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6.8 Poincaé map z = 0, ż > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.9 Direct transfer from NRHO to DRO. . . . . . . . . . . . . . . . . . . . . 145



xi

Figure Page

6.10 Potential resonant orbits for intermediate arcs. . . . . . . . . . . . . . . . 149

6.11 Transfer incorporating 1:2 resonant arc - Poincaé map z = 0, ż > 0. . . . 149
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ABSTRACT

Vutukuri, Srianish. M.S.A.A, Purdue University, May 2018. Spacecraft Trajectory
Design Techniques Using Resonant Orbits. Major Professor: Kathleen C. Howell.

Resonance phenomena are ubiquitous in the solar system. Historically, resonant

orbits have been extensively studied to understand the long-term stability and forma-

tion of the solar system. In mission design, they have been employed as a mechanism

for multiple planetary flyby trajectories and as a source for long-term orbital stability.

However, resonance phenomena have not been fully explored as a tool for designing

spacecraft trajectories in multi-body dynamical systems which include 1) constructing

baseline ephemeris solutions with desired properties and 2) as transfer mechanisms

connecting stable periodic orbits. In this investigation, the above goals are addressed

within the context of Earth-Moon system by looking at two specific mission scenarios.

In general, a quasi-periodic ephemeris trajectory is constructed by employing a

stacking process in which multiple revolutions of an identical periodic orbit in CR3BP

are placed one behind another before transitioning them into the higher fidelity model.

Depending upon the epoch, the resulting ephemeris trajectory may or may not sat-

isfy all the desired mission parameters which include eclipse avoidance and periap-

sis conditions. To overcome this problem, a synodic resonant orbit in the cislunar

space is used to develop an alternative, non-homogeneous stacking process to produce

ephemeris trajectories with a better eclipse avoidance and periapsis control strategy.

The second goal of this investigation is to explore the possibility of incorporating res-

onant arcs and their manifolds in the transfer design process to aid the transfer guess

generation between stable periodic orbits with no natural dynamical structures. The

applicability of this idea is demonstrated between two stable cislunar periodic orbits
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by constructing various transfer scenarios incorporating resonant arcs and manifolds.

Locally optimum transfers are generated in the CR3BP, and their practical validity

is tested by transitioning them into a higher fidelity model. The techniques demon-

strated to address the two goals are general and apply to other dynamical systems.
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1. INTRODUCTION

In the past, several multi-body dynamical system techniques have been creatively

applied to design novel, low cost, transfers to destinations which were not reachable

via traditional design methods. An increasing number of libration point missions by

leveraging the natural gravitational flow available in the form of multi-body solutions

(periodic orbits and manifolds) are being conceived with potentially reduced propel-

lant costs. One such family of multi-body periodic orbits which are ubiquitous in the

solar system are resonant orbits. Historically, resonant orbits have been studied to

understand the long-term stability and formation of the solar system. However, they

have not been explored as a means for designing spacecraft trajectories. This inves-

tigation will examine the use of resonant orbits and their manifolds in constructing

baseline trajectories with desired properties and as a transfer mechanism to move

within the Circular Restricted Three-Body system.

1.1 Problem Motivation and Goals

In mission design, resonant orbits and manifolds are being employed as a mecha-

nism for flyby trajectories and more recently as a source for long-term orbital stability.

The dynamical environments of outer planets are comprised of multiple gravitational

fields, and therefore the application of dynamical system techniques offer many ad-

vantages. The conceptual missions designed to explore the Jupiter system such as the

Jupiter Icy Moons Orbiter (JIMO) [1] and the Jupiter Europa Orbiter (JEO) [2] make

use of the multiple gravity fields of its several moons as well as low-thrust propul-

sion. The JIMO spacecraft is designed to explore the three large moons of Jupiter

namely Callisto, Ganymede, and Europa by leveraging multiple gravity assists and

undergoing efficient resonance transitions. The JEO mission is planned to insert a
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spacecraft in orbit around Europa to investigate the presence of a liquid sub-surface

ocean. Europa Orbit Insertion occurs after having encountered the moon multiple

times, each time undergoing a resonance transition. Recent investigations have shown

that the manifolds of unstable resonant orbits play an essential role in determining

the resonance transitions which occur during multi-body gravitational flybys.

In the past, multi-body resonances in the Earth-Moon system having long-term

stable characteristics were used as nominal mission trajectories. In 2008, Interstellar

Boundary Explorer (IBEX) spacecraft [3] was launched into a high-altitude Earth or-

bit to collect information about the heliosphere and its boundary. The nominal trajec-

tory was slightly unstable for estimating long-term station-keeping costs. Therefore,

after the primary mission duration, the spacecraft was moved into a highly stable,

more predictable, out-of-plane lunar-resonant orbit about the Earth while still meet-

ing all the scientific requirements. In 2013, NASA selected the Transiting Exoplanet

Survey Satellite (TESS) mission [4] to search for extra-terrestrial planets. The space-

craft will be placed in a highly stable Earth orbit in resonance with the Moon.

Resonant orbits and manifolds have not been fully explored as a tool for designing

multi-body spacecraft trajectories. Therefore, the overarching goals in this investiga-

tion are 1) to use resonant orbits in constructing baseline ephemeris solutions with

desired properties and 2) to use resonant orbits and manifolds as transfer mecha-

nisms connecting non-resonant stable periodic orbits. In this investigation, the above

aspects of trajectory design are addressed within the context of Earth-Moon system

by looking at two specific mission scenarios. The work begins with the construction

of planar and spatial resonant orbit families in the Circular restricted three-body

problem (CR3BP). In general, a quasi-periodic ephemeris trajectory is constructed

by employing a stacking process in which multiple revolutions of an identical periodic

orbit in CR3BP are placed one behind another before transitioning them into the

higher fidelity model. Depending upon the epoch, the resulting ephemeris solution
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may or may not satisfy all the desired mission parameters which include eclipse avoid-

ance and periapsis conditions. To overcome this problem, a synodic resonant orbit

in the cislunar space is used to develop an alternative, non-homogeneous stacking

process to produce ephemeris solutions with a better eclipse avoidance and periapsis

control strategy.

The second goal of this investigation is to explore the possibility of incorporating

resonant arcs and their manifolds in the transfer design process to aid the transfer

guess generation between stable periodic orbits with no natural dynamical structures.

The applicability of this idea is demonstrated between two stable cislunar periodic

orbits by constructing various transfer scenarios incorporating resonant arcs and man-

ifolds. Locally optimum transfers are generated in the CR3BP, and their practical

validity is tested by transitioning them into a higher fidelity ephemeris model. The

techniques demonstrated to address the two goals are general and apply to other

dynamical systems.

1.2 Previous Contributions

The goals discussed in the previous section will be addressed by modeling the dy-

namics as a CR3BP. Many investigators have explored the CR3BP dynamical model

in the past. In 1687 Sir Isaac Newton (1643-1727) published his most famous work

titled The Principia, in which he attempted to describe the motion of n-bodies, gov-

erned by their mutual gravitational force of attraction [5]. However, his attempt to

derive an analytical solution to the n-body problem was not successful. The next

significant leap in answering this question was taken by Leonhard Euler (1707 - 1783)

when he formulated a simplified version of a n-body model called the Circular Re-

stricted Three Body Problem (CR3BP) [6]. Euler introduced a synodic (rotating)

coordinate frame to describe the motion of the third body under the gravitational

influence of two larger primaries. The view in the rotating frame helped to obtain use-
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ful insight into the motion in a multi-body dynamical system. The first preliminary,

constant periodic solutions to the CR3BP were found in 1772 when Joseph-Louis

Lagrange (1736-1813) discovered two planar triangular equilibrium points, and Euler

discovered three collinear planar equilibrium points in the CR3BP dynamical system.

Equilibrium points are constant solutions to the CR3BP, and they appear to be fixed

in the rotating frame of the primaries. In 1836, Carl Gustav Jacobi leveraged the ro-

tating frame view to introduce an integral of the equations of motion for the CR3BP

called the Jacobi integral or Jacobi constant [7]. Even though an integral of motion

was found, an analytical solution to the CR3BP was not possible, yet the Jacobi

integral proved significant in making qualitative conclusions about the motion of the

third body and helped to further the understanding about the multi-body dynamical

system. These qualitative conclusions of the motion of the third body using the Ja-

cobi constant was shown by Hill in 1878 [8]. He introduced bounding surfaces/curves

called the Zero Velocity Surfaces/Curves which bound the motion of the third body

for a given value of the Jacobi constant associated with the system.

A significant leap towards a numerical approach to understanding the CR3BP

was taken by Henry Poincaré in 1881 when he introduced the concept of Poincaré

map [7, 9]. This technique helped to decrease the complexity of the dynamical sys-

tem by transforming the analysis of the continuous system to a discrete system. In

the latter half of the 20th century, advancements in computational resources signif-

icantly increased the capability of numerically exploring the CR3BP. Much of the

latest developments in the CR3BP is made possible by the application of various nu-

merical techniques. Trajectory correction in the CR3BP or any non-linear dynamical

model, in general, is equivalent to solving a boundary value problem by repeatedly

correcting many initial value problems. Various correction algorithms were shown

by Keller [10], Roberts and Shipman [11, 12] when they developed different shooting

formulations to solve boundary value problems. The existence of an infinite num-

ber of particular, periodic solutions of the CR3BP was shown to exist in 1881 by
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Poincaré [9]. But their computation was only possible during the latter half of the

20th century by the application of differential correction techniques [13]. The first

mission to utilize low energy, dynamical structures in the multi-body system as the

mission trajectory was the International Sun-Earth Explorer-3 (ISEE-3) spacecraft

which was sent to the Sun-Earth L1 halo orbit in 1978 [14]. Since then many missions

leveraging multi-body dynamical structures have been accomplished. Some of them

include ARTEMIS, SOHO, ACE, Genesis, WIND and WAMP [15,16].

Traditionally resonant orbits have been studied in the context of planetary flybys.

In almost all the planetary flyby trajectories, some form of resonance transition is

incorporated. Naturally occurring heteroclinic resonance transitions are observed to

happen in the solar system for the Jupiter family of comets such as Gehrels 3, Oterma

and Helin-Roman - Crockett [17]. These comets frequently transition between the 3:2

and 2:3 resonances, sometimes temporarily being captured by Jupiter. During 2000,

this phenomenon was theoretically proven in a planar perspective by Koon, Lo, Mars-

den, and Ross when they showed that the invariant manifolds of the two resonant

orbits and the Lyapunov orbits in the Sun-Jupiter system are responsible for the res-

onance transfer and capture around Europa [17–19]. In 2001, Howell, Marchand, and

Lo proved the phenomenon to occur numerically in three dimensions [17,20]. In 2010,

Vaquero explored the relationship between planar unstable resonant orbits by study-

ing the interaction of their invariant manifold structures [21]. Recently in 2011, a

stable, spatial resonant orbit about the Earth was considered for an extended mission

trajectory for the spacecraft IBEX [3]. In 2013, NASA announced the TESS mission

which will search for exo-planets and is currently scheduled to launch in 2018 into a

stable 2:1 periodic resonant orbit around Earth [4]. In 2013, Vaquero demonstrated

that resonant orbits and their manifolds could be utilized as transfer mechanisms

between periodic orbits in the CR3BP [22]. More specifically, Vaquero and How-

ell designed trajectories that transition between exterior and interior resonant orbits

using unstable and stable resonance manifolds in the Saturn-Titan system [23]. A
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transfer scenario to access the stable orbit of Hyperion was also demonstrated using

the unstable resonant manifolds of an exterior 3:5 resonant orbit and an interior 5:4

resonant orbit [23]. Using various planar and spatial resonant orbits and their asso-

ciated manifolds, Vaquero and Howell designed novel, lost cost transfers from LEO

to planar and three-dimensional libration point orbits [24]. A grand tour of all the

planar libration points was also demonstrated using the unstable manifolds of a 4:3

resonant orbit [22].

Other orbit families of interest in this work are the Near Rectilinear Halo Orbits

(NRHOs) and Distant Retrograde Orbits (DROs). Halo orbits are three-dimensional

periodic orbits around the collinear libration points. When seen from Earth, in the

Earth-Moon line of sight they seem to have a ’Halo’ like appearance around the Moon.

Hence the name Halo orbit was coined by Farquhar in 1968 [25]. In 1979, Breakwell

and Brown demonstrated the existence of Halo orbit families about the L1 and L2 li-

bration points [26]. Howell extended the families into other systems and characterized

the L3 Halo family [27]. In 1983, Howell and Breakwell developed approximations for

’Almost Rectilinear Halo Orbits,’ which are now called Near Rectilinear Halo Orbits

(NRHOs) and helped to gain additional insight about these stable orbits in the Halo

family [26]. More accurate characterization of the L1 and L2 Halo orbits in the Earth-

Moon system was carried out by Zimovan in 2017 [28]. Several authors investigated

designing transfers to and from NRHOs to other cislunar locations. Some of them

include Capdevila [29], Folta et al [30], Loucks et al [31], Whitley and Martinez [32]

and Zimovan [28].

1.3 Thesis Overview

The present work includes the following chapters:

• Chapter 2: This chapter starts with the discussion of the general n-body

problem followed by the Relative Three Body problem. To obtain a deeper
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insight into multi-body dynamical behavior the concept of Circular Restricted

Three Body Problem (CR3BP) is introduced. Equations of motion for the

CR3BP dynamical model are derived followed by the introduction of an integral

of motion called the Jacobi integral. Preliminary constant solutions to the

CR3BP are identified. They are named as Equilibrium points or Libration

points. The Jacobi integral is used to introduce Forbidden regions or Zero

Velocity Surfaces which qualitatively indicate the domain of possible realm of

motion of the third body in the dynamical system. Coordinate transformations

are presented to convert the rotating frame view to an inertial view to gain

additional insight into the motion of the third particle. Finally, the chapter

ends with a discussion on the concept of linear stability analysis for equilibrium

points.

• Chapter 3: Several numerical techniques for trajectory corrections are de-

veloped in this chapter. The concept of State Transition Matrix (STM) is

introduced which forms the fundamental basis for any differential corrections

process. Single and Multiple shooting differential correction algorithms are for-

mulated. Mirror theorem is presented in the context of the CR3BP which is

later utilized as the essential property for generating symmetric periodic orbits

about the collinear libration points. Natural parameter and Pseudo-arclength

continuation schemes are implemented to create periodic orbit families about

the collinear libration point orbits. The concept of linear stability for peri-

odic orbits is presented by the introduction of a particular matrix called the

Monodromy matrix. The theory of bifurcations in the context of CR3BP is

explained and is applied to the planar Lyapunov periodic families to generate

spatial periodic orbits.

• Chapter 4: This chapter presents a thorough background about the concept

and construction of resonant orbits in both the two-body and the CR3BP. The

fundamentals of the invariant manifold theory are discussed and a technique
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to numerically generate manifolds for unstable resonant orbits is presented.

Poincaré mapping technique is introduced and applied in the context of resonant

orbits.

• Chapter 5: In this chapter, the behavior of quasi-periodic trajectories in the

higher fidelity models is explained using NRHOs. The problems encountered

by the traditional stacking sequence regarding eclipsing properties and periapsis

conditions is highlighted, and a remedy is presented using a synodic resonant

NRHO. An alternative non-homogeneous stacking sequence is developed and

investigated, and are applied to CR3BP trajectories while transitioning into the

ephemeris model to generate baseline solutions with a better eclipse avoidance

and periapsis control strategy.

• Chapter 6: In this chapter, various spatial transfers scenarios between a repre-

sentative NRHO and a DRO are designed using resonant orbits and associated

manifold structures. The concept of theoretical minimum ∆V is introduced

which helps in evaluating the efficiency of the transfer. Locally optimal trans-

fers are generated and transitioned into the higher fidelity ephemeris model to

assess the practical transfer costs and time of flight.

• Chapter 7: In this chapter, a summary of the present work is presented fol-

lowed by some of the key outcomes. In the end, potential expansion of the

current research work is discussed in the future recommendations section.
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2. INTRODUCTION TO CIRCULAR RESTRICTED

THREE BODY PROBLEM

The n-body gravitational model represents the most general and accurate representa-

tion of the solar system. Having a clear understanding of the dynamical interaction of

multiple bodies under their respective gravitational fields is vital before introducing

the Circular Restricted Three Body Problem (CR3BP) and three-body resonances.

Therefore, this chapter begins with the discussion about the general n-body problem.

It will be followed by the two-body problem and the three-body problem which are

special cases of the general n-body problem. In the preliminary two-body case the

motion of two particles under the influence of their mutual gravitational forces is

analyzed. Likewise, in the three-body model, the movement of three particles inter-

acting in the combined gravity field is studied. Just by adding another particle to

the two-body problem, the three-body problem becomes very complicated to analyze.

Hence, to simplify the three-body problem and to get a better understanding of the

dynamics of a particle under the influence of two other gravitational bodies a CR3BP

is developed. Equations of motion for the third body in the CR3BP are derived,

which in turn help in the development of a useful, qualitative technique to determine

the bounds on the motion of the third body. Finally, this chapter concludes with

the computation and linear stability analysis of various equilibrium solutions in the

CR3BP.

2.1 The General n-Body Problem

The n-body problem is the most general gravitational model in which the motion

of n, (n > 3) particles (in both position and velocities) are analyzed under the

influence of their mutual gravitational fields. A representative set up of an n-body
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model is shown in Figure 2.1. Point O indicates the origin of the inertial reference

frame represented by three orthonormal X̂, Ŷ and Ẑ axes which complete the right

hand rule. The hat symbol indicates a unit vector. All the n bodies are modeled

as centrobaric point masses and named as P1, P2,..., Pi, Pn and Pq. Their masses

are labeled as m1, m2,..., mi, mn and mq respectively. The position vectors of the

particles from the origin are given as r̄1, r̄2,... r̄i, r̄n and r̄q respectively. The bar

symbol indicates a vector notation.

X̂

Ŷ

Ẑ
1 1( )P m

2 2( )P m

( )i iP m( )n nP m

( )q qP m

1r 2r

ir
nr

qr O

Figure 2.1. Definitions in the n-body problem.

According to Newton’s law of gravity [5] the net force on particle Pi is given by,

F̄i = −Gmi

n∑
j=1
j 6=i

mj

r3
ji

r̄ji (2.1)

In equation (2.1), G is the universal gravitational constant, mi is the mass of the

particle Pi and r̄ji is the radius vector from particle Pj to particle Pi. Now, applying

Newton’s second law of motion [5] to particle Pi, assuming that the mass is constant
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and the observer is in an inertial frame located at a stationary base point O the

equation of motion is written as,

mi
d2r̄i
dt2

= −G
n∑
j=1
j 6=i

mimj

r3
ji

r̄ji (2.2)

Where r̄i is the position vector of the particle Pi from O. This second-order vector

differential equation is broken down into six first-order scalar differential equations in

position and velocity along the three orthogonal directions of the coordinate system.

These six states in position and velocity represent the degrees of freedom of a particle

in the n-body dynamical model. The equations are nonlinear and coupled. As every

particle is associated with a second-order vector differential equation of motion, the

total number of scalar first-order differential equations in the n-body dynamical sys-

tem is 6n. To solve these set of 6n scalar differential equations, 6n integrals of motion

are required, but to this day only ten integrals of motion are known to exist. The

Principle of Conservation holds true for linear momentum, angular momentum, and

energy of the n-body system which gives rise to the ten known integrals. Even in the

simplest two-body model, closed-form solutions corresponding to the twelve scalar

first-order differential equations of motion cannot be obtained as sufficient integrals

of motion are not available.

An alternative approach to study the motion of the particles is to know how they

move relative to each other. The position of particle Pi with respect to another

particle Pq is represented by a position vector r̄qi and is more useful than the radius

vector r̄i alone as shown in Figure 2.2. Newton’s second law of motion [5] cannot

be applied directly to the relative motion, as the new base point particle Pq is not

inertially fixed. The equation of motion governing the new dependent variable r̄qi,

i.e., ¨̄rqi is obtained by individually applying Newton’s law to both the particles Pi

and Pq with respect to the base point O and subtracting them appropriately. In the
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X̂

Ŷ

Ẑ

( )i iP m
ir

O

qr

( )q qP m
qir

Figure 2.2. Definition for position of particle Pi relative to particle Pq.

relative n-body problem the equation of motion of particle Pi relative to particle Pq

is thus,

r̄′′qi +G
(mj +mq)

r3
qi

r̄qi = G
n∑
j=1
j 6=i,q

mj

(
r̄ij
r3
ij

− r̄qj
r3
qj

)
(2.3)

In equation (2.3) double primes denote the derivative with respect to dimensional

time. The term on the left is called the Dominant term as it captures the direct

gravitational interaction of particle Pq and Pi. The two terms on the right are the

Direct and Indirect perturbing terms which relate to the gravitational interaction of

the remaining particles with the particle Pi and Pq respectively. When there are just

two bodies in the dynamical system, the equation of motion for a relative two-body

formulation is written as follows,

r̄′′qi +G
(mj +mq)

r3
qi

r̄qi = 0 (2.4)
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Notice that there are no additional perturbing bodies and hence perturbing terms

on the right side of equation (2.4) are zero. Closed form solution for this second

order differential equation which governs the motion of a relative formulation of two

bodies exists. The particle Pi can only take one of circular, elliptical, parabolic or

hyperbolic paths relative to particle Pq. Adding just one more point mass to this

relative problem, i.e., having (n ≥ 3) the closed form solutions ceases to exist. In

fact, the two-body relative motion is virtually the only problem in celestial mechanics

with a closed form solution.

2.2 The General and Relative Three Body Problem

Consider a general three-body problem with particles P1, P2 and P3 having masses

m1, m2 and m3 respectively as shown in Figure 2.3. Applying Newton’s second law [5],

the differential equation of motion for particle P1 with respect to an inertially fixed

base point O under the gravitational influence of the particles P2 and P3 similar to

equation (2.1) is written as,

m3r̄′′3 = −Gm3m1

r3
13

r̄13 −G
m3m2

r3
23

r̄23 (2.5)

Corresponding equations of motion can be written for particles P2 and P3. As pre-

viously shown, solving for all the position and velocity vectors for three particles

requires 18 integrals of motion, but only ten are available. Hence closed-form solu-

tions for the general three-body problem do not exist.

The problem is simplified by considering the relative three-body problem in which

the motion of particle P3 is observed with respect to particle P1 and P2. The equation

of motion of particle P3 relative to P1, with particle P2 acting as a perturbing body

is written as,

r̄′′13 +G
(m3 +m1)

r3
13

r̄13 = Gm2

(
r̄32

r3
32

− r̄12

r3
12

)
(2.6)
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Similarly the equation of motion of particle P3 relative to P2 with particle P1 acting

as a perturbing body is written as,

r̄′′23 +G
(m3 +m2)

r3
23

r̄23 = Gm1

(
r̄31

r3
31

− r̄21

r3
21

)
(2.7)

A total of 12 integrals of motion are required to solve the two second-order, vector

relative differential equations of motion in equations (2.6) and (2.7). But, as only ten

integrals are available, the relative three-body problem is also rendered solution less.

By further simplification of the relative three-body problem, significant insights into

the motion of particle P3 are obtained. These simplifications lead to the Restricted

Three Body Problem.

X̂

Ŷ

Ẑ
1 1( )P m

2 2( )P m1r
2r

3 3( )P m
3r

13r 23r

12r

O

Figure 2.3. Definitions in the three-body problem.
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2.3 Circular Restricted Three Body Problem (CR3BP)

The following assumptions applied to the general three-body problem dramati-

cally reduces the complexity and helps to make the problem more tractable, thus

formulating the Circular Restricted Three Body Problem.

1. The mass of particle P3 is assumed to be infinitesimally small relative to particles

P1 and P2. This assumption is reasonable for practical purposes when particle

P3 is modeled as a comet or spacecraft under the influence of larger bodies like

planets, moons and the Sun. This simplification implies that the particle P3

does not have any gravitational influence on the particles P1 and P2 and thus

their motion remains unaffected by P3.

2. If particle P3 does not influence the motion of particles P1 and P2, then P1

and P2 represents an isolated two-body system. Solutions to the relative two-

body motion of particles P1 and P2 exist as conics. For many applications, the

solution is a closed conic, i.e., a circle or an ellipse. P1 and P2 are named as

the Primary system. P1 is arbitrarily labeled as the larger primary, and it has

the larger mass. P2 is the smaller primary and has the smaller mass. P3 is the

particle of interest and is called the Secondary particle.

3. The simplest two-body relative motion for primary particles P1 and P2 is circu-

lar, and they are assumed to move in circular orbits with respect to the center of

mass of the primary system. The conic motion of P1 and P2 is further restricted

to be planar. However, the motion of P3 is allowed to be in three dimensions.

2.4 Equations of Motion in the CR3BP

Non-dimensionalizing the equations of motion and formulating them in a rotating

coordinate frame are perhaps the two most significant steps towards gaining a greater

insight into the three-body problem. Non-dimensionalizing the equations make them

applicable for any primary mass system like Sun-Earth, Earth-Moon and so on. It
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also helps to normalize the differences in the order of magnitudes for distances and

velocities, thus helping with numerical integration which will be widely used for the

rest of the analysis. Formulating the equations in the rotating coordinate frame helps

to establish equilibrium solutions and other periodic orbits in the dynamical system.

The setup for the CR3BP is shown in Figure 2.4. The particles P1 and P2 represent

the larger and the smaller primaries respectively. The third particle of interest whose

motion is being analyzed is shown as P3. The mass of the three particles are labeled

as m1, m2 and m3 respectively. The primaries rotate about their barycenter B in

a circular fashion in the X̂-Ŷ plane. The inertial reference frame is represented

by the rectangular coordinate system X̂, Ŷ and Ẑ centered at B. A rectangular

rotating coordinate system is defined whose x̂-axis is always parallel to a line joining

the primaries. θ denotes the orientation of the rotating frame with respect to the

inertial frame at any instant of time. The rate of change of θ, i.e., θ′ is the angular

velocity of the rotating frame which in this case is constant for the circular orbits of

primaries and is equal to the mean motion, N . Both the inertial Ẑ and rotational ẑ

axes are parallel to the angular velocity of the primary system. The position vectors

to the particles P1, P2 and P3 from B are given as D̄1 , D̄2 and P̄ respectively and

the relative position vectors of particle P3 from P1 and P2 are given as D̄ and P̄

respectively. For non-dimensionalizing the states in the equations of motion, three

characteristic quantities are defined. The characteristic length, lstar, is defined as

the distance between the two primaries. The characteristic mass, mstar, is the sum

of masses of the two primaries. The characteristic time, tstar is the orbital period of

the system primaries. The following symbols are used for the characteristic quantities.

l∗ = ‖r̄1‖+ ‖r̄2‖ (2.8)

m∗ = m1 +m2 (2.9)



17

X̂

Ŷ
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Figure 2.4. Definitions in the CR3BP.

t∗ =

[
l∗3

Gm∗

]
(2.10)

Using these characteristic quantities, other useful parameters are non-dimensionalized

as follows,

G̃ =
Gl∗3

m∗t∗2
= 1 (2.11)

Where G is the universal gravitational constant. G̃ in equation (2.11) represents the

non-dimensionalized universal gravitational constant, which is equal to 1. The mean

motion of the primary system N , is also non-dimensionalized and it turns out to be

ϑ=1,

ϑ = Nt∗ =

(
Gm∗

l∗3

)1/2
(

l∗
3

Gm∗

)1/2

= 1 (2.12)
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Another parameter of importance is defined as the mass fraction µ which is associated

with the mass ratios of the two primaries P1 and P2 and is defined as,

µ =
m2

m1 +m2

=
m2

m∗
(2.13)

Table (2.1) below shows the values of the characteristic quantities in the Earth-Moon

and the Sun-Earth systems for comparison. Applying Newton’s second law [5] to

Table 2.1. Characteristic quantities in the Earth-Moon and Sun-Earth system.

System m∗ [kg] l∗ [km] t∗ [sec] µ

Earth-Moon 6.046804× 1024 3.844000× 105 3.751903× 105 1.215059× 10−2

Sun-Earth 1.988800× 1030 1.496500× 108 5.025263× 106 3.003486× 10−6

the particle of interest P3, the vector differential equation in the inertial frame with

respect to the base point B is written as,

m3P̄
′′ = −Gm3m1

D3
D̄ − Gm3m2

R3
R̄ (2.14)

The position vectors P̄ , D̄ and R̄ are non-dimensionalized using the charactersitc

parameters from equations (2.8) - (2.11) and written as ρ̄, d̄, and r̄ respectively.

ρ̄ =
P̄

l∗
, d̄ =

D̄

l∗
, r̄ =

R̄

l∗
, τ =

t

t∗
(2.15)

Converting all the terms of equation (2.14) into their non-dimensional form results in

the following expression,

¨̄ρ = −(1− µ)d̄

d3
− µr̄

r3
(2.16)

Note that the dots indicate the derivatives with respect to non-dimensional time τ

and primes indicate the derivatives with respect to the dimensional time t, both rel-

ative to an inertial reference frame centered at the barycenter of the system.
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The acceleration of the third particle P3 is also derived from the Basic Kinematic

Equations(BKE) expressed in the rotating frame coordinates by the following steps.

First, distance to particle P3 is expressed in terms of non-dimensional coordinates x,

y and z defined in the rotating frame as,

ρ̄ =
P̄

l∗
= xx̂+ yŷ + zẑ (2.17)

The velocity of the particle P3 in the inertial frame is expressed as,

ρ̄′ =
Idρ̄

dτ
=

Rdρ̄

dτ
+ I ω̄R × ρ̄ (2.18)

Once again using BKE with equation (2.18) the acceleration of particle P3 in the

inertial frame with respect to base point B is given by,

ρ̄′′ =
Id2ρ̄

dτ 2
=

Rd2ρ̄

dτ 2
+ 2I ω̄R × ρ̄+ I ω̄R ×

(
I ω̄R × ρ̄

)
(2.19)

Where I ω̄R = nẑ is the angular velocity of the rotating frame x̂-ŷ-ẑ with respect to the

inertial frame X̂-Ŷ -Ẑ. Substituting the value of ρ̄ from equation (2.17) into equation

(2.19), the acceleration of particle P3 in the inertial frame expressed as rotational

coordinates is,

ρ̄′′ =
(
ẍ− 2ϑẏ − ϑ2x

)
x̂+

(
ÿ + 2ϑẋ− ϑ2y

)
ŷ + z̈ẑ (2.20)

Equations (2.16) and (2.20), both represent the acceleration of particle P3 in terms

of the rotating coordinates in the inertial reference frame centered at the barycenter

B. The scalar components of both the equations are equated to obtain three scalar

second order differential equations for the CR3BP as follows,

ẍ− 2ϑẏ − ϑ2x = −(1− µ)(x+ µ)

d3
− µ

r3
(x− 1 + µ) (2.21)

ÿ + 2ϑẋ− ϑ2y = −(1− µ)

d3
y − µ

r3
y (2.22)
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z̈ = −(1− µ)

d3
z − µ

r3
z (2.23)

Where the magnitudes of d and r are calculated as,

d =

√
(x+ µ)2 + y2 + z2 (2.24)

r =

√
(x− 1 + µ)2 + y2 + z2 (2.25)

The three scalar second-order differential equations, i.e., equations (2.21)-(2.23) are

broken down into six scalar first-order differential equations which represent the

derivatives of the non-dimensional states of motion of particle P3 as observed in

a rotating frame centered at the base point B. They are generally represented as

˙̄X = F̄ (X̄, τ), where the six dimensional state vector X̄ and F̄ are expressed as,

X̄ =



x

y

z

ẋ

ẏ

ż


=



x1

x2

x3

x4

x5

x6


(2.26)

F̄ =



x4

x5

x6

2ϑx5 + ϑ2x1 − (1−µ)(x1+µ)
d3

− µ
r3

(x1 − 1 + µ)

−2ϑx4 + ϑ2x2 − (1−µ)
d3

x2 − µ
r3
x2

− (1−µ)
d3

x3 − µ
r3
x3


(2.27)

The equations of motion in the CR3BP are autonomous as the non-dimensional time

τ does not explicitly appear in F̄ .
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2.5 Integrals of Motion - Jacobi Constant

The equations of motion in the rotating frame are alternatively written in terms

of Pseudopotential function [7]. The Pseudopotential function, U∗, is defined as,

U∗ =
1− µ
d

+
µ

r
+

1

2
ϑ2(x2 + y2) (2.28)

Equations of motion, i.e., equations (2.21)-(2.23) formulated in terms of Pseudo Po-

tential are written as,

ẍ− 2ϑẏ =
∂U∗

∂x
(2.29)

ÿ − 2ϑẋ =
∂U∗

∂y
(2.30)

z̈ =
∂U∗

∂z
(2.31)

Since the system comprises of conservative forces, an energy or energy-like quantity

may be found to be constant in the rotating frame. The constant is found by taking

the dot product of the equations (2.29)-(2.31) and the rotating velocity vector, ˙̄ρ =

ẋx̂+ ẏŷ + żẑ. Summing up the resulting scalar expressions gives,

ẋẍ+ ẏÿ + żz̈ =
∂U∗

∂x
ẋ+

∂U∗

∂y
ẏ +

∂U∗

∂z
ż (2.32)

Since U∗ is only a function of position the expression on the right hand side of equation

(2.32) equals total derivative ∂U∗

∂τ
. Then integrating the equation (2.32) with respect

to non-dimensional time τ yields the following integration constant C,

1

2

(
ẋ2 + ẏ2 + ż2

)
= U∗ − C

2
(2.33)

Rearranging the coefficients in equation (2.33) gives the following expression to define

the Jacobi constant or the Jacobi Integral of Motion, as C,
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C = 2U∗ − V 2 (2.34)

Note here that V is the velocity in the rotating frame. To find analytical solutions

for the CR3BP, six integrals of motion are required. Since only one integral of mo-

tion, the Jacobi integral, has been known to exist, the equations of motion cannot

be solved analytically. But equations (2.26)-(2.27) are numerically propagated to un-

derstand the behavior of the secondary particle P3 in the dynamical system. For a

given initial condition of particle P3 which comprises three non-dimensional positions

and velocities along the coordinate axes, the Jacobi constant of the system remains

fixed for an indefinite amount of time. It only changes by altering the energy of

the system, which happens whenever a ∆V is imparted by performing a maneuver.

Jacobi constant plays a vital role in the numerical propagation of the equations of

motion by checking the numerical stability as well as in the dimensional reduction of

the problem.

2.6 Libration Points - Equilibrium Solutions in the CR3BP

Equilibrium solutions are the preliminary, particular solutions of any dynamical

system. They represent the states of the system which when attained stay constant

with time. Looking for equilibrium states in the CR3BP is equivalent to finding

the rotating position and velocity state components whose derivatives are zero for

all times. In equations (2.29)-(2.31), if ρ̇ = ρ̈ = 0, then velocity and acceleration

relative to the rotating frame is zero indefinitely and the particle P3 does not move

with respect to the rotating frame. By substituting the above conditions into the

equations of motion, the equilibrium states are evaluated by setting the gradient of

the pseudo-potential function equal to zero as,

∂U∗

∂x
=
∂U∗

∂y
=
∂U∗

∂z
= 0 (2.35)
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Here, U∗ is the pseudo-potential function defined in equation (2.28). There are five

equilibrium points in the CR3BP. Two of them were first computed by Joseph La-

grange in 1772 and hence are also called Lagrange points or Libration points [7]. The

locations of the five equilibrium points in the CR3BP are shown in figure (2.5). All

the points lie in the plane of motion of the primaries, i.e., all the points have an

out of plane component position z = 0. The three collinear points namely L1, L2

and L3 lie along the x̂-axis and the remaining two points namely L4 and L5 form

equilateral triangles with the primaries and are therefore called equilateral libration

points. Libration point L1 always lies in between the larger and the smaller primary

on the x̂-axis. Libration point L2 always lies beyond the smaller primary on the pos-

itive side of x̂-axis. Libration point L3 always lies beyond the larger primary on the

negative side of the x̂-axis. The equilateral point L4 has a positive y component and

the equilateral point L5 has a negative y component. Also, γ1, γ2 and γ3 represent the

distances of the collinear libration points to their nearest primaries. The locations of

the three collinear points is evaluated by expanding the partial ∂U∗

∂x
= 0 in equation

(2.35), i.e.,

x− (1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3
= 0 (2.36)

where d and r are distances of the third body from the primaries given by equations

(2.24) and (2.25) respectively. By substituting the three different x coordinates for

L1 = (1 − µ − γ1), L2 = (1 − µ + γ2) and L3 = (−µ − γ3) and noting that y = 0

and z = 0 for all three collinear points three fifth degree polynomials are obtained as

follows,

γ5
1 + γ4

1(µ− 3) + γ3
1(3− 2µ)− γ2

1(µ) + γ1(2µ)− µ =0

γ5
2 + γ4

2(3− µ) + γ3
2(3− 2µ)− γ2

2(−µ) + γ2(−2µ)− µ =0

γ5
3 + γ4

3(2 + µ) + γ3
3(1 + 2µ)− γ2

3(µ− 1) + γ3(2µ− 2)− (1− µ) =0

(2.37)
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Figure 2.5. Equilibrium points in the rotating frame of CR3BP.

The real roots of the above polynomials are obtianed by solving them using a Newton-

Raphson’s algorithm which give the positons for the three collinear libration points.

Further in equation (2.35), substituting ∂U∗

∂y
= 0, the following expression is obtained,

y

(
1− (1− µ)

d3
− µ

r3

)
= 0 (2.38)

Assuming y 6= 0 equation (2.38) will be satisfied only if the term in the paranthesis

is equal to zero, i.e.,

(
1− (1− µ)

d3
− µ

r3

)
= 0 (2.39)

On substituting equation (2.39) into equation (2.36), results in d = r. Putting this

back into equation (2.39) results in d = r = 1. This corresponds to two symmetric

points which form two equilateral triangles with primaries P1 and P2. The coordinates
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of equilibrium points in the Earth-Moon and Sun-Earth systems are show in the table

(2.2) below.

Table 2.2. Non-dimensional position coordinates of the libration
points in the Earth-Moon and Sun-Earth systems

Equilibrium Point Earth-Moon [n.d] Sun-Earth [n.d]

L1(x, y, z) (0.836915, 0, 0) (0.990027, 0, 0)

L2(x, y, z) (1.155682, 0, 0) (1.010034, 0, 0)

L3(x, y, z) (−1.005063, 0, 0) (−1.000001, 0, 0)

L4(x, y, z) (0.487849, 0.866025, 0) (0.499997, 0.866025, 0)

L5(x, y, z) (0.487849,−0.866025, 0) (0.499997,−0.866025, 0)

2.7 Forbidden Regions and Zero Velocity Surfaces

The introduction of Jacobi constant and libration points help to understand im-

portant qualitative aspects about the CR3BP. Given a Jacobi constant for the system,

it is possible to define forbidden regions or Zero Velocity Surfaces as the regions inside

which the motion of the secondary body is not physically possible [33]. Consider again

the expression for the Jacobi constant in equation (2.34). If the velocity of the sec-

ondary body with respect to the rotating frame is zero then the following expression

is obtained,

x2 + y2 +
2

d
(1− µ) +

2

r
µ = C (2.40)

Equation (2.40) represents a surface in 3D space, i.e., for a given value of Jacobi con-

stant C, infinite combinations of rotating x, y and z coordiantes satisfy this equation.

The terms on the left are always positive since x2 and y2 are always positive and terms

2
d
(1− µ) > 0 and 2

r
µ > 0 because d and r are distances and 0 < µ < 1. Thus, at this

surface where the secondary particle has a zero relative velocity, Jacobi constant is

always positive. When the secondary body is outside the Zero Velocity Surface, it’s



26

velocity is positive and hence its motion in this region is physically possible. On the

Zero Velocity Surface the secondary body has zero velocity, but still, has a non-zero

acceleration. Inside the Zero Velocity Surface the secondary body has an imaginary

velocity which is not physically attainable and hence its motion in this region is

practically non-existent throughout the time evolution of any initial condition. For

equilibrium points both the rotating velocity and rotating acceleration are together

zero. A secondary body at any of the equilibrium points is therefore associated with

a specific Jacobi constant which is obtained from equation (2.34). Jacobi constants

of libration points for the Earth-Moon and Sun-Earth systems are shown in the table

(2.3) below.

Table 2.3. Value of Jacobi constant for libration points in the Earth-
Moon and Sun-Earth systems.

System L1 L2 L3 L4 L5

Earth-Moon 3.188341 3.172160 3.012147 2.987997 2.987997

Sun-Earth 3.00089 3.000887 3.000003 2.999997 2.999997

The libration points lie on the Zero Velocity Surfaces at their respective Jacobi

constants. At a lower Jacobi constant value they lie outside the surface, and at a

higher Jacobi constant value, they lie inside the surface. The Zero Velocity Surfaces

are dynamic and change with the Jacobi constant of the system. Consider the Earth-

Moon system. The Jacobi constants of the equilibrium solutions are seen in the table

(2.3). For a C value larger than CL1 the Zero Velocity Surface is shown in figure

2.6(a). The projection of this surface onto the x̂-ŷ plane is shown in figure 2.6(b)

and is termed as the Zero Velocity Curve. The region inside the ZVS and ZVC is

bounded by three distinct surfaces. For larger values of d and r, the surface is cylin-

drical with its axis of symmetry parallel to the ẑ-axis. For smaller d and r, i.e., closer

to primaries, the surface is in the form of small ovoids encircling the primaries. As
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a consequence, when the third body is in the vicinity of the primaries, it remains

bounded indefinitely, and it cannot escape the system as it cannot pass through the

ZVS or ZVC.

As the C value decreases the outer cylinder shrinks in size and the smaller inner

ovoids about the primaries increase in size. The effect is captured on the correspond-

ing ZVC. At C = CL1 both the inner curves of the ZVC meet at the libration point L1

as seen in the figure 2.8(a). Upon further decreasing C, i.e., for CL2 < C < CL1 the

region between the two primaries now opens up as seen in figure 2.6(c) and 2.6(d).

Trajectories which begin close to one of the primaries are no longer bounded and is

possible to move towards the other primary by passing through the corridor. Further

decreasing C reduces the size of the outer ZVC and opens up the inner ZVC until

they meet at libration point L2 when C = CL2 as shown in the figure 2.8(b). When

CL3 < C < CL2 the right side of the ZVC take off from the x̂-axis and creates a gate-

way to the exterior region beyond the outer most surface as shown in figure 2.7(a)

and 2.7(b). When C = CL3 , the outer and inner ZVC at the left end intersect at

libration point L3 as seen in figure 2.8(c). For CL4 < C < CL3 the ZVC get separated

and take off completely from the x̂-axis enclosing only the L4 and L5 points as shown

in figure 2.7(c) and 2.7(d). The exterior region is now open from the left side of

the larger primary. At C = CL4/CL5 the ZVCs shrink and only intersect exactly at

the two Equilateral libration points. For C < CL4/CL5 ZVCs no longer exist on the

x̂-ŷ plane as shown in figure 2.7(f). This does not mean that the forbidden region

has disappeared. Large forbidden regions which are symmetric about the plane of

primaries still exist above and below the x̂-ŷ plane in 3D space as shown in figure

2.7(e). The whole of x̂-ŷ plane is now open for trajectories to traverse freely.
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Outer ZVS

Inner ZVS

(a) ZVS (C > CL1
). (b) ZVC (C > CL1

).

(c) ZVS (CL2 < C < CL1). (d) ZVC (CL2 < C < CL1).

Figure 2.6. ZVS and ZVC for (C > CL1) and (CL2 < C < CL1).
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2.8 Coordinate Transformations

Having derived the equations of motion in the rotating frame, numerical prop-

agation and preliminary trajectory design and analysis are also performed in the

rotating frame of the primaries in the following chapters. But it is often beneficial

to convert the trajectories into an inertial reference frame with respect to either one

of the primaries. The conversion offers a useful perspective for practical mission de-

sign purposes, especially when the trajectories need to be analyzed in higher fidelity

ephemeris models. Frame transformations are performed with a Direction Cosine Ma-

trix (DCM). Recall that the rotating frame has a non-dimensional, constant angular

velocity ϑ = 1 with respect to the inertial frame centered at the barycenter. At any

given non-dimensional time τ , the orientation of the rotating frame with respect to

the inertial frame is given by θ = ϑ× τ , as seen in figure 2.9. The position vector of

the secondary particle with respect to the barycenter is expressed in both the rotating

and inertial coordinates as,

ρ̄in = XX̂ + Y Ŷ + ZẐ (2.41)

ρ̄rot = xx̂+ yŷ + zẑ (2.42)

By applying appropriate trigonometric transformations the inertial position coordi-

nates in terms of rotational coordinates are expressed as,

X = x cos(τ − τ0)− y sin(τ − τ0)

Y = x sin(τ − τ0) + y cos(τ − τ0)

Z = z

(2.43)

The position transformation is captured in a DCM form as follows,
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X̂

Ŷ

Ẑ

 = ICR(τ)


x̂

ŷ

ẑ

 (2.44)

where, the matrix ICR is written as,

ICR(τ) =


cos(τ − τ0) − sin(τ − τ0) 0

sin(τ − τ0) cos(τ − τ0) 0

0 0 1

 (2.45)

Transforming velocities from the rotating frame to inertial frame is possible by ap-

plying the Basic Kinematic Equation. Taking the derivatives of equations (2.41) and

(2.42) with respect to an inertial frame results in the following,

˙̄ρin = ẊX̂ + Ẏ Ŷ + ŻẐ (2.46)

˙̄ρin = (ẋ− ϑy)x̂+ (ẏ + ϑx)ŷ + żẑ (2.47)

Both the position and velocity transformation is captured into a single 6× 6 matrix

by clubbing the above transformations to yield,



X

Y

Z

Ẋ

Ẏ

Ż


=

ICR(τ) 03×3

Ċ(τ) ICR(τ)





x

y

z

ẋ

ẏ

ż


(2.48)

where sub matrix ICR is defined in equation (2.45) and sub matrix Ċ(τ)is defined as,

Ċ(τ) =


− sin(τ − τ0) − cos(τ − τ0) 0

cos(τ − τ0) − sin(τ − τ0) 0

0 0 0

 (2.49)
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The DCM is only an explicit function of the non-dimensional time. The inverse of the

DCM in equation (2.48) converts the inertial coordinates to rotational coordinates.

2.9 Stability of Equilibrium Points

The five equilibrium points represent constant, particular solutions in the CR3BP.

Lyapunov stability criteria is employed to assess the stability of these points by con-

ducting eigenvalue analysis of the linear variational equations, obtained by linearizing

the dynamical system about these points [7]. Linear stability analysis helps in under-

standing the nature of motion in the close vicinity of the libration points. Depending

upon the real or imaginary form of the eigenvalues, the Lyapunov stability criteria

for a linearized dynamical model is defined as follows:

1. Complex Eigenvalues

• All negative real parts − The equilibrium point is asymptotically stable.

• At least one root with positive real part − The equilibrium point is unsta-

ble.

Above criteria are also valid for repeated complex eigenvalues.

2. Purely Imaginary Eigenvalues

• Distinct roots − Oscillatory bounded motion and equilibrium point is

marginally stable.

• Repeated roots− Solution may contain both periodic and secular terms,

and hence equilibrium point is unstable.

3. Purely Real roots

• All roots negative − equilirbium point is stable.

• At least one root positive − equilibrium point is unstable.

Above criteria are also valid for repeated purely real eigenvalues.
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Let the equilibrium points be represented by coordinates L(a, b, c). Adding in-

finitesimal variations ξ, η and ψ along x, y and z directions the perturned states

relative to L(a, b, c) are written as,

x = a+ ξ

y = b+ η

z = c+ ψ

(2.50)

Taking the higher order derivatives of the perturbed states results in,

ẋ = ξ̇

ẏ = η̇

ż = ψ̇

ẍ = ξ̈

ÿ = η̈

z̈ = ψ̈

(2.51)

Observe in equation (2.51) the derivatives of a, b , c are zero as the positions of the

equilibrium points are constant in the CR3BP. Linearizing the nonlinear differential

equations in equations (2.29)-(2.31) using Taylor series expansions and neglecting the

higher order terms about equilibrium points Li result in the following second order

linear variational equations expressed as,

ξ̈ − 2η̇ = U∗xxξ + U∗xyη + U∗xzψ (2.52)

η̈ + 2ξ̇ = U∗yxξ + U∗yyη + U∗yzψ (2.53)

ψ̈ = U∗zxξ + U∗zyη + U∗zzψ (2.54)

The partials in the above equations (2.52)-(2.54) are calculated as follows,
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U∗xx =
∂2U∗

∂x2
= 1− (1− µ)

d3
+

3(1− µ)(x+ µ)2

d5
− µ

r3
+

3µ(x− 1 + µ)2

r5
(2.55)

U∗yy =
∂2U∗

∂y2
= 1− (1− µ)

d3
+

3(1− µ)y2

d5
− µ

r3
+

3µy2

r5
(2.56)

U∗zz =
∂2U∗

∂z2
= −(1− µ)

d3
+

3(1− µ)z2

d5
− µ

r3
+

3µz2

r5
(2.57)

U∗xy =
∂2U∗

∂x∂y
= U∗yx =

3(1− µ)(x+ µ)y

d5
+

3µ(x− 1 + µ)y

r5
(2.58)

U∗xz =
∂2U∗

∂x∂z
= U∗zx =

3(1− µ)(x+ µ)z

d5
+

3µ(x− 1 + µ)z

r5
(2.59)

U∗yz =
∂2U∗

∂y∂z
= U∗zy =

3(1− µ)zy

d5
+

3µzy

r5
(2.60)

As all the partials in the above equations (2.55)-(2.60) are evaluated at Li, they are

constant values and since all Li are planar, the z component for all Li = 0. Making

these substitutions into equations (2.52)-(2.54) results in a simplified form of linear

variational equaitons about Li, given as,

ξ̈ − 2η̇ = U∗xxξ + U∗xyη (2.61)

η̈ + 2ξ̇ = U∗yxξ + U∗yyη (2.62)

ψ̈ = U∗zzψ (2.63)

It is observed from the above linearized equations (2.61)-(2.63) that the in-plane and

out of plane motion is decoupled. Thus, it is possible to separately perform the

analysis in and out of the rotating plane of the primaries. The second order ordinary
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differential equation in equation (2.63) is a simple harmonic oscillator, and its general

solution is known to be sinusoidal. Thus a general solution exists as,

ψ = A1 cos(υτ) + A2 sin(υτ) (2.64)

Where υ =
√
|Uzz|Li

is the out of plane frequency and A1 and A2 are coefficients

determined from initial conditions. At libration points L4 and L5, U∗zz = −1, which

implies that the υ = 1, i.e., the angular velocity of a small oscillation along ẑ-axis is

same as mean motion of primaries. This has been confirmed with the discovery of

the Trojan asteroids at Sun-Jupiter L4 and L5 locations, which have the same period

of small oscillations perpendicular to the ecliptic as the orbital period of Jupiter. As

the eigenvalues of the equation (2.63) are imaginary the out of plane linear motion

is marginally stable, and therefore stability of the non-linear system cannot be pre-

dicted. The stability of the in-plane motion is explored by analyzing the eigenvalues

of the linear system described by the equations (2.61) and (2.62). The two second-

order coupled linear differential equations is written as four first-order coupled linear

differential equations of the form ˙̄X = AX̄, where X̄ =
[
ξ η ξ̇ η̇

]T
and A is the

system matrix expressed as,

A =


0 0 1 0

0 0 0 1

U∗xx U∗xy 0 2

U∗yx U∗yy −2 0

 (2.65)

Here the system coefficient matrix A is constant when computed at the equilibrium

points Li. The partial derivatives in the matrix A are computed using equations

(2.55)-(2.60). The general solution to this linear system is expressed as,

ξ =
4∑
i=1

aie
λit (2.66)

η =
4∑
i=1

bie
λit (2.67)
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Where ai and bi are constants of integration (bi depend on ai) and λi are roots of the

characteristic determinant of matrix A. Expanding the characteristic determinant

results in the following fourth order polynomial,

λ4 + (4− U∗xx − U∗yy)λ2 + (U∗xxU
∗
yy − U∗yxU∗xy) = 0 (2.68)

Consider the collinear libration points L1, L2 and L3. As they lie on the x̂-axis

yLi
= zLi

= 0. Substituting these values in the partials of equation (2.68) results in

U∗xy = 0, U∗xx > 0 and U∗yy < 0. The characteristic roots of the equation (2.68) are

given as,

λ1,2 = ±
√

Λ1 (2.69)

λ3,4 = ±
√

Λ2 (2.70)

Where coefficients Λ1, Λ2 expressed as,

Λ1,2 = −β1 ± (β2
1 + β2

2)
1
2 (2.71)

Coefficients β1 and β2 are given as,

β1 = 2− U∗xx + U∗yy
2

(2.72)

β2 = −U∗xxU∗yy (2.73)

Two of the eigenvalues given by equation (2.69) and (2.70) are real and the other

two eigenvalues are imaginary. As at least one of the real eigenvalues has a positive

real part, by the definition of Lyapunov stability the collinear libration points L1,

L2 and L3 are unstable. However, in the vicinity of the collinear libration points by

appropriate choice of initial conditions it is possible to erase unstable eigenmodes in

the linear system, which results in a bounded periodic elliptical motion about Li,

with semi-major and semi-minor axes parallel to ŷ-axis and x̂-axis respectively. The
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same initial conditions may not be periodic in the non-linear model, but it is possible

to numerically compute periodic solutions about the libration points using the linear

periodic ellipses as the initial guess.

Now, consider the planar stability for the equilateral libration points. At L4 and

L5 the value of coordinates are x = µ− 0.5, y = ±
√

3
2

and z = 0. Substituting these

values into the characteristic equation (2.68) results in the following expression,

λ4 + λ2 +
27

4
µ(1− µ) = 0 (2.74)

The characteristic roots of the system are given by,

λ1,2,3,4 = ±
√

Λ1,2 (2.75)

Where Λ is given by,

Λ1,2 =
1

2

{
−1± [1− 27µ(1− µ)]1/2

}
(2.76)

The eigenvalues are seen to be a function of µ. The real or complex nature of the

eigenvalues switches at a critical value of µ0 = 0.03852. Hence, three regions of µ

are considered. When 0 ≤ µ < µ0, all four eigenvalues are imaginary, and the linear

system is marginally stable. The four imaginary eigenvalues usually correspond to

two different frequencies s1 and s1. The motion is bounded and is the superposition of

two harmonic oscillations having the above frequencies. One frequency corresponds

to the long period motion, and the other corresponds to a short period oscillation.

By appropriate choice of initial conditions, it is possible to eliminate the coefficients

of a certain frequency, and the resulting motion will be an ellipse with its minor and

major axes tilted with respect to the x̂ and ŷ axes. As the linear system is marginally

stable, the stability of the non-linear system cannot be concluded. Just as in the

collinear libration points, the same initial conditions may not result in a periodic

elliptical motion in the non-linear model, but it is possible to numerically compute
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periodic solutions about the libration points using the linear periodic ellipses as the

initial guess. In the second region when µ = µ0, results in imaginary eigenvalues of

equal frequencies. L4 and L5 are stable in a linear sense, but conclusions cannot be

drawn about the non-linear behavior. In the final region where µ > µ0, eigenvalues

turn out to be imaginary with two eigenvalues having a negative real part and the

remaining eigenvalues having a positive real part. This renders the linear system

unstable. Similar to previous cases a wise selection of initial conditions will eliminate

the unstable eigenvalues, and the solution will approach asymptotically spiraling to-

wards L4/5. But in general planar motion about the L4 and L5 points in this region

is stable.
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(a) ZVS (CL3
< C < CL2

). (b) ZVC (CL3
< C < CL2

).

(c) ZVS (CL4
< C < CL3

). (d) ZVC (CL4
< C < CL3

).

(e) ZVS (C < CL4
). (f) ZVC (C < CL4

).

Figure 2.7. ZVS and ZVC for (CL3 < C < CL2), (CL4 < C < CL3) and (C < CL4).
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(a) ZVS (C = CL1). (b) ZVC (C = CL2).

(c) ZVC (C = CL3). (d) ZVC (C = CL4).

Figure 2.8. ZVC for (C = CL1), (C = CL2), ZVC (C = CL3) and ZVC (C = CL4).
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X̂

Ŷ

x̂

ŷ





Figure 2.9. Orientation of rotating frame to the Inertial frame.
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3. NUMERICAL METHODS AND PERIODIC ORBITS

As closed-form solutions cannot be analytically obtained in the CR3BP, numerical

methods are efficiently used for searching and computing several periodic and quasi-

periodic solutions. Numerical techniques also form the fundamental tools for tra-

jectory design in the later part of this work. In this chapter, the concept of State

Transition Matrix (STM) is introduced, which forms the basis for many linear dif-

ferential correction algorithms. A general formulation of a differential corrections

process is outlined and is followed by two widely used correction processes namely

the Single shooting and Multiple shooting techniques. Mirror theorem is introduced

which forms the motivation for developing the algorithm to compute symmetric pe-

riodic orbits in the CR3BP. Natural parameter and Pseudo-Arclength continuation

techniques are presented which are essential in extending the families of periodic or-

bits and transfer trajectories. And finally the concept of stability is introduced for

periodic orbits in the CR3BP and criteria for bifurcations to other periodic solutions

is also laid down.

3.1 State Transition Matrix

Numerically integrating the EOMs to study the time evolution of a particular ini-

tial condition, may not necessarily reveal the dynamics and time evolution of neigh-

boring trajectories originating from nearby initial conditions. Quite often, it is useful

to learn about trajectories close to nominal/reference trajectory that is being in-

tegrated. Sometimes the desired trajectory may lie close to the nominal/reference

trajectory, and satisfies a certain two-point boundary value problem(TPBVP) in the

sense that it has a set of desired initial and final states. One painstaking way to find

the desired nearby trajectory is to integrate several initial conditions until the final
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conditions are satisfied. An alternative method is a standard way to obtain informa-

tion about all nearby trajectories at the same time. It relies on the use of variational

equations and the State Transition Matix (STM). STM is widely used in the CR3BP

to compute trajectories that satisfy a TPBVP, in computing periodic orbits and also

analyzing their stability.

Consider the first-order form of nonlinear equations of motion represented by

equation (2.3). By integrating an initial condition X̄0 for a non-dimensional time τ ,

a particular reference solution X̄n(τ) is obtained for the nonlinear equations. Nearby

desired trajectory to the reference solution is written as,

X̄(τ) = X̄n(τ) + δX̄(τ) (3.1)

Here, in equation (3.1) X̄(τ) indicates the nearby desired trajectory and δX̄(τ) corre-

sponds to the variation with respect to the reference trajectory. Variational equations

are obtained by substituting equation (3.1) into the nonlinear system given by equa-

tions (2.3) and by expanding them using Taylor series about the reference trajectory.

By neglecting the higher order terms the following variational equations are obtained,

δ ˙̄X = A(τ)δX̄ (3.2)

here, A(τ) is the system Jacobian matrix and δX̄(τ) =
[
δx δy δz δẋ δẏ δż

]T
.

The equation (3.2) is written in matrix form as,



δẋ

δẏ

δż

δẍ

δÿ

δz̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗xx U∗xy U∗xz 0 2 0

U∗yx U∗yy U∗yz −2 0 0

U∗zx U∗zy U∗zz 0 0 0





δx

δy

δz

δẋ

δẏ

δż


(3.3)
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The partial derivatives in the matrix A(τ) are computed using equations (2.55)-(2.60)

and are evaluated along the reference trajectory. Hence, A(τ) is not a constant

matrix, but a function of the state on the reference trajectory. The general solution

to equation (3.2) takes the form,

δX̄(τ) = Φ(τ, τ0)δX̄0 (3.4)

Where Φ(τ, τ0) is the first-order 6×6 matrix STM and the δX̄0 is the six element initial

variation from a given initial condition associated with the reference trajectory. As

both the system Jacobi matrix and the STM are time dependent, they are propagated

by the following matrix differential equation along the reference trajectory,

Φ̇(τ, τ0) = A(τ)Φ(τ, τ0) (3.5)

From equation (3.4) at time τ = 0, Φ(τ0, τ0) = I6×6. Equation (3.5) corresponds to

36 scalar differential equations which corresponds to each element of the STM.

STM is also alternatively viewed as the derivative of the states at non-dimensional

time τ with respect to the initial condition at τ0. It is also called the Sensitivity

matrix as it contains information about the sensitivities of the final state(at time τ)

to variations in the initial state(at time τ0 ). By this definition it is written as,



δxf

δyf

δzf

δẋf

δẏf

δżf


=



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0





δx0

δy0

δz0

δẋ0

δẏ0

δż0


(3.6)

Along with the six non-linear differential equations, the 36 elements of the first-order

STM are numerically integrated with a typical numerical simulation of the CR3BP

and used in various differential correction algorithms.
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3.2 Differential Corrections

Computation of periodic orbits, quasi-periodic trajectories and transfer trajecto-

ries in the CR3BP is typically similar to solving two-point boundary value problems

along with meeting specific state constraints along the trajectory. Various kinds of

differential correction algorithms are employed to solve these problems. In this inves-

tigation, differential corrections formulated as single and multiple shooting schemes

are used as the principal algorithms for trajectory design. These shooting schemes

are well known as multi-dimensional Newton-Raphson’s methods. Any differential

correction process has two main matrices:

1. Free Variable Matrix : A vector consisting of n design variables of the prob-

lem which vary freely to satisfy a set of given constraints. Typically, free vari-

ables include positions, velocities, integration times, epoch times and slack vari-

ables.

2. Constraint Matrix : A vector consisting of m constraint equations that needs

to be satisfied by the propagated trajectory. Any mission constraint is usually

expressed in terms of free variables of the trajectory. Typical constraints include

position and velocity constraints, apse constraint, time of flight, ∆V or altitude

constraints and so on.

The correction process boils down to finding the appropriate free variable matrix X̄

close to the initial guess X̄0 which satisfies the constraint matrix, i.e., F̄ (X̄) = 0.

For this, the constraint vector is expanded using taylor series about the initial free

variable vector,

F̄ (X̄) = F̄ (X̄0) +
∂F̄ (X̄0)

∂X̄0
(X̄ − X̄0) + ... (3.7)

Here ∂F̄ (X̄0)

∂X̄0 is an m × n Jacobian matrix which is made up of partial derivatives of

the constraint vector with respect to the free variables. Neglecting the higher order

terms the following expression is obtained,
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F̄ (X̄) = F̄ (X̄0) +DF (X̄0)(X̄ − X̄0) (3.8)

As at the desired free variable the constraint vector F̄ (X̄) = 0, the update equation

for the corrections process takes the form,

X̄j+1 = X̄j −DF (X̄j)
−1
F̄ (X̄j) (3.9)

Where X̄j is the current iteration value of the free variable vector, X̄j+1 is the next

iteration of the free variable vector, F̄ (X̄j) is the value of the current constraint vector

evaluated at the current design variable X̄j. The Jacobian DF (X̄j) is evaluated from

the current F̄ (X̄j) and X̄j. The iterations are stopped when the Euclidean norm of

the constraint vector
∥∥F̄ (X̄j+1)

∥∥
2

is less than an acceptable tolerance of 10−12, i.e.,∥∥F̄ (X̄j+1)
∥∥

2
< 10−12.

When the number of design variables n equals the constaint equations m, the

udpdate equation (3.9) is used. Sometimes, the number of design variables n are

more than the constraint equations m which leads to infinitely many solutions. In

such an under-determined system a minimum norm solution is sought and the new

update equation is given as,

X̄j+1 = X̄j −DF (X̄j)
T

(DF (X̄j)DF (X̄j)
T

)
−1
F̄ (X̄j) (3.10)

This yields a solution X̄ that is as close as possible to the initial design variable X̄0.

On some occasions, having fewer design variables than the constraint equations often

leads to no solution. In such an over-determined system a least squares solution is

desired and the new update equation is given to be,

X̄j+1 = X̄j − (DF (X̄j)TDF (X̄j))
−1
DF (X̄j)

T
F̄ (X̄j) (3.11)

The corrections process formulated form the basis for different kinds of targeting

algorithms. The two most extensively used methods are the Single Shooting and the

Multiple Shooting techniques. The following sections explain the two in more detail.
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3.3 Single Shooting or Simple Targeting Problem

The essence of a single shooting differential correction process is captured by a

simple targeting problem. It is an elementary correction process in which the goal

is to find a nearby solution to a reference trajectory which satisfies certain initial

and final state conditions. Consider a reference trajectory shown in figure 3.1. It

starts with the initial conditions x̄(t0) and is propagated for a time T ,using the

nonlinear equations of motion given in equation (2.26) - (2.27) to attain the final

conditions x̄(t0 + T ). Let there exist a target final state x̄d(t0 + T ) in the vicinity

of the current final condition. The simple targeting problem is now to find a nearby

trajectory which reaches the new final desired state by appropriately modifying the

initial conditions and the propagation time. The iteration scheme developed in the

previous section is used to formulate the corrections process. First, the free variable

vector is formulated and is comprised of initial conditions and the propagation time

of the reference trajectory, written as,

x̄(t0) =



x(t0)

y(t0)

z(t0)

ẋ(t0)

ẏ(t0)

ż(t0)

T


(3.12)

Depending on the problem scenario sometimes some of the initial conditions or prop-

agation time are not allowed to vary. In such cases, the fixed conditions are not

included in the free variable vector. For example, if the initial positions are not

allowed to vary then the free variable vector is modified as,
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x̄(t0) =


ẋ(t0)

ẏ(t0)

ż(t0)

T

 (3.13)

Next, the constraint vector is formulated by including all the scalar constraint equa-

tions for the trajectory. As the trajectory must reach a target final condition x̄d(t0+T )

the constraint vector is written as,

F̄ (x̄d(t0 + T )) =



xd(t0 + T )− xd
yd(t0 + T )− yd
zd(t0 + T )− zd
ẋd(t0 + T )− ẋd
ẏd(t0 + T )− ẏd
żd(t0 + T )− żd


= 0 (3.14)

Here x̄d(t0 + T ) are the states obtained by propagating the intial condition x̄(t0)

for a time T using the nonlinear equations of motion, i.e., equation (2.26) - (2.27).

Sometimes, the target final conditions may apply only to a subset of the final states

of the trajectory. In such cases, the free final conditions are not included in the

constraint vector. For example, if only final positions are to be targeted, then the

modified constraint vector is written as,

F̄ (x̄d(t0 + T )) =


xd(t0 + T )− xd
yd(t0 + T )− yd
zd(t0 + T )− zd

 = 0 (3.15)

The next crucial step is to calculate the Jacobian matrix which is made up of partial

derivatives of the constraint vector with respect to the free variables. By this defini-

tion, the Jacobian matrix for the free variable and the constraint vectors in equation

(3.13) - (3.15) respectively is written as,
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DF (x̄(t0 + T )) =


∂x(t0+T )
∂ẋ(t0)

∂x(t0+T )
∂ẏ(t0)

∂x(t0+T )
∂ż(t0)

∂x(t0+T )
∂T

∂y(t0+T )
∂ẋ(t0)

∂y(t0+T )
∂ẏ(t0)

∂y(t0+T )
∂ż(t0)

∂y(t0+T )
∂T

∂z(t0+T )
∂ẋ(t0)

∂z(t0+T )
∂ẏ(t0)

∂z(t0+T )
∂ż(t0)

∂z(t0+T )
∂T

 (3.16)

Note that the elements in the first three columns of the DF matrix quantify the

sensitivity of the final states with respect to the initial states and thus are elements

of the STM. The elements in the last column of the DF matrix indicate the sensitivity

of propagation time on the final states and hence are the time derivatives of the final

states. The DF matrix is evaluated straightforwardly as,

DF (x̄(t0 + T )) =


Φ14 Φ15 Φ16 ẋ(t0 + T )

Φ24 Φ25 Φ26 ẏ(t0 + T )

Φ34 Φ35 Φ36 ż(t0 + T )

 (3.17)

Depending upon the number of free variables and the elements of constraint vector

one of the three iteration schemes in equations (3.9), (3.10) and (3.11) is used as

the update equation during the differential corrections process. The iteration process

is repeated until the norm of the constraint vector
∥∥F̄ (x̄(t0 + T ))

∥∥
2
, is less than an

acceptable tolerance value of 10−12. If the integration time is a free variable, the

corrections scheme is labeled variable time shooting process and if the integration

time is fixed then it is termed as fixed time shooting process.

3.4 Multiple Shooting Algorithm

When the reference solution lies in a highly sensitive, nonlinear region or has longer

integration times, single shooting method often takes a lot of iterations or does not

converge to the desired free variables. In such circumstances multiple shooting method

is more robust in tackling such conditions. It is essentially applying several single

shooting methods parallelly along the trajectory to meet the design constraints. An

important first step in this process is to discretized the trajectory into (n−1) smaller

segments or sub-arcs separated by n patch points or nodes. Consider a reference
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Figure 3.1. Illustration of Single shooting method.

trajectory broken down by n patch points into n − 1 sub arcs as seen in figure 3.2.

Here x̄0
i represents the initial state vector along a sub-arc. The integration time from

x̄0
n to the next patch point is Tn. The final state of a sub-arc after integration is

written as x̄fn(τn, Tn). Similar to the single shooting method, a targeting algorithm is

written using a multiple shooting scheme. First, the design vector is formulated as

the set of all the (n) initial conditions and sub-arc propagation times. Thus the free

variable design vector is written as,

X̄ =



x̄0
1

...

x̄0
n

T1

...

Tn−1


(3.18)

Sometimes, when few of the design variables are fixed, they may be omitted from

the design vector or added to the constraint vector. Next, the constraint vector is

formulated by including all the scalar constraint equations for the trajectory. Many
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times the sub-arcs are desired to be continuous in their states after the corrections

process. Hence continuity constraints are first introduced by ensuring the states at

the end of the sub-arcs to match the initial conditions of the patch points of the next

sub-arc. If a maneuver is introduced at a patch point, only the position constraints

are ensured between the end point of the previous sub-arc and the desired patch

point. Finally, other design constraints are appended to the continuity constraints to

complete the constraint vector. A typical constraint vector takes the form,

F̄ (X̄) =


x̄f1(τ1, T1)− x̄0

2

x̄f2(τ2, T2)− x̄0
3

...

x̄fn−1(τn−1, Tn−1)− x̄0
n

 (3.19)

The next step is to calculate the Jacobian matrix, DF which is made up of partial

derivatives of the constraint vector with respect to the free variables. By this definition

the DF matrix for the free variable and the constraint vectors in equation (3.18) and

(3.19) respectively is written as,

DF (X̄) =



∂x̄f1 (τ1,T1)

∂x̄01
−∂x̄02
∂x̄02

0 0
∂x̄f1 (τ1,T1)

∂T1
0 0

0
∂x̄f2 (τ2,T2)

∂x̄02

. . .
... 0

. . .
...

...
. . .

. . .
...

...
. . .

...

0 0
∂x̄fn−1(τn−1,Tn−1)

∂x̄0n−1
−∂x̄0n
∂x̄0n

0 0
∂x̄fn−1(τn−1,Tn−1)

∂Tn−1


(3.20)

Note that some of the elements in the DF matrix correspond to elements of the

STMs belonging to the sub-arcs. Remaining elements of the DF matrix correspond

to the time derivatives of states at the endpoints of the sub-arcs. The DF matrix is

evaluated straightforwardly as,
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DF (X̄) =


Φ1 −I6×6 0 0 ˙̄x

f
1(τ1, T1) 0 0

0 Φ2
. . .

... 0
. . .

...
...

. . . . . .
...

...
. . .

...

0 0 Φn−1 −I6×6 0 0 ˙̄x
f
n−1(τn−1, Tn−1)

 (3.21)

Depending upon the number of free variables and the elements in the constraint vector

one of the three iteration schemes in equations (3.9), (3.10) and (3.11) are used for

the differential corrections process. The iteration process is repeated until the norm

of the constraint vector F̄ (X̄), is less than an acceptable tolerance value of 10−12.

Throughout this investigation, a variable time multiple shooting algorithm is used to

compute periodic orbits and design trajectories.

0

1x

1T

1 1 1( , )fx T

0

2x

2 2 2( , )fx T

0

1nx 
1 1 1( , )f

n n nx T  

2T

1nT 

Figure 3.2. Illustration of Multiple shooting method.

3.5 Symmetric Properties in CR3BP

Consider a solution to the CR3BP given by x = x(t), y = y(t) and z = z(t), which

is obtained by integrating an arbitrary initial condition X̄0 =
[
x0 y0 z0 ẋ0 ẏ0 ż0

]T
for a time t. A mirror image of the initial condition X̄0 about the x̂-ẑ plane exists

and is given to be X̄ ′0 =
[
x0 −y0 z0 −ẋ0 ẏ0 −ż0

]T
. When evolved backwards

in time X̄ ′0 produces a trajectory x = x(−t), y = −y(−t) and z = z(−t) which is

the mirror image of the orginal trajectory about the x̂-ẑ plane and also satisfies the

nonlinear differential equations of motion. This is verified by making the following
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substitutions t = −t, x = x, y = −y and z = z into equations (2.29)-(2.31) and

simplification to arrive at the following set of equations,

d2x
′

dt′2
= −2

dy
′

dt′
+
∂U∗

∂x′
(3.22)

d2y
′

dt′2
= 2

dx
′

dt′
+
∂U∗

∂y′
(3.23)

d2z
′

dt′2
=
∂U∗

∂z′
(3.24)

Thus, the mirror trajectory when substituted into the EOM’s leave them unchanged.

One of the consequence of the symmetry property is the Mirror theorem.

The Mirror theorem states that if n point masses are acted upon by their mutual

gravitational forces, and at a certain epoch, each radius vector from the center of mass

of the system is perpendicular to every velocity vector, then the orbit of each point

mass after the epoch is a mirror image of its orbit prior to that epoch. Such a

configuration of radius and velocity vectors is called a Mirror configuration [34]. Roy

and Ovenden used this theorem to say that if in two separate instances a mirror

configuration occurs, then the orbits are periodic. That is if the secondary particle

crosses the x̂-ẑ plane perpendicularly at two different points then its trajectory is

periodic. This fact forms the basis for numerical computation of symmetric periodic

orbits about the libration points in the CR3BP.

3.6 Symmetric Periodic Orbits

Recall that by careful selection of certain initial conditions, periodic and oscillatory

solutions to the linearized equations of motion about the libration points exist. But

when the same initial conditions are evolved using the nonlinear dynamical equations

the solution no longer stays periodic. Nevertheless, periodic solutions for the nonlinear

model in the close vicinity of the initial conditions are numerically found by the
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application of Mirror theorem and a targeting algorithm as discussed in the previous

sections. The preliminary planar periodic orbits about the libration points are called

the Lyapunov families of periodic orbits. Consider the libration point L1. In general,

the L1 point is considered unstable as it has both unstable and stable eigenvalues for

the linearized system. By a careful selection of initial conditions about this point, it is

possible only to retain the stable oscillatory eigenvalues to produce elliptical periodic

orbits in the linear dynamical regime. Such an initial condition is given as,

x̄0 =
{
x0 0 0 0 ẏ0 0

}
(3.25)

When the above initial condition is integrated using the nonlinear differential equa-

tions for a period equal to that of the linear orbit, it results in nonperiodic trajectory

with a non-perpendicular x̂-axis crossing. According to the Mirror theorem, if a

nearby initial condition is found which makes the nonlinear trajectory cross the x̂-

axis perpendicularly at the two crossings then it will represent a periodic solution.

As a consequence, only half of the trajectory will be considered as the initial guess

for the differential corrections process to target two perpendicular crossings at the

x̂-axis. The initial condition for the guess is given in equation (3.25), which starts

at x̂-axis perpendicularly in a retrograde direction to the primaries. A periodic orbit

which starts at the same x-coordinate is desired. Therefore, the design vector only

consists of the velocity state in ŷ-direction and the integration time written as,

X̄ =

ẏ0

T

 (3.26)

Position state in x0 and velocity ẋ0 (to ensure perpendicular crossing ) are fixed states

in the correction process. The constraint vector ensures that the trajectory crosses

the x̂-axis perpendicularly at the final point on the trajectory. Thus it is written as,

F̄ (X̄) =

ẋFyF
 (3.27)



54

The Jacobian or the DF matrix is expressed using the design and the constrain

vectors as the following,

DF̄ (X̄) =

∂ẋF∂ẏ0

∂ẋF
∂T

∂yF
∂ẏ0

∂yF
∂T

 (3.28)

As the number of constraints are equal to the number of design variables equation

(3.9) is used for the iteration process. To demonstrtate the process consider a non-

dimensional initial condition close to the L1 equilibrium point given by,

x̄0 =
{

0.835915 0 0 0 0.008372 0
}

(3.29)

and the halftime period of the linear elliptical orbit is T = 1.359022 non-dimensional

units. Now, applying the single shooting scheme as discussed above results in a

Lyapunov periodic orbit as shown in figure 3.3 with the new initial conditions,

x̄corrected0 =
{

0.835915 0 0 0 0.008435 0
}

(3.30)

and the new half time period of the periodic orbit is T = 1.345895 non-dimensional

units. Notice that the corrected Lyapunov orbit has the same x̂-coordinate as the

initial guess.

Alternatively, for every iteration during the differential corrections process the

trajectory is propagated until the intersection occurs with the x̂-axis, i.e., automat-

ically yF = 0 for the propagated time during every iteration. This helps to remove

time from the design variable and the new design variable is just the velocity ẏ. The

modified constraint vector is ẋF = 0 as the trajectory is always integrated till yF = 0

during every iteration. Both the approaches are equivalent. The iteration process is

continued until the norm of the constraint vector is less than an acceptable tolerance

level of 10−12. The final trajectory of the correction process represents half of the L1

planar Lyapunov orbit which is a retrograde periodic orbit at the same x-coordinate

as X0, i.e., the initial guess. The other half of the periodic orbit is obtained by reflect-
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Initial Guess

Corrected Lyapunov
0X

fX

Figure 3.3. A symmetric, periodic L1 Lyapunov orbit.

ing the converged trajectory about the x̂-axis. This periodic orbit is only one among

infinitely many members of the Lyapunov family. Other members of the family are

obtained by various continuation algorithms. Different three-dimensional periodic

orbits also exist which originate from the Lyapunov family, and will be discussed in

later sections.

3.7 Continuation process

From the previous section, the periodic L1 Lyapunov orbit obtained by differential

corrections process is a particular solution to the CR3BP. It is one among infinitely

many periodic orbits which belong to L1 Lyapunov family. In a more general sense

isolated periodic orbits are not found in the CR3BP. Periodic orbits always exist as

families and originate about the libration points or primaries. All the orbits in a

family evolve smoothly over various natural parameters which characterize the orbits

such a time period, Jacobi constant, stability and excursions in various directions.
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This smooth evolution of various parameters are leveraged to compute other members

of the families by incorporating them into the differential corrections process. This

method of generating new members of a family from an existing periodic orbit is

called Continuation process. The simplest form of continuation is accomplished by

evolving the natural parameters of the orbit family, and there is also a more robust

method termed as the Pseudo-arclength process which is widely used in the later

analysis.

3.7.1 Natural Parameter Continuation

Natural Parameter Continuation is an elementary continuation process. It makes

use of the fact that natural parameters in the family of periodic orbits evolve smoothly.

It is implemented in the following way. First, a periodic orbit is computed using a

simple differential corrections process. For example, consider the previous section.

An L1 Lyapunov orbit with the following natural parameters as shown in table 3.1

is computed using a simple targeting algorithm and mirror theorem as shown in

figure 3.3. Then, one of the natural parameters is changed by a small amount and

added to the constraint vector. In this case, the positive crossing on the x̂-axis is

chosen as the natural parameter and is decreased by a small amount β = 0.001.

This changes the initial condition. The trajectory propagated using the new initial

condition for the same time period as the base periodic orbit fails to produce a periodic

trajectory. This forms the initial guess in the corrections process. Anyone of the single

or multiple shooting targeting schemes is applied to converge to a new nearby periodic

solution, which is characterized by the new natural parameter, as it is included in

the constraint vector. Using the newly converged periodic orbit as the new guess,

the process is repeated to evolve new members of the periodic family. Even though

the algorithm seems straightforward, there are a few challenges associated with this

process. Sometimes, the evolution of the natural parameters is non-intuitive, and

thus a step in an incorrect direction may not lead to convergence. Also, depending
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Table 3.1. Natural parameters of a representative L1 Lyapunov orbit.

Natural Parameter Value (n.d)

Positive x̂-axis crossing 0.835915

Negative x̂-axis crossing 0.837932

Positive x̂-axis crossing velocity 0.008435

Negative x̂-axis crossing velocity −0.00847

Half Time Period 1.345895

Jacobi Constant 3.188281

upon the sensitivity of the dynamical region the step size β may vary significantly

compared to other non-sensitive dynamical regions within the family. Therefore, there

is no fixed size for the step length β and is to be chosen based on experience.

3.7.2 Pseudo-arclength Continuation

Pseudo-arclength Continuation is a more robust process [35]. All the free vari-

ables associated with periodic orbits in a family may or may not evolve smoothly.

Pseudo-arclength helps to step along the tangential direction of evolution of free vari-

ables towards the next orbit in a family. Hence, prior knowledge about the evolution

of the free variables is not required. Larger and accurate step sizes is taken which

leads to faster convergence and fewer iterations. But a step size in Pseudo-arclength

technique has no physical significance as a change in all the free variables happens at

once as opposed to a single variable in natural parameter continuation. Hence, there

is less intuition about the distances between solutions computed using this algorithm.

To implement any continuation process, a converged base periodic orbit is nec-

essary. Let the free variable vector of the periodic orbit be represented by X̄∗i−1

satisfying the constraints F̄ (X̄∗i−1) = 0. The linear approximation of the tangent to
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the family of periodic orbits at the free variable vector X̄∗i−1 is given by the null vector

of the Jacobian matrix for the converged solution as ∆X̄∗i−1 = N(DF (X̄∗i−1)). All the

free variables are then incremented simultaneously along the tangent by a step length

∆s. This creates a new set of design variables, X̄∗i as,

X̄i = X̄∗i−1 + ∆s∆X̄∗i−1 (3.31)

When the initial conditions given by equation (3.31) are propagated, it forms the non-

periodic initial guess for the next corrections process. A Pseudo-arclength constraint

is additionally incorporated into the constraint vector to ensure that the new periodic

orbit is at the step length ∆s along the tangent to the family at the previous design

variable X̄∗i−1. Thus the new constraint vector for the corrections process is written

as,

(X̄i − X̄∗i−1)
T

∆X̄∗i−1 −∆s = 0 (3.32)

The new augmented DF matrix with the augmented constraint vector in equation

(3.32) is given by,

Ḡ(X̄i) =

 F̄ (X̄i)

(X̄i − X̄∗i−1)
T

∆X̄∗i−1 −∆s = 0

 = 0̄ (3.33)

Once all the matrices are formulated, depending upon the number of free variables

and constraints one of the differential corrections schemes in equations (3.9) - (3.11)

is used to produce the next periodic orbit in the family with free variables X̄∗i . This

process is continued to generate the other L1 family orbits as shown in figure 3.4 by

updating the base periodic orbit with the newest member of the family. The color

bar on the right indicates the Jacobi constant for the computed orbits. Close to the

libration point, the Lyapunov orbits have a Jacobi constant similar to the L1 libration

point. As the orbits get bigger and as they move closer towards the Earth, the Jacobi

constant decreases, i.e., the energy of the orbits increases. This technique coupled
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Figure 3.4. L1 Lyapunov family.

with a multiple shooting algorithm is used in the remaining part of this analysis to

generate all the periodic orbit families.

3.8 Stability of Periodic Orbits

In the previous chapter Lyapunov stability criteria was used to determine the

linear stability of equilibrium points which are constant, particular solutions to the

CR3BP. The equations of motion were linearized about the libration points and sta-

bility was assessed by analyzing the eigenvalues of the linearized system. In this

chapter, another kind of particular solution to the CR3BP, i.e., periodic orbits have

been computed. Very often in mission design, periodic orbits of certain characteristics

are widely used as the final destination orbits for spacecraft missions around other
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planets and moons. These periodic orbits are called the stable periodic orbits as the

spacecraft once placed in this orbit will remain in its vicinity for a considerably long

time even in the ephemeris model. Also the station keeping costs associated with

maintaining a spacecraft close to such an orbit is extremely low when compared to

an unstable periodic orbit. But recently even unstable periodic orbits have become a

very important mechanism for low energy transfers as they possess stable and unsta-

ble manifolds which on many occasions help the spacecraft to reach a desired location

at a lower cost compared to traditional transfers. Also detecting bifurcations, which

is crucial to identify new periodic families is done by analyzing the change in the

stability of a periodic orbit family. Hence identifying the stability of a periodic orbit

is a very useful design consideration.

Eigenvalues of the Monodromy matrix, Φ(t0 + T, t0), which is a special form of

the STM computed over exactly one time period of the periodic orbit [33], are used

to assess the linear stability. The computation of the monodromy matrix and its

associated eigenvalues are independent of the starting point on the periodic orbit and

hence remain the same for all the points on the periodic orbit. Any point on the

periodic orbit where the monodromy matrix is calculated is termed as a fixed point,

as the periodic orbit always returns to the same states indefinitely after every time

period. As the CR3BP is a Hamiltonian time-invariant system, the Lyapunov theorem

states that all the six eigenvalues of monodromy matrix always appear in reciprocal

pairs [36]. For periodic orbits in CR3BP, there is always a pair of trivial eigenvalues

equal to one. The other two pairs of eigenvalues either take real or complex values.

As the eigenvalues always appear in reciprocal pairs, the complex pair of eigenvalues

is possible only if they lie on a unit circle. The following stability criteria is used to

define the stability of periodic orbits:

• Unstable Eigenvalues: If any one of the eigenvalue has a magnitude greater

than one, i.e., |λi| > 1 then it is termed as an unstable eigenvalue. This implies

that after one time period of the periodic orbit, a state on an unstable eigen-
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vector corresponding to the monodromy matrix of the fixed point diverges away

from the fixed point along the unstable eigenvector by a factor of |λi|.

• Stable Eigenvalues: If an eigenvalue has a magnitude less than one, i.e.,

|λi| < 1, then it is called a stable eigenvalue. This means that after one time

period of the periodic orbit, a state on a stable eigenvector corresponding to

the monodromy matrix of the fixed point arrives closer to the fixed point along

the stable eigenvector by a factor of |λi|.

• Marginally Stable Eigenvalues: If the magnitude of the eigenvalue is equal

to one, i.e., |λi| = 1, then it indicates marginal stability.

A periodic orbit is deemed unstable if the magnitude of at least one eigenvalue is

greater than one. A periodic orbit is deemed stable if the magnitudes of all the

eigenvalues are less than one. And finally, a periodic orbit is said to be marginally

stable if the magnitudes of all the eigenvalues of the monodromy matrix are equal

to one. Because eigenvalues are reciprocal in the CR3BP, every stable eigenvalue is

accompanied by a corresponding unstable eigenvalue. Hence in the CR3BP only un-

stable and marginally stable periodic orbits are known to exist. The stability regions

are depicted with the help of a diagram shown in figure 3.5. Eigenvalues only lie on

the unit circle or the real axis. Unstable eigenvalues lie on the real axis beyond the

unit circle on both sides. Marginally stable eigenvalues lie on the unit circle, and the

stable eigenvalues lie on the real axis inside the unit circle.

Another simplified term called the stability index is introduced to represent the

stability of the periodic orbits. It is defined as follows,

ν =
1

2
(λi +

1

λi
) (3.34)

Where λi corresponds to the eigenvalue of the monodromy matrix. Any periodic orbit

is associated with three stability indices corresponding to the three reciprocal pairs

of eigenvalues. Therefore unstable periodic orbits have one of the stability indices
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Figure 3.5. Periodic orbit stability regions.

greater than one and marginally stable periodic orbits have all the stability indices

equal to one. Let us consider the Lyapunov orbit constructed in section 3.6. A point

on the periodic orbit where it crosses the x̂-axis in the positive direction is chosen to

be the fixed point for the computation of the monodromy matrix. The value of the

monodromy matrix is given as follows,

Φ(t0+T, t0) =



1585.228539 −277.71404 0 415.445474 186.418073 0

−711.937507 125.615431 0 −186.418073 −83.774963 0

0 0 0.984538 0 0 −0.078030

4626.347507 −809.782991 0 1212.392392 544.387581 0

−2109.443224 369.783773 0 −553.176906 −247.220716 0

0 0 0.393240 0 0 0.984538


(3.35)

The eigenvalues of the monodromy matrix are computed to be,
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λ1 = 2674.015272

λ2 = 0.000374

λ3 = 1

λ4 = 1

λ5 = 0.984538 + 0.175170i

λ6 = 0.984538 - 0.175170i

(3.36)

As expected two eigenvalues are equal to one which indicates that the orbit is periodic

and it belongs to a family of Lyapunov orbits. Two eigenvalues are real with one being

greater than one and the other being less than one. The remaining two eigenvalues

are complex conjugates and lie on the unit circle. Thus the three stability indices are

given as,

υ1 = 1337.007823

υ2 = 1

υ3 = 0.984538

(3.37)

Hence, according to the linear stability criteria, the Lyapunov period orbit is unstable.

Now the stability of all the Lyapunov periodic orbits computed in the previous section

is calculated, and their stability index is computed and plotted with respect to their

positive x̂-axis crossing in figure 3.6 and 3.7. From these figures, it is observed that

the in-plane stability index ν1 first decreases with x reaches a local minimum and

then starts increasing. It never crosses the stability bounds +/− 1 indicated by blue

lines. On the other hand, the out of plane stability index ν3 initially increases reaches

a maximum and then continuously decreases for the rest of x-coordinates. Also,

stability index ν3 crosses the stability boundary thrice, two times at +1 and one time

at −1. The trivial stability index ν2 is always equal to one for all the periodic orbits

in the family.
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Figure 3.7. L1 Lyapunov family - Out-of-Plane stability index ν3.
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3.9 Bifurcations

Consider the family of L1 Lyapunov orbits in figure 3.4. The stability indices are

plotted in the figures 3.6 and 3.7. Orbits within the family are unstable as one of their

stability index ν1 is always greater than one. As the energy of the Lyapunov family

increases, i.e., as the size of the family increases, at one particular x̂-axis positive

crossing, the stability index ν3 changes from being marginally stable to unstable as

the stability index of the corresponding pair of eigenvalues crosses the boundary on

unit circle at one. This qualitative change in the stability of the eigenvalues within a

periodic family is called a Birfurcation [37]. The implication of bifurcation is that new

periodic orbit family may arise from the bifurcation point or an existing periodic orbit

family may end at a bifurcation point. Depending upon the direction of change of

the stability index two types of bifurcations are predominantly identified in CR3BP.

They are tangent bifurcations and period multiplying bifurcations.

• Tangent Bifurcation: When the stability index of a pair of eigenvalues crosses

ν = 1, then it is termed as a Tangent Bifurcation. In Figure 3.7 tangent bifurca-

tions occur at points indicated by arrows, i.e., the Halo and Axial bifurcations.

On the corresponding stability diagram in figure 3.8(a) the eigenvalues cross

the unit circle at x = 1, i.e., they jump from the unit circle to the real axis

or vice versa. Usually, new periodic families emerge form the existing family

when such a bifurcation is encountered. This is the most dominant bifurcation

encountered in the following chapters.

• Period Multiplying Bifurcation: At the location where period multiplying(m)

bifurcation takes place periodic orbits of period mq intersect the orbit family of

period q. They are indicated when the stability index of the eigenvalues cross

the (m− 1)th complex root of unity as indicated in figure 3.8(b). More details

about this bifurcation are discussed by Bosanac [37].
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Figure 3.8. Types of Bifurcations.

3.10 3D Periodic Orbit Families

The CR3BP has several spatial, 3D periodic orbits in addition to the planar, 2D

periodic orbits computed and shown in the section 3.7.2, in the vicinity of the libration

points. Halo orbits are one such kind which originates from the first bifurcation point

of the Lyapunov orbits as seen in figure 3.9. The bifurcating orbit is thus common to

both the Halo and Lyapunov families. They were first discovered by Robert Farquhar

in 1968. Since then a lot of researchers have contributed to numerically computing

and extending the families to their full size around the three Libration points L1, L2

and L3. Space missions like International Sun-Earth Explorer 3 (ISEE 3) [14] and

Solar and Heliospheric Observatory (SOHO) [38] have used L1 Halo orbits as the

primary mission trajectory. The term halo was coined because most of these orbits

have a continuous earth coverage from the far side of the moon and appear to revolve

around the moon in the form of a halo when viewed in the Earth-Moon direction [25].

Halo orbits are symmetric about the x̂-ẑ plane. Therefore, similar to Lyapunov

families, they are numerically computed using the Mirror theorem as discussed previ-

ously. Consider once again the L1 Lyapunov family. Starting from the first orbit close
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to L1 Libration point, a pseudo-arclength continuation is used to generate guesses for

new members of the family and a multiple shooting technique is employed to differ-

entially correct the guess to a periodic trajectory. While implementing the pseudo-

arclength process, a new guess is obtained by moving along the tangential direction to

a previously converged Lyapunov orbit. This is done by stepping along the null vector

of the DF matrix as shown in equation (3.31). At the Halo orbit bifurcation point in

figure 3.9 there are two directions in which the Lyapunov orbit can move and hence

there are two null vectors of the DF matrix in the pseudo-arclength method at the

bifurcating orbit. Obtaining the exact bifurcating orbit is not numerically possible

hence a bisection method is used to get as close as possible. There are two tangential

directions in this orbit given by the two null vectors of the DF matrix. One tangent

is in the direction of the Lyapunov family, and the other tangent is in the direction of

the Halo family. The tangent vector along the Halo family has non zero components

in the spatial ẑ-direction and the tangent vector along the Lyapunov family has zero
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components in the spatial direction. Halo orbits close to the bifurcating point have

approximately the same time periods as the Lyapunov bifurcating orbit. The initial

conditions for the first halo orbit are obtained by incrementing the free variable de-

sign matrix of the bifurcating Lyapunov family along the halo family direction by a

scalar value ∆X̄. The step are taken in two possible directions on the tangent vector.

Moving along the positive ẑ-direction results in a Northern Halo family and stepping

along the negative ẑ-direction results in a Southern Halo family.

As Mirror theorem is used to correct the halo orbits, the initial condition is prop-

agated for half the time period of the Lyapunov orbit at the bifurcation point. The

resulting orbit is not periodic, and it forms the guess for the differential corrections

process. The next important step is to formulate the constraint vector. As the Halo

orbit crosses perpendicularly at the x̂-ẑ plane the y, ż and ẋ components at the first

and the last point on the trajectory have to be zero. Also, similar to Lyapunov orbits

the halo orbits are computed by fixing one of the initial variables x0 or z0 at the x̂-ẑ

plane crossing. On implementing the corrections process, the initial guess converges

to the desired Halo Orbit with initial conditions of the type,

x̄0 =
{
x0 0 z0 0 ẏ0 0

}
(3.38)

During the formulation of the initial guess, if the step along the tangent was taken

in the opposite direction then a Southern Halo orbit is obtained with the following

initial conditions,

x̄0 =
{
x0 0 −z0 0 ẏ0 0

}
(3.39)

Notice that only the z component in the initial conditions is opposite to each other.

The rest of the components are the same, and hence the energy of the orbits or their

Jacobi constants are equal. Once a Northern/Southern halo orbit is computed other

members of the halo family are extended similar to the Lyapunov family by a pseudo-

arclength continuation method and are shown in the figure 3.10 and 3.11. The Halo

orbits first start closer to the libration point and are nearly planar. As the family
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grows, the halo orbits become more out of plane, and they reach a point when they

are almost rectilinear and predominantly exist in the ŷ-ẑ plane. These highly out of

plane Halo orbits are called Near Rectilinear Halo Orbits. On further extension the

Halo orbits grow larger and go all the way across to the larger primary and connect

to the Southern Halo family. Halo orbits have been found to exist around the other

collinear libration points and across all values of µ. A similar technique is used to

generate the L2 and L3 halo families. Halo orbits are being increasingly considered

for various practical mission design applications.
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4. RESONANT ORBITS AND POINCARÉ MAPS

One of the primary foci of this investigation is to explore the use of resonant orbits

and their manifolds as a tool for multi-body trajectory design. This chapter gives

the necessary background in resonant orbits. The concept of resonances is intro-

duced in the two-body problem. Then, two types of resonant orbits in CR3BP are

discussed followed by techniques to compute various resonant families. Stability of

resonant orbits is analyzed which will help in detecting bifurcations and spatial reso-

nances. Invariant manifold theory will be introduced for both equilibrium points and

unstable periodic orbits. Numerical techniques for the computation of manifolds for

unstable resonant orbits is described. And finally, a preliminary design technique for

dimensional reduction in the CR3BP in the form of Poincaré mapping technique will

be described.

4.1 Concept of Resonance

Resonant phenomena are ubiquitous in the solar system. They appear in both the

Sun-Planet and Planet-Moon models throughout the solar system in various forms.

Typically, the following types of resonances are observed:

• Orbit-Orbit Resonances (Mean-motion or Laplace Resonance): Consider

two bodies A and B of arbitrary masses rotating around a common central

body. Let the orbital time periods of the two bodies be given as TA and TB

respectively. A mean-motion resonance is said to exist between the two bodies

whenever their time periods are in a simple integer ratio of p : q [39]. Here p

corresponds to the orbital period of body B and q corresponds to the orbital

period of body A. In other words, p relates to the frequency of rotation of body

A and q relates to the frequency of rotation of body B around the central body.
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In the solar system, an example of this kind of resonance is observed in the Sun-

Pluto-Neptune system. Pluto and Neptune are in a 2:3 orbital resonance about

the Sun. This indicates that Pluto revolves around the sun two times, at the

same time during which Neptune completes three revolutions around the Sun.

Depending upon the configuration of the two bodies, mean-motion resonance

can stabilize or destabilize the system. When mean-motion resonance occurs

between three or more bodies it is termed as the Laplace resonance. In the

solar system a very famous example of Laplace resonance is the Io-Europa-

Ganymede motion around Jupiter. The three moons are in a simple mean-

motion resonance ratio of 4:2:1. The ratio means that Io which is the closest

moon to Jupiter completes four revolutions around Jupiter at the same time

during which Europa completes two revolutions and Ganymede completes one

orbital revolution around Jupiter respectively.

• Spin-Orbit Resonance: This type of resonance occurs when there exists a

simple integer ratio between the time period of rotation and the orbital time

period corresponding to a single body [39]. The most popular example is the

Moon, which has a spin-orbit resonance ratio of 1:1. This means that the time

taken by the moon to complete one rotation about its spin axis is equivalent

to the time taken by it to complete one orbital revolution around the Earth.

Because of this phenomenon, Moon is tidally locked to the Earth and only one

side of the Moon faces the Earth at any given time.

• Secular Resonance: This type of resonance occurs when the precession of

two orbits(perihelion or ascending node) are in an integer ratio with each other

[39]. Over long durations a secular resonance will change the eccentricity and

inclination of the small body in resonance with the larger body.

In this investigation Orbit-Orbit resonances are first described in the two-body prob-

lem. The two-body resonances are then used as initial guesses to compute corre-

sponding resonances in the CR3BP, but with a slightly modified definition.
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4.1.1 Resonances in Two-Body Model

Consider the relative Earth-Moon two-body dynamical system. Mass of the moon

is considered to be negligible with respect to the Earth and hence does not influence

the motion of the Earth. Moon is assumed to move in a circular orbit, with Earth

at the center with the following two-body orbital parameters as shown in table 4.1.

Now, consider a spacecraft in the system to be in a p : q mean-motion resonance

Table 4.1. Two-Body orbital parameters of Moon.

Parameter Value

Semi-major axis (a) 385692.5 km

Orbital Eccentricity 0

Orbital Inclination 0 degrees

Sidereal Time period (Tq) 27.59 days

Gravitational Parameter (GM2B) 398600.43 km3/s2

with the Moon. This implies that the spacecraft completes p revolutions around the

Earth at the same time that the Moon takes to complete q orbital revolutions. This

is written in the following way,

p

q
=
np
nq

=

1
Tp
1
Tq

=
Tq
Tp

(4.1)

where np and nq are mean motions of the satellite and the Moon respectively. Thus

the resonance ratio p : q is nothing but the inverse ratio of orbital periods of the

Moon and the satellite. From the two-body equations, mean motion of a conic is only

a function of its semi-major axis and is written as,

n =

√
GM2B

a3
(4.2)

where G is the universal gravitational constant, M2B is the mass of the central body

and a is the semi-major axis of the secondary body. Substituting equation 4.2 into
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equation 4.1 gives the relationship between the semi-major axis of the spacecraft and

the moon in a p : q resonance to be,

np
nq

=

√
a3
q

a3
p

=
Tq
Tp

(4.3)

As the semi-major axis of the Moon is known, substituting it in equation 4.3 results

in the equation for the semi-major axis of the spacecraft and is given as,

ap =

(
T 2

pa
3
q

T 2
q

) 1
3

(4.4)

Now consider a spacecraft which is in a 2:1 mean motion resonance with the Moon.

According to equation 4.4, this resonance is feasible if the semi-major axis of the

spacecraft is 242971.05 km . Once the semi-major axis is known, the initial condition

for the corresponding elliptical trajectory of the spacecraft with Earth at one of its

focus can be chosen in an infinite number of ways. For the purposes of simplification,

it is assumed without loss of generality that the spacecraft always starts from the x̂

axis at an apse location, i.e., either from a state of periapsis or apoapsis, and has

the same angular momentum direction as the Moon. Let the spacecraft begin at a

distance 115707.75 km (0.3 × aMoon) on the x̂ axis which is in between the Earth

and the Moon. The above assumptions results in a simplified initial condition for the

spacecraft,

X0(km) = 115707.75

Y0(km) = 0

Ẋ0(km/s) = 0

Ẏ0(km/s) = Vp

(4.5)

The starting location of the spacecraft is a periapsis since its distance from the earth

X0 is less than its semi-major axis a. The velocity of the spacecraft at the periapsis

Vp is calculated by the following two-body relation,
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Vp =

√
2(GM)2B

(
1

X0

− 1

2a

)
(4.6)

The eccentricity and the semiperimeter of the conic traced by the spacecraft is further

found using the following equations,

p = a(1− e2) (4.7)

X0 =
p

1 + e
(4.8)

The combined orbital parameters of the spacecraft are non-dimensionalized using the

two-body characteristic quantities, and the orbit corresponds to an ellipse as shown in

the inertial frame indicated by the red color in figure 4.1. Notice, the spacecraft has

the same direction of angular momentum as the Moon along the positive ẑ-direction.

When the spacecraft starts at another location on the X̂ axis, the eccentricity of its

elliptic trajectory changes but its time period and semi-major axis remain unaltered.

This is because in the two-body problem the spacecraft needs to have a constant time

period of Tp = Tq/2 in order to stay in 2 : 1 resonance with the Moon.

Observing the motion of the spacecraft in the Earth-Moon rotating frame helps

in obtaining a better insight into the problem. The rotating frame has the x̂-axis in

the Earth-Moon direction, ẑ-axis points in the direction of angular momentum and

ŷ-axis completes the right-hand rule. Using the direction cosine matrix developed

in equation 2.48, the inertial 2:1 resonant spacecraft trajectory as seen in figure 4.1

is converted into the Earth-Moon rotating frame and appears in figure 4.2. Earth

and the Moon are indicated at the x-coordinates 0 and 1 respectively. The view

in the rotating frame highlights the conjunctions between Earth, spacecraft and the

Moon [39]. A conjunction occurs whenever all the three bodies fall along the same

line. In the rotating frame, this happens whenever the spacecraft intersects the x̂-

axis. Since at t = 0 both the spacecraft and the Moon start on the X̂-axis in the

inertial frame, they correspond to a conjunction and are seen to be aligned along the
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Figure 4.2. Two-body 2:1 resonant orbit in the EM-rotating frame.
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x̂-axis in the rotating frame. One unique feature which is observed in the rotating

frame is the formation of loops, which occur due to the changes in the relative angular

velocity between the spacecraft and the rotating frame. The number of loops indicate

the integer p in the resonance ratio p : q. In the above example of a 2:1 mean-motion,

two loops are observed in the rotating frame. In general, resonances are broadly

classified into two kinds:

• Exterior Resonances: Have an integer ratio of p : q such that p < q. The

spacecraft spends a majority of the time outside the vicinity of the Moon as it

has a larger orbital period/semi-major axis compared to the Moon.

• Interior Resonances: Have an integer ratio of p : q such that p > q. The

spacecraft spends a majority of the time inside the orbit of the Moon as it has

a smaller orbital period/semi-major axis compared to the Moon.

4.1.2 Resonances in CR3BP

In the CR3BP, due to the gravitational influence of both the larger and the smaller

primaries, both the definition and computation of resonant orbits is not similar to the

two-body model. The initial conditions, which seed a resonant periodic orbit in the

two-body model, when propagated in the CR3BP dynamical system does not nec-

essarily produce a periodic orbit. Applying a differential corrections process on the

non-periodic trajectory produces a periodic orbit with a time period approximately

equal to that of the two-body resonant orbit. The corrected periodic orbit is the

two-body equivalent resonant orbit in the CR3BP. Thus, the ratio of the time peri-

ods is not a simple integer but an approximate rational number [22]. Like any other

periodic orbit in the CR3BP, the resonant orbit also belongs to a family of periodic

orbits. These resonant periodic families are computed using a numerical continua-

tion scheme. The next section describes the method for computing resonant families

in CR3BP, assessing their stability and identifying bifurcations to generate spatial

resonant orbits. The second category of resonant orbits found in the CR3BP is the
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libration point periodic orbits which are in resonance with the smaller primary. In

the Earth-Moon system, specific libration point orbits (LPOs) are in resonance with

either the synodic or sidereal time-period of the Moon. These libration point orbit

resonances will be discussed in the next chapter.

Two-body Equivalent Resonances in CR3BP

Recall the Earth-Moon two body dynamical system. The Moon is assumed to be

massless and therefore does not perturb the resonant orbit. This causes the resonant

orbit to have a constant time period and thereby the resonance ratio remains an exact

integer. In the CR3BP, the smaller primary has a gravitational influence on the third

body and thus perturbs its motion. Therefore, when the initial conditions of the

two-body resonant orbit are integrated using the nonlinear equations of motion in

the CR3BP for one resonant time period, the resulting solution is no longer a closed

periodic trajectory. The steps implemented to generate a periodic resonant orbit in

the CR3BP are as follows:

1. In the two-body model, a p : q resonant orbit is computed in the inertial frame

with the dimensional initial conditions of the type,

X̄I
0 =

{
X0 km 0 0 0 Ẏ0 km/s 0

}
as discussed in subsection 4.1.1. Note

that in the two-body inertial frame the Earth is at the origin.

2. In the two-body model, transform the dimensional states from the inertial frame

to the rotating frame using the DCM in equation (2.48). Note that in the two-

body rotating frame Earth is at the origin.

3. Convert the dimensional, two-body, rotational initial conditions to the three-

body equivalent rotational, non-dimensional states by multiplying them with

the CR3BP characteristic quantities in equation (2.8) - (2.10) and shifting the

coordinates such that the Earth-Moon barycenter is at the origin.
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4. Propagate the three-body equivalent, non-dimensional, rotating frame initial

conditions of the resonant orbit using the nonlinear equations of motion of the

CR3BP for exactly one time period of the resonant orbit.

5. It is observed that even though the trajectory maintains its shape, it is no

longer periodic and does not cross the x̂-axis perpendicularly. Similar to other

symmetric periodic orbits in the CR3BP, Mirror theorem is used to target two

perpendicular crossing at x̂-axis to generate a periodic trajectory. Therefore,

only half of the propagated trajectory is considered as the initial guess during

the differential corrections process.

6. As a part of the multiple shooting corrections process, discretize the trajectory

into sub-arcs by distributing patch points along the trajectory. Once the trajec-

tory is discretized formulate the necessary free variables and constraint vectors

to target perpendicular crossings at the beginning and the end of the initial

guess trajectory.

7. The complete p : q resonant periodic orbit is obtained in the CR3BP by reflect-

ing the corrected trajectory about the x̂-axis.

The time period of the resulting resonant periodic orbit in the CR3BP is approxi-

mately equal to the actual time period of the resonant orbit in the two-body model

and therefore the ratio p : q is no longer a perfect integer. Sometimes depending upon

the resonance type, the orbit crosses the x̂-axis multiple times. In such situations the

perpendicular crossings must be suitably targeted at the right locations on the tra-

jectory.

To illustrate the above algorithm consider the 2:1 resonant orbit discussed in

section 4.1.1. The dimensional initial conditions for the orbit in the inertial frame in

the two-body model are as follows,

X̄I
0 =

{
115707.75 km 0 0 0 2.291125 km/s 0

}
(4.9)
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Theses conditions when converted to dimensional, rotating frame coordinates in the

two-body model using the DCM in equation (2.48) results in,

X̄R
0 =

{
115707.75 km 0 0 0 1.198146 km/s 0

}
(4.10)

In the next step, the conditions in 4.10 are converted to the CR3BP equivalent,

rotating, non-dimensional coordinates as the following,

x̄R0 =
{

0.287849 0 0 0 1.941817 0
}

(4.11)

Notice that in the initial condition given by equation (4.11) the x-coordinate starts

at a value less than 0.3 as the barycenter is now located at the origin. Propagating

these initial conditions in the CR3BP using the nonlinear equations of motion for half

of the original time period results in a black colored trajectory shown in figure 4.3.

Observe that the trajectory does not cross the x̂-axis perpendicularly. Now, discretize

the trajectory into sub-arcs by distributing patch points along it. A variable time

multiple shooting differential corrections algorithm, discussed in the previous chapter

is implemented to target perpendicular crossings at the two ends of the trajectory.

The corrected nearby trajectory at the same x-coordinate is plotted in red. Notice

that the corrected trajectory crosses the x̂-axis perpendicularly and is slightly shifted

compared to the initial guess. The non-dimensional, rotational initial conditions of

the corrected orbit in the CR3BP are as follows,

x̄Rcorrected =
{

0.287849 0 0 0 1.937458 0
}

(4.12)

Observe that in the corrected initial condition in equation (4.12), the ẏ velocity

changes slightly compared to the value in equation (4.11). The resonance ratio is now

calculated as,

p

q
=

TMoon(n.d)

TCR3BP−Re sonance(n.d)
=

2π

3.123303
= 2.011712 (4.13)
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Corrected resonant orbit

Figure 4.3. 2:1 Resonant orbit correction in the CR3BP.

The new resonance ratio it is not an integer but very close to two. This implies that

the time period of the 2:1 resonant orbit in the CR3BP is slightly lesser than the

two-body model. Recall that in the CR3BP a single periodic orbit cannot exist in

isolation. It belongs to a whole family of periodic orbits which share similar char-

acteristics. Like the Lyapunov families computed in section 3.7.2, pseudo-arclength

continuation scheme is used to generate the 2:1 resonant family and is shown in the

figure 4.4.

Other examples of exterior and interior resonant orbits in the Earth-Moon model

are shown in the figures 4.5 - 4.7. The above algorithm is very robust in generating

various exterior and interior resonant orbits alike in different CR3BP systems. A
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Figure 4.4. 2:1 Resonance family in the Earth-Moon system.

useful alternative technique to generate resonant orbits is to implement a natural

parameter continuation process by increasing the mass parameter µ from the two

body model, where µ = 0, to the desired µ value of the system. After computing

the resonant orbits in the CR3BP, the next important step is it to understand their

dynamical behavior and assess their stability.

4.2 Stability and Bifurcations of 2D Resonant Orbits

Resonant orbits are used for various purposes in a mission design scenario. When-

ever a repeatable behavior is desired in the ephemeris model, stable resonant orbits

have been used as primary mission trajectories in the IBEX [3] and the TESS mis-

sions [4]. More recently, manifolds of unstable resonant orbits are being leveraged to
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(a) 1:1 Resonance. (b) 1:2 Resonance.

(c) 1:3 Resonance. (d) 1:4 Resonance.

Figure 4.5. 1:1, 1:2, 1:3 and 1:4 planar resonant families.
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(a) 2:1 Resonance. (b) 2:3 Resonance.

(c) 3:1 Resonance. (d) 3:2 Resonance.

Figure 4.6. 2:1, 2:3, 3:1 and 3:2 planar resonant families.
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(a) 3:4 Resonance.

(b) 4:1 Resonance.

(c) 4:3 Resonance.

Figure 4.7. 3:4, 4:1 and 4:3 planar resonant families.
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design novel, low energy transfers to various regions within the three-body system.

Unlike the manifolds of unstable Lyapunov orbits, the manifolds of resonant orbits

will be shown to spread across all five libration point regions. The unstable resonant

manifolds also undergo resonance transitions, i.e., they jump from one resonant orbit

to another via heteroclinic connections [40]. The Europa-Orbiter trajectory utilizes

this phenomenon by closely following the invariant manifolds associated with the 3 : 4

resonant orbit and transitions to a 5 : 6 resonant orbit during a flyby with Europa [41].

The linear stability of resonant orbits is analyzed in a similar way to the Lyapunov

orbits discussed in section 3.8. Monodromy matrix is calculated using the STM by

integrating the EOMs for exactly one time period of the resonant orbit. Eigenvalues

of the computed monodromy matrix are examined and the linear stability is inferred

using the periodic orbit stability criteria discussed in section 3.8. Consider the 2:1

resonant orbit in the Earth-Moon CR3BP shown in figure 4.3. The eigenvalues of the

monodromy matrix are calculated to be the following,

λ1 = 0.803070 + 0.595885i

λ2 = 0.803070− 0.595885i

λ3 = 1

λ4 = 1

λ5 = 0.999426 + 0.033881i

λ6 = 0.999426− 0.033881i

(4.14)

From the above values, notice that being a periodic orbit, two of the eigenvalues are

equal to one and the remaining eigenvalues are reciprocal pairs and lie on the unit

circle. The stability indices for the pairs of eigenvalues are calculated to be,

υ1 = 0.803070

υ2 = 1

υ3 = 0.999426

(4.15)
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As both the stability indices are less than one, and the corresponding magnitudes of

eigenvalues are equal to one, the representative resonant orbit is marginally stable.

Stability of the family of resonant orbits are analyzed in the similar way. The evolution

of the stability for the 2:1 resonance family is plotted in figure 4.8. The in-plane

stability index ν1 is always less than one. The out of plane stability index ν2 crosses

the stability boundary twice. The stability changes occurring at these boundaries

indicate a tangent bifurcation as shown in the section 3.9. A spatial resonant family

evolves at the bifurcation point in a similar way to that of Halo orbits from a Lyapunov

family.

1

2

Tangent Bifurcation

Figure 4.8. Stability Indices of 2:1 resonant family.

4.3 Three Dimensional Resonances

Recall that Halo orbits are three-dimensional periodic orbits emerging from the

tangent bifurcations of Lyapunov families. Likewise, three-dimensional resonant or-

bits emerge from the tangent bifurcation locations on a planar resonant family along

the ẑ direction. A procedure adopted for the computation of Halo orbits is similarly

implemented to generate three dimensional northern/southern resonant orbits. Fig-

ures 4.9 - 4.10 represents such 3D southern resonant orbits in the Earth-Moon system.
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Northern resonant orbits step off in the positive ẑ direction while the southern reso-

nant orbits step off in the negative ẑ direction from the tangent bifurcation locations

on the planar resonant orbits.

4.4 Invariant Manifold Theory

Solutions to the differential equations of a dynamical system are analyzed in two

ways. A first way is a classical approach wherein individual trajectories and their

properties corresponding to specific initial conditions are analyzed. This approach

does not reveal much information about the global dynamical behavior of the system.

The second way is a global, geometrical approach which is based on the phase portrait

of a dynamical system. Equilibrium points, periodic orbits, quasi-periodic trajecto-

ries, and chaos are four fundamental reference solutions observed in the CR3BP.

Linear stability analysis helps to predict the flow of nearby states, in the vicinity of

the reference solutions. Both the structure and geometry of phase space of a dy-

namical system is therefore investigated by considering the reference solution and its

associated local flow. The type of local flow nearby the reference solutions are related

to the invariant manifold structures surrounding them. Invariant manifold theory for

equilibrium points and periodic orbits are detailed in the following sections.

4.4.1 Invariant Manifolds for Fixed points

Consider the equilibrium solutions Li with the states x̄L. The phase portrait of the

dynamical flow near Li, i.e., evolution of trajectories with initial conditions near x̄L,

x̄ = x̄L + ∆x̄ is obtained by linearizing the differential equations about the libraiton

point Li. The linearlized system of equations about Li is given as,

δ ˙̄x(τ) = Aδx̄(τ) (4.16)

where A is the Jacobian matrix evaluated at the libration point Li, and is a constant.

The behavior of local flow about these points is defined by the characteristic mul-
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(a) 1:1 3D Resonance. (b) 1:2 3D Resonance.

(c) 1:3 3D Resonance. (d) 2:1 3D Resonance.

Figure 4.9. 1:1, 1:2, 1:3 and 2:1 spatial resonant families.
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(a) 2:3 3D Resonance.

(b) 3:1 3D Resonance.

(c) 3:4 3D Resonance.

Figure 4.10. 2:3, 3:1 and 3:4 spatial resonant families.
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tipliers or the eigenvalues of the Jacobian matrix. Assuming there exist n distinct

eigenvalues of A that corresponds to n linearly independent eigenvectors which span

<n, the general solution of initial conditions nearby the libration point is written as,

δx̄(τ) =
n∑
j=1

cje
λj(t−t0)v̄j (4.17)

where coefficients cj are determined from the initial state. Linear stability of the

libration point is evaluated by analyzing the form of the eigenvalues in the following

manner:

1. Real part of λj < 0 for all λj: Sufficiently small perturbations in the states

about the libration points tend to zero as t → ∞ and the libration point is

termed stable.

2. Real part of λj > 0 for all λj: Any small perturbation about the libration

point grows as t→∞, and the trajectory eventually escapes the vicinity of the

libration point. Hence it is termed an unstable equilibrium point.

3. If λi and λj exist such that the real parts are both greater and less then zero,

then Li is non-stable, and the point is termed as a saddle point. The small

perturbation about Li escapes the vicinity if the coefficients associated with the

unstable eigenvalues are not equal to zero.

Stable or unstable equilibrium points with no complex eigenvalues are termed as

nodes. And equilibrium points are called Hyperbolic if all of its eigenvalues possess

non-zero real parts [42, 43]. Out of the n distinct eigenvalues of matrix A, let there

exist ns stable eigenvalues, nu unstable eigenvalues and nc eigenvalues with zero real

parts such that,

n = ns + nu + nc (4.18)

where n corresponds to the number of states of the dynamical system. Then the eigen-

vectors associated with each λ are linearly independent, and hence span <n. Therefore

<n is represented in terms of three fundamental subspaces Es, Eu and Ec. These
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three subspaces are called the invariant subspaces of the corresponding linearized

system. The term invariant means that when equilibrium states are perturbed along

one of the directions of eigenvector subspace, i.e., v̄s, v̄u or v̄c corresponding to the

eigenvalues λs, λu or λc respectively, the perturbed states when propagated linearly

will remain in the subspace as t → ∞/ −∞ [44]. This concept is also extended to

the nonlinear system, leading to some important definitions:

• Local stable manifold: is the set of all initial conditions in the neighbourhood

of the libration point Li at x̄L, such that the trajectories initiated at these states

using the nonlinear differential equations asymptotically approach x̄L as t→∞.

• Local unstable manifold: is the set of all initial conditions in the neighbour-

hood of the libration point Li at x̄L such that trajectories initiated at these

states using the nonlinear differential equations asymptotically approach x̄L as

t→ −∞.

• Local center manifold: is the set of all initial conditions in the neighbourhood

of the libration point Li at x̄L such that the trajectories initiated at theses states

using the nonlinear differential equations neither grow nor decay relative to x̄L

both as t→∞ and t→ −∞.

The relationship between the nonlinear local manifolds and the linear subspaces is

given by the stable and center manifold theorems.

Stable Manifold Theorem : Suppose ˙̄x(τ) = f̄(x̄(τ)) possesses a hyperbolic equi-

librium point x̄eq. Then, there exists local stable and unstable manifolds of same

dimension ns and nu as that of the linear eigenspaces Es and Eu of the linearized

system and tangent to Es and Eu at x̄eq. These local stable and unstable manifolds,

W s
loc(x̄eq)), W

u
loc(x̄eq)) are as smooth as function f [44].

To illustrate the above theorem, consider figure 4.11. x̄eq represents a hyperbolic

equilibrium point of a 2D first-order system with two distinct eigenvalues. Eigenvec-
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tors v̄s, v̄u span the linear stable and unstable subspaces Es and Eu. Together they

form a vector basis in <n. Stable subspace Es is shown as a line segment along v̄s

and −v̄s. Unstable subspace Eu is defined as the line segment along v̄u and −v̄u.

Local stable and unstable manifolds, W s
loc(x̄eq)), W

u
loc(x̄eq)) are seen to be tangent to

Es and Eu respectively at the equilibrium point x̄eq. Global analogs W s and W u for

the local invariant manifolds W s
loc(x̄eq)) and W u

loc(x̄eq)) respectively are generated by

propagating the local stable manifolds backward in time and local unstable manifolds

forward in time. When x̄eq is a non-hyperbolic equilibrium point, ns, nu and nc are all

non-zero. In this case the structure of the local flow is given by the center manifold

theorem.

Center Manifold Theorem : Suppose ˙̄x(τ) = f̄(x̄(τ)) posses a non-hyperbolic

equilibrium point. Then there exists stable and unstable manifolds W s and W u tan-

gent to linear subspaces Es and Eu and a center manifold W c tangent to linear center

subspace Ec at x̄eq. The manifolds W s, W u and W c are all invariant for the flow f̄ .

The stable and unstable manifolds are unique but W c may not be. Initial conditions

in W c neither grow nor decay with time relative to x̄eq. Periodic orbits and quasi

periodic trajectories are examples of types of motion that might exist in W c near

x̄eq [44].

4.4.2 Poincaré Maps

Two main types of dynamical systems exist. The first kind are systems of differ-

ential equations of the form,

˙̄x = f̄(x̄, t) (4.19)

an the second kind are maps or mappings of the form,

x̄n+1 = f̄(x̄n) (4.20)



94

U

locW


U

locW


S

locW


S

locW


UESE

uv

uv

sv

sv

eqx

Figure 4.11. Stable and unstable manifolds of an equilibrium point.

Maps describe the time evolution of a state x̄ at discrete time intervals t = n(integer).

Both the dynamical systems are deterministic in nature. Properties of generic dynam-

ical systems that are described by differential equations can be effectively represented

by maps on a Poincaré surface of section. Henry Poincaré first utilized this concept

in his studies of the CR3BP. He simplified the study of a chaotic, nonlinear contin-

uous time system to the study of an associated discrete time system in the form of

maps [9]. This technique offers the following advantages:

1. Reduction of dimension: Converting the continuous time system to a Poincaré

map eliminates at least one state variable in the problem resulting in the study

of a lower dimensional system.

2. Better understanding of global dynamics: In lower dimensional problems,

numerically computed Poincaré maps provide an insightful and sometimes, dra-

matic display of the global dynamics of a system.

3. Conceptual clarity: Concepts that may be somewhat cumbersome to state

for ordinary differential equations may be succinctly stated for the associated

Poincaré map.
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The phase space and general dynamics near a reference solution in a CR3BP such

as a periodic orbit can be explored using a Poincaré map. Consider an autonomous

system defined in n-dimensional phase space as <n with an initial condition x̄0. The

vector field f̄ generates a flow x̄(x̄0, t) or ϕt(x̄0). The mapping K̄(x̄, t) defines a

solution curve, orbit, or a trajectory corresponding to the differential equation based

at x̄0. In phase space, define an (n−1) dimensional hyperplane
∑

such that the flow

is transverse to
∑

, that is, the trajectory has some component normal to
∑

. Now,

consider a periodic orbit Γ and assume a state x̄? lies on it. Hence by definition,
∑

is

an (n− 1) dimensional hyperplane transversal to Γ at x̄?. Since x̄? lies on a periodic

orbit, trajectory or flow through x̄? comes back to x̄? again in time T , where T is

the time period of the periodic orbit. Trajectories that start on Γ in a sufficiently

small neighborhood of x̄? will intersect again, in approximately T time units, in the

vicinity of x̄?. So the flow ϕt and Γ define ”mapping” P of some neighborhood of x̄?

(U ⊂
∑

) onto another neighborhood (V ⊂
∑

), of x̄?. This mapping P is said to be

the Poincaré mapping about the periodic orbit Γ at x̄? and is represented as,

P (x̄0) = x̄(x̄0) (4.21)

Where x̄(x̄0) is the state vector that results from the application of the nonlinear map

to x̄0, i.e., until it intersects the hyperplane
∑

. Frequently hyperplane is defined in

the configuration space as x = constant, y = constant or z = constant. Note from

the figure 4.12 that the trajectory starting at x̄0 also crosses the hyperplane at t = T/2

but in an opposite direction. If the point x̄0 is on a periodic orbit, i.e., if x̄0 = x̄?

then the map P :
∑
→
∑

repeatedly maps x̄? onto itself as,

P (x̄?) = x̄? (4.22)

This means that the first return of the initial condition x̄? comes back to the same state

after exactly one time period T on the hyperplane
∑

. This state on the hyperplane

of the periodic orbit x̄? is termed as a fixed point. Therefore periodic orbits can be

represented by fixed points on a Poincaré map and thus a continuous time system
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is reduced to a discrete time system. A special map called a Stroboscopic map is

defined which is a result of observing or sampling the flow of a system at periodic

time intervals. A linear stroboscopic map, with sampling time T relative to the

fixed point on a periodic orbit having time period T allows examining the stability

properties of the fixed point and therefore the stability properties of the periodic orbit

as discussed previously. Eigenvalues of the monodromy matrix which is a result of

linearizing the stroboscopic map (DP (x̄∗) = Φ(T, 0)), is used to analyze the linear

stability properties of the periodic orbit. In the next sections, Poincaré maps of

resonant manifolds are discussed in the context of periodic resonant orbits.

0( )P x

0x

x


Figure 4.12. The Poincaré map.

4.4.3 Invariant Manifolds for Periodic Orbits

Similar to equilibrium points, invariant manifolds and subspaces also exist for

periodic orbits. Consider an autonomous system ˙̄x = f̄(x̄). Let Γ represent a periodic

orbit. In the phase space associated with Γ, hyperplane
∑

is defined at x̄0 such that

the flow is transverse to
∑

, i.e., trajectory has some component normal to
∑

as

shown in figure 4.12. As seen in the previous section the first return of the trajectory
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passing through
∑

with normal component parallel to that of the initial intersection

defines a nonlinear map P :
∑
→
∑

given as,

P (x̄0) = x̄(x̄0) (4.23)

Where x̄ is the state vector that results from an application of nonlinear map to x̄0.

If x̄0 lies on a periodic orbit then, x̄0 = x̄?. So P repeatedly maps x̄? onto itself.

Therefore P j(x̄?) = x̄?, where j indicates the jth intersection of
∑

. Linearizing the

Stroboscopic Poincaré map relative to the fixed point allows examining the stabil-

ity properties of the fixed point using a monodromy matrix and thus the stability

properties of the periodic orbit. Consider an initial state x̄ close to the state x̄? of

the periodic orbit on the hyperplane
∑

. Integrate the state x̄? and form a one-sided

map until the trajectory crosses the hyperplane n times in the same direction. Three

different cases may arise. In the first case represented in figure 4.13 the returns on

the hyperplane keep coming closer to the fixed point x̄? with every iteration. This

type of behavior signifies a stable periodic orbit. In the second case represented in

figure 4.13 the returns keep moving further away from the fixed point x̄? with every

iteration. This type of behavior signifies an unstable periodic orbit. In the third case

represented by figure 4.13 the returns neither move away nor come close to the fixed

point x̄? and thus signifies a marginally stable periodic orbit. The returns of the

trajectories in figure 4.13 represent the stable W s(x̄?), unstable W u(x̄?) and center

W c(x̄?) manifolds associated with fixed point x̄?. The manifolds of the fixed point

are thus (n− 1) dimensional and are not trajectories but instead collection of returns

onto the hyperplane
∑

from a nearby perturbation. Every state on a periodic orbit

is a fixed point, and every fixed point on the periodic orbit is used to compute the

corresponding stable and unstable manifolds, by placing the surface
∑

transverse to

the flow at different points along the periodic orbit. All the manifolds combined at

all the fixed points on the periodic orbit form n dimensional stable W s(Γ), unstable

W u(Γ) and center manifold W c(Γ) surfaces for the periodic orbit. The stable mani-
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fold theorem for periodic orbits states the dimensions of these subspaces [43].

Stable Unstable Chaos
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Figure 4.13. Illustration of subsequent returns to a Poincaré map.

Stable Manifold Theorem for Periodic Orbit: Let an open subset of <n

contain a periodic orbit Γ : x̄ = γ(τ) of period T . Let ϕt be the flow and γ(τ) =

ϕτ (x̄
?). If k characteristic exponents of γ(τ) have a negative real part where 0 ≤ k ≤

n− 1 and n− k− 1 of them have a positive real part, then there is a δ > 0 such that

the stable manifold of Γ given as,

S(Γ) = x̄ ∈ Nδ(Γ)| d(ϕτ (x̄),Γ)→ 0 as τ →∞ and ϕτ (x̄) ∈ Nδ(Γ) for all τ ≥ 0

is a (k + 1)th dimensional, differentiable manifold which is positively invariant under

the flow ϕτ , and the unstable manifold of Γ given as,

U(Γ) = x̄ ∈ Nδ(Γ)| d(ϕτ (x̄),Γ)→ 0 as τ → −∞ and ϕτ (x̄) ∈ Nδ(Γ) for all τ ≤ 0

is an (n−k)th-dimensional, differentiable manifold which is negatively invariant under

the flow ϕτ . Further the stable and unstable manifolds of Γ intersect transversely in

Γ. If the dimension of the stable and unstable manifolds for the fixed points are rep-

resented by ns and nu respectively, then the stable and unstable manifolds associated

with the periodic orbits Γ represented by W s(Γ) and W u(Γ) have dimensions ns + 1

and nu + 1 respectively. The dimensions are always one higher than that of the fixed

points [44].
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4.4.4 Computation of Manifolds for Unstable Resonant Orbits

Stable and unstable manifolds are useful for trajectory design as they indicate

natural dynamical flow that is going out or into a periodic orbit Γ. Thus acquiring

the states of a stable manifold would eventually lead to the periodic orbit Γ or states of

an unstable manifold would lead to a location which is away from the periodic orbit Γ

when integrated forwards in time, i.e., as t→∞. Stable and unstable local manifolds

of a fixed point on the periodic orbit are computed similarly to equilibrium points.

The local unstable manifold W u
loc is tangential to the unstable subspace Eu at the

fixed point x̄? and the local stable manifold W s
loc is tangential to the stable subspace

Es at the fixed point x̄?. The stable and unstable subspaces lie along the eigenvectors

corresponding to the stable (|λ| < 1) and unstable (|λ| > 1) eigenvalues of the

monodromy matrix computed at fixed point x̄?. Global stable and unstable manifolds

of the fixed point are then computed by integrating the nearby initial conditions on

the stable and unstable subspaces backward and forward in time respectively. But

the real interest for periodic orbits Γ are the stable and unstable manifolds of the

periodic orbit and not the fixed point. The Stable manifolds of the periodic orbit are

the surface formed by the collection of the stable global manifolds at infinitely many

fixed points on the periodic orbit. Likewise unstable manifolds of the periodic orbit

are the surface formed by the collection of the unstable global manifolds at infinitely

many fixed points on the periodic orbit. Numerically it is not possible to generate

the manifold surface for infinitely many fixed points on the periodic orbit. Hence the

following algorithm is used to generate manifold surfaces for periodic orbits:

1. Periodic orbit Γ is discretized into n fixed points.

2. At each fixed point, monodromy matrix Φ(T, 0) is computed, and its eigenvalues

are evaluated. Stable and unstable eigenvectors corresponding to the eigenvalues

form the linear stable and unstable eigenvector spaces for fixed points.
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3. At each fixed point, global stable and unstable manifolds are computed by step-

ping off onto the stable and unstable linear eigenvector spaces and integrating

backward and forward in time respectively.

4. The step off initial conditions for the global stable and unstable manifolds at a

fixed point is obtained by,

x̄u±/s± = x̄∗ ± lv̄u/s (4.24)

where l is the offset in the direction of the unstable or stable eigenvector. If l

is too big then the computed x̄u±/s± is not a good approximation. If l is too

small, the trajectory spends a long time near the fixed point and affects the

integration accuracy. One option to select the value of l is to give it a physical

meaning in terms of distance by rephrasing the equation in the following way,

x̄u±/s± = x̄∗ ± d ·
v̄u/s√

x2
u/s + y2

u/s + z2
u/s

(4.25)

The value d, now represents a distance from the fixed point and the unstable and

stable eigenvectors are defined as v̄u/s =
[
xu/s yu/s zu/s ẋu/s ẏu/s żu/s

]T
.

5. The collection of all the manifolds at the n fixed points represent the stable and

unstable manifold surfaces of the periodic orbit Γ.

To implement the above algorithm, consider an unstable 1:2 resonant orbit with the

following non-dimensional rotating frame initial conditions as shown below,

x̄R0 =
{

0.887849 0 0 0 0.640766 0
}

(4.26)

The eigenvalues of the monodromy matrix at the initial condition are as follows,
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λ1 = −52.206173

λ2 = −0.019155

λ3 = 1

λ4 = 1

λ5 = 1.457532

λ6 = 0.686090

(4.27)

λ1 and λ2 represent the in-plane eigenvalues corresponding to the unstable and stable

eigenvectors. In the Earth-Moon system, a step off distance of 40 km is a reasonable

value used in the past literature [22]. As an illustration, the stable and unstable

eigenvectors for 20 fixed points distributed equally in time across the resonant orbit

is shown in figure 4.14. The red vectors indicate unstable eigenvectors, and blue vec-

tors indicate stable eigenvectors. Integrating the manifolds at all the fixed points for

three resonant time periods or 145 days results in the global manifold surfaces as seen

in figure 4.15. Stable manifolds are represented using blue trajectories and unstable

manifolds are represented by red trajectories. Notice that the manifolds for the res-

onant orbits are highly tangled. They generally pass close to other resonances and

spread across different regions in the CR3BP. Manifolds in this form are not fruitful

for trajectory design purposes as they do not offer any significant insight. Poincaré

mapping of the manifolds gives them more structure and helps to uncover the hidden

relations between the resonant orbit, its manifolds and other dynamical structures in

the configuration space. A common hyperplane used to form a Poincaré map for the

manifolds is y = 0. The map can be single-sided or a double-sided depending upon the

direction of crossings of the manifolds. The crossings on the map are recorded in two

ways. The first way is to record all the crossing of the manifolds with the hyperplane

in the desired direction for a fixed amount of integration time period. The second

way is to record the first m number of crossings of the manifolds with the hyperplane

in the desired direction. In order to demonstrate this process, a Poincaré mapping

of the stable and unstable manifolds integrated for 145 days on y = 0 and ẏ > 0 is
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shown in the figure 4.16. A clear structure in the returns of the stable and unstable

manifolds is noticed. The red dots indicate the returns of the unstable manifold and

the blue dots indicate the returns of the stable manifolds. The intersections between

the stable and unstable manifolds correspond to homoclinic connections.

The resonant families and Poincaré mapping techniques demonstrated in this

chapter will be utilized to answer the fundamental question of using resonant orbits

and their manifolds in the transfer, initial guess generation process between stable

periodic orbits by incorporating them as intermediate arcs.

1L3L

4L

5L

Moon

Earth
2L

Figure 4.14. Stable and unstable eigenvectors at 20 fixed points.
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Earth

Moon

Figure 4.15. Stable and unstable manifolds propagated for 3 resonant
time periods (145 days).

x x

Earth Moon

Figure 4.16. 1:2 Resonant manifolds - returns on Poincaré map y = 0 and ẏ > 0.
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5. REFERENCE TRAJECTORY DESIGN IN

EPHEMERIS MODEL

In the previous chapter, both planar and spatial resonant orbits have been shown to

exist in the CR3BP based upon their existence in the two-body dynamical model.

Invariant manifolds and Poincaré mapping techniques have been developed, which will

be used as the primary design methodology to construct trajectories in the multibody

systems. Another type of resonant orbits which are found in the CR3BP are the

libration point periodic orbits which are in resonance with the smaller primary. In

the Earth-Moon system, the libration point orbits (LPOs) are in resonance with either

the synodic or sidereal time-period of the Moon. A synodic period of the Moon is

defined as the time taken by the Moon to revolve around the Earth and return to

the same position relative to the Sun. The Sidereal period of the Moon is defined

as the time taken by the Moon to orbit 3600 around the Earth relative to the fixed

stars. The synodic and sidereal period of the Moon is approximately 29.532 days and

27.322 days respectively. Figure 5.1 illustrates the difference between the synodic and

sidereal time-periods of the Moon.

5.1 Resonant - Near Rectilinear Halo Orbits

One category of LPOs of interest are the halo orbit families. The current investi-

gation will focus on a specific subset of the halo families known as the L1 and L2 Near

Rectilinear Halo Orbits which largely exist in the ŷ-ẑ plane. They possess several ideal

characteristics making them suitable for staging orbits in the cislunar space. Many

of the NRHOs are stable or almost stable in a linear sense and retain their funda-

mental characteristics and NRHO like rectilinear motion even when transitioned into

a higher fidelity ephemeris model. Some of the NRHOs possess favorable resonant
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Sidereal

Synodic

Sun

Earth

Moon

Figure 5.1. Synodic and Sidereal configurations of the Moon.

properties with the Moon which make them an ideal choice to satisfy specific mission

operational constraints like avoiding eclipses and periapsis conditions. Consider the

figure 5.2 which shows the subsets of L1 and L2 halo orbits. The colors of the orbits

indicate the Jacobi constants and are indicated by the color bar. At L1 the first halo

orbit is almost planar, and as the family continues, they grow largely out of the plane

and almost exist in the ŷ-ẑ plane. Similar behavior is observed for L2 NRHOs. Both

L1 and L2 NRHOs can be effectively characterized by their periapsis radius, stability

indices, Jacobi constants and time periods. Figures 5.3 - 5.5 show various relation-

ships between the parameters stated above. The typical time periods of NRHOs vary

from 1 to 2 weeks. Stability index ν1 for both the NRHOs lie between the stability

boundaries. Stability index ν2 for both the NRHOs with smaller periapsis radii lie

between the stability boundaries, but quickly become unstable for larger periapsis

radii. An in-depth analysis regarding the NRHO stability characteristics is given by

Zimovan [45]. Within the L2 NRHOs, the orbits which have a synodic resonance ratio

of type m:1 and m:2 with the Moon are shown in figure 5.6. Two specific orbits of

interest having a synodic resonance ratio of 3:1 and 9:2 respectively are chosen and

are highlighted by a red dot in the plots.
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Moon
1L 2L

Figure 5.2. L1 and L2 NRHO family in the Earth-Moon system.

1  'L NRHO s

2  'L NRHO s

Figure 5.3. Time periods of L1 and L2 NRHO family.
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1

2

Figure 5.4. Stability Indices of L1 NRHO family.

1

2

Figure 5.5. Stability Indices of L2 NRHO family.
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3:1 Synodic Resonance

9:2 Synodic Resonance

Figure 5.6. m:1 and m:2 Synodic resonances of L2 NRHOs.

5.2 Challenges in Ephemeris Trajectory Design

To practically validate the design process, the solutions generated in the CR3BP

are subjected to a higher fidelity analysis by transitioning them into an ephemeris

model. One such scenario where analysis of higher fidelity solutions is extremely

critical is the generation of long-term baseline trajectories for staging purposes. Tra-

jectories in the higher fidelity ephemeris models are generated by appropriately tran-

sitioning periodic orbits from the CR3BP into the ephemeris model. Periodic orbits

exist as quasi-periodic trajectories in the higher fidelity model. As the ephemeris

model is non-autonomous in nature, the quasi-periodic solution that is converged

using the same set of CR3BP periodic orbits will be dependent upon the ephemeris

transition epoch. This poses a challenge especially when the periodic orbits con-

sidered are being utilized for long-term staging purposes. Orbit parameters of the

quasi-periodic trajectories like eclipse avoidance and periapsis conditions will now

become a function of the ephemeris transition date. Hence a careful selection of the

ephemeris insertion epoch is warranted. A 3:1 L2 southern synodic NRHO is cur-
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rently being considered as a potential long-term staging orbit in the cislunar space

due to its eclipse avoidance properties. A 3:1 synodic NRHO would mean that the

time taken to complete three revolutions of the NRHO is same as one synodic period

of the Moon. Figure 5.7 illustrates three 3:1 L2 southern synodic NRHOs stacked one

after the other starting from the periapsis on the x̂-ẑ plane in the CR3BP, centered

at the Moon. The time period of the orbit is approximately 9.844 days and has a

periapsis radius of about 14,689 km. When the same stack of orbits is viewed in

the Sun-Moon rotating frame, the eclipse avoidance property is clearly highlighted in

figure 5.8. Here, the x̂-axis represents the Sun-Moon direction and the stacked orbits

do not pass through the line of eclipse due to the Moon. Similarly, eclipses due to

Earth are known by observing the trajectory in the Sun-Earth rotating frame as seen

in figure 5.9. Here, the Sun-Earth direction, i.e., the x̂ -axis is the direction of eclipses

caused due to Earth. Methods to evaluate the duration of eclipses has been shown

previously by Zimovan [28]. The effect of epoch date upon ephemeris transition are

studied in this context.

5.2.1 Quasi-periodic Trajectories in Ephemeris Model

A traditional stacking sequence is employed to transition periodic orbits in the

CR3BP to higher fidelity ephemeris models on any chosen epoch date. In this process,

a desired number of identical periodic orbits are stacked one after another starting

from a fixed state on the first orbit until the time period of the stacked trajectories

roughly equals the mission duration. Once the orbits are stacked, they are further

divided into sub-arcs by distributing patch points to facilitate convergence in the

higher fidelity model. To demonstrate this process twelve 3:1 L2 Southern Synodic

NRHOs are stacked one after another in the CR3BP until the total time amounts to

approximately 118.13 days. The starting point on the stacked trajectory is arbitrar-

ily chosen to lie on the x̂-ẑ plane, i.e., the periapsis of the NRHO. Once the orbits

are stacked, they are further split into sub-arcs by distributing patch points along
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each orbit as shown in figure 5.10. For this analysis, ten patch points are equally

distributed in time on a single NRHO thereby splitting it into ten sub-arcs. Adap-

tive Trajectory Design software developed at Purdue University is utilized to apply

a multiple shooting differential corrections process to facilitate convergence in the

ephemeris model [46]. The design variable matrix consists of all the states in position

and velocity associated with the patch points and the sub-arc integration times. An

Earth-Moon ephemeris model with Sun as the perturbing body is considered, and a

position and velocity continuity is ensured across all the patch points during the cor-

rections process. The Julian day associated with the first patch point of the corrected

trajectory corresponds to the ephemeris insertion epoch.

To investigate the impact of the epoch on the convergence in ephemeris model,

the same set of stacked orbits are transitioned and corrected on each day of May

2023. Figure 4.2 and Figure 4.3 represent the converged ephemeris trajectories in

Moon

Moon

Earth

Figure 5.7. 3:1 synodic southern L2 NRHO in the CR3BP - Moon
centered, Earth - Moon rotating frame view.
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Moon

Moon

Moon

Sun

Sun

Figure 5.8. 3:1 synodic southern L2 NRHO in the CR3BP - Moon
centered, Sun - Moon rotating frame view.
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Earth

Sun

Ear
th

Sun

Earth

Earth

Figure 5.9. 3:1 synodic southern L2 NRHO in the CR3BP - Earth
centered, Sun - Earth rotating frame view.
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May 2023. Clearly, an interesting convergence pattern is observed. A series of tightly

or loosely converged trajectories are visible across the month. The pattern approx-

imately repeats every 9 to 10 days which is roughly equal to the time period of the

synodic NRHO. Also, the 3:1 synodic resonance is visible on the days with tighter or

repeatable behavior. While on some other days, the solutions are more dispersed and

have a less repeatable structure which distorts the visual appearance of the resonance

in the converged trajectories.

An apse angle (ω) is introduced to quantify the ”tightness” or ”looseness” of a

quasi-periodic trajectory [28]. An apse angle is defined as the deviation of periapsis

of each orbit in the converged ephemeris trajectory relative to the corresponding

periapsis in the CR3BP model. The argument of periapsis for all the periodic NRHOs

stacked in the CR3BP is 900. Then the apse angle corresponding to each periapsis in

the ephemeris trajectory is obtained by the following equation,

$ = ω − π

2
(5.1)

where ω represents the osculating argument of periapsis for the quasi-periodic NRHO’s

in the ephemeris model.

Consider two representative epochs on May 16th and May 21st. The apse angles

for the quasi-periodic trajectories are plotted in figure 5.14. Visually trajectory on

May 16th appears to have a larger spread compared to the trajectory on May 21st

as seen in figure 5.13. Even though the resonance is not visible on May 16th, apse

angle plots highlight the angles occurring in sets of three, indicating the 3:1 synodic

resonance ratio on both the epoch dates. Additionally, periapsis radius varies, and its

difference with respect to the CR3BP model is shown in figure 5.15. It is seen that

the deviation in periapsis radius of the tighter trajectory on May 21st is much lesser

than that of the loosely spread trajectory on May 16th. Further insight is obtained by

looking at the two trajectories in the Sun-Moon and the Sun-Earth rotating frames.
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Figure 5.16 and figure 5.17 represent the two trajectories in Sun-Moon and the Sun-

Earth rotating frames. The usefulness of repeatability in the quasi-periodic trajectory

on May 21st is seen by its ability to avoid eclipses due to the Earth and the Moon

when compared to the trajectory on May 16th. Therefore, one of the challenges in

generating desired quasi-periodic trajectories is that by adopting the same stacking

sequence may or may not produce the anticipated solution on all the epoch dates.

Figure 5.13. Quasi-periodic NRHOs computed on May 16th and May
21st - Earth-Moon rotating frame view.

5.2.2 Generating Nearby Reference Ephemeris Solutions

Consider the figure 5.18 which indicates a part of an ephemeris NRHO shown by

a red line whose distance to the Moon is plotted on the ŷ-axis and the corresponding

epoch is plotted on the x̂-axis. A spacecraft on this trajectory may encounter eclipses

of short durations, especially near the periapsis regions (Sun-Earth and Sun-Moon

rotating plane) of the trajectory. Previous studies have shown that maximum eclipse

durations on an NRHO typically are in the range of 1-2 hours due to Moon and 4-5

hours due to the Earth [47]. Eclipses are generally avoided by performing a phase shift

maneuver in advance, to shift the epoch of the target periapsis in the eclipse region

by a certain number of hours. This delays or advances the arrival of the spacecraft
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Figure 5.14. Apse angles for quasi-periodic NRHOs computed on May
16th and May 21st - Earth-Moon rotating frame view.

Figure 5.15. periapsis radius variation for NRHOs computed on May
16th and May 21st.
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Moon Moon

Earth

Figure 5.16. Ephemeris trajectory on May 16th, 2023 in EM, SM, and
SE rotating frames.

Moon
Moon

Earth

Figure 5.17. Ephemeris trajectory on May 21st, 2023 in EM, SM and
SE rotating frames.
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into the eclipse region and helps to avoid it partially or completely. This is equivalent

to generating a new reference trajectory starting from the maneuver location, whose

periapsis is now shifted with respect to the original trajectory to avoid the eclipse

as shown with the green line in the plot. Sometimes a new ephemeris trajectory

which avoids the eclipse is generated by altering the ephemeris solution subject to

an optimization algorithm. If multiple periapsis epochs are targeted at once, then

this process may become expensive and may not lead to convergence. Moreover,

for conducting preliminary design studies and analysis, several nearby quasi-periodic

trajectories may be required with different periapsis epoch and radii constraints.

Therefore, one of the challenges is to design a reliable method to generate nearby

reference solutions with a better periapsis control to a known baseline trajectory.

…. ….
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Old Ephemeris Solution
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Figure 5.18. Nearby reference trajectory with shifted periapsis.
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5.3 New Stacking Sequences in CR3BP

5.3.1 Alternative Stacking Sequence for Repeatable Behavior

One goal of this investigation is to produce repeatable and tightly converged

ephemeris trajectories irrespective of the ephmeris insertion epoch. This is useful

to retain the favorable properties exhibited by the ”tighter” formations of the syn-

odic resonant trajectories in the higher fidelity model. In the ephemeris model, two

different epoch dates correspond to two entirely different dynamical environments.

The implication of this is that the same initial guess in the CR3BP converges to two

different solutions on the two epoch dates in the ephemeris model. From the previous

section consider two quasi-periodic 3:1 L2 Southern Synodic NRHOs on May 16th,

2023 and on a nearby epoch May 21st, 2023 formed from the same traditionally stacked

NRHOs in the CR3BP. By altering the stacking sequence of the NRHOs starting on

May 16th, it is possible to converge to a ”tighter” quasi-periodic formation, like the

one starting on May 21st. To accomplish this the traditionally stacked NRHOs on the

two epochs in the CR3BP are compared with each other by plotting their distances

to the Moon as seen in figure 5.19. The blue line indicates the stacked orbits on May

16th, while the red line indicates the stacked orbits on May 21st. Clearly, a phase

difference is noticed between the two lines. To converge to an ephemeris trajectory

which looks like May 21st, the initial guess on May 16th is modified such that the phase

difference between the two trajectories is nullified. This is realized by propagating the

initial state on the stacked orbits of May 21st backward in time until it reaches May

16th as shown by the green line in figure 5.20. The starting point on the green line

corresponds to a different location on the NRHO as seen in figure 5.22. Therefore,

stacking the NRHOs as a combination of the green and the red line removes the phase

difference between the two initial guesses starting on the two different epoch dates.

This is equivalent to including a partial arc of the NRHO (of time-period five days)

as the first orbit in the stacking process followed by the traditionally stacked orbits

starting from the x̂-ẑ plane. Transitioning the newly stacked orbits which starts at
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a different NRHO location on May 16th, will converge to a quasi-periodic solution

which retains the synodic structure. Applying the differential corrections process

to the newly stacked orbit on May 16th results in the trajectory as shown in figure

5.22. The first patch point is now not close to the periapsis but starts at a location

indicated by a blue marker near the apoapsis region. For comparison, trajectories

converged using the old and the modified stacking sequence on May 16th are shown

in figure 5.21 and figure 5.22. The blue markers indicate the first patch point on the

trajectories. It is visually clear that the converged trajectory due to the new stacking

sequence is ”tighter” and less spread apart compared to the older method and retains

the synodic behavior. The Sun-Earth and the Sun-Moon rotating frame views cor-

responding to the old and new stacking sequences are also shown in the plots. The

trajectory attained using the old stacking sequence remains non-repetitive and has

a large spread in the Sun-Moon and Sun-Earth rotating frames. Clearly, it is more

prone to eclipses due to the Earth and the Moon. The trajectory obtained using the

new stacking sequence remains in a synodic, less spread out formation in the Sun-

Moon and Sun-Earth rotating frames and is generally less prone to eclipses due to the

”wide gaps” along the line of shadow, i.e., x̂-axis. This method can be used on any

epoch date and for any NRHO provided there is a nearby tighter baseline trajectory.

This technique is also useful to converge trajectories on days which usually do not

show convergence with the traditional stacking method.

5.3.2 Periapsis Control - a Non-homogeneous Stacking Sequence

Previous studies have shown that eclipse durations on an NRHO typically are in

the range of 1-2 hours due to Moon and 4-5 hours due to the Earth [47]. Eclipses

are generally avoided by performing a phase shift maneuver in advance, to shift the

epoch of the periapsis in the eclipse region by a certain number of hours. This delays

or advances the arrival of the spacecraft into the eclipse region and helps to avoid the

eclipse partially or completely. This is equivalent to generating a new reference tra-
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Moon Moon

Earth

E-M S-M

S-E

Moon

Figure 5.21. Traditional stacking sequence on May 16th, 2023.

Earth

E-M S-M

S-E

Moon Moon

Figure 5.22. Alternative stacking sequence on May 16th, 2023.
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jectory starting from the maneuver location, whose periapsis is shifted with respect to

the original trajectory to avoid the eclipse. The goal of this part of the investigation

is to generate a new reference trajectory by employing a non-homogeneous stacking

sequence to have a better periapsis control while maintaining the less spread out,

synodic ephemeris convergence on any epoch date.

Consider the traditional stacking sequence from the previous section in which L2

NRHOs are stacked one after another starting from the periapsis location on the x̂-ŷ

plane. When transitioned into the higher fidelity ephemeris model, the quasi-periodic

NRHO generated on May 2nd is less spread out and tighter compared to the nearby

epoch dates as seen in figure 5.11. Before transitioning into the ephemeris model, the

stacked initial guess in the CR3BP is seen in figure 5.10. When transitioned into a

higher fidelity model the periapsis of the ephemeris solution will no longer occur at

the original periapsis locations of the stacked CR3BP trajectory. Instead, the new

periapsis of the ephemeris trajectory occurs in the close vicinity to the periapsis patch

points of the CR3BP. To illustrate this point, consider the figure 5.23 . Starting from

the epoch date of May 2nd the distance of the traditionally stacked NRHOs to the

Moon in the CR3BP model is shown as a blue line. As expected in the CR3BP the

apoapsis and periapsis distances are equal. All the patch points on the trajectory are

marked with blue dots on the curve. The distance of the corresponding ephemeris

trajectory starting on the same epoch date is shown as a red line. Patch points of the

ephemeris trajectory are added to the curve with red dots. It is immediately clear

from the plot that even though both the trajectories begin from the same epoch,

there is a noticeable phase difference between the two trajectories. The periapsis of

the ephemeris solution are shown as green dots on the red line and occur close to

the CR3BP periapsis patch points. For illustration, a hypothetical eclipse event is

assumed to take place when the spacecraft arrives close to the sixth ephemeris pe-

riapsis. Eclipse can be completely avoided if the arrival time at the sixth periapsis

is either advanced or delayed by an amount greater than the eclipse duration. To
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demonstrate this example, a delay of 6 hours in arrival at the 6th ephemeris periapsis

is planned. This is achieved by generating a new ephemeris trajectory which starts

at the same epoch date, i.e., May 2nd, but arrives at the 6th periapsis later than

the original ephemeris trajectory by 6 hours. This is equivalent to generating a new

reference trajectory by performing a phase shift maneuver to escape the eclipse. A

non-homogeneous stacking sequence is explored in the CR3BP by implementing the

following steps to generate the new reference trajectory which will potentially avoid

the eclipse.

Step 1: Calculate the new epoch of the target periapsis:

In the present example, the target periapsis of the ephemeris trajectory whose

epoch is to be delayed by 6 hours is the 6th ephemeris periapsis which occurs at

a time t = 49.134064 days from the ephemeris insertion date on May 2nd. The

region near the 6th periapsis of the ephemeris trajectory is seen in figure 5.23. The

green and blue dots indicate the 6th ephemeris periapsis and the 6th CR3BP periapsis

respectively. The goal is to generate a nearby ephemeris solution whose 6th periapsis

is delayed by 6 hours. Hence the new epoch of the targeted periapsis corresponds to

the following number of days after the insertion epoch,

ttarget =

(
49.134064 +

6

24

)
days (5.2)

Step 2: Calculate the time difference between the new epoch of target periapsis and

the corresponding CR3BP periapsis:

In the figure 5.23, the green dot indicates the 6th periapsis of the reference

ephemeris trajectory, the blue dot indicates the 6th perilapsis of the CR3BP tra-

jectory and the green dot on the black dotted line indicates the new 6th periapsis

of the desired ephemeris trajectory (whose epoch has been calculated in step 1 as

ttarget). In this step the difference between the epoch of the 6th CR3BP periapsis and
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Figure 5.23. Distance to Moon: Stacked NRHOs in CR3BP and
Ephemeris trajectory on May 2nd.
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the new epoch of the targeted periapsis is calculated, which will be used in the next

step to alter the stacking sequence. The difference is calculated as follows,

∆t = ttarget − tCR3BP =

(
49.134064 +

6

24
− 49.22000

)
days (5.3)

Step 3: Use the ∆t to generate an alternative stacking sequence:

The ∆t calculated in the previous step is equal to 3.937536 hours. The eclipsing

epoch lies in between the 5th and the 6th NRHOs in the stacking sequence. These

orbits are replaced by a set of new nearby NRHOs whose time periods are equal to

the following,

5th NRHO = (9.844 + ∆t) days (5.4)

6th NRHO = (9.844−∆t) days (5.5)

The new 5th NRHO delays the epoch of the 6th CR3BP periapsis to match the tar-

get epoch and the new 6th NRHO maintains the overall time-period of the stacked

orbits to be equal to the original stacked trajectories. Since non-identical NRHOs

are included into the stacking sequence, it is termed as a non-homogeneous stacking

process and is shown in figure 5.24.

Step 4: Transition the non-homogeneous stacked trajectories into ephemeris

model:

In the final step, transition the modified stacked trajectories in figure 5.24, into the

ephemeris model and apply the necessary constraints on the patch points during the

corrections process. In the current example, the 6th periapsis of the non-homogeneous

CR3BP stack is associated with the target epoch, and therefore it is maintained upon

ephemeris transition by constraining its epoch and periapsis condition. The epoch

of the first state on the ephemeris trajectory may or may not be constrained but

to compare it with the original ephemeris trajectory it is constrained in the current
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example. The newly converged ephemeris trajectory is plotted together with the

original trajectory in figure 5.25. The new and the old ephemeris trajectories are

marked in cyan and red colors respectively. To compare the two trajectories their

distances to the Moon with respect to their epochs are plotted in figure 5.26. The

new trajectory occurs in close vicinity to the original trajectory. The 6th periapsis of

the new ephemeris solution is exactly delayed by 6 hours compared to the original

solution. Therefore at the time of the eclipse, the spacecraft would be at a different

location when compared to the original ephemeris trajectory. Also, note that, within

the current implementation, the phase shift for other periapsis and their nearby patch

points is purely a by-product of the corrections process. The converged trajectory

retains the less spread out nature and has a tighter appearance and is shown in figure

5.25.

The Non-homogeneous stacking sequence can be employed to shift the epochs

associated with multiple periapsis in the ephemeris trajectory thereby avoiding po-

tential eclipses in a reliable way. It can also be effectively used to control the periapsis

radius of the target periapsis by making an informed selection of periodic orbits, that

formulate the stacking sequence.

Figure 5.25. Old and new ephemeris trajectories.
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New Ephemeris 
Old Ephemeris

New Ephemeris 
Old Ephemeris

+6 hours

Old Perilune
New Perilune

Figure 5.26. Old and new ephemeris trajectories - distance to Moon.
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6. TRANSFER DESIGN INCORPORATING RESONANT

ORBITS : METHODOLOGY AND RESULTS

In the previous chapter, an alternative stacking sequence has been demonstrated to

consistently converge NRHOs in the CR3BP model to less spread out quasi-periodic

ephemeris trajectories, irrespective of the epoch dates. An eclipse avoidance strategy

was also described in which a new nearby reference trajectory was generated, in

which a target periapsis lying in the potential eclipse zone was shifted outside by

altering its epoch time. This chapter explores various transfer scenarios between two

cislunar periodic orbits, namely a representative NRHO and a Distant Retrograde

Orbit (DRO), primarily using resonant orbits and manifolds as intermediate arcs.

First, the representative NRHO and the DRO are selected followed by describing the

design methodology adopted to produce various transfer options between them. The

results of various transfers will be presented and will be locally optimized using a

direct optimization technique. The optimized trajectories will be transitioned into

the ephemeris model using Adaptive Trajectory Design software to assess the impact

of higher fidelity on the geometry and transfer cost [46].

6.1 Representative NRHO - Departure Orbit

NRHOs which have a synodic resonance ratio with the Moon have been studied in

the past as an efficient way to avoid eclipses for long duration staging activities [45].

Out of the various NRHO’s computed in the section 5.1, for the rest of the analysis

an L2 9:2 southern synodic resonant orbit is considered as the departure orbit and is

shown in the figure 6.1. The ratio indicates that the orbit completes nine revolutions

around the Moon at the same time the Moon takes to complete two synodic time

periods around the Earth. The resonance ratio becomes more distinct when the
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trajectory is viewed in the Sun-Moon and the Sun-Earth rotating frames as seen in

the figure 6.2 and 6.3. The natural parameters of the periodic orbit are given in the

table 6.1.

Table 6.1. 9:2 L2 synodic NRHO parameters.

Parameter Value

Periapse radius 3153 km

Apoapse radius 71, 230 km

Jacobi constant 3.047189

Time period (Tq) 6.56 days

6.2 Representative DRO - Arrival Orbit

DROs are a stable, planar periodic family extending from the neighborhood

around the Moon with a smaller periapsis radius, all the way up to the Earth with

large periapsis radius, moving in a retrograde direction in the CR3BP. For the rest of

the analysis, the DRO orbit with the following natural parameters as shown in table

6.2 is used as the destination orbit for all the transfer scenarios. The representative

DRO is shown in the figure 6.1.

Table 6.2. Representative DRO parameters.

Parameter Value

Periapse radius 64658 km

Jacobi constant 2.937908

Time period (Tq) 12.72 days
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Moon

Earth

1L

2L

Figure 6.1. Representative NRHO and DRO.

6.3 Theoritical Minimum Transfer Cost

A change in the Jacobi constant associated with the CR3BP model is achieved by

performing a maneuver at a given location on a trajectory. By changing the Jacobi

constant, the spacecraft jumps on to a different arc. This is particularly useful for a

transfer scenario between two stable periodic orbits where free of cost, heteroclinic

connections are not possible due to the lack of manifolds. Performing a finite burn

is the only way to jump off from the departure stable orbit or connect to the stable

arrival orbit. Consider for instance a spacecraft located on the departure orbit of

Jacobi constant C1 a seen in figure 6.4 shown as a blue trajectory. Performing a

burn of magnitude ∆V at an angle θ with respect to the original velocity places

the spacecraft onto another arc with Jacobi constant C2 shown as a dotted black

trajectory. Notice that the two arcs have a common point in the configuration space

at the burn location. From equation (2.34) the Jacobi constant expression for the

departure stable orbit is written as,
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Moon

Sun

Sun

Moon

Moon

Figure 6.2. 9:2 synodic southern L2 NRHO in the CR3BP - Moon
centered, Sun - Moon rotating frame view.
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Earth

Sun

Earth

Sun

Earth

Figure 6.3. 9:2 synodic southern L2 NRHO in the CR3BP - Earth
centered, Sun - Earth rotating frame view.
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C1 = 2U1
∗ − v1

2 (6.1)

Similarly the Jacobi constant expression for the second arc is,

C2 = 2U2
∗ − v2

2 (6.2)

At the departure point U?
1 is equal to U?

2 in equations (6.1) and (6.2). The difference

in Jacobi constants is evaluated as follows,

∆C = C1 − C2 = v2
2 − v2

1 (6.3)

The change in velocity for the maneuver is calculated using the expression,

‖∆v̄‖ = ∆v =
√
v2

1 + v2
2 − 2v1v2 cos θ (6.4)

The change in velocity in equation (6.4) is minimized when cos θ = 1. Substituting

this back into equation (6.4) yields the minimum velocity change to jump from Jacobi

constant C1 to Jacobi constant C2,

min ∆v =
√
v2

1 + v2
2 − 2v1v2 (6.5)

Substituting equation (6.5) into equation (6.3) results in an expression for minimum

energy change between two Jacobi constants and a given initial velocity as,

min ∆v =

√
2v2

1 + ∆C − 2v1

√
∆C + v2

1 (6.6)

Equation (6.6) corresponds to a tangential burn from the departure point. This im-

plies that to jump from a Jacobi constant C1 to C2, departing tangentially from the

first arc corresponds to the lowest ∆v. In the case of planar transfers for tangential

departures, lower difference in Jacobi constant corresponds to lower ∆v values. When

a directional change in the velocity is required or when there is a plane change ma-

neuver, the minimum energy change is non-zero in spite of the initial and final Jacobi
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constants being the same.

For a transfer scenario between the representative departure NRHO and the arrival

DRO in figure 6.1, the minimum energy change required to jump from the Jacobi

constant of the NRHO to the Jacobi constant of the DRO from various locations on

the NRHO is computed using the equation (6.6) and plotted in the figure 6.5. The

minimum energy change or the minimum ∆v required to depart from the periapsis

region of the NRHO is significantly smaller than that needed to leave form its apoapsis

region. This is because in equation (6.6), it is seen that larger initial velocities require

smaller ∆v for departure. Therefore, as the velocity near periapsis region is higher

than the velocity near the apoapsis regions of the NRHO, the ∆v needed to cause

the fixed change in the Jacobi constant is smaller at the periapsis region. Minimum

energy change is useful because it serves as a good reference value for comparing the

transfer costs obtained in the various transfer scenarios which will be discussed in the

coming sections.

6.4 Arc Blending Scheme - Transfer Design Process

The idea of incorporating manifolds to construct a low cost, novel transfer sce-

narios between two destinations in CR3BP is well established. In this regard, a lot

of past research was focused on generating transfers between unstable periodic orbits

in the CR3BP. Unstable periodic orbits have natural dynamical structures in the

form of stable and unstable manifolds, which are leveraged to depart and arrive at

a periodic orbit with almost a negligible cost. Haapala has developed new ways of

representing Poincaré maps in lower as well as higher dimensions, using which she

generated a catalog of free and low energy trajectories between several planar and

spatial unstable libration point orbits in the Earth-Moon system [48]. On the other

hand designing transfers between stable periodic orbits is often challenging due to

the lack of natural dynamical structures. Vaquero and Howell have demonstrated
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Burn location

1C

2C

Figure 6.4. Minimum energy to change Jacobi constant.

Perilune

Apolune

Figure 6.5. Theoritical Minimum ∆v to jump from NRHO to DRO.
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an innovative design strategy, in which arcs and manifolds of stable and unstable

resonant periodic orbits were incorporated into the transfer design scenario by us-

ing them as intermediate transfer arcs for linking the stable/unstable departure and

destination orbits [22]. Vaquero used this transfer strategy to access the stable orbit

of Hyperion in the Saturnian system by leveraging the unstable manifolds of a 3:4

unstable resonant orbit [23]. She has incorporated resonant orbits and their man-

ifolds into the transfer strategy for designing transfers from LEO to several planar

and spatial Lyapunov periodic orbits in the Earth-Moon system [24]. The versatility

of the resonant orbits and their natural dynamical structures were highlighted by

using the manifolds associated with a 4:3 resonant orbit to design a grand libration

point orbit tour around the five equilibrium points [22]. In the present context of

generating transfers between cislunar stable periodic orbits, more recently Capdev-

ila contributed to the infrastructure of a network of transfer trajectories connecting

stable regions in the cislunar space specifically between LEO, DROs, NRHOs and L4

and L5 Short Period Orbits [29]. Zimovan created impulsive transfer solutions from

a 4:1 synodic southern L2 NRHO to several DROs by utilizing a multi-dimensional

Poincaré map constructed using tangential departures from the apoapsis location on

the NRHO and also manifolds of period-3-DROs [28]. The goal for this work is to

explore and develop a systematic method for designing transfers between two stable

cislunar periodic orbits namely from a representative NRHO to a DRO incorporating

resonant arcs and manifolds into the transfer process.

Throughout the various transfer scenarios, a variety of Poincaré maps are utilized

to come up with initial guesses for the intermediate arcs of a transfer. The interme-

diate arcs will be comprised of resonant arcs, resonant stable or unstable manifolds,

tangential departures or tangential arrival arcs. This is accomplished in the CR3BP

by selecting the desired intersections on the Poincaré map and integrating the se-

lected initial conditions to form a discontinuous set of intermediate trajectories. The

intermediate arcs are then carefully stacked to start at the departure orbit and end
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at the arrival orbit as seen in the figure 6.6. Patch points are distributed along the

intermediate arcs, thereby forming sub-arcs and necessary constraints such as periap-

sis, ∆V and TOF are introduced at the patch points during the corrections process.

From the initial guess, a continuous transfer trajectory in position and velocity is

obtained by implementing a multiple shooting differential corrections process. When

a maneuver is introduced at a patch point, only the position continuity is ensured.

Once a continuous transfer is generated, a direct optimization technique is applied to

produce a locally optimal transfer. As a final step, the optimal trajectory is transi-

tioned into the higher fidelity ephemeris model using ATD to evaluate the practical

transfer costs. In summary, identifying the intermediate arcs and blending them to

obtain a transfer trajectory is the goal. In the coming sections a variety of transfer

scenarios between the representative 9:2 L2 southern synodic NRHO to the DRO are

computed using the above transfer design process.

Arrival Orbit

Departure Orbit

Departure Leg

Arrival Leg

…

DT

DT

1T

2T

Figure 6.6. Arc blending scheme.
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6.5 Direct Transfers from NRHO to DRO

A direct transfer is a single intermediate arc which departs from the NRHO and

connects to the DRO. There are two burns in the transfer, one at the departure point

on the NRHO and the other at the arrival location on the DRO. The search for a

direct transfer begins with the discretization of the departure orbit, i.e., the NRHO.

At the discretized states on the NRHO, tangential burns are performed along the

direction of velocity, to jump from the Jacobi constant of the NRHO to a Jacobi

constant of the representative DRO with a ∆v given by equation (6.6). The new

states are then integrated forwards in time until they intersect the hyperplane z = 0

for the first time as represented in the figure 6.7. All the intersections of the tangential

departures with the hyperplane and their respective integration times are recorded

and plotted on the Poincaré section given by the x̂-ŷ plane as seen in the figure 6.8.

The dots represent the intersections of the tangential departures from NRHO with

the Poincaré section. The color bar on the right indicates the out of plane ż-velocity

and the arrows on the section represent the magnitude and direction of the in-plane

velocity. The representative DRO is also plotted on the Poincaré section. Tangential

intersections on the map which come close to the DRO corresponds to a potential

direct transfer and is shown in a red boxed area. Three such transfers are possible

at the locations A, B and C on the DRO. For this transfer scenario, without the loss

of generality, the location C is considered as the target arrival state on the DRO.

The tangential intersection on the Poincaré map closest to the DRO is selected and

integrated backward in time to the departure point on the NRHO. This forms the

intermediate arc of the transfer. There is a slight discontinuity in states between the

last state of the intermediate arc and the arrival location on the DRO. Sufficient patch

points are distributed across the intermediate arc, and the position constraints are

ensured at the first and the last state of the trajectory to match the NRHO and DRO

at their departure and arrival target states respectively. As there are no maneuvers

in between the intermediate arc continuity between all the patch points is ensured,
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and a multiple shooting differential corrections process is applied to result in a direct

transfer which starts on the NRHO and arrives at the DRO and is shown in the figure

6.9. For the converged trajectory the departure ∆Vd is 0.250 km/s and the arrival ∆Va

is 0.387 km/s . The total ∆Vt and total time of flight of the transfer are 0.637 km/s

and 3.92 days respectively. The minimum theoretical transfer cost from the departure

location is 0.258 km/s, but it takes a significantly higher ∆V due to the large plane

change maneuver to arrive at the planar DRO from an almost perpendicular NRHO.

It is to be noted that the solution is not optimal and is just one of the infinitely

many direct transfers possible between the two orbits. Nevertheless, it will serve as

a baseline trajectory and a good starting point to generate the remaining transfer

scenarios.

Earth

Moon

2L

1L

Tangential Departures

Figure 6.7. Tangential departures from NRHO to hyperplane z=0.
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2L1L

A

Earth

Figure 6.8. Poincaé map z = 0, ż > 0.

DV

AV

Moon
2L

1L

Earth

Figure 6.9. Direct transfer from NRHO to DRO.
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6.6 Transfers Incorporating Resonant Arcs

In this transfer scenario, a section of a resonant orbit is incorporated as an in-

termediate arc in a transfer between the representative NRHO and the DRO. The

selection of the intermediate resonant orbit is based upon its intersection with the

DRO at its positive x̂-axis crossing. This intersection condition is chosen because

all the members of the DRO family and resonant orbits have perpendicular crossings

along the x̂-axis. There are multiple resonant orbits which cross the x̂-axis perpen-

dicularly with ẏ > 0 at the same location as the representative DRO. A plot showing

the Jacobi constants for the 1:2, 2:3 and 3:4 exterior resonant orbits and their x̂-axis

crossings with ẏ > 0 is shown in the figure 6.10. The destination DRO is also repre-

sented in the plot with an asterisk mark. Notice that at the same x̂-axis crossing the

Jacobi constant of the 1:2 resonant orbit is the smallest and the Jacobi constant of

the 3:4 resonant orbit is the largest. The J.C of the DRO is greater than the three

resonant arcs at the desired x̂-axis crossing. Without the loss of generality, a 1:2

resonant orbit is chosen as the intermediate resonant arc. Choosing another resonant

orbit will not change the design methodology but may change the TOF and ∆V of

the transfer. Figure 6.11 represents both the 1:2 resonant orbit and the representa-

tive DRO plotted together. As expected the resonant orbit and the DRO cross the

x̂-axis at the same location. This is useful because staying on the resonant orbit will

bring a spacecraft close to the vicinity of the DRO and is inserted into the DRO by

performing a necessary maneuver at the x̂-axis crossing, i.e., the common intersection

point of the DRO and the resonant orbit. To obtain the departure leg, tangential

maneuvers are performed at the discretized states on the NRHO, to jump to a Jacobi

constant of the intermediate orbit, i.e., the 1:2 resonant orbit, with magnitudes of

the burns given by equation (6.6). The new states are then integrated forwards in

time until they intersect the hyperplane z = 0 and ż > 0 for the first time. All the

intersections of the tangential departures with the hyperplane and their respective

integration times are recorded and plotted on the Poincaré section given by the x̂-ŷ
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plane as seen in the figure 6.11. The dots represent the intersections of the tangential

departures from NRHO with the x̂-ŷ plane. The color bar on the right indicates the

out of plane ż-velocity and the arrows on the section represent the magnitude and

direction of the in-plane velocity. The representative DRO and the 1:2 Resonant orbit

is also plotted on the Poincaré section. Tangential intersections on the Poincaré map

which come close to the resonant orbit corresponds to a potential departure leg. One

such point at A is selected and integrated backwards in time to the departure point

on the NRHO, which forms the departure leg of the transfer. The arrival leg of the

transfer is the arc of the 1:2 resonant orbit which starts at point A and ends at the

positive x̂-axis crossing at point B. The two intermediate arcs form the initial guess

for the corrections process. Patch points are distributed along the two intermediate

arcs and continuity in both the position and velocity is ensured individually within

each leg. Maneuvers are introduced at departure patch point on the NRHO, inter-

mediate patch point which connects the two legs and the arrival patch point on the

DRO. A multiple shooting algorithm is used to blend the two intermediate arcs to

form a continuous trajectory which departs from a certain location on NRHO and

arrives at the x̂-axis crossing of the DRO and is shown in figure 6.12. The three ∆V ′s

and the TOF of the trajectory is given in the table 6.4. It is to be noted that the

solution is not optimal. One indicator of the efficiency of the transfer is the variation

of Jacobi constants across the intermediate arcs. In the transfer computed using the

1:2 resonant arc the Jacobi constant changes in the manner as shown in table 6.3.

Table 6.3. Transfer using 1:2 resonant arc, Jacobi constant history.

Parameter Jacobi constant

Departure orbit (NRHO) 3.047189

Departure arc (Tangential departure) 2.761475

Arrival arc (1:2 resonant arc) 2.761326

Arrival orbit (DRO) 2.937908
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From table 6.3, the Jacobi constants of the intermediate arcs are lesser than the

departure and the final orbits. This makes the transfer inefficient. More efficient

transfers are sought by ensuring that the Jacobi constants of the intermediate arcs

lie between the departure and arrival orbits. Different transfer options exist with the

use of other intermediate resonant arcs. In figures 6.13 and 6.14 two new transfers

using 2:3 and 3:4 resonant orbits are shown. Tables 6.5 and 6.8 shows the ∆V and

TOF of the corresponding transfers. A 4:3 internal resonant orbit is also used by

connecting to the DRO on the x̂-axis at the negative crossing. The transfer is shown

in figure 6.15. Table 6.7 indicates the total ∆V and TOF for this transfer. All the

four transfer scenarios have unique transfer geometries with varying transfer costs

and TOF.

6.7 Transfers Incorporating Resonant Manifolds

Recall that the choice of the intermediate arc partly influences the cost-effectiveness

of the transfer. Choosing an intermediate arc, whose Jacobi constant lies in between

the departure and the arrival orbits, is more cost-effective than choosing an interme-

diate arc whose Jacobi constant lies outside the range of the departure and arrival

orbits. Consequently, in this transfer scenario, an unstable resonant manifold of a 3:4

resonant orbit which has the same Jacobi constant as the departure NRHO is chosen

as the intermediate arc. The departure NRHO, intermediate 3:4 resonant orbit and

the arrival DRO are plotted together in the figure 6.16. The resonant orbit has a close

encounter (flyby) with the Moon. The first Poincaré map is formed on the y = 0,

and ẏ > 0 hyperplane using the unstable resonant manifolds of the 3:4 resonant orbit.

The resonant orbit is first discretized into 20,000 points, and unstable manifolds are

propagated for a time equivalent to two time periods of the resonant orbit, i.e., for

147 days. All the states and times of intersection with the hyperplane y = 0 in the

positive direction, i.e., ẏ > 0 are recorded and plotted on the Poincaré map shown in

the figure 6.17. The intersection of the representative DRO with the hyperplane is
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3:4 Resonance

2:3 Resonance

1:2 Resonance

DRO

Figure 6.10. Potential resonant orbits for intermediate arcs.

A

B

A

B

Figure 6.11. Transfer incorporating 1:2 resonant arc - Poincaé map z = 0, ż > 0.
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Figure 6.12. Transfer between NRHO and DRO using 1:2 resonant arc.
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Table 6.4. Transfer using 1:2 resonant arc, transfer costs and TOF.

Parameter Value

∆VD 0.181 km/s

∆VI 0.220 km/s

∆VA 0.156 km/s

∆Vtot 0.557 km/s

TOF 50.70 days

Departure time from NRHO periapsis 0.198 days

Arrival time from DRO periapsis (ẏ > 0) 0 days

Table 6.5. Transfer using 2:3 resonant arc, transfer costs and TOF.

Parameter Value

∆VD 0.176 km/s

∆VI 0.265 km/s

∆VA 0.119 km/s

∆Vtot 0.560 km/s

TOF 76.80 days

Departure time from NRHO periapsis 0.289 days

Arrival time from DRO periapsis (ẏ > 0) 0 days
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Figure 6.13. Transfer between NRHO and DRO using 2:3 resonant arc.
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Figure 6.14. Transfer between NRHO and DRO using 3:4 resonant arc.
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Table 6.6. Transfer using 3:4 resonant arc, transfer costs and TOF.

Parameter Value

∆VD 0.174 km/s

∆VI 0.332 km/s

∆VA 0.070 km/s

∆Vtot 0.576 km/s

TOF 106.15 days

Departure time from NRHO periapsis 0.551 days

Arrival time from DRO periapsis (ẏ > 0) 0 days

Table 6.7. Transfer using 4:3 resonant arc, transfer costs and TOF.

Parameter Value

∆VD 0.489 km/s

∆VI 0.360 km/s

∆VA 0.190 km/s

∆Vtot 1.039 km/s

TOF 78.20 days

Departure time from NRHO periapsis 3.34 days

Arrival time from DRO periapsis (ẏ > 0) 6.36 days
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Figure 6.15. Transfer between NRHO and DRO using 4:3 resonant arc.
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shown on the plot with a black asterisk mark. As an intermediate unstable manifold

arc, the state on the Poincaré map closest to the DRO at point A is chosen. The

state is propagated back to the resonant orbit, and while doing so, the intersections

of the unstable resonant manifold with the hyperplane y = 0 and ẏ > 0 are recorded.

To generate an initial guess for the departure leg, tangential burns with a small ∆V

of 20 m/s are performed in the direction of the velocities on the discretized states

of the NRHO. The new initial conditions on the NRHO are propagated forwards in

time until they intersect the hyperplane y = 0 and ẏ > 0 for the 4th time as seen in

figure 6.18. The intersections of the tangential departures and the integration times

are recorded and plotted on the second Poincaré map as seen in figure 6.19, which

will help to pick the departure leg from NRHO that connects to the unstable resonant

manifold found using the 1st Poincaré map. The intersection of the selected unstable

manifold with the second Poincaré map is marked with a red asterisk marker in figure

6.19. The nearest state of the departure leg to the unstable manifold intersection at

point B is chosen and is integrated back to the NRHO to obtain the departure leg for

the transfer. Having obtained the two, discontinuous departure and arrival interme-

diate arcs, patch points are distributed, and constraints are applied appropriately. A

multiple shooting differential corrections process is used to blend in the initial guess

to generate a continuous transfer as shown in figure 6.20. The ∆V and TOF for the

transfer are shown in the table 6.8. Notice that the transfer cost is lesser than the

ones obtained in the previous section. The transfer is not optimized. As the next

step, transfer cost is reduced by reducing the arrival ∆VA in the table 6.8, which will

be adopted in the next section by using a slightly modified approach.

6.8 Transfers Using Tangential Departure and Arrival Arcs

The absence of natural dynamical structures makes the transfers between stable

periodic orbits a challenging task in terms of finding a good initial guess. To overcome

this problem, other periodic orbits or manifolds belonging to nearby trajectories have
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Table 6.8. Transfer using 3:4 unstable resonant manifold, transfer costs and TOF.

Parameter Value

∆VD 0.029 km/s

∆VI 0.119 km/s

∆VA 0.067 km/s

∆Vtot 0.215 km/s

TOF 105 days

Departure time from NRHO periapsis 6.27 days

Arrival time from DRO periapsis (ẏ > 0) 0 days

1L

3L

4L

5L

Moon

Earth
2L

1L
Moon

2L

3:4 Resonant orbit

Figure 6.16. Transfer using resonant manifold - Representative orbits.



158

x x

0, 0y y 

DRO

A

Figure 6.17. Transfer using resonant manifold - Poincaré map for arrival arc.

y=0,y>0

Figure 6.18. Transfer using resonant manifold - Tangential departures
from NRHO with ∆V = 20 m/s.
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Figure 6.19. Transfer using resonant manifold - Poincaré map for departure arc.

been utilized as intermediate arcs to generate feasible transfer solutions to the repre-

sentative periodic orbits. Tangential departure or arrival trajectories from the stable

orbits, generated by executing a ∆V , can serve as a good substitute for transfers

between stable periodic orbits. Similar to manifolds, connections to other intermedi-

ate arcs are sought by recording their intersections at various Poincaré maps. Even

though the departure/arrival, from/to the periodic orbits can be chosen to be in many

directions, departing/arriving tangentially is an easy way to formulate a good initial

guess. This technique was partly used in previous transfers where the departure legs

were tangential departures from the NRHO. In the transfers designed in sections 6.5,

and 6.6, the tangential departure arcs reached the same Jacobi constant value for all

the states on the NRHO. In the transfer type described in section 6.7 which uses an

unstable manifold of a resonant orbit, to reduce the departure cost, a small ∆V = 20

m/s was used to depart tangentially from all the states on the NRHO. The transfer

cost is further brought down by reducing the arrival ∆VA in table 6.8. To achieve
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Figure 6.20. Transfer between NRHO and DRO using 3:4 resonant arc.
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this, the technique of tangential arrivals is applied at the arrival DRO. Using a ∆V of

40 m/s (20 less than the arrival ∆VA in table 6.8), the tangential burns are performed

in the anti-velocity direction along the discretized states on the DRO. The new states

are propagated backward in reverse time until they intersect the hyperplane y = 0

in the positive direction, i.e., ẏ > 0 for the 4th time. The intersections along with

the integration times are stored and plotted on a Poincaré map in the figure 6.21

with blue dots. These trajectories are the potential arrival legs for the transfer. The

departure leg from the NRHO is obtained in the same way as the previous section. A

small ∆V of 20 m/s in the direction of velocity, is used to depart tangentially from all

the states on the NRHO. The modified states are propagated until they intersect the

hyperplane y = 0 in the positive direction ẏ > 0 for the 3rd time. The intersections

are stored and plotted together with the potential arrival states in the Poincaré map

shown in figure 6.21. The arrival and departure trajectories intersect distinctly at

location A. When the states at point A are propagated back to their periodic or-

bits, they constitute the discontinuous initial guess for the transfer trajectory. Patch

points are distributed, and constraints are enforced appropriately. A multiple shoot-

ing differential corrections process is used to blend in the initial guesses to generate a

continuous transfer as shown in figure 6.22. This transfer is denoted as type A. The

∆V and TOF for the transfer are shown in the table 6.9. Notice that as intended,

the transfer costs ∆VD and ∆VI are similar to section 6.7 and arrival ∆VA is less by

20 m/s. The transfer is not optimized, but the Jacobi constants of the intermediate

arcs lie in between the departure and the arrival orbits and decreases in an orderly

fashion as shown in table 6.10.

The most expensive burn happens between the departure and the arrival legs

which causes a significant plane change in the trajectory. Plane change maneuvers

can be reduced by moving further away from the primaries. To search for trajecto-

ries which go further away from the primaries the hyperplane is modified to y = 0

and ẏ < 0. Tangential departures from NRHO which intersect the hyperplane 3rd
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Table 6.9. Transfer type A, transfer costs and TOF.

Parameter Value

∆VD 0.024 km/s

∆VI 0.118 km/s

∆VA 0.043 km/s

∆Vtot 0.185 km/s

TOF 120.44 days

Departure time from NRHO periapsis 0.44 days

Arrival time from DRO periapsis (ẏ > 0) 3.91 days

Table 6.10. Transfer type A, Jacobi constant history.

Parameter Jacobi constant

Departure orbit (NRHO) 3.047189

Departure arc (Tangential departure) 3.025508

Arrival arc (Tangential Arrival) 2.966086

Arrival orbit (DRO) 2.937908

time and the tangential arrivals of DRO which intersect the hyperplane for 4th time

are plotted on the Poincaré map shown in figure 6.23. At the potential intersection

point B, the two intermediate arc conditions are chosen and integrated backwards

and forwards in time to form the departure and arrival guess for the transfer. Patch

point are distributed and constraints are enforced appropriately. A multiple shooting

differential corrections process is used to blend in the initial guesses to generate a

continuous transfer as shown in figure 6.24. This transfer type is denoted as type B.

The ∆V and TOF for the transfer are shown in the table 6.11. Notice that the plane

change maneuver is now performed at a greater distance compared to the transfer in

figure 6.22. Therefore comparing tables 6.11 and 6.9, the intermediate burn reduces

by approximately 40 m/s with nearly similar ∆VD and ∆A. The TOF increase by 25
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days. The transfer is not optimized but the Jacobi constants of the intermediate arcs

lie in between the departure and the arrival orbits and decrease in an orderly fashion

as shown in table 6.12.

Table 6.11. Transfer type B, transfer costs and TOF.

Parameter Value

∆VD 0.029 km/s

∆VI 0.075 km/s

∆VA 0.052 km/s

∆Vtot 0.156 km/s

TOF 145.28 days

Departure time from NRHO periapsis 0.55 days

Arrival time from DRO periapsis (ẏ > 0) 6.89 days

Table 6.12. Transfer type B, Jacobi constant history.

Parameter Jacobi constant

Departure orbit (NRHO) 3.047189

Departure arc (Tangential departure) 3.040623

Arrival arc (Tangential Arrival) 2.974127

Arrival orbit (DRO) 2.937908

6.9 Designing Locally Optimal Transfers

All the transfers obtained in the previous sections are sub-optimal trajectories.

In this section, locally optimal solutions are found using a constraint nonlinear op-

timization algorithm using Matlab’s ’fmincon’ function called Sequential Quadratic
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Figure 6.21. Transfer type A - Poincaré map for initial guess.

Programming (SQP). The SQP routine is a quasi-newton direct method of minimiz-

ing a continuous nonlinear objective function by solving a simper quadratic program-

ming sub-problem [22]. Similar to a differential corrections process, the optimization

routine consists of a free variable vector which includes all the parameters of the

trajectory which are free to vary in the optimization process. A nonlinear constraint

function is defined, analogous to the constraint vector in the differential corrections

method. The constraint function comprises of nonlinear equality constraints like con-

tinuity in states between patch points and nonlinear inequality constraints such as

the closest approach to primaries, defined in terms of the elements in the free variable

vector. A nonlinear objective function is defined which is the value to be minimized

during the optimization routine. To illustrate the process, consider the transfer tra-

jectory designed in figure 6.22. As the trajectory passes close to the Moon during

the departure and arrival phases, the optimization process was found to be sensitive

and did not show convergence when only the first states of the intermediate arcs

were considered as elements in the design matrix. To reduce the sensitivity of the

trajectory, the outbound and incoming legs are divided into sub-arcs by distributing

sufficient patch points along the arcs including all the periapsis states. The patch
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Figure 6.23. Transfer type B - Poincaré map for initial guess - Distant
plane change.

points along with their respective integration times are included into the free variable

vector. Another aspect of the optimization process is that the trajectory is free to

vary on the initial and final orbit. This implies that the departure position on the

NRHO and the arrival position on the DRO are allowed to change in order to mini-

mize the objective function. Therefore, time periods T1 and T2 as shown in figure 6.6

are included into the free variable vector which indicate the departure time on NRHO

from its periapsis location and arrival time on DRO from it’s positive x̂-axis crossing.

The nonlinear equality constraints include the following continuity constraints:

1. The first and last point of the trajectory are constrained to lie on the respective

periodic orbits.

2. Continuity in both position and velocity is ensured across all the patch points

except at the maneuver locations.

3. The total time of flight may or may not be constrained to be equal to that of

the sub-optimal trajectory.

All the periapsis distances of the trajectory are constrained to be greater than 3200

km. This is included as nonlinear inequality constraint. Positive time of flights

are ensured by setting the lower limits on time variables to be zero. As a human-
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spaceflight operational constraint the departure time on the NRHO is set to only vary

between the sub-optimal initial departure time and the time until apoapsis on the

departure orbit. This is done to ensure that the spacecraft does not burn close to the

periapsis during the departure on NRHO. The objective function is written as,

J(X̄) = ∆VD + ∆VI + ∆VA (6.7)

Where ∆VD is the departure burn at NRHO, ∆VI is the intermediate plane change

maneuver and ∆VA is the arrival burn at DRO. In the optimization process numerical

gradients are used and all constraints are met within the specified tolerances (TolX =

TolCon = TolFun = 10−12). When the first order optimality conditions are met and

the algorithm is successful the exit flag output is returned as one. For the sub-

optimal trajectory in figure 6.22, a local optimal with the same time of flight is found

and is plotted together with the original sub-optimal trajectory in figure 6.25. The

comparisons between the transfer costs and TOF between the two trajectories is seen

in the table 6.13. For the same sub-optimal trajectory in figure 6.22, a better local

optimal trajectory is found by letting the TOF to vary. The optimal and sub-optimal

trajectories are shown together in figure 6.26. The comparisons between the transfer

costs and TOF between the two trajectories is shown in the table 6.14. Similarly,

for the sub-optimal trajectory in the figure 6.24, where the plane change maneuver

is performed at a greater distance than the trajectory shown in figure 6.22, a local

optimal with the same TOF is found and is plotted together with the original sub-

optimal in figure 6.27. The comparisons between the transfer costs and TOF between

the two trajectories is seen in the table 6.15. For the same sub-optimal trajectory

in figure 6.24, a better local optimal trajectory is found by letting the TOF to vary.

The optimal and sub-optimal trajectories are shown together in figure 6.28. The

comparisons between the transfer costs and TOF between the two trajectories is seen

in the table 6.16.
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Table 6.13. ∆V and TOF comparison - fixed time optimal transfer -
Transfer type A.

Parameter Non-Optimum Local Optimum

∆VD 0.024 km/s 0.016 km/s

∆VI 0.118 km/s 0.121

∆VA 0.043 km/s 0.035

∆Vtot 0.185 km/s 0.172

TOF 120.44 days 120.44

Departure time from NRHO periapsis 0.44 days 0.44 days

Arrival time from DRO periapsis (ẏ > 0) 3.91 days 6.27 days

Table 6.14. ∆V and TOF comparison - variable time optimal transfer
- Transfer type A.

Parameter Non-Optimal Optimal

∆VD 0.024 km/s 0.017 km/s

∆VI 0.118 km/s 0.099 km/s

∆VA 0.043 km/s 0.050 km/s

∆Vtot 0.185 km/s 0.166 km/s

TOF 120.44 days 127.00 days

Departure time from NRHO periapsis 0.44 days 0.44 days

Arrival time from DRO periapsis (ẏ > 0) 3.91 days 8.23 days
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Table 6.15. ∆V and TOF comparison - fixed time optimal transfer
-Transfer type B.

Parameter Non-Optimal Optimal

∆VD 0.029 km/s 0.026 km/s

∆VI 0.075 km/s 0.083 km/s

∆VA 0.052 km/s 0.031 km/s

∆Vtot 0.156 km/s 0.0140 km/s

TOF 145.28 days 145.28 days

Departure time from NRHO periapsis 0.55 days 2.15 days

Arrival time from DRO periapsis (ẏ > 0) 6.89 days 5.64 days

Table 6.16. ∆V and TOF comparison - variable time optimal transfer
- Transfer type B.

Parameter Non-Optimal Optimal

∆VD 0.029 km/s 0.015 km/s

∆VI 0.075 km/s 0.084 km/s

∆VA 0.052 km/s 0.031 km/s

∆Vtot 0.156 km/s 0.0130 km/s

TOF 145.28 days 148.88 days

Departure time from NRHO periapsis 0.55 days 0.55 days

Arrival time from DRO periapsis (ẏ > 0) 6.89 days 6.16 days
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Overall, the local optimization process finds better trajectories in terms of the

transfer costs for the implemented set of constraints. It should be noted that the

optimized trajectories are only locally optimum, better solutions may be possible for

a different set of constraint conditions or a different transfer geometry. The reduction

in the transfer costs is however not large, which indicates that the initial guess for the

transfer scenarios were close to the locally optimum solutions. To test the practical

applicability of the computed optimum transfers, they must be transitioned into the

higher fidelity ephemeris model. The next section describes this process and presents

the results.

6.10 Higher-Fidelity Transfers from NRHO to DRO

Once an optimized transfer is obtained in the CR3BP, it needs to be transitioned

into the higher fidelity ephemeris model to investigate the effects of additional gravi-

tational perturbing forces on the overall transfer costs and time of flight. To illustrate

this process, the time-varying optimal transfer type A as shown in the figure 6.26 is

transitioned into the Earth-Moon ephemeris model in the presence of perturbing so-

lar gravitational forces. The departure orbit (NRHO), transfer arcs and arrival orbit

(DRO) are stacked together in the CR3BP in the following manner:

1. 10 revolutions of the departure orbit (NRHO) are stacked together starting from

the x̂-ẑ plane.

2. The departure and the arrival legs of the trajectory.

3. 10 revolutions of the arrival orbit (DRO) are stacked together starting from the

insertion location on the arrival orbit (DRO).

Sufficient patch points are distributed across all the combined stacked orbits and are

transitioned into the ephemeris model and corrected on each day of two representa-

tive months of the year 2020 using the ATD software [46]. During the corrections

process, continuity in position and velocity are ensured between the sub-arcs except
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Figure 6.25. Fixed time optimized transfer - Transfer type A.
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Figure 6.26. Variable time optimized transfer - Transfer type A.
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Figure 6.27. Fixed time optimized transfer - Transfer type B.
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Figure 6.28. Variable time optimized transfer - Transfer type B.
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at the maneuver locations. An attenuation factor equal to 0.2 is multiplied to the

ephemeris update equation to ensure a steady decrease of the constraint vector. As

the periodic orbits exist as quasi-periodic trajectories in higher fidelity model, the

first and the last states of the transfer are constrained to lie on the quasi-periodic

NRHO and DRO respectively. Figure 6.29 shows the ∆V variation for the variable

time optimal transfer type A with respect to the days of the representative month.

Note that the day corresponds to the first state on the stacked NRHO orbits and not

the departure date. The red dots indicate the transfer costs during January (transfer

departure from NRHO in the month of March). The blue dots indicate the transfer

costs associated with May (transfer departure from NRHO in the month of July).

The CR3BP equivalent ∆V is shown as a constant black line. Notice that during

both the months, transfer cost is oscillatory and is dependent on the day of the de-

parture. There are a few days during which the transfer costs in the ephemeris model

is comparable to the CR3BP, while on some other days the transfer costs are very

high. It should be noted that the converged trajectories are not optimal and cheaper

∆V transfers can be sought by optimizing these transfers.

Consider the ephemeris converged trajectory corresponding to the first red dot in

figure 6.29, i.e., starting approximately on January 1st as shown in the figure 6.30.

The total ∆V and TOF of the sub-optimal trajectory are 0.217 km/s and 126.51

days respectively. The epoch date of the converged trajectory is slightly less than

Jan 1st, 2020. Sub-optimal trajectories are obtained by systematically working down

the ∆V of the transfer by applying the ∆V constraint. While implementing the new

constraint, the first state of the quasi-periodic NRHO and the first state of the quasi-

periodic DRO are fixed, to only allow the patch points of the intermediate transfer

arcs to vary. Also, the z coordinate of the departure point is constrained to pre-

vent a departure from close to a periapsis location. Implementing this results in a

sub-optimal trajectory and is shown together with the original ephemeris converged

trajectory in figure 6.31. The initial trajectory is marked in gray, and the sub-optimal
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Figure 6.29. Variable time optimized transfer type A - ∆V vs
ephemeris insertion epoch.

trajectory is shown with colors. The ∆V and TOF of the sub-optimal trajectory are

0.170 km/s and 126.27 days respectively. Further decrease in the transfer cost is

possible by letting the DRO vary freely. DRO is allowed to vary in the plane by only

constraining its z and ż coordinates and letting the positions and velocities in the x̂-ŷ

plane to change as opposed to fixing the entire six-dimensional state. Implementing

this on the sub-optimal trajectory along with constraining the departure z coordinate

results in a trajectory as shown in figure 6.32. Notice that while the NRHO is still

similar to the initial ephemeris trajectory, the DRO shifts quite a lot compared to its

initial counterpart. The ∆V and TOF of the transfer are 0.130 km/s and 130.37 days

respectively. The epoch times of all the three transfers vary by a few hours while

carrying out the ∆V reduction process. Overall the transfer geometry in the higher

fidelity model stays similar to the CR3BP counterpart.
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As an implication to the various transfer scenarios constructed in this chapter,

it can be said that incorporating resonant arcs and their manifolds into the transfer

design process may give rise to new transfer scenarios, particularly when the departure

and the arrival orbits do not have any natural dynamical structures or manifolds

associated with them. Tangential departure and arrival arcs also prove to be useful

analogs to manifold structures in creating Poincaré maps to locate potential transfers

between two stable periodic orbits.
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Figure 6.30. Variable time optimized transfer-type A - ephemeris
converged trajectory.
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Figure 6.32. Variable time optimized transfer-type A - ephemeris
trajectory with DRO free to vary.
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7. SUMMARY

In this investigation, resonant orbits and manifolds in multi-body dynamical environ-

ments are introduced, and their applications to various aspects of trajectory design are

established. Historically resonance phenomena and resonant orbits have been studied

to understand the long-term stability and formation of the solar system. In recent

years, it has been shown that resonant manifolds play a key role in undergoing reso-

nance transitions when a spacecraft encounters a gravitational flyby. Resonant man-

ifolds have been incorporated into the design of conceptual outer planet exploration

missions such as JIMO [1] and JEO [2]. Resonant orbits which possess long-term

stable characteristics are also being considered as nominal mission trajectories for the

IBEX [3] and TESS [4] missions. However, they have not been leveraged as tools for

multi-body trajectory design and therefore the overarching goals for this work are as

follows: (1) to use resonant orbits in constructing ephemeris baseline solutions with

desired properties and (2) to use resonant orbits and manifolds as intermediate arcs

in transfer mechanisms connecting stable periodic orbits.

7.1 Resonant Orbits and Manifolds in CR3BP

To accomplish the above goals, all the design strategies are implemented in a

multi-body CR3BP dynamical model. First, equations of motion for the CR3BP are

derived and followed by the computation of the five planar equilibrium solutions in

the system. Several numerical techniques which include various differential correction

and continuation algorithms are developed and utilized to generate planar and spatial

libration point orbits. The concept of linear stability analysis for periodic orbits was

introduced which led to the detection of bifurcations on a periodic orbit family.
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In the CR3BP, due to the gravitational influence of both the larger and the smaller

primaries, definition, and computation of resonant orbits is not similar to the two-

body model. Two categories of resonant orbits are shown to exist. The first type

is two-body equivalent, planar and spatial periodic resonant orbits and the second

category of resonant orbits are the libration point periodic orbits which are in res-

onance with the smaller primary. Methodologies to compute them are outlined in

detail. Computation of manifolds for unstable resonant orbits is presented. A useful

trajectory design practice namely the Poincaré mapping technique is described which

forms an efficient design tool in different transfer scenarios.

7.2 Reference Ephemeris Trajectory Design Using Resonant Orbits

Periodic orbits in the CR3BP exist as quasi-periodic solutions in the higher fidelity

models. In general, a quasi-periodic ephemeris trajectory is constructed by employing

a traditional stacking process in which multiple revolutions of an identical periodic

orbit in CR3BP are placed one behind another before transitioning them into the

higher fidelity model. As the ephemeris model is non-autonomous, depending upon

the epoch, the same set of periodic orbits in the CR3BP model converge to different

quasi-periodic solutions in the ephemeris model. This may lead to the disappearance

of specific useful properties depending upon on the transition epoch, some of them

may include the ability to avoid eclipses and favorable periapsis conditions. Carefully

altering the stacking sequence of the periodic orbits in the CR3BP, will lead to a

nearby reference trajectories which are more consistent and maintain the favorable

properties within the ephemeris model on any given transition epoch. Incorporating

non-homogeneous periodic orbits with different time periods into the stacking se-

quence may offer better control of target periapsis in terms of their radii and epoch in

the converged trajectory, thus aiding in avoiding short duration eclipse events caused

due to the Earth and the Moon. Therefore to address the first overarching goal of this

investigation a 3:1 synodic Near Rectilinear Halo orbit in the cislunar space is used
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to develop an alternative, non-homogeneous stacking process to generate ephemeris

reference trajectories with a better eclipse avoidance and periapsis control strategy.

7.3 Transfer Trajectory Design Using Resonant Orbits and Manifolds

The second goal of this investigation is to explore the possibility of incorporating

resonant arcs and their manifolds in the transfer design process to aid the trans-

fer initial guess generation between stable periodic orbits with no natural dynamical

structures. The applicability of this idea is demonstrated between two stable cislu-

nar periodic orbits namely a 9:2 NRHO and a DRO by constructing various transfer

scenarios incorporating resonant arcs and manifolds as intermediate arcs. Poincaré

mapping techniques are extensively used for selecting a variety of intermediate arcs

thereby generating novel transfer geometries. An alternative approach to using man-

ifolds as intermediate arcs between stable periodic destinations is to perform small

propulsive maneuvers along the departure and arrival orbits in either direction of the

velocity and generate tangential departure and arrival trajectories which are plotted

on a Poincaré section to identify feasible transfers. Locally optimum transfers are

generated in the CR3BP, and the practical validity of the optimal transfers are tested

by transitioning them into a higher fidelity ephemeris model. The transfer costs when

transitioned into the ephemeris model were found to vary depending on the epoch

but retained the overall transfer geometry. The methodologies designed are general

and can be used in transfer scenarios involving other stable periodic families.

7.4 Future Recommendations

To have a well connected cislunar environment, it is necessary to expand the trans-

fer options to other stable locations like the L4/L5 SPOs, L2 Halo orbits, Butterfly

orbits, Low Lunar orbits and so on. Since the resonant orbits and manifolds travel

across various locations in the CR3BP, the transfer design methodologies developed

in this investigation can be extended to connect the above stable orbits. Implement-
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ing a transfer continuation strategy on a transfer scenario between two representative

orbits will lead to the generation of a transfer database between the nearby peri-

odic orbits within the two families. In the present work, only a single maneuver is

performed between the two intermediate arcs of a transfer. Incorporating multiple

maneuver locations in between the transfer and its effect on the transfer cost can be

investigated. Also, the use of primary bodies to decrease the plane change manuever

costs associated with the transfer can be explored in more detail. New transfer de-

sign methodologies and effects of adding more than two intermediate arcs, which can

be other libration point or resonant orbits and associated manifolds, on the transfer

geometries and cost can be developed. Therefore, expanding the transfer options and

exploring different transfer geometries will help in making informed decisions about

the type of transfer between two destinations in the dynamical region.

Further characterization and investigation of both the planar and spatial resonant

families for spacecraft trajectory design is needed to achieve the above recommenda-

tions. The use of resonant orbits for trajectory design has thereby opened new doors

for constructing cost efficient and novel transfer trajectories in multi-body dynamical

systems.
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MM. Newcomb, Glydén, Lindstedt et Bohlin. 1893, volume 2. Gauthier-Villars
it fils, 1893.

[10] Herbert B Keller. Numerical solution of two point boundary value problems.
SIAM, 1976.

[11] SM Roberts and JS Shipman. Continuation in shooting methods for two-point
boundary value problems. Journal of mathematical analysis and applications,
18(1):45–58, 1967.

[12] SM Roberts and JS Shipman. Justification for the continuation method in two-
point boundary value problems. Journal of Mathematical Analysis and Applica-
tions, 21(1):23–30, 1968.

[13] D Grebow. Generating periodic orbits in the circular restricted three-body prob-
lem with applications to lunar south pole coverage. MSAA Thesis, School of
Aeronautics and Astronautics, Purdue University, 2006.

[14] Robert Farquhar, Daniel Muhonen, and Leonard C Church. Trajectories and
orbital maneuvers for the isee-3/ice comet mission. In Astrodynamics 1983, 1984.



187

[15] Mark Woodard, David Folta, and Dennis Woodfork. Artemis: the first mission
to the lunar libration orbits. In 21st International Symposium on Space Flight
Dynamics, Toulouse, France, 2009.

[16] Martin W Lo, Bobby G Williams, Williard E Bollman, Dongsuk Han, Yungsun
Hahn, Julia L Bell, Edward A Hirst, Robert A Corwin, Philip Hong, Kathleen C
Howell, et al. Genesis mission design. Journal of the Astronautical Sciences,
49(1):169–184, 2001.

[17] Rodney L Anderson. Low thrust trajectory design for resonant flybys and cap-
tures using invariant manifolds. 2005.

[18] Wang Sang Koon, Martin W Lo, Jerrold E Marsden, and Shane D Ross. Hetero-
clinic connections between periodic orbits and resonance transitions in celestial
mechanics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 10(2):427–
469, 2000.

[19] WS Koon, MW Lo, JE Marsden, and SD Ross. Resonance and capture of jupiter
comets. In Dynamics of Natural and Artificial Celestial Bodies, pages 27–38.
Springer, 2001.

[20] KC Howell, BG Marchand, and MW Lo. Temporary satellite capture of short-
period jupiter family comets from the perspective of dynamical systems. Journal
of the Astronautical Sciences, 49(4):539–558, 2001.

[21] Tatiana Mar Vaquero Escribano. Poincare sections and resonant orbits in the
restricted three-body problem. Purdue University, 2010.

[22] M Vaquero. Spacecraft Transfer Trajectory Design Exploiting Resonant Orbits
in Multi-Body Environments. PhD thesis, Ph. D. Dissertation, School of Aero-
nautics and Astronautics, Purdue University, West Lafayette, IN, 2013.

[23] Mar Vaquero and Kathleen C Howell. Transfer design exploiting resonant orbits
and manifolds in the saturn–titan system. Journal of Spacecraft and Rockets,
2013.

[24] Mar Vaquero and Kathleen C Howell. Leveraging resonant-orbit manifolds to
design transfers between libration-point orbits. Journal of Guidance, Control,
and Dynamics, 2014.

[25] Robert W Farquhar. The control and use of libration-point satellites. 1970.

[26] John V Breakwell and John V Brown. The halofamily of 3-dimensional periodic
orbits in the earth-moon restricted 3-body problem. Celestial mechanics and
dynamical astronomy, 20(4):389–404, 1979.

[27] Kathleen Connor Howell. Three-dimensional, periodic,haloorbits. Celestial Me-
chanics, 32(1):53–71, 1984.

[28] Emily Zimovan. Characteristics and design strategies for Near Rectilinear Halo
Orbits within the Earth-Moon System. Purdue University, 2017.

[29] Lucıa Capdevila, Davide Guzzetti, and K Howell. Various transfer options from
earth into distant retrograde orbits in the vicinity of the moon. In AAS/AIAA
Space Flight Mechanics Meeting, volume 118, 2014.



188

[30] David C Folta, Thomas A Pavlak, Amanda F Haapala, and Kathleen C Howell.
Preliminary design considerations for access and operations in earth-moon l1/l2
orbits. 2013.

[31] Raymond Merrill, Patrick Chai, and Min Qu. An integrated hybrid transporta-
tion architecture for human mars expeditions. In 2015 AIAA Space Conference,
Pasadena, CA, 2015.

[32] Ryan Whitley and Roland Martinez. Options for staging orbits in cislunar space.
In Aerospace Conference, 2016 IEEE, pages 1–9. IEEE, 2016.

[33] WS Koon, MW Lo, JE Marsden, and SD Ross. The three-body problem, and
space mission design. Dyn. Syst, 2006.

[34] Archie E Roy. Orbital motion. CRC Press, 2004.

[35] Tony F Chan. Newton-like pseudo-arclength methods for computing simple turn-
ing points. SIAM journal on scientific and statistical computing, 5(1):135–148,
1984.

[36] Natasha Bosanac. Leveraging natural dynamical structures to explore multi-body
systems. PhD thesis, Purdue University, 2016.

[37] Natasha Bosanac. Exploring the influence of a three-body interaction added to
the gravitational potential function in the circular restricted three-body problem:
a numerical frequency analysis. PhD thesis, Purdue University, 2012.

[38] V Domingo, B Fleck, and Arthur I Poland. The soho mission: an overview. Solar
Physics, 162(1):1–37, 1995.

[39] Carl D Murray and Stanley F Dermott. Solar system dynamics. Cambridge
university press, 1999.
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