneuver magnitudes may offer other transfer trajectory options. Figure

 6.30 illustrates spacecraft motion near the Earth vicinity while Figures  6.31 and  6.32 show

trajectories that leave further away from the Earth-Moon vicinity. The maneuver costs, time
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Figure 6.29. Interior type locally optimal transfer between L2 southern 9:2
synodic resonant NRHO to 70,000 km DRO (Case 3).

of flight and the locations on the orbit for departure and arrival are listed in Table  6.4 . Note

that the NRHO orbit and the DRO orbit have different energy levels, a as a result |∆v̄| = 0

transfer is not possible in the CR3BP. As noted previously, a theoretical minimum |∆v̄| is

required to match the energy levels.

Figure 6.30. Exterior type locally optimal transfer between L2 southern 9:2
synodic resonant NRHO to 70,000 km DRO (Case 4).
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Figure 6.31. Exterior type locally optimal transfer between L2 southern 9:2
synodic resonant NRHO to 70,000 km DRO (Case 5).

Figure 6.32. Exterior type locally optimal transfer between L2 southern 9:2
synodic resonant NRHO to 70,000 km DRO (Case 6).

Various transfer methodologies have been explored for transfers between the NRHO and

the DRO in the literature, including low thrust trajectories, intermediate resonant structures

and other known orbits [  71 ]–[ 73 ], [  75 ]–[ 77 ]. The examples in this investigation demonstrate

the capability of leveraging maximum stretching directions for transfer trajectory design

process to transition between a 3-dimensional NRHO to a planar DRO, without any prior
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Table 6.4. Optimal transfers between 9:2 synodic resonant southern L2
NRHO to 7000O km DRO.

Parameter
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Figure Figure Figure Figure Figure Figure

 6.27  6.28  6.29  6.30  6.31  6.32 

|∆v̄dep| [m/s] 4.03 3.81 15.06 12.41 4.41 18.62
|∆v̄int| [m/s] 355.51 306.24 172.71 81.38 120.30 296.08
|∆v̄arr| [m/s] 12.69 18.77 148.19 106.35 18.16 36.72

|∆v̄T otal| [m/s] 372.23 328.81 335.97 200.14 142.88 351.41
ToFdep [days] 44.42 50.29 28.28 63.15 54.36 36.51
ToFarr [days] 6.96 64.49 49.69 78.81 111.52 130.65
ToFT otal [days] 51.39 114.79 77.97 141.96 165.88 167.15
TAdep [deg] 37.75 7.85 255.08 129.27 339.64 354.57
MAarr [deg] 330.09 165.35 302.78 295.29 137.79 356.64

Initial conditions subsec. subsec. subsec. subsec. subsec. subsec.
 B.2.1  B.2.2  B.2.3  B.2.4  B.2.5  B.2.6 

knowledge of existing intermediate structures. Some of the transfer geometries, time of flight

and maneuver costs are consistent with the literature.

6.2.3 Transfers between L2 southern 9:2 synodic resonant NRHO to planar Low
Lunar Orbit (LLO)

The Low Lunar Orbits (LLO) are another choice of orbits for upcoming missions due to

close access to Lunar surface. These Low Lunar Orbits typically resemble a 2-body orbit

that are in form of conic solutions, one that are stable in nature. Here, transfers between the

two stable orbits, the 9:2 synodic resonant southern L2 NRHO and a 3000 km planar LLO,

are leveraged using initial guesses from maneuvers that are delivered along the maximum

stretching directions. The locations on the almost circular LLO is measured in terms of

Mean Anomaly (MA) where MA = 0o is along the negative x-axis direction from the Moon

consistent with the approach used for the DRO. The planar LLO in focus, is almost circular

with a distance of 3000 km from the Moon, measured along the x-axis towards the Earth.

The time period, Jacobi constant and the stability indices of the NRHOs of interest are listed
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in Table  6.5 . The magnitudes of the stability indices indicate that the orbits are stable in

nature, therefore, distinct stable and unstable manifold structures do not exist. Maneuvers

are leveraged along the maximum stretching directions to arrive on the LLOs instead.

Table 6.5. Orbital parameters for 3000 km planar LLO

Period [hours] 4.121428550494591
Jacobi Constant 4.533189223937852

Stability Indices
0.999233547406442
0.999218868898944

1

The maximum stretching directions along the 3000 km planar LLO offer insight for orbit

insertion. The maximum stretching directions, as demonstrated in Figure  6.33 , are computed

along a forwards propagated orbit and a backwards propagated orbit, with the monodromy

matrix. Along a forwards propagated orbit, the maximum stretching directions are computed

from the matrix ϕC,rv,v(℘, 0) and displayed in Figure  6.33(a) , while for a backwards propa-

gated orbit, the maximum stretching directions are computed from the matrix ϕC,rv,v(0, ℘)

as in Figure  6.33(b) . The quantity ℘ is the time period of the LLO. The maximum stretching

directions along the LLO are aligned nearly parallel or anti-parallel to the orbital velocity

directions. For orbits or regions along an orbit that have dominant accelerations from a

single gravitational body, the maximum stretching directions are observed to align close to

the velocity directions.

Consistent with the approach used in this investigation, a map is generated with maneu-

vers that are delivered along the maximum stretching directions at various locations along

the orbit. Maneuvers of fixed magnitudes are delivered along both sets of maximum stretch-

ing direction, type ’A’ and type ’B’, for both the NRHO and the LLO, and the updated

states are propagated for a significantly long duration. The LLO being planar, all the states

lie in the xy plane. A z = 0 hyperplane, i.e., the xy plane is considered with all trajectories

emerging from the LLO propagated backwards in time, and all the xy plane crossings for the
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(a) ϕC,rv,v(℘, 0) (b) ϕC,rv,v(0, ℘)

Figure 6.33. Maximum stretching direction along 3000 km planar LLO prop-
agated forwards and backwards in time.

trajectories emerging from the NRHO propagated forwards in time. As discussed previously,

semi-automatic scheme determines the combination of a departure arc and an arrival arc at

the hyperplane crossing. Multiple maps are generated by propagating departure arcs and

arrival arcs following maneuvers of various |∆v̄| sizes, an example is provided in Figure  6.34 .

Different maps offer different transfer geometries. The transfer geometries illustrated in this

investigation are a result of various initial conditions.

Similar to the transfers between the NRHO and the DRO, in theory a ballistic transfer

is not possible for transfers between the NRHO and the LLO that possess distinct energy

levels. To transfer between the 9:2 synodic resonant L2 NRHO to the 3000 km planar LLO,

a theoretical minimum |∆v̄| value, as illustrated in Figure  6.35 , must be delivered along

various locations on the departing NRHO to meet the energy level for the arriving LLO. A

larger maneuver magnitude is required closer to the apoapsis along the NRHO to meet the

energy level for the LLO. In contrast, departing closer to the periapsis requires a relatively

smaller value of minimum |∆v̄|.
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Figure 6.34. Two sided plane crossing maps. Blue dots (.) correspond to
departure arc crossings from southern NRHO propagated forwards in time
with |∆v̄| = 5 m/s, while red dots (.) correspond to arrival arcs from LLO
propagated backwards in time with |∆v̄| = 600 m/s.

Figure 6.35. Theoretical minimum maneuver magnitude required along dif-
ferent locations on the 9:2 synodic resonant NRHO to meet the energy of
different planar LLOs.
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Interior and exterior type transfers are possible for transfers between an NRHO and a

planar LLO. Figures  6.36(a) and  6.36(b) are locally optimal interior transfers from the 9:2

synodic resonant L2 NRHO to the 3000 km planar LLO. Figure  6.36(a) is based on an initial

guess from a map generated by propagating trajectories from the NRHO with a maneuver of

magnitude 5 m/s along the maximum stretching directions, similarly trajectories are prop-

agated backwards in time from the LLO along the maximum stretching direction with a

maneuver of 600 m/s. Figure  6.36(b) is an outcome of map corresponding to maneuvers of

magnitude 20 m/s and 500 m/s delivered on the NRHO and the LLO, respectively. Locally

optimal exterior transfers are illustrated in Figsures  6.37(a) and  6.37(b) that are constructed

from initial guesses on the map generated by maneuvers of magnitude 5 m/s to depart the

NRHO and 600 m/s to arrive on the planar LLO. Of course maps generated by other ma-

neuver magnitudes may offer other transfer trajectory options. The maneuver costs, time of

flight and the locations on the orbit for departure and arrival are listed in Table  6.6 for both

interior and exterior type transfers. Furthermore, the 3200 km L2 NRHO and the 3000 km

planar LLO have different energy levels therefore a |∆v̄| = 0 transfer does not exist in the

CR3BP. A theoretical minimum |∆v̄| magnitude is required along the NRHO to meet the

energy of the LLO.

Transfers between the NRHO and the LLO are offered in the literature, including those

that are direct transfers [  78 ]–[ 80 ]. Transfer costs depend significantly on the inclination of

the LLO orbit under consideration. Transfer from an NRHO to a planar LLO may incur

larger maneuver costs due to large change in orbit planes. Transfers that leverage maximum

stretching directions to identify suitable initial guess are offered in this investigation. A

broader range of geometries are explored and locally optimal transfers are generated.
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(a) Case 1

(b) Case 2

Figure 6.36. Interior type locally optimal transfer between L2 southern 9:2
synodic resonant NRHO to 3000 km planar LLO.
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(a) Case 3

(b) Case 4

Figure 6.37. Exterior type locally optimal transfer between L2 southern 9:2
synodic resonant NRHO to 3000 km planar LLO.
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Table 6.6. Optimal transfers between 9:2 synodic resonant southern L2
NRHO to 300O km planar LLO.

Parameter Case 1 Case 2 Case 3 Case 4
Figure  6.36(a) Figure  6.36(b) Figure  6.37(a) Figure  6.37(b) 

|∆v̄dep| [m/s] 17.60 5.97 3.85 19.27
|∆v̄int| [m/s] 230.46 332.37 319.06 280.69
|∆v̄arr| [m/s] 492.26 481.73 470.43 500.94

|∆v̄T otal| [m/s] 740.32 820.06 793.34 800.89
ToFdep [days] 36.31 29.69 55.08 59.46
ToFarr [days] 3.27 1.67 61.32 10.60
ToFT otal [days] 39.58 31.36 116.40 70.06
TAdep [deg] 154.15 198.60 359.60 136.99
MAarr [deg] 45.12 273.83 153.04 149.10

Initial conditions subsec.  B.3.1 subsec.  B.3.2 subsec.  B.3.3 subsec.  B.3.4 
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7. CONCLUDING REMARKS

Cislunar missions continue to generate a growing interest for various mission scenarios. In-

vestigation of the Moon and nearby regions offer enormous potential for scientific discoveries.

Stable or nearly stable orbits in regions near the Lunar vicinity are suitable for long terms

presence, include those with humans on-board. The orbits of interest, that are stable or

nearly stable, reduce the possibility of rapid departure. The stable nature of these orbits

also presents a challenge for stationkeeping and, for insertion or departure from the orbit.

Stationkeeping and transfer design strategies that leverage stable and unstable manifold

structures are not effective for orbits that are stable or nearly stable. An alternate strat-

egy that leverages the stretching directions are explored for two contrasting applications.

Maneuvers are delivered away from the most stretching directions to remain bounded near

the reference orbit, and, thus, suitable for successful stationkeeping. A contrasting applica-

tion for departure and transfer trajectory design leverages maneuvers in the most stretching

direction to deliberately deviate from the vicinity of the reference orbit, and to eventually

arrive on some destination orbit.

7.1 Principal Stretching Directions

The stable and unstable manifold structures have been exploited for various applications

in the literature. Stationkeeping strategies that are based on manifold theory such as the

Floquet mode approach decomposes any perturbations along different unstable, stable and

oscillatory modes, and maneuvers are generated that overcome any component of pertur-

bations along the unstable directions. Similarly, unstable and stable manifolds are used for

departing and arriving on the orbits and thus suitable for transfer trajectory design. The

lack of well-distinguished stable and unstable manifold structures in the vicinity of a stable

or nearly stable orbits requires an alternate strategy to visualize the dynamical flow near a

reference orbit. The Cauchy-Green tensor, a function of the State Transition Matrix (STM),

offers mutually orthogonal principal stretching directions to visualize the effects of any per-

turbation downstream, in a linear sense. Principal stretching directions that are based on

different submatrices of the state transition matrix yield relevant information for the specific
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applications. For the stationkeeping application, where reduction of the propellant costs

(minimizing ∆v̄) is a priority, the submatrix of the STM that linearly maps the effect of

the initial velocity state change to the velocity state change at final time, is an appropriate

choice. For the departure and transfer trajectory design application, the submatrix of the

STM that linearly maps the effect of the initial velocity state on the state change in both

position and velocity, simultaneously, at final time is suitable for computing the stretching

directions. A different application may leverage different submatrices of the STM, but the

procedure remains consistent.

7.2 Stationkeeping Applications

An impulsive stationkeeping technique using x-axis crossing control is evaluated from the

context of the dynamical foundations and structures that enable the strategy to generally

succeed. The algorithm is analyzed for low perilune radius Near Rectilinear Halo Orbits

(NRHOs) in the L1 and L2 families, that offer candidate solutions for various cislunar mis-

sions including the Gateway mission. The linear dynamical flow between two successive ma-

neuver locations along a ballistic arc is visualized using the principal stretching directions.

A systematic and straightforward approach is demonstrated that describes the interaction

between the flow evolving from one maneuver location to the next during coast segments and

the flow evolution from the maneuver location to the target, to identify likely combinations

of maneuver and target locations. The cost of stationkeeping operations as well as bounded-

ness of spacecraft near the virtual reference trajectory using the conventional x-axis crossing

control approach is correlated to the mutual interactions between the maneuver direction

and the most stretching direction. The understanding of the linear dynamical flow in the

circular restricted three-body problem, near the corresponding reference orbit, offers insight

into the performance of the x-axis crossing control stationkeeping strategy. In general, it is

an effective strategy to deliver maneuvers that are away from the stretching directions.

The x-axis crossing control approach is demonstrated using the framework of the stretch-

ing directions for the orbits in the L1 and L2 NRHO families. For the L2 NRHOs with sta-

tionkeeping maneuvers only implemented at the apoapsis location, the maneuvers generated
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by targeting the rotating ẋ value at the xz plane crossing 1.5 rev downstream yield maneu-

vers that are significantly aligned with the most stretching direction, causing the spacecraft

to deviate away from the virtual reference trajectory over time. In contrast, the maneu-

ver generated by targeting the xz plane crossing 6.5 rev downstream is almost aligned in

the restoring directions resulting in efficient maneuver characteristics and lower orbit main-

tenance costs. Unlike the L2 NRHOs, a maneuver implemented at the apoapsis does not

necessarily produce effective stationkeeping maneuvers for the L1 NRHOs, due to multiple

stretching subspaces for the flow between two successive maneuver locations. Nevertheless,

several combinations of maneuver locations that are placed symmetric and asymmetric rela-

tive to the apoapsis location along the orbit, and with one or more maneuvers per revolution

are explored for stationkeeping. The performance of the impulsive stationkeeping algorithm

are evaluated for maneuvers constrained along certain directions, such as x̂, ŷ, or ẑ directions,

and the vehicle local coordinate axes in the velocity V̂ , normal N̂ , or co-normal Ĉ directions.

The low stationkeeping costs generated by the x-axis control approach is a result of a

loose requirement for boundedness around a virtual reference solution, and appropriate in

various mission scenarios. The absence of an active phase control, however, causes the ac-

tual trajectory to shift in phase from the virtual reference solution. When a tight phase

control is required to satisfy mission constraints such as eclipse avoidance, a feedback phase

constraint is introduced along with targeting the rotating ẋ value to compute a maneuver.

Such a strategy maintains tight phasing between the actual and the virtual reference over

long duration.

The halo orbits that fall in the transition region are sensitive to epoch dates, hence,

the conventional x-axis control algorithm that target only the rotating ẋ quantity at a spe-

cific xz plane crossing is not effective. By incorporating an additional active phase-control

constraint, effective stationkeeping maneuvers are delivered. For the transition halo orbits,

the annual cost and boundedness of the spacecraft near the virtual baseline trajectory is

observed to be dependent on the underlying natural trajectory.

259



7.3 Departure and Transfer Trajectory Design

The current focus is on the Gateway mission, that potentially hosts human on-board,

and expected to remain along an almost stable 9:2 synodic resonant orbit in the southern

L2 NRHO family. An approach suitable to transfer from the baseline NRHO to various

locations relatively quickly, as well as, avoiding collisions with any discarded modules is of

relevance. In this investigation, maximum stretching directions are leveraged to facilitate

departure from the NRHO.

Discarded modules pose a collision threat to the ongoing mission. An accepted approach

is to dispose the module to a heliocentric space. An orbit departure serves as a preliminary

step to the disposal problem. Impulsive maneuvers along velocity, normal and co-normal

directions (VNC) have been offered in the literature. In this investigation, maneuver along

the maximum stretching directions are explored as an alternate strategy. Maneuvers along

maximum stretching directions offer rapid departure, also rapid capture, and immensely

useful for orbits that lack unstable manifold structures.

Maximum stretching direction is also leveraged for transfer trajectory design. Along a

forward propagated arc, the maximum stretching direction offers the maneuver that delivers

the maximum magnitude of state change at final time and therefore explored for departure.

Similarly, the maximum stretching direction along a backward propagated arc, offers the

region of maximum access to arrive on the orbit of interest with the smallest maneuver, in

a linear sense. The crossings of such forwards and backwards propagated trajectories are

recorded over some predetermined hyperplanes. Such hyperplane crossing maps offer initial

guess for transfer trajectory generation. A locally optimal trajectory yields a geometry sim-

ilar to the initial guess determined from the maps that leverages departure and arrival along

the maximum stretching directions, however, once optimized, maneuvers may not precisely

align with the maximum stretching direction. Three different transfer scenarios are explored

in this investigation; a 3-dimensional southern NRHO to a 3-dimensional northern NRHO,

a 3-dimensional NRHO to a planar DRO, as well as a 3-dimensional NRHO to a planar
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LLO transfer. The application is not restricted to any specific mission or any specific epoch

date, therefore, this investigation does not focus on determining the most efficient case in

the ephemeris model. Rather, to demonstrate the utility of maximum stretching directions

for transfer trajectory design. It is known from the literature that certain epoch dates may

be conducive to cheaper transfers while some may be more expensive relative to the costs

estimated in the CR3BP model. Nevertheless, the CR3BP solution serves as an effective

initial guess for the higher-fidelity model. Moreover, the optimal solution in the high-fidelity

model generally resembles the architecture of the CR3BP estimate.

7.4 Recommendations for Future Work

The continued interests in cislunar missions keep orbit maintenance strategies and trans-

fer trajectory design popular topics for research. Different approaches offer different qual-

itative information and have their own advantages. The strategies keep evolving as en-

hancements are made. Some of the opportunities to advance the stationkeeping and transfer

trajectory design strategies that leverage stretching directions are as listed:

1. Variable Target Horizon

Only a few combinations of coast duration, maneuver locations and target horizon

along an L1 NRHO yield maneuver (or maneuvers) away from the most stretching

direction. As a consequence, long term stationkeeping is challenging for L1 NRHOs

with the current methodology. In the current investigation, maps are generated for

the angle between the maneuver and the most stretching direction for a fixed target

horizon, and combination of maneuvers are selected on the same map. In such cases,

not all the maneuvers are away from the most stretching direction. Nevertheless,

for cases where more than one maneuver are placed along an orbit, each maneuver

may be generated from a different target, one that is away from the most stretching

direction. Of course, the process is more computationally challenging as a combination

of maneuver locations are selected from multiple maps at variable target horizons. As

a hypothetical example, consider two maneuvers at 150o and 200o osculating true
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anomaly, such that maneuver at 150o osculating true anomaly targets the i-th xz

plane crossing to deliver a maneuver away from the most stretching direction while the

maneuver at 200o osculating true anomaly targets the j-th xz plane crossing to deliver

a maneuver away from the most stretching direction.

2. Stretching directions for stationkeeping on unstable orbits

The x-axis crossing control approach is evaluated from the context of stretching direc-

tions along the stable or nearly stable NRHOs. The strategy with certain modifications

may be applicable for the unstable halo orbits as well. Due to unstable nature of the

orbits, targeting certain conditions several revolutions downstream may not be pos-

sible. A shorter target horizon may be required. Furthermore, the unstable halo

orbits are notably far from the Moon, hence, the dynamics near the periapsis and the

apoapsis are not significantly different unlike the NRHOs that have very close passage

near the Moon. Consequently, target conditions near the apoapsis as well as placing

maneuver locations near the periapsis are also a choice, unlike for the NRHOs where

maneuver locations are close to the apoapsis and target is near the periapsis. Station-

keeping techniques that rely on manifolds structures also offer insight for the unstable

halo orbits. A comparison can be made between the characteristics of the maneuvers

(magnitude and direction) that leverages the stretching directions is contrast to the

maneuvers that leverages the unstable and stable manifold structures.

3. Transfers between stable and unstable orbits

Unstable orbits have well-distinguished unstable and stable manifold structures that

enable departure and arrival on the orbits. Such structures are exploited for transfers

involving the unstable orbits. It is explored in this investigation that leveraging the

stretching directions are promising for transfer trajectory design for the stable orbits.

This investigation illustrates transfers between two stable orbits, 3-dimensional orbit

to planar orbits as well as 3-dimensional orbit to another 3-dimensional orbit. The

procedure can be extended for transfers involving an unstable orbit and a stable orbit.

For example, a transfer between a stable orbit to an unstable orbit can be constructed

from a hyperplane crossing map; one that is generated by recording all crossings of tra-
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jectories emerging from the stable orbit after maneuvers are delivered along the most

stretching directions and propagated forwards in time, and, recordings of all crossings

of stable manifolds originating from the unstable orbit propagated in reverse time.

Conversely, a transfer between an unstable orbit to a stable orbit can be leveraged

from hyperplane crossing maps that is generated from intersections of unstable mani-

folds (emerging from the unstable orbit propagated forwards in time) and trajectories

originating from the stable orbits once maneuvers are delivered along the stretching di-

rections (propagated backwards in time). Transfer between stable NRHOs to unstable

halo orbits, between stable NRHOs and unstable Lyapunov orbits, between unstable

halo to stable DROs, etc., can be achieved using such a procedure.

4. Low-Thrust Trajectory Design

The transfers illustrated in this investigation are based on impulsive maneuvers. Only

certain spacecrafts types with chemical engines are able to deliver such a manuever

that is effectively close to impulsive. Many missions planned for the cislunar neigh-

borhood include low-thrust engines. To broaden the transfer design applications, a

low-thrust dynamics for the transfer trajectories can be incorporated in this regime.

The trajectories designed using impulsive maneuvers may serve as a initial guess, and

such transfer solutions can be transitioned to a low-thrust model by varying the specific

impulse and thrust values.
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A. INFLUENCING FORCES ON HALO ORBITS

(a) Reference orbit in ephemeris model

(b) Direct perturbing acceleration

Figure A.1. Spacecraft trajectory and influencing force levels along an L1
southern NRHO with perilune radius 4000 km.
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(a) Relative to Earth-Moon Barycenter

(b) Relative to Moon

Figure A.2. Net perturbing acceleration acting on the spacecraft along an
L1 southern NRHO with perilune radius 4000 km.
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(a) Reference orbit in ephemeris model

(b) Direct perturbing acceleration

Figure A.3. Spacecraft trajectory and influencing force levels along an L1
southern NRHO with perilune radius 8000 km.
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(a) Relative to Earth-Moon Barycenter

(b) Relative to Moon

Figure A.4. Net perturbing acceleration acting on the spacecraft along an
L1 southern NRHO with perilune radius 8000 km.

279



(a) Reference orbit in ephemeris model

(b) Direct perturbing acceleration

Figure A.5. Spacecraft trajectory and influencing force levels along an L2
southern NRHO with perilune radius 3200 km.
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(a) Relative to Earth-Moon Barycenter

(b) Relative to Moon

Figure A.6. Net perturbing acceleration acting on the spacecraft along an
L2 southern NRHO with perilune radius 3200 km.
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(a) Reference orbit in ephemeris model

(b) Direct perturbing acceleration

Figure A.7. Spacecraft trajectory and influencing force levels along an L2
southern NRHO with perilune radius 7200 km.
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(a) Relative to Earth-Moon Barycenter

(b) Relative to Moon

Figure A.8. Net perturbing acceleration acting on the spacecraft along an
L2 southern NRHO with perilune radius 7200 km.
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(a) Reference orbit in ephemeris model

(b) Direct perturbing acceleration

Figure A.9. Spacecraft trajectory and influencing force levels along an L2
southern NRHO with perilune radius 15000 km.
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(a) Relative to Earth-Moon Barycenter

(b) Relative to Moon

Figure A.10. Net perturbing acceleration acting on the spacecraft along an
L2 southern NRHO with perilune radius 15000 km.
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B. TRANSFER TRAJECTORIES: INITIAL CONDITIONS

B.1 L2 Southern 9:2 synodic resonant NRHO to L2 Northern 9:2 synodic res-
onant NRHO

B.1.1 Case 1

Figure B.1. Locally optimal transfer between L2 southern 9:2 synodic reso-
nant NRHO to L2 northern 9:2 synodic resonant NRHO. Different views for
Case 1 transfer.
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Table B.1. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to northern 9:2 synodic resonant NRHO (Case 1). Units are in non-
dimensional quantities. System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.996927294460369 0.996928684455933
y -0.0403732064537565 0.0403741246796326
z -0.0687658508829691 0.0687740941147247
ẋ -0.0721210523239770 0.0721197873643325
ẏ 0.0507544925471208 0.0507341903956708
ż 0.443960420126807 0.443929166676559

Time of Flight 11.4741595643892 -11.4743646922688*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 3.04688426854973

*Negative Time of Flight indicates propagated backwards in time.
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B.1.2 Case 2

Figure B.2. Locally optimal transfer between L2 southern 9:2 synodic reso-
nant NRHO to L2 northern 9:2 synodic resonant NRHO. Different views for
Case 2 transfer.
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Table B.2. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to northern 9:2 synodic resonant NRHO (Case 2). Units are in non-
dimensional quantities. System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 1.00349960801801 1.00755126958083
y 0.0414389685145646 -0.0394377964588642
z -0.104070301847839 0.123267979465757
ẋ 0.0664262578469378 -0.0594055609962941
ẏ -0.0181200047348926 -0.0435437202091242
ż -0.326672335820773 -0.270856516710595

Time of Flight 12.5895071001317 -12.5278096344325*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 3.04688426854973

*Negative Time of Flight indicates propagated backwards in time.
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B.1.3 Case 3

Figure B.3. Locally optimal transfer between L2 southern 9:2 synodic reso-
nant NRHO to L2 northern 9:2 synodic resonant NRHO. Different views for
Case 3 transfer.
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Table B.3. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to northern 9:2 synodic resonant NRHO (Case 3). Units are in non-
dimensional quantities. System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 1.01470902994341 1.01475339074349
y 0.0307294831461665 -0.0306483605438827
z -0.154259346316557 0.154442430572550
ẋ 0.0427952321126951 -0.0426648868355453
ẏ -0.0769728043242916 -0.0771550602489779
ż -0.174093064628739 -0.173464315553202

Time of Flight 13.9993139249227 -13.9933902793874*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 3.04688426854973

*Negative Time of Flight indicates propagated backwards in time.
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B.1.4 Case 4

Figure B.4. Locally optimal transfer between L2 southern 9:2 synodic reso-
nant NRHO to L2 northern 9:2 synodic resonant NRHO. Different views for
Case 4 transfer.
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Table B.4. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to northern 9:2 synodic resonant NRHO (Case 4). Units are in non-
dimensional quantities. System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.997585395785009 1.00119900179446
y 0.0407684688219149 -0.0417268385925357
z -0.0726228210591917 0.0924214359932831
ẋ 0.0814567143566033 -0.0764649440469417
ẏ 0.0425379205328191 0.00325680735208123
ż -0.421764526842971 -0.354274133244900

Time of Flight 14.2863046238343 -14.2490128883756*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 3.04688426854973

*Negative Time of Flight indicates propagated backwards in time.
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B.1.5 Case 5

Figure B.5. Locally optimal transfer between L2 southern 9:2 synodic reso-
nant NRHO to L2 northern 9:2 synodic resonant NRHO. Different views for
Case 5 transfer.
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Table B.5. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to northern 9:2 synodic resonant NRHO (Case 5). Units are in non-
dimensional quantities. System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.987677242859851 0.987680776491148
y 0.0108636783679917 -0.0109270397902264
z 0.00455536446415919 -0.00451106342660414
ẋ 0.0784105615398571 -0.0786710467228080
ẏ 1.16585917450435 1.16139230499477
ż 0.816501298281286 -0.818424061405115

Time of Flight 8.47580808928797 -8.47538884016890*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 3.04688426854973

*Negative Time of Flight indicates propagated backwards in time.
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B.1.6 Case 6

Figure B.6. Locally optimal transfer between L2 southern 9:2 synodic reso-
nant NRHO to L2 northern 9:2 synodic resonant NRHO. Different views for
Case 6 transfer.
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Table B.6. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to northern 9:2 synodic resonant NRHO (Case 6). Units are in non-
dimensional quantities. System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 1.01678542032983 1.01677806499935
y -0.0263863087739202 0.0264039713860751
z -0.162730657384864 0.162700990464794
ẋ 0.0494346171742251 -0.0494405994312133
ẏ -0.138322298439335 -0.138307894550286
ż 0.187619645555199 0.187711975122798

Time of Flight 13.3899567722745 -13.3880639470579*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 3.04688426854973

*Negative Time of Flight indicates propagated backwards in time.
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B.2 L2 Southern 9:2 synodic resonant NRHO to 70000 km DRO

B.2.1 Case 1

Figure B.7. Locally optimal transfer between L2 southern 9:2 synodic reso-
nant NRHO to 70000 km DRO. Different views for Case 1 transfer.
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Table B.7. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to 70000 km DRO (Case 1). Units are in non-dimensional quantities.
System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.987465964929823 0.831128407862951
y 0.00569889848311919 -0.129088519251505
z 0.00726850919845108 2.36019311830857e-17
ẋ 0.0405039953182051 -0.175128524392178
ẏ 1.49500514185298 0.423135920465187
ż -0.533431374687675 0.0112509791037591

Time of Flight 10.1784261517383 -1.59562871619429*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 2.928898812886901

*Negative Time of Flight indicates propagated backwards in time.
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B.2.2 Case 2

Figure B.8. Locally optimal transfer between L2 southern 9:2 synodic reso-
nant NRHO to 70000 km DRO. Different views for Case 2 transfer.
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Table B.8. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to 70000 km DRO (Case 2). Units are in non-dimensional quantities.
System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.987392663246718 1.17115183589483
y 0.00115286570760283 0.0636763654251231
z 0.00824153383943731 1.57414296983634e-16
ẋ 0.00892967502412152 0.104051085290240
ẏ 1.67144220641279 -0.463563083233762
ż -0.119352157567163 -0.0118431057512588

Time of Flight 11.5237783505073 -14.7766373384885*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 2.928898812886901

*Negative Time of Flight indicates propagated backwards in time.

301



B.2.3 Case 3

Figure B.9. Locally optimal transfer between L2 southern 9:2 synodic reso-
nant NRHO to 70000 km DRO. Different views for Case 3 transfer.

302



Table B.9. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to 70000 km DRO (Case 3). Units are in non-dimensional quantities.
System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.988551201350836 0.889028163932655
y -0.0204724150921124 -0.211506195086796
z -0.00553926825167542 -1.16735942032396e-15
ẋ -0.0819628226520406 -0.245707024002011
ẏ 0.585607691782095 0.235286934263236
ż 0.852843242907566 0.137410569368001

Time of Flight 6.48043596665455 -11.3854792340414*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 2.928898812886901

*Negative Time of Flight indicates propagated backwards in time.
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B.2.4 Case 4

Figure B.10. Locally optimal transfer between L2 southern 9:2 synodic res-
onant NRHO to 70000 km DRO. Different views for Case 4 transfer.
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Table B.10. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to 70000 km DRO (Case 4). Units are in non-dimensional quantities.
System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.990688244878795 0.909052731244116
y 0.0305734543621851 -0.225949250841337
z -0.0256217912635845 5.17460897807125e-16
ẋ 0.0699105322208542 -0.367262135943777
ẏ 0.242537453261026 0.235784680933430
ż -0.661412159026507 -0.0746143551062893

Time of Flight 14.4690304979927 -18.0583317924120*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 2.928898812886901

*Negative Time of Flight indicates propagated backwards in time.
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B.2.5 Case 5

Figure B.11. Locally optimal transfer between L2 southern 9:2 synodic res-
onant NRHO to 70000 km DRO. Different views for Case 5 transfer.
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Table B.11. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to 70000 km DRO (Case 5). Units are in non-dimensional quantities.
System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.987410554286670 1.12388657855707
y -0.00300100599479989 0.167001113427257
z 0.00800243476650756 -7.75128320361883e-17
ẋ -0.0228813151980173 0.259409042967061
ẏ 1.63238967450688 -0.339580098749030
ż 0.305468151095097 0.00941421254137988

Time of Flight 12.4552839786378 -25.5514174249027*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 2.928898812886901

*Negative Time of Flight indicates propagated backwards in time.
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B.2.6 Case 6

Figure B.12. Locally optimal transfer between L2 southern 9:2 synodic res-
onant NRHO to 70000 km DRO. Different views for Case 6 transfer.
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Table B.12. Initial conditions for transfer from southern 9:2 synodic resonant
NRHO to 70000 km DRO (Case 6). Units are in non-dimensional quantities.
System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.987391056289568 0.806682694039108
y -0.000798227279082206 -0.0154398139243511
z 0.00826306134414305 7.28329750026083e-17
ẋ -0.00563738325189583 -0.0136768161615825
ẏ 1.69756053554677 0.549965430384287
ż 0.0848012399582023 -0.0124740069219296

Time of Flight 8.36465290574357 -29.9346586735286*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 2.928898812886901

*Negative Time of Flight indicates propagated backwards in time.
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B.3 L2 Southern 9:2 synodic resonant NRHO to 3000 km planar LLO

B.3.1 Case 1

Figure B.13. Locally optimal transfer between L2 southern 9:2 synodic res-
onant NRHO to 3000 km planar LLO. Different views for Case 1 transfer.
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Table B.13. Initial conditions for transfer from southern 9:2 synodic reso-
nant NRHO to 3000 km planar LLO (Case 1). Units are in non-dimensional
quantities. System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 1.00291966737244 0.982360356173907
y 0.0415711503488223 -0.00551126262660746
z -0.101192022078972 -9.88767830586200e-17
ẋ 0.0754243847061982 1.22095419842515
ẏ -0.00378200101900460 -1.21448152632087
ż -0.321876965807617 0.0336592786873775

Time of Flight 8.32070349941637 -0.7490737481784898
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 4.533189223937852

*Negative Time of Flight indicates propagated backwards in time.
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B.3.2 Case 2

Figure B.14. Locally optimal transfer between L2 southern 9:2 synodic res-
onant NRHO to 3000 km planar LLO. Different views for Case 2 transfer.
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Table B.14. Initial conditions for transfer from southern 9:2 synodic reso-
nant NRHO to 3000 km planar LLO (Case 2). Units are in non-dimensional
quantities. System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 1.01141626581046 0.987329129425057
y -0.0356905594441245 0.00776106621332058
z -0.140385594353981 1.52894056956217e-14
ẋ -0.0462424225070656 -1.70803344258009
ẏ -0.0588229623360150 -0.112824793010056
ż 0.219368446126931 -0.0335340022029626

Time of Flight 6.80281965879983 -0.382499417844114*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 4.533189223937852

*Negative Time of Flight indicates propagated backwards in time.

313



B.3.3 Case 3

Figure B.15. Locally optimal transfer between L2 southern 9:2 synodic res-
onant NRHO to 3000 km planar LLO. Different views for Case 3 transfer.
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Table B.15. Initial conditions for transfer from southern 9:2 synodic reso-
nant NRHO to 3000 km planar LLO (Case 3). Units are in non-dimensional
quantities. System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.987389585564703 0.994781235894483
y -5.95466228640473e-05 -0.00352730214343487
z 0.00828277135063308 -1.54615607481677e-17
ẋ -0.000477819679628032 0.772968239236952
ẏ 1.67967135506298 1.51616258348722
ż 0.00589836217491506 -0.0157812992177517

Time of Flight 12.6192525256121 -14.0511647235291*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 4.533189223937852

*Negative Time of Flight indicates propagated backwards in time.
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B.3.4 Case 4

Figure B.16. Locally optimal transfer between L2 southern 9:2 synodic res-
onant NRHO to 3000 km planar LLO. Different views for Case 4 transfer.
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Table B.16. Initial conditions for transfer from southern 9:2 synodic reso-
nant NRHO to 3000 km planar LLO (Case 4). Units are in non-dimensional
quantities. System mass ratio, µ = 0.0121505856096240.

Initial Conditions Departure Arrival
x 0.992359520763295 0.994522887113118
y 0.0347667279847131 -0.00399468443341923
z -0.0387581417955332 3.45272122761889e-16
ẋ 0.0668759531970413 0.887435040103149
ẏ 0.163386368728969 1.48651759402216
ż -0.567103159069688 0.0251740448558707

Time of Flight 13.6240734164924 -2.42779552866416*
Jacobi Constant of Orbit
(actual periodic orbit) 3.04688426854973 4.533189223937852

*Negative Time of Flight indicates propagated backwards in time.
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