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ABSTRACT

The increased interest in deep space missions is creating an increased interest in cislunar

space. The need for fast and efficient methods of traversing the lunar vicinity increases as

more spacecraft enter the region. This investigation discusses methods of low thrust transfer

design in order to create low cost and low time of flight transfers. Indirect optimization is

employed to compute minimum energy and minimum fuel transfers in the circular restricted

three body problem. Sigmoid smoothing techniques are leveraged to approximate the optimal

bang-coast-bang solution with continuous functions. The minimum fuel solution is employed

as an initial guess to target an inertially fixed thrust direction transfer. This process is applied

to a variety of cislunar orbital transfer problems. Transfers are constructed between orbits

in the L1 halo, L2 halo, distant retrograde, and L4 short period orbit families. The resulting

trajectories are compared to impulsive and free transfers from the literature based on the

required propellant mass and time of flight.
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1. INTRODUCTION

1.1 Problem Definition

In recent years, more missions involve spacecraft moving to explore deep space and,

consequently facing greater technical challenges. These challenges tend to fall into three cat-

egories, dynamical, numerical, and hardware. Dynamically the deep space environment is

relatively unstable and often chaotic compared to spacecraft behavior near Earth. This be-

havior cannot be accurately modeled by mathematical expressions with analytical solutions.

Numerical technics must be leveraged in order to understand spacecraft motion that often

come with challenges in accuracy. Lastly, low-thrust engines are often desireable on space-

craft undergoing missions that require higher propellant efficiency. The low thrust hardware

results in better efficiency at a cost to maximum thrust acceleration. These challenges of-

ten present difficulties for common mission design techniques, that generally leverage the

relatively stable dynamics of the near Earth gravity field and nearly impulsive engines.

An increasing number of space missions are exploring regions where the gravitational

forces acting on the spacecraft are not dominated by a single celestial body. Rather, multi-

ple celestial bodies can introduce forces on the spacecraft with similar magnitudes. In the

Artemis missions, for example, the spacecraft leverage the gravity of both the Earth and

the Moon [ 1 ]; then, the Capstone vehicle, acting as a pathfinder is currently in the 9:2 Near

Rectilinear Halo Orbit (NRHO) [  2 ] to be later occupied by Gateway during Artemis IV and

beyond [  1 ], [  3 ]. These mission scenarios incorporate orbits that only exist within a model

including both the Earth and the Moon gravity, and possibly the Sun. Additionally, the

James Webb space telescope is current in a Sun-Earth Halo orbit where the Sun and Earth

gravity are both integral in defining the telescopes motion [ 4 ]. Various other missions are

designed specifically for cislunar space including IM-1 [ 5 ], Chandrayaan-3 [  6 ], and SLIM [  7 ].

These missions necessitate an understanding of the dynamics impact of multiple bodies si-

multaneously to ensure their success. While the dynamics are more complex more spacecraft

are leveraging the added efficiency of low-thrust engines to reduce the propellant cost. The

Dawn [  8 ], Deep Space 1 [ 9 ], and lunar IceCube missions [ 10 ] all involved low-thrust space-

craft. Additionally, the plan for the NASA Gateway space station, is to leverage low-thrust
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to transfer from Earth to the 9:2 NRHO [  3 ]. Such engines are not modeled with instanta-

neous changes in velocity, but require a significant time when thrust is active to control their

trajectory through space.

Overall, these changes generally increase spacecraft efficiency by notably reducing pro-

pellant requirements, however probable propellant savings comes at a cost to the trajectory

design process resulting in a conventional analysis approach that is inaccurate. This in-

vestigation offers various techniques for introducing low-thrust modeling in more complex

dynamical environments to achieve lower-cost transfers between orbits within the context of

a multi-body model, specifically in the Earth-Moon-spacecraft three-body problem.

1.2 Previous Work

1.2.1 Multi-body Dynamics

A number of dynamical models are employed to understand the behavior of a spacecraft

in a multi-body environment. The problem was formally analyzed by Newton in Philosophiae

Naturalis Principia Mathematica [  11 ]. The analysis presented in this document employs a

model comprised of three mutually influenced gravitational bodies, formally labelled the

restricted 3 body problem (R3BP). This model was first formulated by Euler [  12 ]. Many

notable mathematicians focused on understanding the dynamical behavior within the context

of the model. Lagrange identified additional equilibrium points that are now named for him

[ 12 ]. Jacobi determined the existence of an integral of motion in th restricted problem [ 13 ],

and Hill modeled the motion of the Moon as it is acted upon by the gravity of the Earth

and Sun, as well as defined regions of exclusion based on the Jacobi integration constant

[ 14 ]. Poincare developed the foundation for dynamic systems theory, proved that the Jacobi

Constant is the only integral of motion in th restricted problem and that the n-body problem

does not have a closed form solution [ 15 ].

The Circular Restricted 3-Body Problem (CR3BP) is selected as a reasonable model for

this investigation due to its simplicity, while still capturing the motion of satellites in cislunar

space. However, other models exist, for example the elliptic restricted 3 body problem

(ER3BP) and Hills restricted model (HR3BP), which also describe 3 body dynamics. The

12



ER3BP assumes elliptic motion of the Moon and Earth rather than circular, while the

HR3BP defines the motion of the moon based on the description by Hill. These models

include more accurate descriptions of the Earth-Moon motion, however the added complexity

is unnecessary for the problems addressed in this document.

The behaviors within the CR3BP are well studied. The advancements in computational

power of the 20th century allowed for the computation of several families of periodic orbits.

Orbit families are computed in the CR3BP by Breakwell and Brown [ 16 ] using numerical

methods. Additional analysis of periodic orbits as well as new families are discussed by

Howell [ 10 ] and Henon [  17 ]. After a variety of families were computed researchers began

searching for transfers between them. Koon [ 18 ] and Parker [ 19 ] computed free transfers

between planar orbit families. Their methods leveraged the natural instability periodic

orbits to produce free transfers. These types of transfers are also computed for spatial orbits

by Haapala [  20 ]. Additionally, she, as well as others have computed impulsive transfers

between many orbits in multiple orbit families.

1.2.2 Low-Thrust Transfer Design

The inclusion of low-thrust in the transfer design process leads to infinitely many so-

lutions. While having multiple options is useful, many of thee solutions have overly large

propellant requirements. The large solution space must be reduced to an optimal solution.

Lawden applies the calculus of variation to reformulate the optimal transfer design process

as a 2 point boundary value problem [  21 ]. Descriptions for generating these types of transfers

can be found in Spacecraft Trajectory Optimization [ 22 ]. These techniques are formulated

in the 2-body problem however they have been applied to orbits in the CR3BP by Stuart

and Ozimek [  23 ], Senent [  24 ], and more recently, Parrish [  25 ].

This document leverages indirect optimization to find the optimal solution through an

implementation of the calculus of variation. Unlike direct optimization, indirect optimization

does not compute the function itself but rather produces criteria for the function’s deriva-

tive. This form of optimization is discussed in depth by Longuski in Optimal Control with

Aerospace applications [ 26 ]. The greatest challenge in indirect optimization is in selecting
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an initial guess for the 2 point boundary value problem (2PBVP) created by the method.

However, Parish and others has examined forming initial guesses with adjoint control, ma-

chine learning, and natural flow dynamics [  25 ]. Additionally, Cox [  27 ] and Pino [  28 ] analyzed

energy informed approaches within the ballistic dynamics to form initial guesses.

1.3 Overview

The goal of this work is to describe a methodology for constructing extremely low cost

low-thrust transfers between libration point orbits in the CR3BP. The natural structures in

the CR3BP are used as initial guesses that are then converted to optimal transfers using

indirect optimization. The document is organized as follows:

• Chapter 2: The CR3BP is described including it’s underlying assumptions and coor-

dinate frames. The affects of an additional low thrust term on the equations of motion

is also discussed. As well as, the symmetry of the models and constant of integration.

• Chapter 3: General techniques for understanding the natural structures within dy-

namic systems are presented and applied to the CR3BP and low thrust model. This

includes periodic orbits, invariant manifolds and stretching directions.

• Chapter 4: Indirect Optimization problem strategies are considered such as Euler-

Lagrange Theorem and the construction of the hamiltonian. The Transversality con-

dition is discussed for its role in computing optimal initial and final criteria when

necessary.

• Chapter 5: The minimum energy and minimum fuel transfer problems are derived for

transfers between orbits. A homotopy in the sigmoid function is employed to continue

solutions toward the minimum fuel problem and finally the solutions are altered to

thrust in an inertially fixed direction to meet operational constraints.

• Chapter 6: Transfers produced through the methods in chapter 5 are discussed. This

includes transfers between members of the same family leveraging intermediate orbits

as initial guesses as well as transfers between different families using their stable and
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unstable manifolds, or stretching directions if stable and unstable manifolds are not

present.

• Chapter 7: This chapter makes concluding remarks on the transfer methodology

included challenges and strengths, followed by a layout for potential future work in

optimal low-thrust transfers in multi-body dynamical models.
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2. DYNAMIC MODELS

The mathematical models that describe spacecraft motion for transfer applications are for-

mulated in this chapter. First, The Circular Restricted 3 Body Problem (CR3BP) is derived

to describe the motion of a spacecraft influenced by the gravitational forces of the Earth

and Moon assuming they move on circular orbits relative to each other. A rotating frame is

constructed in such a way that the Earth and Moon are fixed when viewed in the new frame.

This view and the mathematical model renders an autonomous system. The symmetry of the

equations of motion in this formulation is discussed and the locations of the five equilibrium

points are derived. Lastly, the integral of motion is identified. A second model of interest is

the CR3BP with additional low thrust terms. The CR3BP with Low Thrust (CR3BP+LT)

is constructed for use in low thrust transfer design. The impact of low thrust on the CR3BP

integral of motion is derived for an arbitrary thrust direction and an inertially fixed thrust

model is formulated based on the rotation matrix between the inertial and rotating frames.

2.1 Circular Restricted three-Body Problem

The circular restricted three body-model is employed to describe the dynamic motion that

arises from the gravitational fields of two bodies acting on a third smaller body. Frequently,

the CR3BP is employed to model behavior in cislunar space. In this regime, neither the

Earth nor the Moon gravity is of sufficiently small magnitude to neglect. The CR3BP is

formulated with a few key assumptions that simplify the dynamics. The simplified model

allows for the existence of equilibrium points, symmetry, and an integral of motion that are

leveraged in the transfer design process.

The first assumption in constructing the CR3BP equations of motion is that the only

forces modeled are the mutual gravitational attraction between the bodies. Next the third

body is assumed to be much smaller than the other two. The two larger bodies are denoted

the primaries. The result of this assumption is that the primary motion is not affected

by the third body gravity. Therefore, the primaries behavior is modeled as keplarian with

analytical solutions in the form of conic sections. The third assumption is that the motion

of the primaries is circular about their common barycenter. Although not required, circular
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primary orbits allow an integral of the motion. The CR3BP is frequently applied in cislunar

space to model spacecraft behavior. For these applications, the Earth and Moon are the two

primaries and the spacecraft is the third body.

The derivation of the mathematical model governing the CR3BP begins with the forces

on each body. Newton’s Second Law delivers the differential equations as

m1R̄
′′
1 = −G

(
m1m2

|R̄21|3
R̄21 + m1m3

|R̄31|3
R̄31

)
(2.1)

m2R̄
′′
2 = −G

(
m1m2

|R̄21|3
R̄21 + m2m3

|R̄32|3
R̄32

)
(2.2)

m3R̄
′′
3 = −G

(
m1m3

|R̄31|3
R̄31 + m2m3

|R̄32|3
R̄32

)
(2.3)

In these equations the primaries are denoted with subscripts ’1’ and ’2’, such that ’1’ refers

to the larger primary. The mass of each body is denoted ’m’. The position vector of each

body, expressed as ’R’ has the first subscript indicating the target body and the second

indicating the observer. When only one subscript is present the position vector is relative to

an arbitrary initially fixed point. A diagram of a representation of the three-body problem

appears in Figure  2.1 in an arbitrary inertial frame.

Figure 2.1. The force felt on an object in the gravitational fields of 2 primary
bodies in an arbitrary inertial frame
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In the CR3BP, the motion of the primaries is assumed circular. As a result, Equa-

tions (  2.1 ) and (  2.2 ), are unnecessary as they describe motion that is already determined by

this assumption. Equation ( 2.3 ) is the key differential equation to determine the motion of

the third body. The equation is divided through by m3 to produce

R̄′′
3 = −G

(
m1

|R̄31|3
R̄31 + m2

|R̄32|3
R̄32

)
(2.4)

Equation (  2.4 ) is the acceleration of the third body as observed in the arbitrary inertial frame.

This differential equation does not possess an analytic solution, thus numerical integration

is required to produce solutions.

Nondimensionalizing the equations of motion via characteristic quantities ensures all state

elements remain within a similar magnitude range thereby improving the accuracy of the

numerical integration process. The characteristic quantities include l∗, the length between

the primaries, m∗, the sum of the mass of the primaries, and t∗, the characteristic time.

The characteristic time is selected such that the non-dimensional gravitational constant G

is equal to one. The equations for these quantities are

m∗ = m1 + m2 (2.5)

l∗ = |R̄21| (2.6)

t∗ =
√

l∗3

Gm∗ (2.7)

For convenience the mass ratio is defined as

µ = m2

m∗ (2.8)

These characteristic quantities are employed to express the equations of motion in nondi-

mensional units. The nondimensional positions of the third body relative to the system

barycenter, larger primary, and smaller primary are then r̄3, r̄31, and r̄32, respectively. The

magnitudes of r̄31 and r̄32 are labelled d and r. The time derivatives are with respect to

nondimensional time, i.e. t, rather than dimensional time. To differentiate the different time
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derivatives, the apostrophe nomenclature denotes dimensional time derivatives, while the

nondimensional time derivative is written as d
dt

. The nondimensional equation of motion for

the third body as observed from inertial space is

d2r̄3

dt2 = −
(

(1 − µ)
d3 r̄31 + µ

r3 r̄32

)
(2.9)

The location of the third body relative to the primaries is time dependant in the inertially

fixed frame therefore Equation (  2.9 ) represents a non-autonomous system.

The formulation shifts the view to a rotating frame, based on the motion of the primaries

to enable an autonomous system of equations. The x̂ direction is defined as the vector from

the larger to the smaller primary. The direction of the primaries angular momentum about

their barycenter is parallel to ẑ and ŷ completes the right-hand triad. In this view, the

primaries remain on the x axis and the circular primary orbit assumption ensures that the

primaries are fixed in the frame. The rotating frame appears in Figure  2.2 .

Figure 2.2. Gravitational forces felt by a body in the CR3BP viewed in a rotating frame

Transport theorem is employed to express the acceleration of the third body as initially

defined with respect to the inertial frame in terms of the rotating frame. This relation is

dr̄I

dt
= dr̄R

dt
+ n̄ × r̄ (2.10)
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Superscripts refer to the frame of differentiation and n̄ is the relative rotation vector between

the frames. Based on transport theorem, the inertial acceleration is expressed in terms of

the rotating quantities as

d2r̄3

dt2 =


ẍ − 2ẏn − xn2

ÿ + 2ẋn − yn2

z̈

 (2.11)

State elements in the rotating frame are refereed to as [x, y, z] and dot notation is employed

for nondimensional time derivatives in the rotating frame. Due to the definition of nondi-

mensional time the frame rotation rate n is 1. Therefore the equations of motion can be

written as

ẍ = 2ẏ + x − (1 − µ)(µ + x)
d3 − µ(x − 1 + µ)

r3 (2.12)

ÿ = −2ẋ + y − (1 − µ)(y)
d3 − µy

r3 (2.13)

z̈ = −(1 − µ)(z)
d3 − µz

r3 (2.14)

Equations (  2.12 ) to (  2.14 ) are the governing equations for the behavior of a third body acted

upon by the the gravity of two primary bodies as viewed in a rotating frame.

Often it is advantageous to analyze a subset of the system rather than the entire 6

dimensional system. For the CR3BP the z equation can be removed to create a 4 dimensional

subsystem. The only state elements that occur in the numerator of Equation (  2.14 ) are z

and ż. Therefore setting z and ż to zero ensure that the elements remain zero for all time.

Any state with zero z and ż elements remains on the x-y plane within a subsystem denoted

the planar CR3BP. The CR3BP equations of motion also posses useful symmetries that are

exploited during the mission design process. The mirror theorem by Roy and Ovenden [  29 ]

guarantees that the system has forward-backward time symmetry as stated,

Theorem 2.1.1. If n point-masses are acted upon by their mutual gravitational forces only,

and at a certain epoch each radius vector from the (assumed stationary) centre of mass of
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the system is perpendicular to every velocity vector, then the orbit of each mass after that

epoch is a mirror image of its orbit prior to that epoch.

In the CR3BP, configurations that meet the criteria of Theorem  2.1.1 occur when the third

body is on the x-z plane with velocity purely in the y direction or on the x-axis with zero

velocity in the x direction.

An import feature of any dynamic system is the existence and location of equilibrium

points. The CR3BP has five equilibrium points. The first three located on the x-axis are

known as the co-linear lagrange points that result from setting y and z to zero and solving

the resulting 1-D root problem given in

x = (1 − µ)(x + µ)
|x + µ|3

+ µ(x − 1 + µ)
|x − 1 + µ|3

(2.15)

The signs of the absolute value terms in Equation (  2.15 ) have ambiguity that depends on

the location relative to the primaries. A different lagrange point is computed depending on

the signs of these terms. The equations for L1, between the primaries, L2, to the right of P2,

and L3, to the left of P1 are given as

x = 1 − µ

(x + µ)2 − µ

(x − 1 + µ)2 (2.16)

x = 1 − µ

(x + µ)2 + µ

(x − 1 + µ)2 (2.17)

x = − 1 − µ

(x + µ)2 − µ

(x − 1 + µ)2 (2.18)

respectively. The additional two equilibrium points are found by assuming y is not zero.

Therefore Equation ( 2.13 ) can be divided through by y resulting in

1 = 1 − µ

d3 + µ

r3 (2.19)

Next Equation (  2.12 ) is expanded and rearranged to form

x = x(1 − µ)
d3 + xµ

r3 + µ(1 − µ)
d3 + µµ

r3 − µ

r3 (2.20)
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and

0 = x
[1 − µ

d3 + µ

r3 − 1
]

+ µ[1 − µ

d3 + µ

r3 ] − µ

r3 (2.21)

Notice that according to Equation (  2.19 ) the term in the first bracket of Equation ( 2.21 ) is

0 and the term in the second bracket is 1 resulting in

0 = µ − µ

r3 (2.22)

Equation (  2.22 ) can only be true if r = 1. this value for r is then plugged back into

Equation ( 2.19 ) producing

0 = 1 − 1 − µ

d3 + µ (2.23)

Equation ( 2.23 ) can only be true if d = 1. Therefore, additional equilibrium points exist

at a nondimensional distance of 1 from both of the primaries. The only two locations at

these distances form equilateral triangles with the primaries. Figure  2.3 is a diagram of the

lagrange points locations in the CR3BP and Table  2.1 gives their locations in the Earth-Moon

system.

Figure 2.3. Equilibrium solutions in the CR3BP

One advantage of the simplified dynamics of the CR3BP is that it is a conservative system.

As a result, a potential function can be written with a gradient equal to the equations of

motion. This function and its gradient are formulated in the rotating frame rather than

an inertial frame thus it is known as the pseudo-potential rather than a true gravitational
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Table 2.1. Lagrange point locations in the Earth-Moon System

Point x position (ND) y position (ND)
L1 0.8369 0
L2 1.1559 0
L3 -1.0051 0
L4 0.4878 0.8660
L5 0.4878 -0.8660

potential. Integrating the right hand side of Equations ( 2.12 ) to ( 2.14 ) with respect to x, y,

and z respectively gives the pseudo-potential,

U∗ = 1 − µ

d
+ µ

r
+ 1

2(x2 + y2) (2.24)

The equations of motion written in terms of the pseudo potential are


ẍ

ÿ

z̈

 = ∇̄U∗ +


2ẏ

−2ẋ

0

 (2.25)

Equation (  2.25 ) are coupled and nonlinear, thus no analytic solution exists however the

construction of the pseudo-potential allows for a better understanding of the behavior of the

system.

Although there is no analytical solution to the CR3BP there is an integral of motion that

can help characterize trajectories throughout the system. The integral of motion is a value

calculated from state elements that does not change as the state is propagated in time. In

the CR3BP the integral of motion is the Jacobi Constant. The constant is derived as follows.

First, the dot product of Equation ( 2.25 ) with the velocity vector, [ẋ, ẏ, ż], is computed as

ẋẍ − 2ẋẏ + ẏÿ + 2ẏẋ + żz̈ = ∂U∗

∂x
ẋ + ∂U∗

∂y
ẏ + ∂U∗

∂z
ż (2.26)
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The left hand side of Equation (  2.26 ) is the dot product of velocity with acceleration as

evident by the following
˙̄r · ¨̄r = ẋẍ + ẏÿ + żz̈ (2.27)

Notice the right hand side of Equation ( 2.26 ) is the total derivative of the pseudo-potential

with respect to time. Therefore, the pseudo-potential is related to the dot product of velocity

and acceleration by
˙̄r · ¨̄r = dU∗

dt
(2.28)

This relation can then be integrated in terms of t producing

1
2(ẋ2 + ẏ2 + ż2) = U∗ + constant (2.29)

Rearranging and redefining the arbitrary integration constant leads to the final equation for

the Jacobi Constant expressed as

JC = 2U∗ − V 2 (2.30)

The Jacobi Constant, denoted as JC, acts as an energy-like quantity that does not change

along an individual arc propagated through the CR3BP dynamics.

2.2 CR3BP + low thrust

Low thrust is augmented to the CR3BP to model the behavior of a spacecraft undergoing

forces from two gravitational bodies and a low thrust engine. If the engine is producing an

acceleration of T̄ = [Tx, Ty, Tz], expressed in rotating coordinates, at an instant in time then

the new equations of motion governing the behavior of the spacecraft at that moment are

given by

ẍ = 2ẏ + x − (1 − µ)(µ + x)
d3 − µ(x − 1 + µ)

r3 + Tx (2.31)

ÿ = −2ẋ + y − (1 − µ)(y)
d3 − µy

r3 + Ty (2.32)

z̈ = −(1 − µ)(z)
d3 − µz

r3 + Tz (2.33)
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These equations assume the spacecraft mass remains fixed throughout the thrust arc. This

assumption reduces the dimension of the problem by removing the need for an equation

for mass change rate. Additionally, it underestimates engine performance and has been

demonstrated by Cox to give useful insights into the transfer design process with very little

change in geometry from the variable mass model [ 27 ].

There are several options for selecting the thrust vector, T̄ , with different advantages

and drawbacks. Later sections select the thrust vector through optimization, however it is

difficult to gain an understanding of the effects a specific thrust vector has at a particular

time through these methods. Often the low thrust effect on Jacobi Constant is of particular

concern when constructing transfers. To gain insights into the effect on the Jacobi Constant

due to low thrust, the derivative of the Jacobi Constant with respect to time is computed

as presented in
dJC

dt
= −2ẋU∗

x − ẏU∗
y − 2żU∗

z (2.34)

In the ballistic equations of motion the derivative equals zero by construction, however with

the augmented low thrust equations of motion the derivative has extra low thrust terms

given by
dJCLT

dt
= dJC

dt
− 2ẋTx − ẏTy − 2żTz (2.35)

The derivative is integrated to produce the total change in Jacobi Constant as in

∫ dJCLT

dt
dt = ∆JCLT = −2

∫
ẋTx + ẏTy + żTzdt (2.36)

Notice the terms within the integral of Equation (  2.36 ) are the dot product of velocity and

thrust as expressed below.

∆JCLT = −2
∫

v̄ · T̄ dt (2.37)

Equation (  2.37 ) has three important implications. First, the Jacobi Constant is changed most

efficiently when thrusting occurs while the spacecraft has the highest velocity in the rotating

frame. Second, the greatest change in Jacobi Constant occurs when thrust is aligned with

the spacecraft velocity in the rotating frame. Third, the negative sign at the beginning of the
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expression indicates that thrusting in the velocity direction decreases the Jacobi Constant

while thrusting in the anti-velocity direction increases it.

2.2.1 Inertially Fixed Thrust Vector

In transfer design applications it is important to consider the restrictions imposed by

hardware. Most spacecraft cannot continuously vary their thrust vector. As a result, an

understanding of an inertially fixed thrust vector low-thrust model is necessary for practical

transfer design. A thrust vector fixed in the inertial frame is transformed into rotating frame

coordinates and added to the CR3BP equations of motion. The resulting equations describe

the motion of a spacecraft in cislunar space thrusting in a fixed direction. The first step in

producing the equations of motion is to define the direction cosine matrix used for the frame

rotation.

Consider an arbitrary inertial frame centered at the system barycenter with a Z axis

aligned with the rotating frame z axis. At an arbitrary time t0 the rotating frame x and

y axes are aligned with the inertial X and Y axes respectively. As previously stated the

rotation rate of the frame in nondimensional units is 1. Therefore the equation

θ = n(t − t0) = t − t0 (2.38)

represents the angle between the frames as a function of time. The Direction Cosine Matrix

(DCM) based on this angle is used to rotate a thrust vector in the inertial frame to the

rotating frame. The DCM is of the following form.

T̄ R =


cos(t − t0) sin(t − t0) 0

−sin(t − t0) cos(t − t0) 0

0 0 1

 T̄ I (2.39)
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The inertially fixed thrust vector in rotating coordinates is added to the CR3BP equation

of motion to define the new inertially fixed thrust equations of motion,

ẍ = 2ẏ + x − (1 − µ)(µ + x)
d3 − µ(x − 1 + µ)

r3 + T I
x cos(t − t0) + T I

y sin(t − t0) (2.40)

ÿ = −2ẋ + y − (1 − µ)(y)
d3 − µy

r3 − T I
x sin(t − t0) + T I

y cos(t − t0) (2.41)

z̈ = −(1 − µ)(z)
d3 − µz

r3 + T I
z (2.42)

Notice Equations ( 2.40 ) to ( 2.42 ) explicitly depend on time and therefore no constant integral

of the motion exists for this mathematical model.

2.2.2 Propellant Cost

Comparing low thrust transfers with impulsive ∆V transfers is not straight forward.

Often total ∆V is used to define the cost of a transfer however this method fails to account

for the added efficiency of low thrust engines. The main advantage of low thrust is how little

propellant mass is required to produce a ∆V. The efficiency metric for the propellant cost is

specific impulse (Isp). Low thrust engines generally use electric propulsion to produce thrust

rather than the chemical reactions in near impulsive engines. Table  2.2 gives an overview of

several types of low thrust propulsion mechanisms as well as a conventional chemical engine

for comparison [  30 ][ 31 ][ 32 ][ 33 ].

Table 2.2. Performance of various spacecraft propulsion systems

System Thrust Magnitude Range (mN) ISP (s) Technology readiness
Electro Static 25-300 2000-10,000 Flight Proven
Ion Thrusters

Hall Effect Thrusters 40-600 1000-8000 Flight Proven
Solar Sails .00908/m2 (at 1 AU) ∞ Flight Proven

Field Emission .0001-1.2 7000-11,000 Under development
Electric Propulsion
Chemical rockets 2e5-4e5 100-400 Flight Proven
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The low thrust engines can have Isp an order of magnitude higher than that of nearly

impulsive engines. This added efficiency results in lower propellant mass requirements for

transfers. The transfers computed in Chapter 6 are compared to impulsive transfers from

the literature as well as the Theoretical Minimum ∆V (TMDV). In order to make this com-

parison the rocket equation converts the ∆V to a required propellant mass. The comparison

of propellant requirements is more illustrative of the real cost of these trajectories and ac-

knowledges the advantage of the higher Isp propulsion systems. The rocket equation[  26 ] is

formulated as follows,

∆m = m0(1 − e
∆V

g0Isp ) (2.43)

For low thrust transfers rather than calculate a ∆V, the time history of the thrust magnitude,

T̄ (t), is converted to propellant requirements directly. This relation is

∆m =
∫ Tm0

g0Isp

dt (2.44)

These equations are used to compute the propellant mass required for orbital transfers, thus

allowing for a consistent comparison between methods.
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3. DYNAMIC SYSTEMS THEORY

Many numerical and analytical tools are used throughout this investigation to gain informa-

tion about trajectories and other dynamic structures as well as their stability and sensitiv-

ities. The CR3BP has no analytical solution, therefore Dynamic Systems Theory (DST) is

used to develope an understanding of the natural flow through the system. Throughout this

chapter DST provides information about linear dynamics around arbitrary trajectories and

periodic orbits. Differential corrections schemes are discussed and applied to the construc-

tion of periodic orbits, orbit stability is characterized and leveraged in the creation of global

manifolds, and stretching directions are computed to produce quick departures from stable

orbits. These techniques offer insights into the coupled non-linear dynamics of the CR3BP

without the need for an analytical solution.

3.1 Linearization

The first step in understanding the cislunar environment is the linearization of the dy-

namics around equilibrium points. The linearization provides an estimate of the flow near

the dynamically rich regions of the mathematical model. The linearization process begins

with a state near an equilibrium point. The position of the state relative to the equilibrium

point can be written as x̃ = [ξ, η, ζ]. The linearized equations of motion are given by

ξ̈ = 2η̇ + d2U∗

dx2 ξ + d2U∗

dxdy
η + d2U∗

dxdz
ζ (3.1)

η̈ = −2ξ̇ + d2U∗

dydx
ξ + d2U∗

dy2 η + d2U∗

dydz
ζ (3.2)

ζ̈ = d2U∗

dzdx
ξ + d2U∗

dzdy
η + d2U∗

dz2 ζ (3.3)

where, ξ refers to the x distance from the Lagrange point, η refers to the y distance from the

lagrange point, and ζ refers to the z distance from the lagrange point. The first derivative

of the equations of motion around the equilibrium point acts as a linear estimate for nearby

relative motion.
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Equations (  3.1 ) to ( 3.3 ) constitute a linear approximation of the behavior of trajectories

near equilibrium points. As a result they are only valid relatively close to the point of

interest. The equations are written in matrix form as

˙̃x = Ax̃ (3.4)

where

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗
xx U∗

xy U∗
xz 0 2 0

U∗
xy U∗

yy U∗
yz −2 0 0

U∗
xz U∗

yz U∗
zz 0 0 0


(3.5)

The resulting linear system is analyzed through conventional techniques to give insights into

the more complex non-linear dynamics.

The linear system can be solved by reducing the space into an eigendecomposition. Any

solution can be written as a summation of the eigenmodes of the system represented below

x̃(t) =
∑

cieλitv̄i (3.6)

In Equation ( 3.6 ) λi are the eigenvalues and v̄i are the associated eigenvectors of the A matrix.

The specific relative state of interest results in different constants, ci. The eigenvalues give

fundamental information about the motion of trajectories near the equilibrium points. The

growth and decay of perturbations from an equilibrium point is determined by the real part

of the eigenvalues. Unstable motion is indicated by Re(λ) > 0. A perturbation in the

eigenvector associated with this eigenvalue asymptotically departs the area. Stable motion

is indicated by Re(λ) < 0. A trajectory exciting this vector asymptotically approaches the

equilibrium point. Lastly, Re(λ) = 0 indicates marginally stable motion. In a linear sense

these trajectories stay the same distance from the equilibrium points however, non-linear
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dynamics may perturb the trajectory in some other direction over larger integration times.

The eigenvalues of the equilibrium points in the Earth-Moon system are given in Table  3.1 .

Table 3.1. Eigenvalues associated with linear motion about each equilibrium
point in the Earth-Moon CR3BP

Point λ1 λ2 λ3 λ4 λ5 λ6
L1 2.9321 -2.9321 2.3344i -2.3344i 2.2689i -2.2689i
L2 2.1586 -2.1586 1.8626i -1.8626i 1.7862i -1.7862i
L3 0.1779 -0.1779 1.0104i -1.0104i 1.0053i -1.0053i
L4 0.9545i -0.9545i 0.2982i -0.2982i 1.0000i -1.0000i
L5 0.9545i -0.9545i 0.2982i -0.2982i 1.0000i -1.0000i

Just as the linear dynamics give information about trajectories near the equilibrium

points, another linearization produces information about trajectories near some reference

trajectory. This linearization is known as the State Transition Matrix (STM). Consider a

trajectory, x̄(t), near some reference trajectory, x̄∗(t). These trajectories are related by

x̄(t) = x̄∗(t) + δx̄(t) (3.7)

The time derivative of Equation (  3.7 ) is computed to produce

˙̄x = ˙̄x∗ + δ ˙̄x = f̄(x̄∗ + δx̄, t) (3.8)

Then, a first order Taylor expansion about ˙̄x∗(t) is computed to estimate the motion of ˙̄x(t).

This expansion is then truncated to only include linear terms resulting in

˙̄x ≈ f̄(x̄∗, t) + ∂f̄

∂x̄
δx̄ (3.9)

Replacing the left hand side of Equation (  3.9 ) with Equation (  3.8 ) and subtracting the

original solution, ˙̄x∗ from both sides produces the first order approximation of the variation

in the solution. The equation is given by

δ ˙̄x = ∂f̄

∂x̄
δx̄ (3.10)
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Equation ( 3.10 ) gives the derivative of the change in state of a nearby trajectory relative to

the reference trajectory. The partial derivative matrix is the same linearization matrix, A,

used to estimate motion near equilibrium points. However, A is a function of time along the

reference trajectory rather than a constant matrix. The initial value of the state variation

is the identity matrix. It is integrated forward in time along the reference trajectory using

Equation (  3.10 ) to produce the STM along the reference. The STM for a trajectory beginning

at time t0 and ending at time, t is denoted by Φ(t, t0). It is applied to any relative state to

give a linear estimate of that relative state at some time, t, along the trajectory as .

δx̄(t) = Φ(t, t0)δx̄(t0) (3.11)

Some useful propreties of the STM are listed below

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (3.12)

Φ(t0, t1) = Φ−1(t1, t0) (3.13)

The STM is a powerful tool in DST. It is used throughout this investigation to estimate

sensitivities, understand the stability of orbits, and compute stretching directions. These

applications are discussed in later sections of this chapter.

3.2 Differential Corrections

Targeting methods are commonly used in trajectory design problems. In multi-body ap-

plications it is often desirable to select a trajectory that approximates a dynamic structure.

This may be searching for an orbit, a manifold, a transfer, or some other criteria. Addi-

tionally, constraints such as energy level, periodicity, perpendicular crossings, and thrust

constraints are often added to ease the targeting process or meet the needs of the mission.

A set of free variables is selected to meet all these criteria and the differential corrector can

iteratively adjust the free variables to select values that meet all the constraints within some

preset tolerance level. A Newton-Raphson targeting scheme is used in this investigation due
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to its efficient quadratic convergence. The limitation of Newton-Raphson is that the partial

derivatives of all the constraint functions with respect to each of the free variables is required.

Given a guess of the free variable vector written as

X̄ =



X1

X2
...

Xn


(3.14)

and constraints written as

F̄ (X̄) =



F1(X̄)

F2(X̄)
...

Fn(X̄)


(3.15)

the update equation is as follows

X̄i+1 = X̄i − DF (X̄i)−1F̄ (X̄i) (3.16)

Equation (  3.16 ) produces an updated free variable vector that is closer to the solution then

the previous, provided that the initial guess is sufficiently close for convergence. The DF

matrix, often denoted as the Jacobian, contains the derivatives of the target functions with

respect to the free variables. Each row of the matrix gives derivatives of a particular function

while each column is with respect to a particular variable.

3.2.1 Single Shooter

The simplest implementation of the targeting scheme is the single shooter. In this method

the free variables are elements of a single propagated arc through the system. Single shooting

is usually sufficient for targeting with relatively low sensitivity and shorter times of flight. In

this investigation the single shooter is used to construct libration point orbits in the CR3BP
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that are used as initial and final locations for transfers. The construction of these orbits is

discussed more in section 3.4.

For a simple single shooter example a single arc is propagated in the CR3BP. The initial

velocity is then changed slightly via the newton-rhapson update equation to calculate a new

initial velocity. The goal of this example targeting process is to select a velocity at the initial

state that creates a trajectory with a particular final position. Notice that the system is

square as three initial state elements are free and three final state elements are constraints.

The DF matrix for this example is

DF =


φ14 φ15 φ16

φ24 φ25 φ26

φ34 φ35 φ36

 (3.17)

where, φ represents the elements of the STM with the first subscript identifying the row and

and the second the column.

Figure  3.1 depicts the trajectories at each iteration of the targeting process. The error

at each iteration is shown in Figure  3.2 . Notice, the quadratic convergence indicating the

STM is acting as a good approximation for the state derivatives. However, STMs of longer

trajectories contain less accurate approximations of the state sensitivities. A single shooter

method for these longer trajectories takes more iterations to converge and at times may not

converge at all. Therefore, the single shooting method is only implemented for relatively

short trajectories.

3.2.2 Multiple Shooter

Often the single shooter scheme is not sufficient for the sensitivity of transfers between

orbits. Trajectories with close lunar approaches or long times of flight also increase the

sensitivity of the problem. In these cases a multiple shooter is necessary. The multiple

shooter, propagates several arcs with continuity constraints between each to create a single

trajectory. The build up of integration error is notably reduced by splitting the trajectory into

multiple arcs. Additionally, the lower magnitudes of STM elements improves the accuracy
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Figure 3.1. Trajectories at each iteration of the single shooter position targeting problem

Figure 3.2. Distance from trajectory end state to target state at each iteration
of the targeting process

of th matrix inversion in Equation ( 3.16 ). The linear estimation of the STM is also more

accurate for shorter propagation times. Figure  3.3 shows a schematic of the multiple shooter

arcs.

The main challenge present when implementing a multiple shooter is that it notably

increases the dimension of the problem. In the ballistic case the addition of 1 extra arc

increase the free variables and target functions by six. In the Indirect optimization case

the dimension is increase by twelve per arc due to the addition of costate elements along
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Figure 3.3. Diagram of a multiple shooting method

each trajectory as discussed further in section 4.1. Therefore the method is only used when

sensitivity requires it.

3.3 Parameter Sensitivities

In transfer design problems targeting schemes often require the derivative of a final state

of a trajectory with respect to the change in a system parameter. Specifically, the targeting

process for low-thrust transfers may employ the sensitivity of the trajectory final states with

respect to a thrust vector. The sensitivity of a state due to a changing parameter is not

calculated by the STM discussed in the previous section. As a result, a new method for

computing the sensitivity of a parameter is required. This method is derived in the following

section.

Similar to the STM the time derivative of the sensitivity is calculated at each point along

a trajectory. The derivation is integrated along with the trajectory to produce the partial

derivative of the final state with respect to the parameter. Therefore, the value d
dt

( dx̄
dT

) is

required to compute dx̄
dT

[ 34 ]. The first step in calculating this quantity is to reverse the order

of derivation. Recall the quantity dx̄
dt

is already defined by the equations of motion in the

CR3BP denoted as f . The derivative is therefore written as

d

dt
( dx̄

dT
) = d

dT
(dx̄

dt
) = d

dT
(f̄) (3.18)
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Thus, the sensitivity with respect to the parameter T is the total derivative of the equations

of motion with respect to T as in the right hand side of Equation ( 3.18 ). The differential

equation for computing this quantity is

d

dt
( dx̄

dT
) = df̄

dx̄

dx̄

dT
+ df̄

dT
(3.19)

by the chain rule. The sensitivity derivative is propagated along the trajectory of interest

to produce the sensitivity at the final state. Changing a model parameter has no effect on

the initial state of a trajectory, thus the initial sensitivity is zero. The formulation of the

parameter sensitivity informs targeting problems that have thrust as a free variable such as

the inertially fixed thrust transfer targeter discussed in Chapter 5.

3.4 Periodic Orbits

The key to understanding dynamic systems is computing and understanding periodic

orbits. A periodic orbit is a solution within the dynamics that returns to an initial point

after some period of time, P , known as the orbital period. This definition is given as

γ(t + P ) = γ(t) (3.20)

The CR3BP does not have an analytical solution thus orbits must be computed numerically.

Different methods of construction are used depending on the symmetry of the orbits. For

asymmetric orbits the initial and final point of an arc are constrained to match in full six

dimensional space to within some tolerance level. However, the symmetry of the system

discussed in section 2.1 often allows for simpler computation. For symmetric orbits, half of

the orbit is computed ensuring it begins and ends with a perpendicular crossing of the x-z

plane. This perpendicular crossing constraint results in the symmetric solution closing the

curve and creating a periodic orbit. Targeting this orbit requires the initial and final points
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on the trajectory to have a value of 0 for the y, ẋ, and ż elements. The targeting problems

for symmetric and asymmetric orbits are

X̄ =


x0

z0

ẏ0

 , F̄ =


yf

ẋf

żf

 (3.21)

X̄ =



y0

z0

ẋ0

ẏ0

ż0


, F̄ =



xf − x0

yf − y0

zf − z0

ẋf − ẋ0

ẏf − ẏ0


(3.22)

Equations (  3.21 ) and (  3.22 ) represent fixed period targeting schemes however integration

time can be added to the free variables with the removal of a state element to produce

variable time targeters.

Notice only five state elements are constrained in the asymmetric problem. The final

element is implicitly constrained by the Jacobi Constant, therefore the five dimensional

constraint vector sufficient to ensure six dimensional convergence. These targeting methods

produce the orbits that are used for transfers in Chapter 6. The asymmetric orbits of

interest are the L4 Short Period Orbits (L4SPO). The initial guess for generating these

orbits is constructed from the in-plane short period marginally stable mode of the L4 lagrange

point. Additionally, several transfers between symmetric orbits are constructed. These orbits

include Distant Retrograde Orbits (DRO), and both L1 and L2 halo orbits. The initial guess

for the DROs is based on a two-body circular retrograde orbit about the Moon, while the

halo orbits are constructed from a bifurcation off of the L1 and L2 lyapunov families. A

more complete discussion of periodic orbit family generation is available by Grebow[ 35 ].

Subsections of the L1 lyapunovs, L1 halos, L4SPOs and DROs are shown in Figures  3.4 

to  3.7 .
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Figure 3.4. A section of the L1 lyapunov orbits in the Earth-Moon System

Figure 3.5. A section of the L1 northern halo orbits in the Earth-Moon System

3.5 Stability of Periodic Orbits

The periodic orbits are analyzed in terms of their linear stability using similar methods

as those employed for lagrange points. A new stability condition based on Floquet theory

is introduced for characterizing periodic orbits. First consider a point along the periodic

orbit. Propagating this point for exactly one period results in the trajectory returning to

the original location, thus the point is denoted a fixed point. The STM propagated with the
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Figure 3.6. A section of the L4 short period orbits in the Earth-Moon System

Figure 3.7. A section of the distant retrograde orbits in the Earth-Moon System

fixed point for one orbit is known as the monodromy matrix. From Floquet’s theorem the

eigenstructure of the monodromy matrix describes the stability of the periodic orbit[  36 ].

The eigenvlaues predict the behavior of a state perturbed off the fixed point as it is

propagated for one orbital period. As with the equilibrium points, these predictions are

linear in nature and are therefore only valid for states relatively close to the fixed point.

Unlike the equilibrium points the predictions are produced based on discrete applications

of the monodromy matrix rather than a continuous application of the equations of motion.

The new stability criteria are as follows[ 19 ].
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• Unstable Eigenvalues: if |λi| > 1, then the eigenvalue is unstable. Perturbations

that excite this eigenvalue will grow in forward time.

• Stable Eigenvalues if |λi| < 1, then the eigenvalue is stable. Perturbations that

excite this eigenvalue will decay in forward time.

• Marginally Stable Eigenvalues if |λi| = 1, then the eigenvalue is marginally stable.

Perturbations that excite this eigenvalue will remain the same magnitude in forward

time.

The autonomous nature of the CR3BP ensures that the eigenvalues of the monodromy

matrix occur in reciprocal pairs. This is due to Lyapunov Theorem stated as

Theorem 3.5.1. if λ is an eigenvalue of the monodromy matrix Φ(t0 + P, t0) of a time

invariant system, then λ−1 is also an eigenvalue, with the same structure of elementary

divisors.

There are six directions a state can be perturbed relative to a fixed point. One of the direc-

tions simply moves th state along the orbit. Propagating this stepped state for one period

results in it returning to the exact same location. Therefore their must be an eigenvector in

the orbital direction with an associated eigenvalue of unity. The unity eigenvalue represents

additional fixed points along the orbit. All monodromy matrices in th CR3BP must have an

eigenvalue of unity because any point along the orbit can act as a fixed point. Theorem  3.5.1 

therefore guarantees a second unity eigenvalue, implying that all periodic orbits in the sys-

tem must exist within continuous families as perturbations in th direction associated with

this second unity eignvalue must also return to the same location.

An orbit is considered unstable if at least 1 of its eignvalues is unstable. Due to The-

orem  3.5.1 any orbit with stable eigenvalues must also have unstable eigenvalues. Con-

sequently, no stable orbits can exist in the CR3BP. However, many orbits have all six of

their eigenvalues on the unit circle indicating marginal stability. Other orbits such as the

9:2 NRHO have very small unstable eigenvalues that means perturbations take a significant

amount of time to grow resulting in very slow natural departure or arrival on to the orbit.

In order to quantify the stability of an orbit a stability metric is defined.
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Many different stability index definitions exist for orbits in the CR3BP. For this inves-

tigation the stability index determines whether stable and unstable manifolds exist for a

particular orbit. The infinity norm of the eigenvalues associated with a monodromy ma-

trix is a sufficient stability index for this application. This definition of stability index is

represented as

SI = |λ̄|∞ (3.23)

Any orbit with a stability index greater than 1 is unstable and therefore has stable and

unstable manifolds that can be leveraged for transfer construction. Orbits with a stability

index of 1 are marginally stable and therefore lack stable and unstable manifolds. Transfers

involving marginally stable orbits are constructed using stretching directions. Orbit mani-

folds are discussed more in depth in the next section while stretching directions are discussed

in section 3.8.

3.6 Invariant Manifold Theory

Invariant manifolds are an import structure in traversing cislunar space. One of the goals

of this investigation is to move between orbits as efficiently as possible. Efficiency in the

form a propellant savings is facilitated by leveraging the the natural flow of the CR3BP.

This natural flow is governed by manifolds. The unstable manifold represents maneuver free

departure from an unstable orbit, while the stable manifold represents free arrival on an

unstable orbit. The construction of these manifolds and their characteristics is presented in

this section.

3.6.1 Invariant Subspaces

Consider a fixed point on a periodic orbit with eigenvectors of the monodromy matrix,

v̄i. The 6 dimensional space surrounding the point is represented in terms of fundamental

subspaces spanned by the eigenvectors as

R6 = ES + EU + EC (3.24)
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Here the superscripts represent the fundamental motion of the the subspace; ES is stable, EU

is unstable, and EC is the center subspace. These subspaces are invariant under the linear

dynamics of the region. The invariance guarantees that a state within a subspace remains

within the subspace when the linear dynamics of the monodromy matrix are applied.

3.6.2 Local Manifolds

The linear invariant subspaces are generalized to form local manifolds within the non-

linear system dynamics. According to the stable manifold theorem of periodic orbits[ 37 ], if

there is an m dimensional linear stable subspace associated with a point on an orbit then

there exists an m + 1 dimensional local stable manifold, W S
loc, that is invariant under the

non-linear dynamics. This manifold is tangent to the stable subspace at all points along

the orbit and asymptotically approaches the orbit as t → ∞. Analogously, if there is a

k dimensional linear unstable subspace associated with the point, then there exists a k + 1

dimensional local unstable manifold, W U
loc. This manifold is tangent to EU at all points along

the orbit and asymptotically approaches the orbit as t → −∞. A diagram of the relationship

between the linear subspace and local manifold appears in Figure  3.8 

Figure 3.8. Diagram of the relationship between linear and local nonlinear
manifolds of a fixed point

3.6.3 Global Manifolds

The local manifolds are expanded to the full non-linear manifolds of the orbit to gain a

greater understanding of the flow throughout the system. These manifolds span the cislu-
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nar region and govern motion in forward and backward time. In this subsection the local

manifolds are used to construct the full global manifolds that are used as initial guesses

for transfers in Chapter 6. The tangency condition described in the previous subsection is

leveraged to begin constructing the global manifolds. A point approximately on the local

manifold is produced by stepping a small distance, β, from a fixed point in the direction of

the stable or unstable subspace. Both halves of the manifold are produced by stepping in

the positive and negative eigenvector directions. Construction of points on both halves of

the stable and unstable manifolds are given by

x̄+
S = γ + βv̄S (3.25)

x̄−
S = γ − βv̄S (3.26)

x̄+
U = γ + βv̄U (3.27)

x̄−
U = γ − βv̄U (3.28)

Selection of an appropriately sized β is challenging. The step size depends on the stability

properties of the orbit as well as the µ value of the system. The invariant subspaces and

local manifolds are only tangent at the underlying fixed point. As a result, too large a step

size results in a poor approximation of a point on the manifold. However, too small a step

size results in a point that when propagated takes a long time to leave the vicinity of the

orbit. This added propagation time can create additional unnecessary numerical error build

up.

Points on the local manifold are computed from several points around the periodic orbit.

Each point is then propagated forward in time for the unstable manifold or backward in

time for the stable manifold. The resulting trajectories are approximately on the stable

and unstable manifolds of the orbit. An example of trajectories on the manifolds of a

lyapunov orbit is shown in Figure  3.9 . In this depiction the manifolds are propagated to

fixed x locations, however greater coverage of the cislunar region is possible through longer

propagation times.
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Figure 3.9. Manifolds of an L1 lyapunov orbit, JC = 3.15

3.7 Theoretical Minimum Delta V

Transfers are not limited to orbits of the same energy level. In astrodynamic applications,

spacecraft often need to bridge an energy gap when moving between orbits. Any transfer

between orbits of different Jacobi Constants must expend propellant to overcome the dif-

ference in energy. The Theoretical Minimum ∆V (TMDV) acts as a metric for the cost to

change a trajectories energy. The TMDV provides a benchmark for how large a maneuver

is necessary to change the energy of a trajectory depending on the initial and final Jacobi

Constant as well as the location the maneuver takes place. This metric can be converted to

a propellant cost using Equation (  2.43 ).

Consider two trajectories with Jacobi Constants of JC1 and JC2. These values are

written out in terms of their velocity and pseudo potential as

JC1 = 2U∗
1 − V 2

1 (3.29)

JC2 = 2U∗
2 − V 2

2 (3.30)

Thus the change in JC is expressed as

JC2 − JC1 = 2(U∗
2 − U∗

1 ) − (V 2
2 − V 2

1 ) (3.31)
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The ∆V must occur when the trajectories coincide in position, therefore U∗
1 = U∗

2 and the

first term of Equation ( 3.31 ) is 0. The second term in the equation is broken down as a

difference of squares. Performing these simplifications and solving for ∆V results in

∆V = −∆JC

(V2 + V1)
(3.32)

Equation (  3.32 ) provides similar insights into the effect on Jacobi Constant of a maneuver

as Equation ( 2.37 ). First, the negative sign indicates that increasing velocity results in a

decrease in Jacobi constant. Secondly, the denominator indicates that the TMDV is smaller

when both trajectories are moving quickly and larger when moving slowly. This is equivalent

to the low thrust result that Jacobi constant is changed most efficiently when spacecraft have

a larger velocity when viewed in the rotating frame. The dependence on velocity implies for a

particular energy change a different ∆V is required depending on the location the maneuver

takes place. Trajectories have higher velocity in the rotating frame when near the primaries,

resulting in lower TMDV in these regions. Figure  3.10 illustrates the TMDV for a transfer

between trajectories at JC of 3.0 and 3.1 depending on the maneuver location in the planar

problem.

Figure 3.10. Map of TMDV for a transfer between orbits of JC = 3.0 and 3.1
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3.8 Stretching Directions

The monodromy matrix is useful in identifying characteristic flow around a periodic orbit,

however it cannot be applied to aperiodic trajectories. Information about behavior around

arbitrary trajectories is captured by the stretching directions of the STM. Stretching direc-

tions are also useful when an orbit does not have an unstable manifold yet quick departure is

desired. The stretching directions and singular values provide information about the change

in magnitude of a variation from the reference trajectory over a specified time horizon[ 38 ].

The singular value decomposition of th STM is provided as

Φ(t, t0) = UΣΞT (3.33)

The STM, Φ(t, t0) is decomposed into singular vectors and singular values. As such the

predictions made by the decomposition is only valid for the time horizon from t to t0. The

right singular vectors that define an initial perturbation direction are denoted as Ξ. A

diagonal matrix, Σ, contains the singular values of the matrix. These values define how

a perturbation in the associated right singular vector expands or contracts over the time

horizon of interest. Values less than 1 are associated with contraction while values greater

than 1 are associated with expansion. Lastly, U represents the left singular directions that

give the final direction of the perturbation after propagation. If some state is in the direction

of ξ̄i relative to the reference trajectory then after propagation for time, t, the final perturbed

state is in the direction of ūi with the magnitude scaled by σi as expressed below

σiūi = Φ(t, t0)ξ̄i (3.34)

Figure  3.11 visual represents this relation for a 2 dimensional case. In the diagram σ1 is less

than 1 while σ2 is greater than 1.

Similar to the eigenvalues of the monodromy matrix the singular values of the STM

define characteristic behavior of trajectories near the reference. sStretching and restoring

subspaces are defined as

S+ = span{ξi}, σi > 1 (3.35)
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Figure 3.11. A 2D example of stretching directions and singular values over
a specified time horizon

S− = span{ξi}, σi < 1 (3.36)

where, S+ is a stretching subspace and S− is a restoring subspace. Perturbations in a

restoring subspace move closer to the reference after propagation over the time interval

[t0, t], while perturbations in the stretching subspace move away[ 39 ].

There are a few key differences between the stretching direction and the eigendecompo-

sition of the monodromy matrix that should be highlighted. First, the monodromy matrix

only exists for periodic solutions. The advantage of applying periodic information is that

the information is valid for an infinite time interval. The stretching directions on the other

hand are applicable to any trajectory however they only give variational information for

propagations over the same finite time span as the reference trajectory. Additionally, while

the eigenspaces of the monodromy matrix are invariant, perturbations in a stretching direc-

tion change direction based on the left singular vectors. These directions are specific to a

particular time interval. Both methods are based on linear approximations and therefore are

not applicable for overly large perturbations.

An additional flexibility afforded by stretching directions is that they relate variations in

subsets of the state elements rather than the full six dimensional state. Stretching directions

are employed to understand the effects of variations in velocity to model maneuver options.

Nearly impulsive engines can change the velocity of a spacecraft nearly instantaneously but

not position. Therefore, a stretching direction that relates an initial velocity variation to a

final state variation is useful for the transfer design process.
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The velocity stretching directions are computed by first subdividing the STM into four

sub-matrices relating initial variations with final variations. The subdivided STM is pre-

sented as

Φ(t, t0) =

φrr φrv

φvr φvv

 (3.37)

where φrr represents the change in final position based on a change in initial position, φrv

represents the change in final position based on a change in initial velocity, φvr represents

the change in final velocity based on a change in initial position, and φvv represents the

change in final velocity based on a change in initial velocity. The sub-matrix, φrv,v =

φrv

φvv

,

describes the effects of an initial ∆V on a final state. The initial change in velocity is a three

dimensional vector and the final change in state is a six dimensional vector. The singular

values and directions for the change in initial velocity is as follows

Φrv,v = UΣΞT (3.38)

U =
[
ū1 ū2 ū3 ū4 ū5 ū6

]
(3.39)

Σ =



σ1 0 0

0 σ2 0

0 0 σ3

0 0 0

0 0 0

0 0 0


(3.40)

Ξ =
[
ξ̄1 ξ̄2 ξ̄3

]
(3.41)

Analogous to the full state case singular values greater than 1 indicate growth over the

time horizon of interest while singular values less than 1 indicate contraction. However by

restricting the initial variation to velocity space the problem becomes over constrained. As

indicated by the zeros in the second half of Σ the final directions ū4, ū5, and ū6 are not

influenced by the initial velocity change. Consequently, one disadvantage of only altering
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the initial velocity is that their is a three dimensional subspace that cannot be accessed

by velocity perturbed trajectories. The applications in hapter 6 do not require meeting a

specific state, rather the velocity variations are used to form an initial guess trajectory that

quickly leaves the orbit vicinity. Therefore, these limitations do not affect the analysis.
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4. INDIRECT OPTIMIZATION

The addition of low-thrust terms into the CR3BP dynamics forms a continuously varying

control problem for cislunar transfer applications. In this formulation each point in time

has an associated three dimensional thrust vector. The added degrees of freedom notably

expands the solution space of transfers between any two orbits. However, a method is

needed to select an optimal transfer from the many alternatives. Functional optimization is

employed to solve such problems where the input is a continuous time history rather than a

discrete set of variables. There are several methods for solving these classes of problems but

for this investigation indirect optimization is used based on the Calculus of Variation (CoV)

to produce locally optimal solutions. The method converts the optimization problem into a

2 Point Boundary Value Problem (2PBVP) that is solved with the differential corrections

techniques described in section 3.2 [ 40 ]. This section offers an overview of how CoV is used,

however a more complete discussion of the methods and applications of the CoV is available

by Bolza[ 41 ].

4.1 Euler Lagrange Theorem

The first step in the method is to determine the cost function denoted as J . The cost

function must take in a function as an input, known as the control, u(t), and output a single

scalar value, J , that represents a cost. The goal of the optimization is to select a function

u(t) such that J is at a minimum. A general cost function is

J = Je(xf , tf ) +
∫

L(x, t, u(t))dt (4.1)

The cost consists of two terms. The first refers to the cost associated with the final state

of the system and the second incorporates the cost along the path of the trajectory. The

integrand L within Equation (  4.1 ) is known as th Lagrangian and is generally a function

of state, time, and the control input, u(t). The goal of the CoV is to define criteria for

the control that guarantees J is minimized. This criteria generally comes in the form of a

differential equation for the evolution of u(t) over time.
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The optimization of the cost function requires the use of Euler-Lagrange Theorem. Con-

sider the optimal control history,u∗(t) and define η(t) as a differentiable arbitrary function

with a value of zero at the beginning and end of the time interval of interest. In order for

u∗(t) to minimize J the first order necessary condition given as

J [u∗] ≤ J(u∗ + εη) (4.2)

must be true for an arbitrarily small ε[ 40 ]. Next a new function is defined with ε as the only

input defined as

Φ(ε) = J(u ∗ +εη) (4.3)

By definition Equation (  4.3 ) has a local minimum at ε = 0. Thus the first order necessary

condition must be true at that point. Notice that the necessary condition on the function

Φ(ε) is a function optimization problem rather than a functional optimization problem.Thus

the necessary condition is reduced to a one dimensional derivative expressed as

dΦ
dε

|ε=0 =
∫ dL

dε
|ε=0dt = 0 (4.4)

Taking the total derivative of the Lagrangian with respect to ε produces the relationship,

dL

dε
= ∂L

∂u
η + ∂L

∂u̇
η (4.5)

Plugging Equation (  4.5 ) back into Equation (  4.4 ) results in

∫ ∂L

∂u
η + ∂L

∂u̇
ηdt = 0 (4.6)

Equation ( 4.6 ) is separated into two integrals and integration by parts is applied producing

∫ ∂L

∂u
ηdt + ∂L

∂u̇
η| −

∫
η

d

dt

∂L

∂u̇
dt = 0 (4.7)
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Recall that η is defined as zero at the start and end of the interval of interest, therefore the

2nd term of Equation ( 4.7 ) is zero resulting in

∫ (
∂L

∂u
− d

dt

∂L

∂u̇

)
ηdt = 0 (4.8)

In order to guarantee optimality, the equation must hold for any arbitrary function η. There-

fore, the quantity in parenthesis must be zero at the optimal control. Setting this quantity

to zero results in the Euler-Lagrange equation, expressed as

∂L

∂u
− d

dt

∂L

∂u̇
= 0 (4.9)

also known as the necessary condition. Equation (  4.9 ) must be true for the control, u∗, to

produce a local minimum of the cost function. Additional derivations and discussion of E-L

theorem are present in Lawden[ 21 ], Bryson and Ho[ 42 ], Longuski[  26 ]

4.2 Hamiltonian

In addition to minimizing the cost function the control must meet constraints imposed

by the equations of motion, f̄(x̄, ū, t) = ˙̄x. In order to ensure the equations of motion

are satisfied, they are adjoined to the Lagrangian to form a new functional known as the

hamiltonian given as

H(x̄, ū, λ̄, t) = L(x̄, ū, t) + λ̄T f̄(x̄, ū, t) (4.10)

where λ̄ is a vector of arbitrarily defined costates that are analogous to the use of lagrange

multipliers in function optimization. For an n-dimensional system n costates are defined,

each associated with a different state element. However, unlike lagrange multipliers the

costates are functions of time rather than fixed variables.

In order to optimize the hamiltonian in Equation (  4.10 ) the following two necessary

conditions must be met. First the hamiltonian must be at a local extremum with respect to

the control and secondly the Euler-Lagrange theorem as described in the previous subsection
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must be true. The E-L theorem is rewritten for the optimization of the hamiltonian rather

than the lagrangian resulting in the following necessary conditions.

1.
∂H

∂u
= 0

2. From EL theorem
∂H

∂x
− ∂

∂t

∂H

∂ẋ
= 0

The first condition produces a relationship between the costates and the function u(t), while

the second condition gives a requirement on the time derivatives of the costates as

∂H

∂x
= − ˙̄λ (4.11)

These conditions together result in a 2PBVP. Targeting methods as discussed in Chapter

3 are employed to solve the new formulation of the problem and produce optimal control

histories.

An initial state and costate vector is propagated through the equations of motion to

produce a trajectory through the system of interest. For this investigation the propagation

occurs in the CR3BP+LT, but the method can be applied to any dynamic system. The

costates at each point along the orbit inform the control function u(t) in such a way that

ensures the cost is minimized. For an autonomous system, such as the CR3BP+LT minimum

energy and minimum fuel problems discussed further in Chapter 5, the hamiltonian is a

constant throughout any optimal trajectory. This fact is demonstrated by calculating the

total time derivative of th hamiltonian as

d

dt
(H(x̄, λ̄, t)) = ∂H

∂x̄
˙̄x + ∂H

∂λ̄
˙̄λ + ∂H

∂t
(4.12)
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The partial derivative of H with respect to x̄ is defined for an optimal arc by Equation (  4.11 ).

The partial derivative with respect to λ̄ is the equations of motion f̄(x̄) by the definition of

the hamiltonian. Therefore the total time derivative of the hamiltonian can be expressed as

d

dt
(H(x̄, λ̄, t)) = − ˙̄λ ˙̄x + ˙̄x ˙̄λ + ∂H

∂t
(4.13)

where the first two terms of Equation (  4.13 ) cancel out to produce

d

dt
(H(x̄, λ̄, t)) = ∂H

∂t
(4.14)

The total time derivative of the hamiltonian along an optimal trajectory is its partial deriva-

tive with respect to time. Thus any system, where neither the Lagrangian nor the equations

of motion are an explicit function of time, has a hamiltonian that remains constant through-

out any optimally propagated trajectory.

4.3 Transversality

A transfer between two fixed states over a fixed Time Of Flight (TOF) results in a fully

constrained 2PBVP. For an n dimensional system The free variables are the n costates and

the constraint functions are the n target states. As represented below.

x̄ =
[
λ̄0

]
, F̄ =

[
x̄f − Target

]
(4.15)

However, additional degrees of freedom are often included in optimization problems especially

for astrodynamic applications. Transfers may not contain a restriction on time of flight or

initial and final states. These added freedoms require auxillary constraint functions to pose

a well defined 2PBVP and select the new free variables optimally. The constraints are given

by the transversality condition[ 42 ],

Hfdtf − λ̄t
fdx̄f + H0dt0 − λ̄t

0dx̄0 = 0 (4.16)
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where the subscripts 0 and f refer to the initial and final points on the optimal trajectory

respectively. Equation ( 4.16 ) ensures that the added free variables are selected in such a way

that minimizes the hamiltonian.

A derivation and further discussion of the transversality condition is available in Longuski[  26 ].

The equation provides extra optimality constraints to select additional free variables opti-

mally. For example if the TOF is allowed to vary then dtf in Equation (  4.16 ) becomes

non-zero. As a result, the hamiltonian at the final time, Hf , must be zero to ensure the

equation is satisfied. This reasoning is applied to all terms of the equation. Any additional

freedom added to the problem results in a variation at the beginning or end of the trajec-

tory having a non zero value. The transversality equation relates this variation to a new

optimality condition thereby maintaining a square system.
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5. OPTIMIZATION IN CISLUNAR TRANSFER DESIGN

In this chapter the methods of indirect optimization are discussed with applications to cislu-

nar low thrust transfer design. The minimum fuel and minimum energy optimal low thrust

transfer problems are formulated in the CR3BP. The cost functions of each problem are em-

ployed to construct their respective hamiltonians. Relationships between the costates and

control are derived and a new STM is formulated for states and costates. The STM acts

as a linear estimates of the final states and costates sensitivities with respect to the initial

states and costates and these sensitivities are used to target optimal transfers. Additionally,

the transversality condition optimally selects the location of departure and arrival for the

transfer orbits.

The main challenge of the minimum fuel problem is its discontinuous thrust profile.

This problem is addressed through a homotopy of sigmoid smoothing functions. As the

homotopy parameter approaches zero the cost function approaches the minimum fuel cost

and the thrust profile approximates a discontinuous function. The optimal transfer is then

employed as an initial guess for a transfer that uses inertially fixed thrust vectors. The

chapter concludes with a discussion of the targeting formulation for this inertially fixed

transfer and its motivation.

5.1 Minimum Energy Problem

Fuel optimal transfers are often numerically difficult to compute due to the discontinuous

nature of their thrust profiles discussed more in depth in section 5.2. In order to ease the

process, a minimum energy transfer is computed to act as an initial guess for the minimum

fuel solution. The cost function for this problem is stated as

J =
∫

ū(t)2dt (5.1)

The equations of motion follow that of the CR3BP+LT dynamics as discussed in Chapter

2, with the control vector, ū, defining the three dimensional thrust vector of the low thrust

engine. For this problem it is assumed that the control at any point in time is any element
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of R3. The lack of constraint on the control magnitude allows the optimization process to

result in a solution that requires thrust magnitude greater than the maximum achievable by

contemporary propulsion technology. However, a good initial guess generally results in at-

tainable thrust magnitudes. Additionally, the minimum energy problem is merely employed

as an initial guess for the minimum fuel strategy. It is not necessary for it to meet any oper-

ational constraints. The minimum fuel formulation implements an implicit path constraint

on thrust magnitude to ensure a implementable thrust profile. This technique is discussed

more in later sections of this chapter.

A hamiltonian is constructed by adjoining the lagrangian to the equations of motion to

form

H = ū2 + λxẋ + λyẏ + λz ż + λẋfx + λẏfy + λżfz (5.2)

Where the subscripts on the equations of motion, f , indicate the coordinate of the particular

equation, while subscripts of the costates, λ, indicate the state element that is associated

with the particular costate. The hamiltonian is not an explicit function of time and therefore

is constant for this problem.

It is convenient at times to refer to subsections of the costate vector such as the costates

associated with position or velocity state elements. These subvectors are denoted as λr and

λv respectively. By Euler-Lagrange theorem the thrust control is related to the costates by

ū = −1
2 λ̄v (5.3)

The steering law restriction presented in Equation ( 5.3 ) is consistent with Lawden’s primer

vector. Lawden’s Primer Vector theory forces tangency between the control input and the

velocity costates in order for the minimum principle to be upheld[ 21 ].
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The E-L theorem also gives the optimal derivatives of the costates from Equation (  4.11 ).

These derivatives are integrated to form the control history throughout the transfer. The

differential equations for the costates are

˙̄λr = −


U∗

xx U∗
xy U∗

xz

U∗
xy U∗

yy U∗
yz

U∗
xz U∗

yz U∗
zz

 λ̄v (5.4)

˙̄λv = −λ̄r + 2


λẏ

λẋ

0

 (5.5)

Optimal trajectories are expressed by the CR3BP+LT equations of motion along with the

equations of motion for the six associated costates in Equations ( 5.4 ) and (  5.5 ). This re-

formulation of the optimization problem increase the number of differential equations to a

twelve dimensional system. However, 2PBVPs in this system are generally smooth and have

relatively large solution basins compared to formulations of the minimum fuel problem. As

a result, the minimum energy transfer problem is solved first and acts as an initial guess for

the minimum fuel problem.

5.1.1 Transversality of Orbit to Orbit Transfers

Cislunar orbit transfer applications generally involve a transfer between specific orbits

rather than specific states. The orbit that the transfer originates is known as the source,

while the destination orbit is called the sink. The phasing along the orbits is free to change

and this added freedom may allow for greater cost reduction. The transversality condition

is employed to select the points on the orbits that the transfer intersects. A diagram in

Figure  5.1 highlights the freedoms in the orbit to orbit problem. The values of τ1 and τ2

represent the time along the source and sink orbits where the thrusting begins and ends. The

transversality condition is implemented to select these times optimally resulting in cheaper

transfers than the fixed state problem.
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Figure 5.1. Orbit to orbit optimal transfer problem

The transversality condition is implemented to ensure the optimality of the initial and

final state. In this investigation time of flight remains fixed to avoid successive iterations

of the targeting process moving toward the globally optimal infinite time solution thereby

preventing convergence[ 24 ]. The fixed TOF implies the initial and final times of the transfer

cannot vary, therefore dtf and dt0 are zero. As a result, the transversality condition does

not place a constraint on the value of the hamiltonian. The initial and final states are not

fixed however. Each state has one degree of freedom in the form of time along the orbits.

Therefore, these variations are written in terms of τ as

dx̄0 = ˙̄x0dτ1 (5.6)

dx̄f = ˙̄xfdτ2 (5.7)

Equations (  5.6 ) and (  5.7 ) are plugged into Equation (  4.16 ) to create two new optimality

constraints for τ1 and τ2 thereby creating a square system. The final transversality constraints

are listed as

λ̄0 · ˙̄x0 = 0 (5.8)

λ̄f · ˙̄xf = 0 (5.9)

60



and final targeting problem is now defined by the free variables and constraints,

x̄ =


λ̄0

τ1

τ2

 , F̄ =


x̄f − γsink(τ2)

λ̄0 · ˙̄x0

λ̇f · ˙̄xf

 (5.10)

The targeting problem for the minimum energy transfers between orbits is fully constrained

with 8 free variables and 8 constraints. Due to the numerical challenges in targeting these

transfers a mutliple shooting scheme is employed to solve the problem. Constraint derivatives

are computed using an STM of the same form as the STM in Chapter 3 however with

additional entries for the costate vector.

5.1.2 Minimum Energy STM

A newton-rhapson targeting method is applied to solve the 2 point boundary value prob-

lem and compute a minimum energy transfer. The partial derivative of each constraint with

respect to each variable is required to form the jacobian of the update equation given in

Equation ( 3.16 ). In the jacobian matrix the effects of changing the initial states or costates

on the final states and costates is linearly estimated using an STM similar to the state only

STM discussed in Chapter 3. The STM for the minimum energy problem is a 12 by 12

matrix with an initial value equal to identity. As with the ballistic STM, its derivative is

calculated at each time step and integrated with the trajectory. The linearization is given as

AminE =

Abal
δx̄f

δλ̄0
δλ̄f

δx̄0

δλ̄f

δλ̄0

 (5.11)

δx̄f

δλ̄0
=

03 03

03 −1
2I3

 (5.12)

δλ̄f

δλ̄0
=

 03 −U∗
2

−I3 Ω

 (5.13)
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δλ̄f

δx̄0
=


G1 G2 G3

G2 G4 G5

G3 G5 G6

 (5.14)

Where the G entries consist of 3rd derivatives of the pseudo-potential. The subscript 2

under U∗ in Equation (  5.13 ) refers to the fact that these entries are the matrix of all second

derivatives of U∗ as written in Equation ( 5.4 ). The equations for each value of G is

G1 = −λv ·


U∗

xxx

U∗
xxy

U∗
xxz

 (5.15)

G2 = −λv ·


U∗

xxy

U∗
xyy

U∗
xyz

 (5.16)

G3 = −λv ·


U∗

xxz

U∗
xyz

U∗
xzz

 (5.17)

G4 = −λv ·


U∗

xyy

U∗
yyy

U∗
yyz

 (5.18)

G5 = −λv ·


U∗

xyz

U∗
yyz

U∗
yzz

 (5.19)

G6 = −λv ·


U∗

xzz

U∗
yzz

U∗
zzz

 (5.20)
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These matrices are integrated along with the equations of motion to produce an STM for

both the states and costates. The matrix at the end of th propagation relates changes in the

initial state and costate elements with changes in the final state and costate elements.

The minimum energy problem has solutions that continuously vary thrust direction and

magnitude. These long term continuous maneuvers are not possible for actual spacecraft

to implement. Additionally, the optimal minimum fuel transfers use less propellant than

the minimum energy transfers by definition. The minimum fuel problem is solved using a

multiple shooting newton-rhapson targeting scheme, similar to the minimum energy solution.

However, this problem results in limited duration, fixed thrust magnitude maneuvers that

adhere more closely to modern spacecraft capabilities. The value of initially solving the

minimum energy problem is that its continuous nature makes it more numerically stable

and less sensitive than the minimum fuel problem. The resulting solution of the minimum

energy problem is used as an initial guess to improve the convergence of the minimum fuel

problem.

5.2 Minimum Fuel Problem

Ultimately the minimum fuel solution is preferred to the minimum energy solution due

to its lower propellant cost and implicit constraint on the thrust magnitude. This problem

has a cost function of

J =
∫

|u(t)|dt (5.21)

The same analysis as described in section 5.1 is employed to construct the hamiltonian as

well as the optimal time derivatives for the costates. The hamiltonian of this cost function

is constructed as

H = |ū| + λxẋ + λyẏ + λz ż + λẋfx + λẏfy + λżfz (5.22)

The derivative of Equation ( 5.22 ) with respect to the control is computed to produce the

optimal thrust vector given by

λv = − ū

|u|
(5.23)
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While the construction of this necessary condition is the same for all indirect optimization

problems, the relation between the optimal control vector and the costates has new features

in this formulation that must be explicitly addressed.

Notice in Equation ( 5.23 ) the control vector is not fully determined. The thrust must

point in the opposite direction of the pointing vector, but the primer vector only gives infor-

mation about the thrust unit vector the thrust magnitude is not explicitly stated. According

to Pontriagin’s principle the minimum fuel solution is achieved through a bang-coast-bang

thrust profile[  40 ]. This refers to a spacecraft thrusting at a maximum value for sections of

the transfer while coasting during others. A switching function is implemented to determine

when thrusting or coasting is optimal. The switching function for a fixed mass spacecraft is

given as

S = |λv| − 1 (5.24)

When S is negative the spacecraft coasts and when S is positive the spacecraft must thrust

at a maximum thrust magnitude for an optimal trajectory. Therefore, the minimum fuel

problem requires a predefined maximum thrust magnitude for the solution to exist. The

advantage of this finding is that there is no risk of the optimal solution computed by the

targeting process requiring an overly large thrust magnitude at any point along the transfer.

However, a drawback is that the thrust profile is discontinuous. Discontinuities in the differ-

ential equations cause targeting methods, such as the newton-rhapson method implemented

in this investigation, to struggle. Section 5.3 discusses how this problem is addressed through

the use of sigmoid smoothing functions.

5.3 Sigmoid Smoothing

Sigmoid smoothing, also known as a logarithmic penalty function, is used to ease the

numerical challenges with taregting fuel optimal low thrust transfers. This method uses

a sigmoid function to smoothly approximate the discontinuous nature of the fuel optimal

control history. A homotopy variable, ε, is employed to transition the solution from a

smooth, easily integrable function to a nearly discontinuous optimal fuel trajectory. There

are several methods for smoothly transitioning to the optimal thrust trajectory including a
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linear combination of minimum fuel and minimum energy[  43 ], a homotopy in the exponent

of the lagrangian[  44 ], or the sigmoid smoothing function[ 45 ], [  46 ]. Parrish implements these

methods on a variety of transfer scenarios and concludes that the sigmoid function converges

most reliably and with the fewest number of homotopy steps. The advantage of the sigmoid

function is that it ensures the control vector is a differentiable function of the costates

at all control magnitudes. The linear homotopy is discontinuous at both the minimum and

maximum thrust values, while the exponent homotopy is discontinuous at only the maximum

thrust values[ 25 ]. Sigmoid smoothing is implemented in this investigation due to the fully

continuous nature of the produced control resulting in better numerical accuracy of the STM

approximations. The cost function for the sigmoid smoothed optimal fuel trajectory is

J =
∫

|ū| + ε[ūlnū + (1 − ū)ln(1 − ū)]dt (5.25)

Notice that for small values of ε the cost function approaches the minimum fuel problem

cost, Equation ( 5.21 ). The new optimal magnitude and direction of the control vector are

again calculated using E-L theory. The control vector must follow Lawden’s pointing vector,

but as opposed to the unsmoothed minimum fuel problem a continuous function defines the

magnitude of th vector. The optimal direction and magnitude are

|u| = −Tmax

2 [1 + tanh
(

S

2ε

)
] (5.26)

and

û = −λ̂v (5.27)

respectively. In Equation ( 5.26 ), Tmax is the maximum thrust acceleration that the spacecraft

can produce. As ε approaches zero the thrust magnitude approximates a step function

between 0 and the maximum thrust magnitude. In order to find solutions with ε near zero

first solutions are computed for large values of ε. The solutions then act as an initial guess

for a reduced ε value. This process is continued until the thrust profile of the solution well

approximates a step function. This iterative solving of similar problems with a successively

changing parameter is known as homotopy. Beginning with a smooth easily differentiable
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control law ensures convergence due to the wider attraction basin of solutions in the less

sensitive problem. The produced solution is then likely within the smaller basin of attraction

for the subsequent slightly more sensitive problem, provided the homotopy parameter is

reduced slowly. A figure of the homotopy process is given in Figure  5.2 . Figure  5.2 exhibits

Figure 5.2. Evolution of an arbitrary low thrust arc as epsilon decreases

the thrust profile for an arbitrary transfer between two states in the CR3BP with a variety

of ε values. The larger ε solutions have smooth thrusting throughout the entire transfer.

The smallest ε appears almost completely discontinuous with jumps between zero and the

maximum thrust magnitude.

One challenge when implementing the sigmoid smoothing technique is selecting the initial

value for ε. Small values are challenging to converge but overly large values also have numeri-

cal limitations. The computation of STM elements for large ε require the subtraction of large

similar valued numbers. Thus the STM for these problems acts as a poor approximation for

the costate sensitivities. A lack of accurate constraint derivatives causes the newton-rhapson

targeting scheme to struggle. Generally, well-behaved convergence properties are achieved

for cislunar transfer applications by setting the initial ε to a value of 1.

66



5.4 Inertially Fixed Thrust Solutions

The fuel optimal solutions have a bang-coast-bang geometry in thrust magnitude, but

the thrust direction still varies continuously during thrusting arcs. This geometry requires

constant gimbaling of thrusters and precise attitude control for an actual spacecraft to follow

the flight path. This requirement makes the solutions practically infeasible. After construct-

ing the fuel optimal transfers a final targeting problem is employed to produce a solution that

has a thrust vector fixed in the inertial frame. The Inertially Fixed Thrust Transfer (IFTT)

is the last solution computed throughout this design process. Other practical constraints

can be added during this design step such as a maximum thrust time per arc, direction

restriction to allow favorable spacecraft orientation, or specific duty cycle restrictions.

The solution to the minimum fuel problem acts as an initial guess where each thrust arc

is set to an inertially fixed direction and the coast arcs are unchanged. The inertially fixed

thrust direction is initially set to the thrust direction at the beginning of the thrust arc in the

minimum fuel solution. Simply using the initial thrust vector is sufficient for convergence of

the applications posed in this investigation, however using an average vector over the arc as

discussed by Lafarge may form a closer initial guess for more sensitive problems[ 47 ]. The new

targeting problem is similar to those previously discussed however the thrust components are

directly selected by the targeter rather than a function of costates. The problem formulation

is

X̄ =



x̄2
...

x̄n−1

T̄1
...

T̄m

τ1
...

τn



, F̄ =



x̄2 − x̄3
...

x̄n−1 − x̄n

|T̄1| − Tmax

...

|T̄m| − Tmax


(5.28)
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In Equation (  5.28 ) there are n total arcs along the transfer m of which are thrusting arcs.

The inertially fixed thrust direction for the ith arc is denoted T̄i, and τi is propagation time

for each arc. The maximum thrust for the specific spacecraft, Tmax, is set to a value that

matches the spacecraft capabilities. The IFTT targeter produces extremely cheap transfers

because the initial guess is optimal, however no optimality constraint is included in this

targeting scheme. The thrust is treated as a parameter of the equations of motion for each

thrusting arc and therefore the method for determining the derivatives of state with respect

to a parameter is employed as discussed in section 3.3. A diagram of a optimal fuel thrusting

arc and associated IFTT solution is depicted in Figure  5.3 .

Figure 5.3. Initial optimal thrust arc compared to fixed thrust direction arc

The diagram depicts thrust arcs in th inertial frame. Both arcs hav a constant thrust

magnitude however before IFTT targeting the thrust vectors continuously change direction

as opposed to after the IFTT targeting where the direction is fixed. While optimality is lost

in this step of the transfer design process the final transfers require very little propellant. For

the example transfers produced in this investigation all IFTTs remain close in propellant cost

to the minimum fuel transfers and most require less propellant than the minimum energy

solutions.

The methods discussed in this chapter allow for rapid propellant efficient transfer design

within cislunar space. The method leverages, the large basin of attraction for solutions in

the minimum energy problem, the propellant savings of the minimum fuel solution, and the

numerical stability of sigmoid smoothing. Through these intermediate problems a propellant

efficient initial guess is produced for use in the IFTT targeter. Overall, these methods

mitigate the challenges with indirect optimization for low thrust transfer design applications.
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The strengths of the minimum fuel and minimum energy problem formulations work in

tangent to inform the IFTT design.
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6. RESULTS

The main challenge in producing optimal transfers with indirect optimization is in selecting

the initial values for the costates. In general the costates do not have physical meaning thus

intuition about what makes a good initial guess is hard to develope. Authors have analyzed

multiple methods for determining these values including direct optimization, neural nets,

adjoint control laws, etc.[  25 ], [  45 ], [  46 ], [  48 ].These methods have varying levels of success

but are generally computationally expensive. However, setting all costates to zero does

have physical interpretation. A ballistic structure allows DST to produce insights into the

natural dynamics of the system. These insights are leveraged during the transfer construction

process.

In this chapter the transfer design techniques discussed in chapter 5 are applied to a

variety of sample missions between multi-body orbits. The transfers are grouped into three

categories based on the ballistic structures used as an initial guess for the targeting process.

The first category includes transfers that leverage multi-body orbits for an initial guess.

These transfers connect orbits of the same family. Orbit families in the CR3BP are contin-

uous. As a result, for any two orbits in the same family there must exist orbits between

them with similar characteristics. Segments of the intermediate orbits are leveraged to seed

the targeting problem with ballistic trajectories. For transfers between orbits of different

families, the stable and unstable manifolds act as an initial guess. This formulation takes

advantage of the natural flow to and away from unstable orbits in the CR3BP. Additionally,

manifolds tend to traverse large regions of cislunar space and therefore provide many oppor-

tunities for transit. The final category consists of transfers that require stretching directions

for initial guess construction. This method is necessary to produce transfers between stable

orbits of different families.

The system parameters for this investigation are located in Table  6.1 and the spacecraft

specific parameters are located in Table  6.2 . The spacecraft mass, specific impulse, and max

thrust force are based on the Deep Space 1 mission[  9 ] with max thrust acceleration computed

from force and mass. The parameters are the same for all the presented example transfer

problems but the specific values are not required for the design process. The techniques
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discussed in this investigation are generalizable to any spacecraft by changing the spacecraft

parameters. Additionally, throughout this chapter the computed low thrust transfers are

Table 6.1. System parameters for transfer generation

Parameter Value Units
Mass Ratio (µ) 0.01215361 ND

Characteristic Length (l∗) 384400 Km
Characteristic time (t∗) 3.751951907852177e5 sec

Table 6.2. Spacecraft parameters for transfer generation

Parameter Value Units
Spacecraft Mass (m3) 500 kg

Max Thrust Force (FT ) 92 mN
Max Thrust Acceleration (T ) 0.1841 mm/s2

Specific Impulse (Isp) 2200 s

compared to the TMVD between the orbits or an impulsive transfer from the literature.

These ∆V values are converted to propellant mass based on Equation ( 2.43 ). For comparison

the impulsive spacecraft is assumed to be the same mass as the low thrust spacecraft (500

kg), with infinite max thrust force and a specific impulse of 400s.

6.1 Leveraging Intermediate Orbits

The transfers produced in this section move between orbits in the same family by lever-

aging intermediate family members as initial guesses. This initial guess formulation is highly

effective for same family transfers because of the continuous nature of orbit families in au-

tonomous systems. Any two orbits within a family are guaranteed to have an additional

orbit between them. The first transfer discussed moves from an L1 northern halo orbit with

a Jacobi Constant of 3.16 to an L1 northern halo with a Jacobi Constant of 3.11. Additional

characteristics of the orbits as well as there initial conditions are given in Table  6.3 .

The first step in the transfer construction process is to select segments of intermediate

orbits to act as an initial guess for the targeting process. The segments are selected as half
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Table 6.3. Characteristics of L1 halo orbits used in transfer

Parameter Source Orbit Sink Orbit
Family L1 Northern Halos L1 Northern Halos

Jacobi Constant 3.16 3.11
Period (days) 11.9598 12.0883

z-Amplitude (km) 16,032 36,236
Stability Index (|λ̄|∞) 1,835 682
Initial Position (ND) [0.8630,0,-0.0351] [0.8919,0,-0.0697]
Initial Velocity (ND) [0,-0.1673,0] [0,-0.2633,0]

of each intermediate orbit and are evenly spaced in Jacobi Constant. Using half orbits as the

initial guess is somewhat arbitrary, but later transfers in this section discuss the implications

of changing the initial guess formulation. The Initial guess for this example is depicted in

Figure  6.1 .

Figure 6.1. Initial guess for a low thrust transfer between halo orbits, lever-
aging intermediate orbits

The corrections process as discussed in Chapter 3 is performed to produce an energy

optimal solution between these two orbits. This transfer given in Figure  6.2 . Has a time

of flight of 24.09 days and uses 3.4685 kg of fuel. The thrust profile is presented in figure

Figure  6.3 The resulting propellant mass cost is compared to the TMDV between the two

orbits. As discussed in Chapter 3 the TMDV depends on the location the maneuver takes

place. The TMDV for the same family transfers is computed as the smallest TMDV for

a single maneuver at any point on either of the two orbits. While it is unlikely that for
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Figure 6.2. Minimum energy transfer between L1 northern halo orbits from
JC = 3.16 to JC = 3.11

Figure 6.3. Minimum energy thrust profile between L1 northern halo orbits
from JC = 3.16 to JC = 3.11

these orbits a transfer exists that follows all the assumptions of the TMDV, it provides

a metric to compare to the low thrust transfer. For these orbits the TMDV is 112 m/s,

therefore 14.4748 kg of propellant is required for an impulsive transfer between these orbits.

The added efficiency of the high Isp low thrust engine produces a transfer with over 75%

reduction in propellant cost.

More propellant savings can be produced by solving the minimum fuel problem. The

minimum energy solution is used as an initial guess to ensure convergence of this slightly more

sensitive transfer. As discussed in Chapter 5 sigmoid smoothing is employed to approximate

the optimal bang-coast-bang solution. The resultant transfer along with its thrust profile

is given in Figures  6.4 and  6.5 . The new time of flight and fuel mass are 24.09 days and
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Figure 6.4. Minimum fuel transfer between L1 northern halo orbits from JC
= 3.16 to JC = 3.11

Figure 6.5. Minimum fuel thrust profile between L1 northern halo orbits
from JC = 3.16 to JC = 3.11

3.2524 kg respectively. Notice the TOF is unchanged due to the fixed time constraint. As

previously discussed in Chapter 5, the fixed time constraint prevents the movement of the

solution toward the infinite time global optimal. As expected, the minimum fuel has lower

propellant consumption than the minimum energy solution, however the savings are small.

An additional benefit of implementing the minimum fuel transfer is that there is an implicit

constraint placed on the magnitude of the thrust vector. This constraint ensures that the

thrust is not greater than the capabilities of the spacecraft or too small for implementation

as visible in Figure  6.5 . Notice that the black curve in the figure representing the thrust

magnitude acts as a good approximation of a step function. However, the x, y, and z

components of the control vary smoothly while thrusting. The continuous reorientation of

74



the thrust vector is not practical for real spacecraft, therefore the IFTT targeter must be

implemented to find the final transfer.

The continuously changing thrust directions must be fixed in the inertial frame to meet

operational constraints. A final targeting problem produces an IFTT that no longer main-

tains optimality, but is near the optimal solution and therefore very low cost. The resulting

transfer and thrust profile are in Figures  6.6 and  6.7 . The transfer requires 3.7934 kg of pro-

pellant and has a TOF of 22.5150 days. Notice the fuel consumption has slightly increased

due to the loss of optimality but it is still more efficient than the impulsive TMDV due to the

added efficiency of the low thrust engine and the low cost of the initial guess. Additionally,

the thrust profile is fixed in the inertial frame. The thrust vector T̄ I = [T I
x , T I

y , T I
z ] is plotted

for this solution rather than the thrust vector in rotating frame coordinates. Therefore, the

thrust components do not change with time as visible in Figure  6.7 . Lastly, the TOF is 1.5

days shorter than the optimal transfers. TOF is allowed to vary in this targeting problem

freely thus the shorter time of flight is not guaranteed by the IFTT targeter. In general

the IFTT TOF may be longer, shorter, or roughly the same length as the optimal transfers

depending on the exact application. Table  6.4 summarizes the time of flight and propellant

Figure 6.6. IFTT between L1 northern halo orbits from JC = 3.16 to JC = 3.11

mass consumption for each converged transfer, as well as the propellant cost for the TMDV

using an impulsive engine.
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Figure 6.7. IFTT thrust profile between L1 northern halo orbits from JC =
3.16 to JC = 3.11

Table 6.4. Summary of L1 halo orbit transfers

Transfer Fuel Mass (kg) Time of Flight (days)
Minimum Energy 3.4685 24.0902

Minimum Fuel 3.2524 24.0902
IFTT 3.7934 22.5150

Impulsive TMDV 14.4748 n/a

6.1.1 Additional Revolutions

The same transfer is computed again using more intermediate orbit segments for the

initial guess. Because the indirect optimization process produces a local minimum in the cost

function, experimentation with the initial guess results in different locally optimal transfers.

These other optimal solutions may be of interest depending on the application. For the L1

halo orbit example, additional intermediate segments act as the initial guess to produce a

longer time of flight transfer with lower propellant cost. This initial guess is shown in figure

Figure  6.8 . The resultant minimum energy, minimum fuel and IFTT transfers along with

their thrust profiles are given in Figures  6.9 to  6.14 . Additionally, Table  6.5 summarizes

propellant cost and times of flight of the converged transfers.

The most notable difference between these transfers and the original set of transfers

between the same orbits is their time of flights. The construction process leveraged twice

as many intermediate orbit segments resulting in transfers with approximately double the
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Figure 6.8. Initial guess using additional revolutions to transfer between L1
northern halos at JC = 3.16 and 3.11

Figure 6.9. Minimum energy transfer between L1 northern halos at JC =
3.16 and 3.11 leveraging additional revolutions

Figure 6.10. Thrust profile of the minimum energy transfer between L1
northern halos at JC = 3.16 and 3.11 leveraging additional revolutions
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Figure 6.11. Minimum fuel transfer between L1 northern halos at JC = 3.16
and 3.11 leveraging additional revolutions

Figure 6.12. Thrust profile of the minimum fuel transfer between L1 northern
halos at JC = 3.16 and 3.11 leveraging additional revolutions

Figure 6.13. IFTT between L1 northern halos at JC = 3.16 and 3.11 lever-
aging additional revolutions
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Figure 6.14. Thrust profile of the IFTT between L1 northern halos at JC =
3.16 and 3.11 leveraging additional revolutions

Table 6.5. Summary of L1 halo orbit transfers with longer times of flight

Transfer Fuel Mass (kg) Time of Flight (days)
Minimum Energy 3.5774 48.1228

Minimum Fuel 3.1760 48.1228
IFTT 3.3791 47.3931

Impulsive TMDV 14.4748 n/a

time of flight. However, an advantage of the longer time of flight is that the minimum fuel

and IFTT transfers use less propellant than their shorter counterparts. While the propellant

savings are relatively small, some spacecraft may elect to follow longer time of flight transfers

for applications where propellant mass is a limiting constraint. The minimum energy transfer

does not have lower propellant cost, however, the thrust magnitude of the transfer is reduced,

as evident by comparing Figures  6.3 and  6.10 . This lower magnitude could be useful when

transitioning to minimum fuel transfers with lower maximum thrust capabilities.

6.1.2 Northern to Southern Halos

The process of computing solutions for increasingly challenging problems is repeated for a

transfer between an L1 northern halo and an L1 southern Halo with JC = 3.1694. The orbit

characteristics are summarized in Table  6.6 . These orbits are selected because a heteroclinic

transfer exists between them. The free transfer between these orbits is computed by Haapala

[ 20 ]. Figure  6.15 is a copy of the figure illustrating the geometry of the free transfer. By
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definition the heteroclinic represents a propellant free transfer between these two orbits. It

leverages the manifolds to asymptotically depart and approach the orbits. As a result, it is

not possible for the low thrust transfer to use less propellant, however the heteroclinic has

a relatively long time of flight of 74.7445 days. In this case the advantage of the low thrust

transfer is that the TOF can be greatly reduced for a small increase in propellant cost.

Table 6.6. Characteristics of L1 halo orbits with a heteroclinic connections

Parameter Source Orbit Sink Orbit
Family L1 northern halo L1 southern halo

Jacobi Constant 3.1694 3.1694
Period (days) 11.9285 11.9285

z-Amplitude (km) 9,308 9,308
Stability Index (|λ̄|∞) 2167 2167
Initial Position (ND) [0.8577,0,-0.0208] [0.8577,0,0.0208]
Initial Velocity (ND) [0,-0.1459,0] [0,-0.1459,0]

Figure 6.15. Reproduction of Haapala’s heteroclinic transfer between L1
northern halo and L1 southern halo at JC = 3.1694

The northern and southern sections of the L1 halo orbits are subsections of the same

family. Thus there exists a continuous set of orbits containing both the northern and southern

halos. The construction of free transfers between these orbits requires the orbits stable

and unstable manifolds, however the construction of low thrust transfers can leverage the

intermediate orbits within the family. The initial guess for the optimization problem is

constructed using segments of these orbits. The initial guess is depicted in Figure  6.16 .

The minimum energy, minimum fuel, and IFTT transfers along with their thrust profiles

are shown in Figures  6.17 to  6.22 . They are constructed following the same methodology
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Figure 6.16. Initial Guess for a transfer between L1 northern and southern
halo orbits at JC = 3.1694

as employed for the previous transfer problems in this section. Table  6.5 summarizes these

solutions.

Figure 6.17. Minimum energy transfer between L1 northern and southern
halo orbits at JC = 3.1694

Table 6.7. Summary of transfers between L1 northern and southern halo orbits

Transfer Fuel Mass (kg) Time of Flight (days)
Minimum Energy 3.0906 23.7956

Minimum Fuel 2.4950 23.7956
IFTT 2.4939 23.8354

heteroclinic 0 74.7445
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Figure 6.18. Thrust profile of a minimum energy transfer between L1 north-
ern and southern halo orbits at JC = 3.1694

Figure 6.19. Minimum fuel transfer between L1 northern and southern halo
orbits at JC = 3.1694

Figure 6.20. Thrust profile of minimum fuel transfer between L1 northern
and southern halo orbits at JC = 3.1694
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Figure 6.21. IFTT between L1 northern and southern halo orbits at JC = 3.1694

Figure 6.22. Thrust profile of IFTT between L1 northern and southern halo
orbits at JC = 3.1694

This example demonstrates another advantage of implementing low thrust techniques

for transfer design in the cislunar region. The added freedom of the continuous control

allows for much shorter time of flight transfers than that of the natural dynamics. This

time reduction coincides with a small increase in propellant mass due to the high Isp of the

engine. Additionally, the spatial heteroclinic transfers exist as point solutions. They tend

to be challenging to compute and are not guaranteed to exist between any two orbits of

the same Jacobi Constant without impractically long times of flight. In contrast low thrust

transfers can be constructed through intermediate orbit segments for any two orbits of the

same family regardless of their energy levels.
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6.2 Leveraging Manifolds

Orbits of different families do not have clear intermediate orbits to act as initial guesses

for the targeting process. Transfers for these scenarios often involve movement between

different regions of cislunar space. Stable and unstable manifolds are employed for these

applications. As has been demonstrated in impulsive transfer design, stable and unstable

manifolds can be leveraged as initial guesses for transfers between orbits of different families

[ 20 ].

To form the initial guesses for the optimization process, the unstable manifold of the

source orbit and the stable manifold of the sink orbit are propagated around the lunar

vicinity for a long period of time. The goal of this process is to find locations where the

manifolds nearly intersect in full six dimensional space. If there is a location where the

manifolds perfectly intersect then a free, heteroclinic transfer, exists between the orbits and

low thrust is not necessary. However, there is no guarantee that these free transfers exist

between any two orbits and when they do exists they may have very long times of flight as

demonstrated in the previous section.

Manifold arcs that nearly coincide in six dimensional space are corrected for full continuity

using low thrust. In order to find these close manifold arcs a hyperplane is constructed. Only

manifold states at hyperplane crossings are considered thereby reducing the dimensionality of

the problem by one. The hyperplane crossings are viewed on a poincare map to identify near

intersections between the stable and unstable arcs. The position of points on the poincare

map along with the hyper plane location fully constrains the position of any hyperplane

crossing however additional visualization is necessary to determine the velocity of the states.

The velocity information is indicated by arrows originating at each point as implemented by

Haapala [  20 ]. Thus A good initial guess is computed from hyperplane crossings that nearly

coincide on the map and have arrows of similar length and direction.

A transfer between an L1 northern halo and L2 southern halo at a Jacobi Constant of

3.09 is computed to demonstrate the methodology. The orbit information is described in

Table  6.8 . Manifold arcs of each orbit are propagated for a long period of time depending on

the application. For this investigation manifold arcs are propagated for 34 days. Therefore
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any initial guess has a maximum TOF of 64 days, but this maximum is not reached in

any of the assessed mission scenarios. Selecting too short a propagation time results in

very few plane crossings and therefore few opportunities for connections. Too long of a

propagation time results in overly long time of flight transfers. However, the propagation

time and hyperplane location are often different depending on the exact orbits between which

the transfer occurs. The example manifolds and hyperplane constructed at x = 1 − µ are

presented in Figure  6.23 .

Table 6.8. Characteristics of L1 and L2 halo orbits for transfer

Parameter Source Orbit Sink Orbit
Family L1 Northern Halos L2 Southern Halos

Jacobi Constant 3.09 3.09
Period (days) 12.1049 14.1597

z-Amplitude (km) 42,580 49,038
Stability Index (|λ̄|∞) 432 339
Initial Position (km) [0.9045,0,-0.0773] [1.0691,0,0.0710]

Initial Velocity (km/s) [0,-0.2993] [0,0.3187,0]

Figure 6.23. Stable manifold of the L1 northern halo and L2 southern halo
at JC = 3.09 and a hyperplane at x = 1 − µ

In the three dimensional spatial view, identifying possible transit trajectories is extremely

challenging. Therefore, the hyperplane is implemented to reduce the dimensionality of the
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problem and make selecting the manifold arcs for the initial guess much more straight for-

ward. Figure  6.24 is the hyperplane view of the manifold trajectories. Here, the red repre-

sents the unstable manifold crossings of the source orbit and the blue represents the stable

manifold crossings of the sink orbit. The position of each point gives the position of the

states while the arrows indicate their velocity. The circled points are the closest in full six

dimensional space and therefore act as a good initial guess for the transfer. The initial guess

computed from the poincare map is depicted in Figure  6.25 The same method is employed

(a) View of all map intersections (b) Zoomed view on selected manifold arcs

Figure 6.24. Poincare map at x = 1−µ of L1 northern halo and L2 southern
halo manifold crossings at JC = 3.09

to convert the initial guess into converged minimum energy, minimum fuel, and IFTT trans-

fers. The optimal transfers and thrust profiles are located in Figure  6.26 while the IFTT and

associated thrust profile are in Figures  6.27 and  6.28 . Table  6.9 contains the time of flight

and propellant mass for each transfer.

Table 6.9. Summary of transfers between L1 northern and L2 southren halo orbits

Transfer Fuel Mass (kg) Time of Flight (days)
Minimum Energy 3.7491 24.6321

Minimum Fuel 3.2250 24.6321
IFTT 3.3755 24.6598
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Figure 6.25. Initial guess for the transfer between L1 northern halo and L2
southern halo at JC = 3.09

A different mission scenario is considered between the L1 northern halo at a Jacobi Con-

stant of 3.1469 and the L2 southern halo at a Jacobi Constant of 3.1317. The characteristics

of the orbits are located in Table  6.10 . Because the orbits are of different energy levels, no

free transfer exists. The TMDV between the two orbits is computed as 49.2 m/s. However,

a lower cost transfer is computed by Haapala [  20 ]. The geometry of this low cost transfer

is presented in Figure  6.29 . The transfer has a time of flight of 28.9769 days and a single

maneuver of 18.2642 m/s. This ∆V cost requires 2.3327 kg of fuel for an impulsive engine as

described in Table  6.2 . The transfer has a lower ∆V than the theoretical minimum because

the maneuver is performed closer to one of the primaries than the orbits.

Table 6.10. Characteristics of L1 northern and L2 southern halo orbits with
low cost transfer

Parameter Source Orbit Sink Orbit
Family L1 Northern Halos L2 Southern Halos

Jacobi Constant 3.1496 3.1317
Period (days) 12.0008 14.6532

z-Amplitude (km) 22,560 26,913
Stability Index (|λ̄|∞) 1441 836
Initial Position (km) [0.8242,0,.0587] [1.1754,0,-0.0700]

Initial Velocity (km/s) [0,0.1694,0] [0,-0.1790,0]
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(a) Minimum energy transfer (b) Minimum energy thrust profile

(c) Minimum Fuel transfer (d) Minimum fuel thrust profile

Figure 6.26. Optimal transfers and thrust profiles between an L1 northern
halo and L2 southern halo at JC = 3.09

Targeting is employed to produce optimal low thrust transfers between these orbits. As

with the previous example the minimum fuel solution acts as an initial guess for an IFTT.

The optimal transfer geometry and thrust profiles are depicted in Figure  6.30 , while the

final IFTT geometry and thrust profile are depicted in Figures  6.31 and  6.32 . A summary

of the time of flights and propellant mass consumption of all the transfers are given in

Table  6.11 . Notice, the IFTT uses less propellant mass and has a shorter time of flight

than the impulsive transfer. The low thrust transfers presented in this section leverage the

same manifold structures in their construction as their impulsive counterparts. However,
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Figure 6.27. IFTT between an L1 northern halo and L2 southern halo at JC = 3.09

Figure 6.28. IFTT thrust profile between an L1 northern halo and L2 south-
ern halo at JC = 3.09

Table 6.11. Summary of transfers between L1 northern and L2 southern halo
orbits with low cost transfer

Transfer Fuel Mass (kg) Time of Flight (days)
Minimum Energy 0.9323 29.8788

Minimum Fuel 0.5346 29.8788
IFTT 0.5737 18.9593

Impulsive Transfer 2.3327 28.9769
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Figure 6.29. Reproduction of Haapala’s low cost transfer figure between L1
northern and L2 southern halo orbits at JC = 3.1469 and JC = 3.1317

(a) Minimum energy transfer (b) Minimum energy thrust profile

(c) Minimum Fuel transfer (d) Minimum fuel thrust profile

Figure 6.30. Optimal transfers and thrust profiles between L1 northern and
L2 southern halo orbits at JC = 3.1469 and JC = 3.1317

90



Figure 6.31. IFTT between L1 northern and L2 southern halo orbits at JC
= 3.1469 and JC = 3.1317

Figure 6.32. IFTT thrust profile between L1 northern and L2 southern halo
orbits at JC = 3.1469 and JC = 3.1317

the added freedom and efficiency of the low continuous thrust engines produce favorable

transfers in many applications. In summary, the low thrust spacecraft model adds flexibility

to the mission design process.
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6.3 Leveraging Stretching Directions

The previous two sections present effective methods for construction of transfers with

particular characteristics. First transfers ar constructed between orbits of the same family.

Transfers between different families are constructed through manifolds for unstable orbits.

However, a method is necessary for constructing transfers between stable orbits of different

families. Selection of intermediate orbits, as an initial guess for these scenarios is challenging

and unintuitive. Additionally, the stable nature of the orbits means that no manifolds

exist that asymptotically approach and depart the orbits. Instead, stretching directions are

employed to inform the direction of impulsive maneuvers. Performing maneuvers along the

orbit and propagating in forward and backward time creates manifold-like structures around

the orbit. These structures are a form of pseudo-manifold that are useful for cislunar transfer

design.

The pseudo-manifold is constructed by computing the most stretching direction for a

particular time horizon at several fixed points along the orbit. The stretching direction of

the sink orbit is computed in negative time to produce trajectories that quickly approach the

orbit from throughout the system. The stretching direction of the source orbit is computed

in positive time to construct arcs that quickly depart the orbit. For this investigation the

direction corresponding to the greatest final change in state due to the change in initial

velocity is computed as described in Chapter 3. A ∆V is applied at each location along the

orbit in this most stretching direction. The maneuver magnitude must be large enough to

ensure the trajectories escape the stable linear dynamics around the orbit. However, overly

large ∆V are harder to remove during the optimal targeting process. The maneuver size is

informed by the TMDV between the orbits. If this size of maneuver results in trajectories

staying near the orbits from which they originate the magnitude is increased. If the ma-

neuver is too large it is reduced until it produces quick departures as cheaply as possible.

The computed stretching direction trajectories are implemented analogously to the manifold

trajectories as discussed in the previous section. They are propagated to a hyperplane of

interest between the orbits with all crossings of the hyperplane examined for near continu-
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ity. An initial guess is produced by examining the hyperplane for near full state continuity

between the trajectories.

Unlike the manifold arcs, the stretching direction trajectories do not represent free arrival

and departure. The initial guess for the transfer has discontinuities in velocity between the

transfer arcs and the source and sink orbits. The manifold arcs initial guess are produced

via a small step off from the orbits in full six dimensional space. Th unstable underlying

dynamics cause the state to exponentially depart the orbit. However, stable orbits generally

need a large manuever to have a similar effect. As a result, the ∆V must be stepped down

through a continuation process. A minimum energy transfer is computed between the post

maneuver states. This solution is then used as an initial guess for a transfer between states

after a slightly smaller maneuver. The process is continued until the impulsive manuevers

are completely removed. Once the transfer begins and ends directly on the orbits of interest

the locations on the orbits are selected optimally via the transversality condition. After

construction of the minimum energy transfer the process is the same as with th previous

applications. Minimum fuel and IFTT transfers are constructed leveraging previous transfers

as initial guesses.

An example transfer is constructed between a DRO at a JC of 2.9604 and a L4SP at a

JC of 2.9132, with a TMDV of 59.1 m/s. These orbits are selected for comparison to the

impulsive transfers constructed by Capdevila [  49 ]. The orbit characteristics are located in

Table  6.12 . Capdevila constructs multiple families of transfers between these two orbits, but

for brevity the low thrust transfer is compared to her lowest ∆V transfer as well as a transfer

at a local minimum in ∆V with the lowest time of flight. The geometry of these transfers is

reproduced in Figure  6.33 .

In order to construct the initial guess for this problem, a stretching direction pseudo-

manifold is constructed for each orbit. The stretching directions are computed for the STM

of a half period to ensure a quick departure. The source orbit uses an STM computed in

forward time while the STM of the sink orbit is computed in backward time. A 50 m/s

maneuver is applied in the most stretching direction at each point on the orbit and the

resulting states are propagated to a hyperplane. The hyperplane is a line on the x-y plane

45 degrees from the x axis intersecting the system barycenter. The two trajectories that
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Table 6.12. Characteristics of DRO and L4SPO for transfer
Parameter Source Orbit Sink Orbit

Family DRO L4SP
Jacobi Constant 2.9604 2.9132

Period (days) 10.0233 28.3508
Stability Index (|λ̄|∞) 1 1
Initial Position (km) [0.8495,0,0] [0.8232,0.8660,0]

Initial Velocity (km/s) [0,0.4794,0] [0.1630,-0.3968,0]

(a) Lowest ∆V transfer
(b) Lowest time of flight local cost minimum
transfer

Figure 6.33. Reproduction of Capdevila’s transfers between a DRO at JC =
2.9604 and a L4SP at JC = 2.9132

coincide closest at the hyperplane are shown in Figure  6.34 . The trajectories act as an

initial guess for the transfer design process. The minimum energy transfer, minimum fuel

transfer, and IFTT are then produced from this initial guess. The transfers and thrust

profiles resulting from the optimization process are depicted in Figure  6.35 , while the IFTT

geometry and thrust profile are presented in Figures  6.36 and  6.37 . The transfers propellant

mass requirements and time of flights are listed for comparison in Table  6.13 

The value of leveraging the added efficiency of low thrust engines becomes apparent in

the stable orbit transfer problem. Due to the stability of the orbits of interest, relatively

high ∆V maneuvers are required to quickly depart the orbit vicinity. The time of flight
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Figure 6.34. Stretching direction initial guess for transfer between DRO and L4SP

Table 6.13. Summary of transfers between DRO and L4SPO

Transfer Fuel Mass (kg) Time of Flight (days)
Minimum Energy 3.9229 45.5169

Minimum Fuel 2.8696 45.5169
IFTT 2.9547 44.7154

Min Propellant Impulsive 5.3804 247.439
Short TOF Impulsive 28.1128 21.5816

for the cheaper transfer is much longer because the spacecraft performs several rotations

around the moon before finally departing towards L4. This slow departure is visible in

Figure  6.33(a) and cannot be avoided without much larger propellant cost for an impulsive

engine. Contrarily, the low thrust transfer is able to depart and arrive on the stable orbits

with greater efficiency. It has notable savings in both propellant cost and time of flight.

The fast impulsive transfer has a lower TOF than the low thrust transfer but the higher

propellant cost may not be practical for all missions.
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(a) Minimum energy transfer (b) Minimum energy thrust profile

(c) Minimum Fuel transfer (d) Minimum fuel thrust profile

Figure 6.35. Optimal transfers and thrust profiles between a DRO at JC =
2.9604 and a L4SP at JC = 2.9132
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Figure 6.36. IFTT between a DRO at JC = 2.9604 and a L4SP at JC = 2.9132

Figure 6.37. IFTT thrust profile between a DRO at JC = 2.9604 and a L4SP
at JC = 2.9132
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7. CONCLUSION

7.1 Summary

The ability to efficiently traverse cislunar space is of the utmost importance for the

expansion of human presence on the Moon. This investigation developes techniques for low

thrust transfer design between libration point orbits within the CR3BP. Indirect optimization

is employed to compute these transfer with very low propellant cost. The chaotic nature of

the CR3BP along with the continuous thrust profile of low thrust transfers create challenges

in conventional trajectory design techniques, however leveraging dynamic structures within

the mathematical model notably mitigates these challenges. The computed transfers require

a fraction of the propellant necessary for impulsive transfers and often have a lower time of

flight. In applications where heteroclinic connections exist, low thrust transfers also have

lower times of flight than the free heteroclinic transfers for a small propellant cost.

The most prominent challenge when formulating an indirect optimization problem is the

initial guess for the costate vector. In general costates do not have any physical interpreta-

tion, however setting all costates to zero results in a fully ballistic trajectory. This insight

allows dynamic structures to act as an initial guess for the transfer design problem. The

resulting initial guesses meet all necessary conditions but not the transversality or continuity

constraints. Differential corrections methods are employed to compute an optimal transfer

from the initial guess that meets these constraints. Orbits, stable/unstable manifolds, and

stretching direction maneuvers are all implemented as ballistic initial guesses. Intermediate

orbits define the structure of transfers between orbits of the same family. Stable and Un-

stable manifolds act as initial guesses between unstable orbits of different families for their

ability to traverse cislunar space. Lastly, stretching direction maneuvers are employed to

form trajectories that quickly depart and arrive at stable orbits. The maneuvers are stepped

down through a continuation process to produce low thrust transfers without an impulsive

∆V.

For ease of convergence, initially a minimum energy solution is produced. These solutions

have relatively low propellant requirements and smooth continuous thrust profiles. The

minimum energy transfer acts as an initial guess for the minimum fuel solution via sigmoid
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smoothing. The resulting transfer requires less propellant mass and has a nearly discrete

thrust profile that approximates the optimal bang-coast-bang solution. The final step is to

target operational constraints for an Inertially Fixed Thrust Transfer (IFTT). As the name

implies the IFTT solution is defined as having thrust acceleration vectors fixed in the inertial

frame.

Several transfers are computed in this document to demonstrate th effectiveness of the

design process. Multiple transfers are computed between L1 halo orbits. The resulting

transfers have lower propellant requirements than that needed for an impulsive engine to

implement a theoretical minimum ∆V maneuver. Transfers are also computed between L1

and L2 halo orbits. These require less propellant than low cost impulsive transfers between

the same orbits and have lower times of flight than heteroclinic connections. Lastly, a transfer

is computed between a stable DRO and L4SPO. The transfer has notable propellant savings

compared to the fastest impulsive transfer between the orbits and a much lower time of flight

than the minimum ∆V impulsive transfer.

7.2 Future Work

Low thrust transfer construction has many additional avenues of study that can be pur-

sued in future works. Some additional research areas includes:

• Considering additional path constraints for transfers. In general indirect optimization

tends to struggle with path constraints. The sigmoid smoothing cleverly circumvents

this problem for the constraint of maximum thrust, but other mathematical tools are

needed for supplemental constraints such as eclipse avoidance.

• Phasing constraints could also be examined for allowing rendezvous between a space-

craft in the source orbit with a spacecraft in the sink orbit. This added constraint

on the phasing would alter the transversality condition and likely increase the fuel

required.

• Though the feasibility targeter results in extremely propellant efficient transfers, op-

timality constraints can be added to this final targeting step. The thrust direction
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and duration for each thrust arc are optimized as variables. Therefore the problem

is one of function optimization rather than functional optimization. As a result la-

grange multipliers are sufficient for the problem as opposed to indirect optimization of

costates.

• The plan for NASA Gateway is to become a hub for cislunar spacecraft in the next

decade. As a result, transfers to and from the 9:2 near rectilinear halo orbit are

an important topic for future research. The low stability index of this orbit implies

stretching direction initial guesses are likely more effective than leveraging stable and

unstable manifolds.

• All the applications discussed in this investigation involve transfers from one orbit to

another. However, further research could be performed to determine optimal trans-

fers between systems of multiple orbits, such as a service satellite moving to multiple

customer orbits before returning to a servicing depot.

• All transfers in this investigation are designed in the CR3BP to act as a preliminary

design for higher fidelity models. Further investigation is necessary in the transition

process of the transfers into an ephemeris model.
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