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ABSTRACT

Sood, Rohan M.S.A.A., Purdue University, December 2012. Solar Sail Applications
for Mission Design in Sun-Planet Systems from the Perspective of the Circular Re-
stricted Three-Body Problem. Major Professor: Kathleen C. Howell.

As a consequence of the successful harnessing of solar radiation pressure demon-

strated by JAXA’s IKAROS mission, the interest and developments in the field of

solar sails has gained a significant momentum. Sail-based spacecraft potentially offer

indefinite maneuvering capability by exploiting photons from the Sun as a means

of propulsion. Incorporating a solar sail model within the context of the circular

restricted three-body problem extends trajectory design options. In the last few

decades, the Lagrangian points, Li, as defined in the restricted problem, have in-

creasingly become a focus for scientific spacecraft mission applications. In this inves-

tigation, a hybrid model that incorporates a solar sail force into the circular restricted

three-body problem (SS-CR3BP) is developed. As a result of the additional force,

the displaced locations of artificial collinear Lagrangian points are determined and ex-

ploited for trajectory design. In fact, various trajectories are constructed that employ

only sail orientation angles to move through this dynamical regime. In particular,

periodic orbits are computed in the vicinity of the displaced artificial L1 equilibrium

point, located between the Sun and the Earth in this Sun-planet system. A sample

offset periodic orbit is demonstrated that hovers over the displaced L1 point. Tra-

jectory modifications are performed in the vicinity of the L1 equilibrium point using

solar sail angles. Three-dimensional transfers between halos at three different sizes

is also constructed to exhibit the capabilities of solar sails based on specific mission

objectives. Thus, in this investigation, solar sail capabilities that widen the design

space for mission design in the restricted three-body problem are explored.
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1. INTRODUCTION

The interest in space exploration and the desire for a comprehensive analysis of ob-

jects moving through regions of space beyond the Earth has resulted in a long-term

scientific effort to better understand the behavior of stars and planets as well as their

mutual interactions. Technological advancements offer the opportunity to expand

the number of worlds to be visited and the number of targets per mission. But new

technology also offers alternative exploration strategies and mission scenarios to ex-

plore a wider range of bodies. The asteroid mission OSIRIS-REx (to be launched in

2016), designed to examine and return a sample from asteroid 1999 RQ36, exemplifies

the shift to a broader focus. Consistent with the interest in alternative concepts,

solar sails continue to intrigue scientists and engineers. Solar sails offer both unique

opportunities as well as challenges.

Solar sails offer spacecraft maneuvering capabilities within a dynamical environ-

ment by using photons from the Sun as a means of propulsion. The orientation of

the sail is adjusted to support a wide variety of activities. For example, sails can

be employed to modify trajectories to enter new orbits, find new periodic orbits, as

well as more general trajectory design. Based on a specific orientation, the pressure

from the photons delivers a small but continuous acceleration to the sail and, thus,

opens dynamical regimes that typically lie beyond the natural dynamical flow or may

require significant propellant. The focus of this investigation is the solar radiation

pressure acting on a solar sail that expands the dynamical boundaries leading to new

new orbits that are significant from certain mission design perspectives.
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1.1 Problem Definition

The classical three-body problem provides a dynamical framework to investigate

and explore a wide range of space. Thus, a precise definition allows the development

of an appropriate model.

1.1.1 The Circular Restricted Three-Body Problem

The N -body problem was first studied by Sir Issac Newton in the 17th century [1].

Limiting the number of bodies to two (N = 2) leads to an understanding of the

relative behavior of one body under the gravitational influence of another body. To

model the solar system, one body is frequently much larger than the other body.

Thus, a complete model represented in terms of the equations of motion, yields a well

known conic solution that is solvable analytically. To increase the complexity of the

problem and better model the gravitational influence of additional bodies, the number

of interacting bodies is increased to three, N = 3. With additional assumptions, this

resultant model is termed the Circular Restricted Three-Body Problem (CR3BP).

The simplified CR3BP model still does not possess an analytical solution.

1.1.2 Lagrangian Point and Periodic Orbits

The differential equations in the CR3BP do admit five equilibrium solutions.

The equilibrium solutions were first investigated in 1772 by Joseph-Louis Lagrange

and, hence, are denoted the Lagrangian Points. Three of the Lagrangian points are

collinear, i.e., they lie along the line connecting the two primary bodies. The remain-

ing two Lagrangian points form equilateral triangles with the two primaries within

the primary plane of the motion. The existence of the Lagrangian points offers an

opportunity to explore the regions in the vicinity of a set of constant solutions.

Planar and three-dimensional periodic orbits are known to exist in the vicinity

of Lagrangian points [2]. One such three-dimensional family of orbits have been of
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particular interest and is identified as the ‘halo’ orbit family [3]. The Sun-Earth La-

grangian points, Li, are significant from a mission design perspective. Thus, further

examination of orbits in the vicinity of the collinear Lagrangian points will aid un-

derstanding of the dynamical region and create additional options for future scientific

missions.

1.1.3 Solar Sails in Circular Restricted Three-Body Problem

The inclusion of solar sails expands the dynamical structures in the classical circu-

lar restricted three-body problem. The force due to Solar Radiation Pressure (SRP)

modifies the dynamical force model, and, thus, the locations of the equilibrium points

as well as the trajectories are governed by the new dynamical environment. Powered

by the continuous flow of photons from the Sun, solar sails provide additional ac-

celeration capabilities to the spacecraft. Thus, solar sails are equipped with the

capability of a continuous thrusting force, a force that would otherwise require pro-

pellant. Though the level of the force is small, a continuous flow applied over a long

duration can enable velocities beyond the capabilities of conventional propulsive sys-

tems. Recent studies from Cosmos-1 and Sun-Diver have projected velocities as high

as ≈50 km/s [4].

The use of SRP can be extended to add maneuvering capabilities to a spacecraft,

for example, trajectory design and new periodic orbits in the vicinity of an artificial

equilibrium point. Such applications of a solar sail could decrease the reliability on

conventional maneuvers requiring propellant but also potentially offer a nearly infinite

maneuvering capability to the spacecraft. Thus, this investigation further explores

such capabilities to exploit the Sun as a source of continuous propulsion with the aid

of a solar sail based spacecraft.
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1.2 Prior Contribution

History bears testimony to human curiosity that previously led to the investigation

of planetary motion. From understanding the origins of solar system to a search for

the origins of life, the exploration of space has forever offered intriguing problems.

1.2.1 Classical Circular Restricted Three-Body Problem

The formulation of the three-body problem dates back to Newton in the 17th

century [1]. But later, in 1772, Euler introduced a rotating frame to the restricted

three-body problem and, simultaneously, Lagrange derived an analytical solution that

led to the identification of the equilibrium points [5]. Approximately half a century

later, Carl Gustav Jacobi recognized a constant of integration associated with the

rotating frame formulation [6]. The constant was later renamed and is now commonly

labeled as the Jacobi constant.

In 1897, Heinrich Bruns proved the non-existence of any other constant of motion

in the three-body problem. Two years later, Jules Henri Poincaré also proved the lack

of a non-algebraic constant of motion, i.e., the restricted three-body problem problem

is non-integrable [5]. Poincaré also confirmed the existence of periodic solutions in

the restricted three-body problem. Research efforts in the three-body problem slowed

for over half a century until Victor G. Szebehely thoroughly detailed the derivation

and particular solutions in the restricted three-body problem in his book Theory of

Orbits: The Restricted Problem in the Three Bodies [5]. The last 50 years have

witnessed technological advancements that have, once again, spurred new research

efforts in the CR3BP.

1.2.2 Motion in the Vicinity of the Collinear Lagrangian Points

The dynamical region in the vicinity of the collinear Lagrangian points has been

a topic of interest from various scientific mission prospectives. In 1980, David L.
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Richardson presented an approximation for periodic orbits in the Sun-Earth circu-

lar restricted problem near the collinear Lagrangian points [7]. In 1982, Kathleen

C. Howell, in collaboration with John V. Breakwell, used continuation based on a

numerical technique to generate periodic orbits, i.e., halo orbits, that lie beyond the

computational capabilities of any analytical approximations [8]. Howell and Break-

well supplied some foundations and demonstrated the existence of stable periodic

orbits in the vicinity of the Lagrangian points [9].

The collinear Lagrangian point, L1, proves to be of particular significance in the

investigation of the effects of solar winds and solar flare emissions from the Sun. In

1978, the International Sun-Earth Explorer-3 (ISEE-3) was a joint mission planned by

NASA and ESA and was first placed in a halo orbit about the Sun-Earth Lagrangian

point, L1 [10]. The success of ISEE-3 motivated the scientific community to further

investigate the solar atmosphere, the solar winds and to study the structure of the

Sun. Thus, in 1995, the Solar and Heliospheric Observatory was launched as a joint

scientific project by NASA and ESA [11]. Today, it still relays a continuous beam of

data for predicting space weather and monitoring solar activity. The Global Geospace

Science WIND spacecraft was launched in 1994 and was also placed in a small halo

orbit about the Sun-Earth L1 point. The objective of the WIND mission is to observe

unperturbed solar winds and provide scientific data to better understand the Solar-

Earth relationship [11], [12]. In 1997, NASA launched the Advanced Composition

Explorer (ACE) spacecraft to collect solar and interplanetary particles [11]. The ACE

spacecraft transmits important data and warning signs of upcoming solar storms daily

to Jet Propulsion Laboratory’s Deep Space Network.

1.2.3 Study of Solar Radiation Pressure

The history of scientific and engineering inquiry involving solar radiation pressure

dates back to 1873 when James Clerk Maxwell theoretically proved the existence of

pressure due to radiation [13]. The first laboratory experiment was conducted by
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Peter Lebedew who, in 1900, experimentally demonstrated the existence and effects

of solar radiation pressure [14]. The application of solar radiation pressure as a means

of propulsion was ultimately proposed by Konstantin E. Tsiolkovsky and Fridrickh

Tsanders in 1924 [15]. In the 1970’s, when NASA developed an interest in solar

sail technology, a serious focus emerged and laboratory experiments were initiated.

Within the next four years, NASA’s continuous research resulted in a successful lab-

based demonstration in 1974 [16]. In the same year, NASA applied the use of solar

radiation pressure to the Mariner 10 spacecraft that required attitude control but was

low on fuel. The spacecraft solar arrays were turned to face the Sun and employed

solar radiation pressure for attitude control. Though the spacecraft was not specif-

ically designed as a sail-based spacecraft, the small but effective force due to solar

radiation pressure was demonstrated. India’s INSAT 2A and INSAT 3A communi-

cations satellites exploited a small solar sail to offset the torque resulting from solar

radiation pressure on the solar array [17]. Within the last decade, NASA’s collabora-

tion with the Planetary Society has resulted in the active development of a NanoSail

vehicle. LightSail-1 and LightSail-2 have been planned to test the solar radiation

pressure within the low Earth orbit. Upon successful demonstration, LightSail-3 will

be launched for insertion into an orbit in the vicinity of L1 to enhance early detec-

tion of variations in space weather that may be capable of a significant influence on

Earth [18]. The recent success of Japan’s Interplanetary Kite-craft Accelerated by

Radiation Of the Sun (IKAROS) has rejuvenated the ongoing quest for exploiting

solar radiation as a source of propulsion. The spacecraft successfully demonstrated

both a propulsive force as well as attitude control in July 2010 [19]. The IKAROS

spacecraft is currently on its way to Venus.

1.3 Current Work

The core of this investigation is the construction of periodic orbits in the vicinity of

artificial collinear Lagrangian points. Based on the characteristics associated with the
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solar sail, the location of a Lagrangian point can be altered. Thus, both planar and

three-dimensional periodic orbits are computed within the vicinity of the Lagrangian

point, L1. The solar sail orientation angles are used to remain in vicinity of the

equilibrium point for an extended period of time. Offset orbits are also determined

that hover near the artificial Lagrangian point L1.

The analysis in this investigation is accomplished by incorporating the solar sail

force model into the classical circular restricted three-body problem (CR3BP). Later,

a solar sail force is added to represent a hybrid solar sail system in the circular re-

stricted three-body (SS-CR3BP) model.

The investigation is organized into the following chapters:

Chapter 2.

BACKGROUND: THE THREE-BODY PROBLEM

The circular restricted three-body model is introduced and the equations of mo-

tions are derived. This model governs the motion of an infinitesimal particle under

the gravitational influence of two larger bodies. Assumptions simplify the analysis

and a rotating frame relative to an inertial frame is introduced. The equations of

motion that are derived are nonlinear and coupled. Thus, the existence of an integral

of motion acts as an important tool to compute boundaries, trajectories and orbits.

Equilibrium solutions, also labeled Lagrangian points, are evaluated and further anal-

ysis is focused near the collinear equilibrium points. Linear behavior in the vicinity of

the collinear Lagrangian points is explored. Initial conditions from the linear model

are propagated and a linear periodic orbit about the collinear Lagrangian point, L1

is determined. This linear periodic orbit seeds as an initial guess to compute the

periodic orbit in the nonlinear model.
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Chapter 3.

DIFFERENTIAL CORRECTIONS ALGORITHM FOR TRAJECTORY DESIGN

This chapter initiates the analysis into the evolution of the state vector over time in

response to a change in the initial state. A differential corrections scheme is introduced

to modify the design variables to meet certain constraints based on the information

supplied by the state transition matrix. The targeting schemes are further employed

to determine periodic orbits in the vicinity of the collinear Lagrangian points. A

complete formulation is also detailed for the construction of three-dimensional halo

orbits. Northern and southern halo families are computed and plotted for the La-

grangian point L1 and L2.

Chapter 4.

BACKGROUND: SOLAR SAILS

A brief background of solar radiation pressure and solar sails is summarized. Solar

sail models in various developmental stages are discussed. JAXA’s IKAROS mission

is analyzed in depth and a formulation to model the acceleration due to solar radia-

tion pressure is developed. Comparisons are completed between different sail models

based on their size, efficiency and sail loading.

Chapter 5.

SOLAR SAIL IN THE CIRCULAR RESTRICTED THREE-BODY

PROBLEM (SS-CR3BP)

A mathematical expression for the acceleration force due to solar radiation pres-

sure as applied to a solar sail is derived. The expression for the acceleration force

is then incorporated into the circular restricted three-body model, thus, the model

evolves into the Solar Sail Circular Restricted Three-Body Problem (SS-CR3BP). The

definitions and assumptions involved in this development are summarized. Displaced

collinear Lagrangian points are constructed where their locations are based on a cer-

tain sail parameter. Behavior of a spacecraft in the vicinity of a displaced collinear
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Lagrangian point is also discussed. Finally, a linear model for periodic orbits in the

vicinity of displaced Lagrangian points is analyzed based on the sail characteristics

and orientation angles.

Chapter 6.

DIFFERENTIAL CORRECTIONS FOR TRAJECTORY DESIGN EMPLOYING

SAIL ANGLES

The SS-CR3BP model is further investigated to develop a corrections algorithm

that employs the sail orientation angles as design variables. An augmented state

transition matrix is formulated to analyze the variations in the final position and ve-

locity states as a result of changes in the orientation angles. The corrections schemes

introduced in Chapter 3 are modified to employ only the sail orientation angles lead-

ing to sail-based update schemes. A new targeting scheme is formulated to construct

trajectories; the associated families of orbits are established in the vicinity of the La-

grangian points based on specific sail characteristics. Trajectories are designed using

sail orientation angles to achieve and maintain desired trajectory based on mission

specifications.

Chapter 7.

PERIODIC ORBITS AND TRAJECTORY DESIGN IN SS-CR3BP

The targeting schemes are further employed to determine periodic orbits in the

vicinity of the artificial collinear Lagrangian point L1. A linear model is employed

as an initial guess. Sail orientation angles are iteratively corrected and a periodic

solution is constructed. Sample trajectory designs incorporating solar sail angles are

demonstrated. The y-amplitude adjustments are made to the trajectories in the vicin-

ity of L1 by varying the orientation angles. A three-dimensional trajectory is designed

about L1 that transfers between three orbits of different y- and z-amplitudes.
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Chapter 8.

SUMMARY AND RECOMMENDATIONS

Concluding remarks summarize the results of the current investigation. Sugges-

tions for potential future work are also offered.
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2. BACKGROUND: THE THREE-BODY PROBLEM

Preliminary knowledge and understanding of the basic principles governing the mo-

tion of a particle in the gravitational environment of multiple bodies is critical to

examination of the behavior of a spacecraft. The complexity associated with for-

mulating a mathematical model to represent the N -body problem [1] requires some

simplifications to gain insight. Casting the problem within the context of the classical

Circular Restricted Three-Body Problem (CR3BP) offers the essential features of the

motion with some mathematical advantages [20]. To characterize this analysis, the

CR3BP is formulated in detail. The governing differential equations are derived in a

form that will later allow the inclusion of a solar sail force.

2.1 The Circular Restricted Three-Body Problem

To understand the interactions between an unspecified number of bodies, all mov-

ing under their mutual gravitational influence, the N -body problem was first math-

ematically formulated by Sir Issac Newton in 1687 [1]. For N bodies coupled under

mutual gravitational forces, any direct derivation of the equations of motion produces

6N scalar differential equations. Due to the lack of available integrals of the motion,

no closed-form analytical solution exists for the motion in the general N -body prob-

lem. Thus, beginning in the 17th century, many mathematicians investigated a wide

variety of approaches to gain insight into the natural behavior. The earliest successes

limited the number of particles and shifted the observer [21].
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2.1.1 Assumptions

The general N -Body Problem (N -BP) is complex and an analytical solution is not

available. Thus, some initial assumptions are useful. In an extension to more than

two particles, a mathematical formulation of the N -BP yields 6N scalar differential

equations. A solution for such a system requires 6N scalar integrals of the motion.

However, only 10 constants of the motion are available in the gravitational problem.

In fact, for N > 3, no analytical solution exists. Thus, beyond the conic problem,

the introduction of even one more particle alters the character of the problem. Yet,

consider the number of particles. If N = 2, the required number of constants is 12.

However, as is well known, if the two-Body Problem (2-BP) is recast in terms of

a relative formulation, only six differential equations completely model the relative

behavior and the problem is analytically solvable, i.e., the well known conic sections

[22].

The lack of a closed-form solution in the N -BP results in a first assumption to

narrow the number of particles to three. Recall that, in the Three-Body Problem

(3-BP), the derivation of a complete solution requires 18 first-order scalar differential

equations to completely describe the motion of a single body relative to two other

bodies. Due to the lack of integrals (only 10 are known), additional assumptions are

incorporated to further simplify the problem and gain some insight into the nonin-

tegrable behavior. The second assumption in the problem involves the masses. The

third body P3, of mass m3, is assumed to be infinitesimal in comparison to the other

two larger bodies. These are termed the two primaries, P1 and P2, and are of mass

m1 and m2, respectively, such that m3 � m1,m2. Thus, P3 does not gravitationally

influence the motion of P1 and P2; the orbits of P1 and P2 are completely Keplerian

in nature and the relative motion is modeled as a two-body problem. If the rela-

tive motion of P1 and P2 is Keplerian, then the two primaries follow conic paths.

Although it is not required, for simplicity, assume that the two primaries move on

circular orbits about their common center of mass, that is, the barycenter, B. With
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the assumptions, the number of first-order scalar differential equations that govern

the relative behavior of the two primaries, P1 and P2, in the system is reduced from

18 to 6 and the two primaries move on conic paths. For simplicity, let the motion

of the P1 and P2 be circular. Then, the motion of an infinitesimal mass, P3, under

the gravitational influence of the two larger primaries, P1 and P2, is investigated by

studying the CR3BP.

2.1.2 Geometry Associated with CR3BP

An innovation in the analysis of the 3-BP, introduced by Euler, is the shift to a

rotating view. Thus, to specify the orientation and position of the three bodies with

respect to each other, two coordinate frames are defined. The first reference frame

is the inertially-fixed coordinate frame, I, whose dextral, perpendicular set of unit

vectors are defined as X̂, Ŷ , Ẑ as represented in Figure 2.1. Note that the caret (ˆ)

Ŷ

X̂

)( 33 mP

x̂

ŷ

)( 11 mP

)( 22 mP



1r


2r
3r



13r
 23r



B

Figure 2.1. Geometrical Definitions in the Circular Restricted Three-Body Problem.

symbol represents a vector of unit magnitude. The X̂ − Ŷ plane denotes the plane

of motion of the two primaries and Ẑ is directed parallel to the conic orbital angular
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momentum vector; as noted previously, the primaries move on circular orbits relative

to each other. A second coordinate frame, R, is rotating consistent with the orbital

motion of the primaries. The dextral, orthogonal set of unit vectors associated with

the rotating frame is denoted as x̂, ŷ, ẑ where x̂ is always directed from P1 to P2.

A precise formulation of the problem requires specifying the relative orientation

and position vectors within the context of the CR3BP. The center of mass of the two

primaries is defined as the barycenter, B, as represented in Figure 2.1. The orientation

of x̂ with respect to X̂ is defined by the angle θ; note that the reference for θ, i.e.,

θ = 0◦ occurs when x̂ and X̂ are aligned. As the two primaries are moving along

circular paths about the barycenter, the angular velocity, θ̇, remains constant. (Dots

reflect derivatives with respect to time.) In addition, ẑ is parallel to Ẑ, i.e., in the

direction of primary orbital angular momentum. Then, ŷ completes the right-handed

triad. The position vectors corresponding to the locations of the three bodies, P1, P2

and P3, relative to the barycenter, are defined as ~r1, ~r2 and ~r3 whereas ~r13 and ~r23

define the position vector of P3 relative to P1 and P2, respectively, as represented in

Figure 2.1. Note that the arrow (→) over a symbol denotes a vector and, without an

arrow, the symbol reflects a scalar magnitude. The geometrical definitions assist in

formulating the problem and deriving the equations of motion.

2.1.3 Nondimensional Quantities

Characteristic quantities are defined to generalize the governing differential equa-

tions through nondimensionalization. To avoid round-off errors associated with the

numerical integration process and to generalize the results, characteristic mass, length,

and time quantities are specified. Let the distance between the two primaries be de-

fined as the characteristic length, l∗, such that

l∗ = r1 + r2 (2.1)

where ri is the distance between the system barycenter and the two primaries, P1 and

P2, respectively. Due to the assumption of circular orbits for the motion of the two
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primaries, l∗ is the sum of the semi-major axis of P2 relative to P1 and is constant.

Characteristic mass, m∗, is defined as the sum of masses of the two primaries such

that

m∗ = m1 +m2 (2.2)

Characteristic length and mass in Equations (2.1) and (2.2) also yield the charac-

teristic time, t∗. Characteristic time, t∗, is defined such that the nondimensional

gravitational constant, G, is equal to a value of one, i.e.,

t∗ =

√
l∗3

G̃m∗
(2.3)

where G̃ is the dimensional universal gravitational constant. The dimensional mean

motion, N , of the system is expressed as

N =

√
G̃m∗

l∗3
(2.4)

Based on these characteristic definitions, other quantities of interest are now easily

deduced in nondimensional form. The nondimensional mean motion, n, reduces as

follows

n = N t∗ =

√
G̃m∗

l∗3

√
l∗3

G̃m∗
= 1 (2.5)

Nondimentional mass ratio, µ, is introduced such that

µ =
m2

m∗
(2.6)

Now, the nondimensional masses of the two primaries, based on µ, are

m1

m∗
= 1− µ (2.7)

m2

m∗
= µ (2.8)
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Nondimentional time and relative position vectors are then expressed in the form

τ =
t

t∗
(2.9)

~ρ =
~r3

l∗
= xx̂+ yŷ + zẑ (2.10)

~d =
~r13

l∗
= (x+ µ)x̂+ yŷ + zẑ (2.11)

~r =
~r23

l∗
= (x− 1 + µ)x̂+ yŷ + zẑ (2.12)

where ~ρ, ~d, ~r represent the nondimensional position vectors of P3 relative to the

barycenter, P1 and P2, respectively. Note that the position vectors are expressed in

coordinates defined in terms of rotating unit vectors. The expressions in Equations

(2.9) - (2.12) assist in formulating the differential equation and deriving a mathemat-

ical model for the motion of P3.

2.1.4 Derivation of Equations of Motion in CR3BP

The total force acting on the infinitesimal particle, P3, is evaluated using Newton’s

Law of Gravity. Based on the geometry in the CR3BP appearing in Figure 2.1,

the vector differential equation governing the motion of P3 under the gravitational

influence of P1 and P2 is

m3
I~r3
′′ = −G̃m3m1

r3
13

~r13 −
G̃m3m2

r3
23

~r23 (2.13)

Note that the superscript I denotes that the derivative of the position vector is eval-

uated as seen by an inertial observer. The prime symbol (′) represents the derivative

with respect to dimensional time, t. Based on the characteristic quantities, Equation

(2.13) can be rewritten in a nondimensional form as

I ~̈ρ = −(1− µ)

d3
~d− µ

r3
~r (2.14)

Note that the derivatives in Equation (2.14) are with respect to nondimensional time,

τ . Thus, the dot symbol (̇) represents the derivative with respect to nondimensional

time, τ . Since ~ρ is expressed in terms of rotating coordinates, a kinematic expansion is
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employed to develop the derivatives of ~ρ. Evaluating ~ρ and its subsequent derivatives

with respect to an inertial observer is based on the following expressions

I ~̇ρ =
I~ρ

dt
=

R~ρ

dt
+ I~ωR × ~ρ (2.15)

where I~ωR is the nondimensional angular velocity of the rotating frame with respect

to the inertial frame. Since the primary motion is circular, the angular velocity vector

possesses a magnitude equal to unity, that is,

I~ωR = θ̇ẑ = nẑ = (1)ẑ (2.16)

Recall that the mean motion, n, equals the constant angular velocity for primary

motion in circular orbits. The second derivative of ~ρ is deduced from the expression

for I ~̈ρ such that

I ~̈ρ =
IdI ~̇ρ

dt
=

RdI ~̇ρ

dt
+ I~ωR × ~̇ρ (2.17)

The derivative from Equation (2.17) is then substituted for the left side of Equa-

tion (2.14) and results in the following kinematic expression.

I ~̈ρ = (ẍ− 2ẏ − x)x̂+ (ÿ + 2ẋ− y)ŷ + z̈ẑ (2.18)

Substituting the kinematic expression from Equation (2.18), along with nondimen-

sional position vectors ~r and ~d, into Equation (2.14) yields the following three second-

order nondimensional scalar equations of motion for P3 under the gravitational influ-

ence of two primaries, P1 and P2

ẍ− 2ẏ − x = − (1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3
(2.19)

ÿ + 2ẋ− y = − (1− µ)y

d3
− µy

r3
(2.20)

z̈ = − (1− µ)z

d3
− µz

r3
(2.21)

Equations (2.19) - (2.21) are reduced to six first-order scalar differential equations. A

more condensed formulation is available based on the gravitational potential function

associated with a conservative system. Since the differential equations are written in
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terms of the rotating frame, a suitable potential function augments the gravitational

potential. This pseudo-potential function, Ω∗, is defined as

Ω∗ =
1− µ
d

+
µ

r
+

1

2
(x2 + y2) (2.22)

Note that the pseudo-potential function is not an explicit function of time. The

partials of the pseudo-potential, Ω∗i , with respect to the rotating coordinates are

evaluated as

Ω∗x = x− (1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3
(2.23)

Ω∗y = y − (1− µ)y

d3
− µy

r3
(2.24)

Ω∗z = − (1− µ)z

d3
− µz

r3
(2.25)

A condensed form of the differential equations of motion, Equations (2.19)-(2.21), are

derived based on these partials, that is,

ẍ = 2ẏ + Ω∗x (2.26)

ÿ = − 2ẋ+ Ω∗y (2.27)

z̈ = Ω∗z (2.28)

Equations (2.26) - (2.28) represent the mathematical model that governs the motion

of P3. The nonlinear and coupled nature of these differential equations increases the

complexity associated with the behavior. Thus, insight into the motion is sought

through a constant of motion associated with the differential equations, if one exists.

2.1.5 Integral of Motion in CR3BP

To gain further insight, a search for an integral of the motion originates with

Equations (2.19) - (2.21). The nonlinear and coupled nature of the Equations (2.19) -

(2.21) does not allow a closed-form solution. However, the forces acting within the

system are conservative, thus, there is a possibility that an energy-like quantity is
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constant. To expose such an integral, Equations (2.19) - (2.21) are multiplied by ẋ,

ẏ and ż, respectively. The summation of these three equations reduces to

ẋẍ+ ẏÿ + żz̈ = Ω∗xẋ+ Ω∗yẏ + Ω∗z ż (2.29)

=
∂Ω∗

∂x

dx

dτ
+
∂Ω∗

∂y

dy

dτ
+
∂Ω∗

∂z

dz

dτ
(2.30)

Recall that τ represents the nondimensional time and Ω∗ is a function of nondimen-

sional mass and the position coordinates only. The right side of Equation (2.30)

represents the total time derivative of the pseudo-potential function

∂Ω∗

∂x

dx

dτ
+
∂Ω∗

∂y

dy

dτ
+
∂Ω∗

∂z

dz

dτ
=
dΩ∗

dτ
(2.31)

Integrating both sides of Equation (2.31) by nondimensional time, τ , results in

1

2
(ẋ2 + ẏ2 + ż2) = Ω∗ − J∗

2
(2.32)

where J∗ is the constant of integration. The constant of integration, J∗, is labeled

as the Jacobi constant, named after Carl Gustav Jacobi [6]. In Equation (2.32), the

magnitude of the relative velocity, that is, v, appears and simplifies the expression to

the form

v2 = 2Ω∗ − J∗ (2.33)

Further substituting for Ω∗, Equation (2.33) is easily rewritten as

J∗ = 2Ω∗ − v2 (2.34)

= (x2 + y2) + 2(
(1− µ)

d
+
µ

r
)− v2 (2.35)

Analysis employing the Jacobi constant is an effective approach to compute bound-

aries, orbits, trajectories and some transfers. It is also very useful to maintain ac-

curacy in the numerical integration process. However, the addition of other external

forces may eliminate this constant.

2.2 Analysis of the Equilibrium Solutions

Within the context of the CR3BP, five particular solutions exist for the equa-

tions of motion represented by Equations (2.26) - (2.28) in the rotating frame [23].
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These equilibrium solutions, also termed the libration or Lagrangian points, were

first recognized by Joseph-Louis Lagrange in 1772 while investigating the three-body

problem [5].

2.2.1 Equilibrium Points in the CR3BP

To locate any equilibrium points, the velocity and acceleration relative to the

rotating frame must be zero. Thus, the first and second derivatives of the position

coordinates corresponding to the equilibrium points are zero. Equations (2.26) -

(2.28) are evaluated for these conditions

Ω∗x = Ω∗y = Ω∗z = 0 (2.36)

Substituting the result from Equation (2.36) into Equations (2.23) - (2.25) results in

the following three algebraic relationships

0 = xLi −
(1− µ)(xLi + µ)

d3
Li

− µ(xLi − 1 + µ)

r3
Li

(2.37)

0 = yLi −
(1− µ)yLi

d3
Li

− µyLi
r3
Li

(2.38)

0 =
(1− µ)zLi

d3
Li

− µzLi
r3
Li

(2.39)

where xLi , yLi , zLi , along with dLi and rLi , are the coordinates and relative distances

of P3 in the rotating frame with respect to B, P1, and P2 respectively. For Equation

(2.39) to be satisfied, zLi must be equal to zero. Thus, the Lagrangian points lie in

the xy plane. Apparent from Equation (2.38), certain equilibrium solutions exist for

y = 0. Thus, equilibrium solutions exist along the line connecting the two primaries.

These equilibrium points are termed the collinear Lagrangian points. Solving Equa-

tion (2.37) for the locations of the collinear points is nontrivial. The degree of the

polynomial in Equation (2.37) suggests that there are three roots to the equation,

i.e., three collinear points exist. The relative position of the Lagrangian points are
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represented in Figure 2.2 and, thus, the coordinates of the Lagrangian points are

redefined relative to the nearest primary as

xL1 = d2 − γL1 (2.40)

xL2 = d2 + γL2 (2.41)

xL3 = − d1 − γL3 (2.42)

such that d1 and d2 are the nondimensional distances of P1 and P2, respectively,

relative to the barycenter, B. First, consider equilibrium points in the vicinity of the

smaller primary, P2. Then, Equation (2.37) is written as a function of γLi

f(γLi) = 0 = (di + γLi)−
(1− µ)((di + γLi) + µ)

d3
Li

− µ((di + γLi)− 1 + µ)

r3
Li

(2.43)

where di = d2 and γLi = −γL1 , γL2 respectively, when solving for γL1 and γL2 . When

the solution for γL3 is being computed, di = −d1 and γLi = −γL3. For an equilibrium

solution in the vicinity of the larger primary, P1, define Li as L3 such that γL3 is

computed; then di = −d1 and γLi = −γL3 . Equation (2.43) is then solved iteratively

using Newton’s Method

γj+1
Li

= γjLi −
f(γjLi)

f ′(γjLi)
(2.44)

This iteration process is continued until the desired accuracy in |γj+1
Li
−γjLi | is achieved

and, for this analysis, the tolerance is of order 10−12. The remaining two noncollinear

Lagrangian points, termed the equilateral points, are apparent via observations of

Equation (2.38). These final two Lagrangian points form equilateral triangles with

the two primaries at two vertices of a triangle and the third vertex of the triangle

reflects the location of the Lagrangian point. By convention, Lagrangian point L4 has

a positive y coordinate, and L5 is located with a negative y coordinate in the x − y

plane. The x and y coordinates of L4,5 expressed relative to the barycenter, B are

then

xL4,5 =
1

2
− µ (2.45)

yL4,5 = ±
√

3

2
(2.46)
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Figure 2.2. Lagrangian Points in the Circular Restricted Three-Body Problem.

The relative locations of all five Lagrangian points for a given system appears in

Figure 2.2. These Lagrangian points are the only known equilibrium solutions to the

equations of motion.

2.2.2 Behavior in the Vicinity of the Collinear Lagrangian Points

To further the investigation of the behavior of P3, the stability information cor-

responding to the equilibrium points is investigated [24]. Since the differential equa-

tions are nonlinear, linear stability analysis in the vicinity of the equilibrium points is

based on the first-order variational equations. Approximate solutions are generated

by linearizing the equations of motion for P3 relative to the Lagrangian points. The

equations of motion represented in Equations (2.26) - (2.28) are used to derive the
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linear variational equations relative to the equilibrium solutions. Given equilibrium

solutions, perturbations are introduced such that

x = xLi + ξ (2.47)

y = yLi + η (2.48)

x = xLi + ζ (2.49)

where ξ, η, ζ are variations relative to the Lagrangian points in x, y, and z re-

spectively. The equations of motion are rewritten, incorporating the perturbations,

using a Taylor series expansion, and neglecting second- and higher-order terms. The

resulting second-order, scalar, linear variational equations are

ξ̈ − 2η̇ = Ω∗xxξ + Ω∗xyη + Ω∗xzζ (2.50)

η̈ + 2ξ̇ = Ω∗yxξ + Ω∗yyη + Ω∗yzζ (2.51)

ζ̈ = Ω∗zxξ + Ω∗zyη + Ω∗zzζ (2.52)

where Ω∗ij represents the second partial derivative of the pseudo-potential, that is,

Ω∗xx = 1− (1− µ)

d3
− µ

r3
+

3(1− µ)(x+ µ)2

d5
+

3µ(x− 1 + µ)2

r5
(2.53)

Ω∗yy = 1− (1− µ)

d3
− µ

r3
+

3(1− µ)y2

d5
+

3µy2

r5
(2.54)

Ω∗zz = 1− (1− µ)

d3
− µ

r3
+

3(1− µ)z2

d5
+

3µz2

r5
(2.55)

Ω∗xy =
3(1− µ)(x+ µ)y

d5
+

3µ(x− 1 + µ)y

r5
(2.56)

Ω∗xz =
3(1− µ)(x+ µ)z

d5
+

3µ(x− 1 + µ)z

r5
(2.57)

Ω∗yz =
3(1− µ)yz

d5
+

3µyz

r5
(2.58)

Ω∗yx = Ω∗xy (2.59)

Ω∗zx = Ω∗xz (2.60)

Ω∗zy = Ω∗xy (2.61)
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For convenience, the differential equations are rewritten in the state-space form. Let

the states be collected in the six-dimensional state vector, ~x, such that

~x =
[
ξ η ζ ξ̇ η̇ ζ̇

]T
(2.62)

Then, in matrix form, Equations (2.50) - (2.52) are rewritten as

ξ̇

η̇

ζ̇

ξ̈

η̈

ζ̈


=

N3 I3

Ω∗i,j D

×



ξ

η

ζ

ξ̇

η̇

ζ̇


(2.63)

where submatrix N3 is a 3 x 3 null or zero matrix and submatrix I3 is the 3 x 3

identity matrix. The elements of the submatrix Ω∗i,j represent the second partial

derivatives, ∂2Ω∗

∂i∂j
, evaluated at the specified collinear Lagrangian point.

Ω∗i,j =


Ω∗xx Ω∗xy Ω∗xz

Ω∗yx Ω∗yy Ω∗yz

Ω∗zx Ω∗zy Ω∗zz

 (2.64)

The cross-partial terms in the matrix in Equation (2.64) are evaluated from Equations

(2.56) - (2.61). All the cross-partial values are zero because yLi = zLi = 0 for the

collinear Lagrangian points. Concerning the diagonal elements, it is apparent via

observations of Equations (2.53) - (2.55) that the appropriate signs are

Ω∗xx > 0, Ω∗yy < 0, Ω∗zz < 0 (2.65)

Similary, based on the linear variational Equations (2.50) - (2.52), submatrix D is

easily evaluated as

D =


0 2 0

−2 0 0

0 0 0

 (2.66)
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Equation (2.63) can be rewritten in a condensed state-space form as

~̇x = A~x (2.67)

where matrix A is the system matrix

A =

N3 I3

Ω∗i,j D

 (2.68)

and it observed that A is a constant matrix. In an expanded form, Equation (2.67)

appears as 

ξ̇

η̇

ζ̇

ξ̈

η̈

ζ̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Ω∗xx 0 0 0 2 0

0 Ω∗yy 0 −2 0 0

0 0 Ω∗zz 0 0 0





ξ

η

ζ

ξ̇

η̇

ζ̇


(2.69)

From Equation (2.69), it is noted that the linear out-of-plane motion, represented by

ζ and its derivatives, is decoupled from the linear in-plane motion in terms of ξ and

η. As previously noted, Ω∗zz < 0; therefore, the roots associated with the out-of-plane

motion are purely imaginary, and the linear out-of-plane motion is sinusoidal, that is,

ζ = C1Cos(ωτ) + C2Sin(ωτ) (2.70)

where C1 and C2 are constants; ω =
√
|Ω∗zz| is the frequency associated with the

harmonic out-of-plane component, ζ. For the in-plane motion, the solution to the

linear, first-order differential equations appears in the form

ξ =
4∑

k=1

Ake
λkτ (2.71)

η =
4∑

k=1

Bke
λkτ (2.72)

where Ak and Bk are interdependant constants of integration, and λk are the four

eigenvalues of matrix A associated with the in-plane motion. Note that there are
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only four terms in the summation as the remaining two terms associated with the

out-of-plane motion are decoupled from the in-plane excursions. The characteristic

polynomial corresponding only to the in-plane behavior is formulated using informa-

tion from Equations (2.50) - (2.51),

λ4 + (4− Ω∗xx − Ω∗yy)λ
2 + 2(Ω∗xy − Ω∗yx)λ+ (Ω∗xxΩ

∗
yy − Ω∗xyΩ

∗
yx) = 0 (2.73)

Limiting the analysis to the collinear points, i.e. yLi = zLi = 0 and Ω∗xy = Ω∗yx = 0,

further reduces Equation (2.73) to the form

λ4 + (4− Ω∗xx − Ω∗yy)λ
2 + Ω∗xxΩ

∗
yy = 0 (2.74)

Note that Ω∗xxΩ
∗
yy < 0. Because of the form of Equation (2.74), it is easily transformed

from a quartic to a quadratic characteristic equation of the form

Λ2 + 2β1Λ− β2
2 = 0 (2.75)

where Λ represents the roots of Equation (2.75). The associated constants are refor-

mulations of the coefficients from Equation (2.74), that is,

β1 = 2−
Ω∗xx + Ω∗yy

2
(2.76)

β2
2 = − Ω∗xxΩ

∗
yy (2.77)

Note that, β1 and β2 are both real. The quadratic roots of Equation (2.75) are

evaluated as

Λ1 = − β1 +
√
β2

1 + β2
2 (2.78)

Λ2 = − β1 −
√
β2

1 + β2
2 (2.79)

Based on the signs of Ω∗xx and Ω∗yy, then Ω∗xxΩ
∗
yy < 0, and the observation leads to

the conclusion that Λ1 > 0 and Λ2 < 0. Thus, the quintic roots of Equation (2.74)

are computed as

λ1,2 = ±
√

Λ1 (2.80)

λ3,4 = ±
√

Λ2 (2.81)
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Further analysis into the quintic eigenvalues reveals that λ1,2 are real (<) eigenvalues

and λ3,4 are pure imaginary (=) eigenvalues associated with the system represented by

Equation (2.74). Lyapunov’s criteria for the stability associated with a linear system

and a corresponding nonlinear solution states that [25]

• If the <(λi) < 0 ∀ the eigenvalues associated with the linear system of equations

relative to Li, the nonlinear solution is asymptotically stable.

• If the <(λi) > 0 for at least one of the eigenvalues associated with the linear

system of equations relative to Li, the nonlinear solution is unstable.

• If the <(λi) ≤ 0 and at least one of the <(λi) = 0 for the eigenvalues associated

with the linear system of equations relative to Li, no conclusion is available

concerning the stability of the solution in the nonlinear system.

Equation (2.80) demonstrates that there are two real eigenvalues associated with the

in-plane motion relative to the collinear Lagrangian points, one of which is positive

and the other is negative. Thus, the positive, real eigenvalue result yields the conclu-

sion that the collinear Lagrangian points are intrinsically linearly unstable. Equation

(2.81) further demonstrates that there exist imaginary eigenvalues associated with

the in-plane motion in the vicinity of the collinear Lagrangian points. Consequently,

it is possible to appropriately select initial conditions, ξ(τ0) and η(τ0) such that the

divergent behavior is not excited.

To explore the planar behavior in the vicinity of the collinear Lagrangian points,

it is possible to select the coefficients in Equations (2.71) - (2.72) such that only

the stable terms are excited [5]. As noted previously, coefficients in Equation (2.71)

- (2.72) are interdependent and the following relationship is developed between the

coefficients associated with the in-plane motion

Bi = νiAi (2.82)

where

νi =
λ2
i − Ω∗xx

2λi
(2.83)
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By expanding Equations (2.71) and (2.72)

ξ = A1e
λ1τ + A2e

λ2τ + A3e
λ3τ + A4e

λ4τ (2.84)

η = A1ν1e
λ1τ + A2ν2e

λ2τ + A3ν3e
λ3τ + A4ν4e

λ4τ (2.85)

and it is evident that coefficients A1 and A2 are associated with the unstable eigenval-

ues λ1 and λ2. To inhibit the excitation of the unstable mode, initial conditions must

be selected such that A1 and A2 are equal to zero. Also recall that the imaginary

roots are equal in magnitude, i.e., λ4 = −λ3 and ν4 = −ν3. Thus, initial conditions,

given A3 and A4, are evaluated from

ξ = A3e
λ3τ + A4e

−λ3τ (2.86)

η = A3ν3e
λ3τ − A4ν3e

−λ3τ (2.87)

Initially, ξ(τ0) = ξ0 and η(τ0) = η0. Equations (2.86) and (2.87) are then evaluated

at the initial time, τ = τ0, and the following expressions for A3 and A4 are deduced

A3 =
ξ0ν3 + η0

2ν3eλ3τ0
(2.88)

A4 =
ξ0ν3 − η0

2ν3e−λ3τ0
(2.89)

When τ0 = 0, A3 and A4 are further reduced to

A3 =
ξ0ν3 + η0

2ν3

(2.90)

A4 =
ξ0ν3 − η0

2ν3

(2.91)

The general solution for in-plane motion near the vicinity of the collinear Lagrangian

points is summarized as

ξ = ξ0Cos[s(τ − τ0)] +
η0

β3

Sin[s(τ − τ0)] (2.92)

η = η0Cos[s(τ − τ0)] + ξ0β3Sin[s(τ − τ0)] (2.93)

where s and β3 are real quantities, i.e.,

λ3 = is (2.94)

ν3 = iβ3 (2.95)
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The representative expressions for s and β3 are

s =

√
β1 +

√
β2

1 + β2
2 (2.96)

β3 =
s2 + Ω∗xx

2s
(2.97)

Initial conditions for the in-plane relative velocity components are derived by evalu-

ating the derivatives of Equations (2.92) and (2.93) at τ = τ0

ξ̇0 =
η0s

β3

(2.98)

η̇0 = − ξ0β3s (2.99)

For a particular set of initial conditions, ξ and η, a specific set of initial velocities, ξ̇

and η̇, results in a periodic orbit about L1 Lagrangian point as plotted in Figure 2.3.

For visualization purposes, the Earth has been scaled to 10 times its actual size. The

trajectory in the figure represents a first-order linear approximation to a particular

solution of the equations of motion in CR3BP. An initial state along the x-axis at

a distance of 200, 000 km from the L1 libration point but opposite to the Earth is

selected. Based on this value, other initial conditions are generated.

ξ0 = 200, 000 km ξ̇0 = 0 km/s
η0 = 0 km η̇0 = 0.268306831786395 km/s

The period of this orbit is 175 days, approximately half the period of the Earth in

its orbit about the Sun. Propagation of these initial conditions in a nonlinear model

results in departure of the spacecraft from the vicinity of this linear approximate

trajectory, i.e., once the unstable behavior is triggered, the path departs from the L1

vicinity. But the linear solution can be employed as a good initial guess for numerical

techniques to produce an exact solution in the nonlinear model.
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Figure 2.3. L1 Linearized Periodic Orbit in Sun-Earth System.
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3. DIFFERENTIAL CORRECTIONS ALGORITHM

FOR TRAJECTORY DESIGN

Construction of trajectories within a nonlinear force environment can be facilitated

with a differential corrections scheme. Any corrections algorithm employs numerical

techniques to search for periodic orbits and trajectories in the CR3BP; of particular

interest are the regions in the vicinity of the Lagrangian points. To accomplish the

development of a corrections algorithm, it is important to understand the sensitivity

associated with the states along the trajectory.

3.1 The State Transition Matrix

Prior to assessing the behavior of a particle or body under the influence of non-

linear forces, it is critical to investigate the evolution of a state over time in response

to changes in the initial state. This linear map, that is, the state transition matrix

(STM), is formulated based on a linear variational model to estimate the final state

as a response to certain perturbations introduced in the initial state [26]. The STM is

particularly useful for trajectory design and periodic orbit computation. To develop

an expression for the STM, a baseline reference arc is first calculated. Let there be a

certain six-dimensional initial state vector, ~X(τ0), that results in a time-varying ref-

erence path, ~X(τ). By introducing a small perturbation, δ ~X(τ0), to the initial state,

an updated initial state, ~X∗(τ0), results in a new time-varying nearby arc, ~X∗(τ),

~X∗(τ0) = ~X(τ0) + δ ~X(τ0) (3.1)
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where

~X(τ0) =
{
x0 y0 z0 ẋ0 ẏ0 ż0

}T
(3.2)

δ ~X(τ0) =
{
δx0 δy0 δz0 δẋ0 δẏ0 δż0

}T
(3.3)

A schematic demonstrating the above scenario appears in Figure 3.1. The state along

)( 0X


)(X


)(* X


)( 0X


Reference Trajectory 

Nearby Trajectory 

Perturbed State 

)( 0

* X


Figure 3.1. Reference Trajectory, Perturbed State and Nearby Trajectory Arc.

a nearby trajectory is approximated based on the STM. Using the first-order Taylor

series expansion about the reference and neglecting the higher-order terms, the linear

vector variational relationship is written

δ ~̇X = A(τ)δ ~X (3.4)

In contrast to Equation (2.68), the A matrix is time dependent, and the partials

of the equations of motion are evaluated along the reference path. The partials

corresponding to the elements of A matrix are formulated such that

∂ ~F

∂ ~X

∣∣∣∣
~X(τ)

= A(τ) =

 N3 I3

Ωi,j(τ) D

 (3.5)

The general solution to the linear vector form of variational relationship in Equation

(3.4) is expressed as

δ ~X(τf ) = Φ(τf , τ0)δ ~X(τ0) (3.6)
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where Φ(τf , τ0) is the STM that maps the change in initial state, δ ~X(τ0) to the change

in final state, δ ~X(τf ) at a final time, τf , along the reference trajectory, ~X(τ). The

elements of the STM matrix are evaluated by simultaneously numerically integrating

the variational vector equation along with the equations of motion for the system.

The matrix form of the differential equations is

Φ̇(τf , τ0) = A(τf )Φ(τf , τ0) (3.7)

Given six scalar variational states, as defined in Equation 3.3, the elements of the

6× 6 STM are evaluated in terms of the following partials

Φ(τf , τ0) =



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0


(3.8)

To numerically integrate and evaluate the 36 time-varying elements of the STM, the

initial conditions for the matrix differential equation in Equation (3.7) are specified;

the initial state is also apparent from Equation (3.6), that is,

Φ(τ0, τ0) = I6×6 (3.9)

where I6×6 is a 6 × 6 identity matrix. The STM is employed in any corrections

strategy to design trajectory arcs and periodic orbits. It also offers insight in the

examination of the stability associated with the trajectory.

3.2 Differential Corrections Algorithm

Trajectory design is accomplished through the application of a differential correc-

tions scheme to a two-point boundary value problem (2PBVP). The STM is formu-

lated to supply a linear estimate of the final states as the result of a variation in the
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initial states and is then incorporated in a shooting algorithm. An iterative process

is employed that is based on information provided by the STM. In a simple targeting

scheme, given an available baseline reference trajectory, the corrections algorithm is

applied to iteratively adjust the initial states, based on the miss difference at the

final state, until a certain level of tolerance is achieved. There are a variety of ap-

proaches to implement a corrections process. A formulation based on constraints and

free-variables is employed in this analysis.

In the algorithm for the shooting scheme, constraints can be specified as the de-

sired target states; then, free-variables are the available controls. This formulation is

relatively easy to implement and the constraints are straightforward to add. In simple

targeting, the ‘controls’ are the initial states governing the path of the spacecraft. In

a general formulation, the vector, ~X, includes the states acting as control parameters

that are employed to meet some set of constraints associated with the trajectory.

Initiate the algorithm by first recognizing n free-variables that form a base design

variable vector, ~X

~X(τ) =



~X1

~X2

...

~Xn−1

~Xn


(3.10)

For the simple case, let ~Xi be a one-dimensional vector. Thus, this control variable

vector can consist of the six states associated with the position and the velocity at

some initial time, τ0. The m scalar constraint equations, Fi( ~X), are required to be

fulfilled by the available controls and are collected into the vector ~F ( ~X)

~F ( ~X) =



F1( ~X)

F2( ~X)
...

Fm−1( ~X)

Fm( ~X)


(3.11)
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The constraints are formulated such that ~F ( ~X) = ~0 if all the individual scalar con-

straints are satisfied. The corrections algorithm proceeds iteratively until a certain

level of accuracy is achieved. The set of control variables that satisfy the constraints

are defined as, ~X∗, i.e.,

~F ( ~X∗) ∼= ~0 (3.12)

Samples of typical constraints include the position and the velocity or any other space-

craft related parameters. Thus, the constraint vector function, ~F ( ~X), is evaluated in

terms of a Taylor series expansion about a reference value, ~X i, such that,

~F ( ~X) ≈ ~F ( ~X i) +D~F ( ~X i)( ~X − ~X i) (3.13)

where D~F ( ~X i) is an m× n Jacobian matrix,

D~F ( ~X i) =
∂ ~F ( ~X i)

∂ ~X i
=



∂F1

∂ X1

∂F1

∂X2
· · · ∂F1

∂Xn

∂F2

∂X1

∂F2

∂X2
· · · ∂F2

∂Xn

...
...

. . .
...

∂Fm
∂X1

∂Fm
∂X2

· · · ∂Fm
∂ Xn


(3.14)

Since the goal is ~F ( ~X) = ~0, the expression in Equation (3.13) is employed to determine

the value of ~X that achieves the goal. Recognizing that the system is nonlinear,

Equation (3.13) is rewritten as an expression that is to be solved iteratively, that is,

~F ( ~Xj) +D~F ( ~Xj)( ~Xj+1 − ~Xj) = ~0 (3.15)

The partials within the Jacobian matrix, D~F ( ~Xj) depend on the previous iteration

(jth) or the initial guess for the design vector, ~X. The goal is to iteratively solve for

~X(j+1) until

~F ( ~Xj+1) = ~F ( ~Xc) ≈ ~0 (3.16)

The process is continued until reaching a pre-specified tolerance level.

The number of control variables, n, and constraints, m, influences the type of pos-

sible solutions that exist for Equation (3.15). When the number of control variables

equals the number of constraints

n = m ⇒ Unique Solution (3.17)
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The uniqueness of this solution is based on D~F ( ~Xj) as a square matrix and is then

inverted to determine a solution to Equation (3.15),

~Xj+1 = ~Xj −D~F ( ~Xj)−1 ~F ( ~Xj) (3.18)

The change in initial control variables is then δ ~X

δ ~X = −D~F ( ~Xj)−1 ~F ( ~Xj) (3.19)

When the number of controls available is greater than the number of constraints

n > m ⇒ Infinite Number of Solutions (3.20)

The Jacobian matrix, D~F ( ~Xj), is no longer a square matrix and to select a solution

from among all the possible options that satisfy Equation (3.15), a minimum norm

solution yields

~Xj+1 = ~Xj −D~F ( ~Xj)T [D~F ( ~Xj)D~F ( ~Xj)T ]−1 ~F ( ~Xj) (3.21)

Equation (3.21) can be rewritten as the change in the initial control states that are

required to meet the constraints, i.e.

δ ~X = −D~F ( ~Xj)T [D~F ( ~Xj)D~F ( ~Xj)T ]−1 ~F ( ~Xj) (3.22)

A minimum norm solution is based on a gradient search process that is more successful

when δ ~X is small. Thus, this methodology seeks a solution that exists in the vicinity

of ~Xj such that ~Xj+1 is characterized by traits that are closely related to those of

~Xj. This corrections scheme can be applied in both fixed- and variable-time single

shooting algorithms.

3.2.1 Fixed-Time Single Shooting

As an example of a targeting algorithm, consider a vehicle at a given location

with some velocity. The goal is the modification of the initial velocity to reach a

specified position downstream. A fixed-time single shooting algorithm is employed to
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determine a single arc that is delivered to the desired final state, ~X∗(τf ), by adjusting

the available controls within the initial state vector, ~X(τ0),

~X(τ0) =
{
~X1

}
=



x0

y0

z0

ẋ0

ẏ0

ż0


(3.23)

Note, ~X is comprised of only one six-dimensional state vector. A schematic repre-

senting a fixed-time single shooting algorithm appears in Figure 3.2. Note that τ0

represents the initial nondimensional time and the state, ~X, is initially defined at

τ0. A reference trajectory is generated that acts as the baseline for the corrections

scheme and is supplied as an initial guess for the appropriate arc. The state at the

end of the reference trajectory is defined as ~X(τf ).
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Figure 3.2. Fixed-Time Single Shooting Illustration.

In the example, the corrections scheme is formulated to target a desired state,

~X∗(τf ). The final six-dimensional state vector is expressed in terms of the three-

dimensional position vector, ~r ∗, and the three-dimensional velocity vector, ~v ∗, that

is

~X∗(τf ) =


~r ∗

~v ∗

 (3.24)
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where τf is the nondimensional time corresponding to the end of the arc and delivers

the path to the target state. Based on the definitions, (τf − τ0) is the time of flight

(TOF) between the initial and the final states; one option maintains the TOF, thus,

the time remains fixed along both the baseline trajectory and the desired path. To

formulate the problem in this simple example, only the position state, ~r ∗, at the end

of the desired trajectory is targeted and the velocity state, ~v ∗, at the final time is

unrestricted. The desired final scalar position states, i.e., the target vector, is

~r ∗ =


x∗

y∗

z∗

 (3.25)

The initial three velocity states are formulated to define the available design variables

in the design variable vector, ~X(τ0), and are submitted to the algorithm as

~X(τ0) = ~v0 =


ẋ0

ẏ0

ż0

 (3.26)

The constraint vector is written as the difference between the position states along

the reference path at the terminal time and the final specified target position states,

~F ( ~X) =
{
~r(τf )− ~r ∗(τf )

}
=


x− x∗

y − y∗

z − z∗

 (3.27)

The iterations proceed until the constraint equation meets the ~F ( ~X∗) = ~0 requirement

such that the actual value ~F ( ~X∗) ≈ ~0 within a specified tolerance level. For this

example, the Jacobian matrix introduced in Equation (3.14) is written in terms of

submatrices relating the final position and velocity to the initial position and velocity

vectors

D~F ( ~X) =
∂ ~F ( ~X)

∂ ~X
=

 ∂~r
∂~r0

∂~r
∂~v0

∂~v
∂~r0

∂~v
∂~v0

 (3.28)
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As the initial design variables are represented in ~X(τ0) in Equation (3.26) and only

the end position states, ~r, at time, τf , are targeted using the initial velocity states,

~v0, as the available design variables, Equation (3.28) reduces to the following 3 × 3

matrix,

D~F ( ~X) =
∂ ~F ( ~X)

∂ ~X
=

∂~r

∂~v0

=


∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

 (3.29)

Comparison between Equation (3.8) and Equation (3.29) results in a new expression

for D~F ( ~X) in terms of the elements of the STM

D~F ( ~X) =
∂~r

∂~v0

=


φ14 φ15 φ16

φ24 φ25 φ26

φ34 φ35 φ36

 (3.30)

The elements, φpq, in Equation (3.30) represent the change in the position states at the

terminal time along the reference trajectory, ~r = [x y z]T as a result of adjustments

in the initial velocity state, ~v0 = [ẋ0 ẏ0 ż0]T . The partials are, thus, all evaluated

along the reference path. For the update equation, the number of available controls,

n, equals the number of constraints, m, so a unique solution exists. The update

equation for successive iteration is expressed as,

~Xj+1 =


ẋj+1

0

ẏj+1
0

żj+1
0

 = ~Xj + δ ~Xj =


ẋj0

ẏj0

żj0

+


δẋj0

δẏj0

δżj0

 (3.31)
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where j represents the jth iteration while applying Newton’s method to solve for the

unique solution. As is apparent in Equation (3.30), D~F ( ~X) is a square matrix. Thus,

the change in the initial control variables is evaluated as

δ ~Xj =


δẋj0

δẏj0

δżj0

 = −D~F ( ~Xj)−1 ~F ( ~Xj) (3.32)

Note that the reference path is updated at each step, that is, the (j − 1)th arc serves

as a reference path to trigger the jth iteration. The iterative process, originating with

the reference trajectory, continues until a final desired trajectory is determined that

meets the end constraints to a specific tolerance.

3.2.2 Variable-Time Single Shooting

The strategy to develop a variable-time single shooting algorithm is easily formu-

lated by augmenting the process summarized for a fixed-time single shooting scheme.

The algorithm is augmented to allow the time-of-flight (TOF), i.e., the integration

time (τ = τf − τ0), to vary over successive iterations. A schematic for variable-time

single shooting appears in Figure 3.3. Note that the propagation time along the final

desired path leading to desired state, ~X∗(τ ∗f ), is different from the end state, ~X(τf ),

along the reference trajectory. Thus, TOF is now included in the design variable

vector. Thus, the augmented design variable vector ~X(τ0) is

~X(τ0) =


~v0

τ

 =



ẋ0

ẏ0

ż0

τ


(3.33)

The shooting scheme is developed to target the same final position states as rep-

resented in Equation (3.25). Thus, the constraint vector remains the same as in
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Figure 3.3. Variable-Time Single Shooting Illustration.

Equation (3.27). The Jacobian matrix introduced in Equation (3.14) is augmented

to relate the final position and velocity to the initial position, velocity and TOF, τ ,

D~F ( ~X) =
∂ ~F ( ~X)

∂ ~X
=

 ∂~r
∂~r0

∂~r
∂~v0

∂~r
∂τ

∂~v
∂~r0

∂~v
∂~v0

∂~v
∂τ

 (3.34)

The augmented design variable vector represented in Equation (3.33) and the final

desired position states reduce Equation (3.34) to the following form

D~F ( ~X) =
∂ ~F ( ~X)

∂ ~X
=
{

∂~r
∂~v0

∂~r
∂τ

}
=


∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂x
∂τ

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂y
∂τ

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂z
∂τ

 (3.35)

Recall that the elements of this matrix are all evaluated along the reference path.

The augmented matrix D~F ( ~X) is rewritten in terms of the elements of the STM and

the velocities at the terminal time along the reference path

D~F ( ~X) =
{

∂~r
∂~v0

∂~r
∂τ

}
=


φ14 φ15 φ16 ẋ

φ24 φ25 φ26 ẏ

φ34 φ35 φ36 ż

 (3.36)
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Note that the matrix is no longer square. Since the number of available controls, n, is

greater than the number of constraints, m, there exist an infinite number of solutions.

Thus, the new update equation for successive iterations is expressed in the form

~Xj+1 =



ẋj+1
0

ẏj+1
0

żj+1
0

τ j+1


= ~Xj + δ ~Xj =



ẋj0

ẏj0

żj0

τ j


+



δẋj0

δẏj0

δżj0

δτ j


(3.37)

Recall, the subscript, 0, represents the initial state at time, τ0. The solution is no

longer unique. Based upon a minimum norm solution, the change in the initial control

variables is evaluated from

δ ~Xj =



δẋj0

δẏj0

δżj0

δτ j


= −D~F ( ~Xj)T [D~F ( ~Xj)D~F ( ~Xj)T ]−1 ~F ( ~Xj) (3.38)

Again, the algorithm is repeated to update the design parameters until the constraint

vector meets a certain level of tolerance.

3.3 Multiple Shooting Algorithm

For more complex scenarios and for the option of additional types of constraints,

the concept of differential corrections is further extended to develop a targeting

scheme for a set of n discrete points. The foundation of any multiple shooting strat-

egy lies in the corrections algorithm which can be based on the same steps as those

employed in a single shooting scheme. The trajectory is decomposed into segments

that originate from a sequence of patch points. The objective is typically conver-

gence to a path continuous in position and velocity. Such a result is accomplished

by targeting the end state originating from the (n − 1)th patch point such that it
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merges with the initial states along the next segment, i.e., the nth patch point. An

illustration that demonstrates a multiple shooting scheme is represented in Figure 3.4

where ~Xi(τ0i) represents the initial state at each patch point and ~Xi(τfi) identifies

the reference states after the trajectory arc is propagated for nondimensional time,

τi, that is equivalent to

τi = τfi − τ0i (3.39)

Multiple patch points aid in offsetting the numerical sensitivity associated with the
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Figure 3.4. Unconverged Multiple Shooting Schematic.

trajectory design in the vicinity of the Lagrangian points. To formulate a trajectory

continuous in both position and velocity, constraints are added such that the end

states along any segment coincide with the initial point on the subsequent segment.

Once a converged path is achieved, the updated states, ~X∗i (τ0i), are iteratively estab-

lished as illustrated in Figure 3.5. Based on the specific scenario, the TOF may or
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Figure 3.5. Converged Multiple Shooting Schematic.
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may not be allowed to vary along each segment. This option allows two different for-

mulations for multiple shooting, i.e., fixed-time and variable-time multiple shooting

scheme.

3.3.1 Fixed-Time Multiple Shooting

Fixing the integration time, τi, along each of the trajectory segments that com-

prise the path results in the formulation of a fixed-time multiple shooting scheme.

The design variable vector is comprised of both the position and the velocity states

corresponding to each patch point, in the general form

~X =



~X1(τ01)

~X2(τ02)
...

~Xn−1(τ0n−1)

~Xn(τ0n)


(3.40)

where ~Xi(τ0i) is a six-dimensional vector and n indicates the number of path points

to discretize the trajectory into segments. Thus, ~X is a 6n × 1 dimensional design

variable vector for a fixed-time multiple shooting algorithm. As represented in Figure

3.4, there exists a discontinuity between the end reference states along each segment,

~Xi(τfi), and the states at the subsequent patch point, ~Xi+1(τ0i+1
), that is, the initial

point on the subsequent arc. The constraint vector, ~F ( ~X), is constructed to maintain

continuity in both position and velocity states across multiple arcs,

~F ( ~X) =



~X1(τf1)− ~X2(τ02)

~X2(τf2)− ~X3(τ03)
...

~Xn−2(τfn−2)− ~Xn−1(τ0n−1)

~Xn−1(τfn−1)− ~Xn(τ0n)


(3.41)
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The length of the constraint vector is 6(n−1) since the number of arcs is one less than

the number of patch points. Again the objective is convergence to a path continuous

in both position and velocity to a pre-specified tolerance.

The Jacobian matrix, D~F ( ~X), is constructed based on the partials relating the

constraint vector to variations in the design variables. The Jacobian matrix, D~F ( ~X),

is a banded matrix, i.e., the non-zero entries are along the diagonals,

D~F ( ~X) =


(
∂ ~X1(τf1 )

∂ ~X1(τ01 )
− ∂ ~X2(τ02 )

∂ ~X1(τ01 )
) (

∂ ~X1(τf1 )

∂ ~X2(τ02 )
− ∂ ~X2(τ02 )

∂ ~X2(τ02 )
)

. . .
. . .

(
∂ ~Xn−1(τfn−1

)

∂ ~Xn−1(τ0n−1
)
− ∂ ~Xn(τ0n )

∂ ~Xn−1(τ0n−1
)
) (

∂ ~Xn−1(τfn−1
)

∂ ~Xn(τ0n )
− ∂ ~Xn(τ0n )

∂ ~Xn(τ0n )
)


(3.42)

The end state along the reference arc i, ~Xi(τfi), is a function of the initial states,

~Xi(τ0i). In this example, many of the scalar partials are elements of the STM. The

subsequent patch point is not affected by the selection of the previous initial patch

point and, thus,
∂ ~Xi+1(τfi+1

)

∂ ~Xi(τ0i )
is equal to ~0. Similarly, the end state along the ith

reference arc, ~Xi(τfi), is not a function of the subsequent patch point, ~Xi+1. Thus,
∂ ~Xi(τfi )

∂ ~Xi+1(τ0i+1
)

is equal to ~0. Finally, the partial
∂ ~Xi(τ0i )

∂ ~Xi(τ0i )
is equal to the 6 × 6 identity

matrix. Substituting this information yields a 6(n− 1)× 6n matrix,

D~F ( ~X) =
∂ ~F ( ~X)

∂ ~X
=


φ(τf1 , τ01) −I6×6

. . . . . .

φ(τfn−1 , τ0n−1) −I6×6

 (3.43)

Iteration is again employed to converge the constraint vector, ~F ( ~X) to ~0 within an

acceptable tolerance by applying the appropriate update equation using the D~F ( ~X)

matrix.

3.3.2 Variable-Time Multiple Shooting

Varying the integration time, τi, along each segment or arc results in the formula-

tion of a variable-time multiple shooting scheme. The addition of integration time to

the design variable vector results in a 7n−1 vector; for n patch points, there are n−1
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integration times corresponding to n − 1 arcs. Thus, the augmented design variable

vector is

~X =



~X1(τ01)
...

~Xn(τ0n)

τ1

...

τn−1


(3.44)

To maintain continuity in both position and velocity, the constraint vector, ~F ( ~X), is

of dimension 6(n − 1), the same as was specified in the case of fixed-time multiple

shooting scheme.

~F ( ~X) =



~X1(τf1)− ~X2(τ02)

~X2(τf2)− ~X3(τ03)
...

~Xn−2(τfn−2)− ~Xn−1(τ0n−1)

~Xn−1(τfn−1)− ~Xn(τ0n)


(3.45)

Introduction of time as a new variable changes the banded matrix, D~F ( ~X), as each

end reference state, ~Xi(τfi) is a function of an integration time, τi. The matrix

represented in Equation (3.43) is augmented due to the inclusion of time as a variable

and is rewritten as

D~F ( ~X) =


φ(τf1 , τ01) −I6×6

~̇X1

. . . . . . . . .

φ(τfn , τfn−1) −I6×6
~̇Xn−1


(3.46)

where ~̇Xi represents the time derivatives of the end reference state, ~Xi(τfi). The

minimum norm solution is obtained as the Jacobian, D~F ( ~X), is a 6(n − 1) × 7n

rectangular matrix. The algorithm is iteratively simulated until the desired level of

tolerance is achieved for the constraint vector, ~F ( ~X) = ~0. At the end of the process,
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new converged position and velocity states are determined for the patch points along

with new times, τi between each pair of patch points.

3.4 Periodic Orbits in the CR3BP

A corrections scheme is applied for the construction of periodic orbits in the

vicinity of the collinear Lagrangian points. Families of planar and three-dimensional

orbits have been investigated over the past few decades [2] and a number of three-

dimensional families bifurcate from planar families. One type of three-dimensional

periodic orbit is a simple symmetric orbit in the set that comprises the ‘halo’ family

of orbits [3]. Halo orbits have been of particular interest since 1978 when the Inter-

national Sun-Earth Explorer-3 (ISEE-3) spacecraft was launched and inserted into a

halo orbit in the vicinity of the Sun-Earth Lagrangian point, L1 [10].

3.4.1 Construction of a Three-Dimensional Halo Orbit

A three-dimensional shooting algorithm is developed to compute three-dimensional

halo orbits that exist in the vicinity of the collinear Lagrangian points. Because the

differential equations are time-invariant, certain symmetric properties are observed.

One straightforward approach to compute solutions involves a search for a periodic

orbit that is symmetric across the x−z plane. To initiate the construction of a family

or orbits, an initial guess is generated by exploiting this symmetry property but is

based on the linear model developed in Subsection 2.2.2. By introducing an out-

of-plane step along z, a variable-time single-step corrections scheme is developed to

determine the symmetric periodic halo orbits. Symmetry and perpendicular crossings

are then employed as constraints to generate the orbits.

As noted previously, one strategy for construction of periodic orbits assumes per-

pendicular crossings at the x − z plane [27]. Given an initial guess to initiate the

corrections process, free variables are first identified. Assuming that the initial state
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lies in the x̂− ẑ plane and the initial velocity is normal to the plane, the initial state

is of the form

~X(τ0) =



x0

0

z0

0

ẏ0

0


(3.47)

where only three of six states are non-zero. A simple formulation is governed by fixing

one initial condition and allowing the others to vary. An iterative process yields a

perpendicular crossing, i.e., a half period for any three-dimensional halo orbit. Note

that both the initial and the final states correspond to perpendicular crossings of the

x−z plane. To meet the final goal of a perpendicular crossing, both the final velocity

in the x and z directions should be zero, i.e., ẋ = ż = 0 at the final crossing. Thus,

the selection of a set of free variables allows one of the non-zero variables, x0, z0, ẏ0,

to be constrained. For example, to construct a halo orbit that crosses the x-axis at a

specified location, constrain x0 and then iterate to determine z0 and ẏ0. For simply

periodic three-dimensional orbits that are symmetric across the x − z plane, there

are, consequently, three options for selecting free variables from the initial position

and velocity states.

~X(τ0) =

x0

ẏ0

 or
z0

ẏ0

 or
x0

z0

 (3.48)

To demonstrate the algorithm, z0 is selected as a free variable, along with ẏ0. To

ensure a perpendicular crossing at the next x̂− ẑ plane crossing, the constraint vector

is carefully defined as,

~F ( ~Xz0,ẏ0) =

ẋ{y=0}

ż{y=0}

 = ~0 (3.49)
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where the subscripts, z0, ẏ0, on ~X represent the design variable vector used in this

formulation. The D~F ( ~Xz0,ẏ0) matrix is formulated by direct application of the chain

rule

D~F ( ~Xz0,ẏ0) =

 ∂ẋ
∂z0

+ ∂ẋ
∂y

∂y
∂z0

∂ẋ
∂ẏ0

+ ∂ẋ
∂y

∂y
∂ẏ0

∂ż
∂z0

+ ∂ż
∂y

∂y
∂z0

∂ż
∂ẏ0

+ ∂ż
∂y

∂y
∂ẏ0

 (3.50)

where

y(ẋ(τ), ż(τ), τ) = 0 (3.51)

serves as the stopping condition (in contrast to time) to ensure delivery precisely

to the x − z plane. In this formulation, the integration time has been implicitly

defined as the time to cross the map, Σ : y = 0, i.e., half the period of the orbit. To

evaluate the partials in Equation (3.50), Equation (3.51) is differentiated with respect

to nondimensional time, τ , resulting in the following two expressions,

∂y

∂τ
+
∂y

∂ẋ

∂ẋ

∂τ
= 0 (3.52)

∂y

∂τ
+
∂y

∂ż

∂ż

∂τ
= 0 (3.53)

Consequently, the expressions for ∂ẋ
∂y

and ∂ż
∂y

are

∂ẋ

∂y
= − ẍ

ẏ
(3.54)

∂ż

∂y
= − z̈

ẏ
(3.55)

The matrix of partials, D~F ( ~X), in Equation (3.50) is then rewritten in terms of the

elements of the STM and Equations (3.54) - (3.55)

D~F ( ~Xz0,ẏ0) =

φ43 − ẍ
ẏ
φ23 φ45 − ẍ

ẏ
φ25

φ63 − z̈
ẏ
φ23 φ65 − z̈

ẏ
φ25

 (3.56)

A more compact formulation is expressed in the form

D~F ( ~Xz0,ẏ0) =

φ43 φ45

φ63 φ65

− 1

ẏ


ẍ

z̈


[
φ23 φ25

]
(3.57)
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Similarly, using the other two possible design variable vectors in Equation (3.48)

results in the following two alternative D~F ( ~X matrices,

D~F ( ~Xx0,ẏ0) =

φ43 φ45

φ63 φ65

− 1

ẏ


ẍ

z̈


[
φ21 φ25

]
(3.58)

D~F ( ~Xx0,z0) =

φ41 φ43

φ61 φ63

− 1

ẏ


ẍ

z̈


[
φ21 φ23

]
(3.59)

Given an equal number of constraints and design variables, the D~F ( ~X) matrices in

Equations (3.57) - (3.59) are all square matrices. The update equations for successive

iterations are formulated for the three possible design variable vectors as follows

~Xj+1
z0,ẏ0

=

zj+1
0

ẏj+1
0

 = ~Xj
z0,ẏ0

+ δ ~Xj
z0,ẏ0

=

zj0
ẏj0

+

δzj0
δẏj0

 (3.60)

~Xj+1
x0,ẏ0

=

zj+1
0

ẏj+1
0

 = ~Xj
x0,ẏ0

+ δ ~Xj
x0,ẏ0

=

zj0
ẏj0

+

δzj0
δẏj0

 (3.61)

~Xj+1
x0,z0

=

zj+1
0

ẏj+1
0

 = ~Xj
x0,z0

+ δ ~Xj
x0,z0

=

zj0
ẏj0

+

δzj0
δẏj0

 (3.62)

where the change in the design variables is then evaluated as

δ ~Xj
z0,ẏ0

=

δzj0
δẏj0

 = −D~F ( ~Xz0,ẏ0)~F ( ~Xj
z0,ẏ0

) (3.63)

δ ~Xj
x0,ẏ0

=

δxj0
δẏj0

 = −D~F ( ~Xx0,ẏ0)~F ( ~Xj
x0,ẏ0

) (3.64)

δ ~Xj
x0,z0

=

δxj0
δzj0

 = −D~F ( ~Xx0,z0)~F ( ~Xj
x0,z0

) (3.65)

Iteration produces a solution that meets the final constraints ẋ = ż = 0 and, conse-

quently, produces a perpendicular crossing of the map, Σ : y = 0. Initial conditions
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are selected such that the state lies on the map, Σ : y = 0 with an initial velocity only

along the ŷ unit direction vector. This results in the reference trajectory illustrated

in Figure 3.6. After implementing the targeting scheme to construct a perpendicu-

Converged Trajectory 

Reference Trajectory 

L1 

0:  y

Figure 3.6. Targeting Perpendicular Crossing of the Map Σ : y = 0.

lar crossing of the map, Σ : y = 0, a converged trajectory is achieved that meets

the constraints by varying the design parameters. For this illustration, the design

parameters are z0 and ẏ0.

Once the trajectory has been corrected to deliver perpendicular crossings with a

variable-time scheme, a complete halo orbit is available by propagating the new initial

conditions over precisely twice the integration time that is required for a half orbit. A

three-dimensional view of the halo orbit, relative to the Lagrangian point, L1, as well

as the Earth is represented in Figure 3.7(b). Note that the Earth has been scaled ×6

for visualization purposes. The three planar projections offer a better understanding

of the general shape of the orbit as is apparent in Figures 3.7(a), 3.7(c) and 3.7(d).
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As noted from Figure 3.7(c), this halo orbit possesses a relatively large out-of-plane
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Figure 3.7. Sun-Earth System L1 Halo Orbit

z amplitude. The in-plane component of the halo orbit has amplitudes Ax = 350,000

km and Ay = 900,000 km, whereas the out-of-plane amplitude is Az = 600,000 km.

Nearby halo orbits can now be explored to construct a family of trajectories.
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3.4.2 Halo Families in the Vicinity of L1/L2 Collinear Lagrangian Points

Construction of a three-dimensional, symmetric, periodic halo orbit using the

corrections process is further extended to investigate the dynamical regime near the

collinear Lagrangian points. Family members in the vicinity of the converged orbit

are computed using a slope-based continuation scheme. A three-dimensional view

of a selected subset of periodic trajectories that are members of the Sun-Earth L1

northern halo family appears in Figure 3.8. Continuation is employed to determine the
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Figure 3.8. Periodic Trajectories in the Sun-Earth L1 Northern Halo Family

northern and the southern family members respectively. Planar projections of orbits

from the Sun-Earth L1 northern halo family are plotted in Figure 3.9. Similarly, a
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Figure 3.9. Projections of the Sun-Earth L1 Northern Halo Family

selected subset of periodic trajectories that are members of the Sun-Earth L1 southern

halo family are illustrated in Figures 3.10 and 3.11.

Moving to the Sun-Earth L2 Lagrangian point, a subset of northern halo family

is illustrated in Figures 3.12 and 3.13.

A selected subset of periodic trajectories that are members of the Sun-Earth L2

southern halo family are illustrated in Figures 3.14 and 3.15. All four families of
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Figure 3.10. Periodic Trajectories in the Sun-Earth L1 Southern Halo Family

periodic orbits are combined into one figure for comparison. An illustration for all

four families, encompassing Sun-Earth L1 and L2 northern and southern halo family

members, is represented in Figures 3.16 and 3.17. Note that these orbits are based

on natural dynamics within the circular restricted three-body regime. To further

investigate the effects of external forces that also act upon a spacecraft, deriving an

extended dynamical model, based upon the specifications of the force, is relatively

straightforward.
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Figure 3.11. Projections of the Sun-Earth L1 Southern Halo Family
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Figure 3.12. Periodic Trajectories in the Sun-Earth L2 Northern Halo Family



58

1.48 1.485 1.49 1.495 1.5 1.505 1.51

x 10
8

−1

−0.5

0

0.5

1

x 10
6

x (km)

y 
(k

m
)

To Sun

L1
Earth L2

(a) x− y Planar View

1.48 1.485 1.49 1.495 1.5 1.505 1.51

x 10
8

−5

0

5

10

15

x 10
5

x (km)

z 
(k

m
)

To Sun

L1
Earth L2

(b) x− z Planar View

−1 −0.5 0 0.5 1

x 10
6

−5

0

5

10

15

x 10
5

y (km)

z 
(k

m
)

L2 Earth

(c) x− z Planar View

Figure 3.13. Projection of the Sun-Earth L2 Northern Halo Family
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Figure 3.14. Periodic Orbits in the Sun-Earth L2 Southern Halo Family
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Figure 3.15. Projections of the Sun-Earth L2 Southern Halo Family
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4. BACKGROUND: SOLAR SAILS

The exploration of solar sails to move throughout the solar system is based on a

dynamical concept for harnessing the energy carried by photons from the Sun in the

form of momentum. Conventional propulsion systems for maneuvers deplete propel-

lant over time and, thus, the life of the spacecraft is limited. The operational lifetime

can be increased by increasing the amount of propellant; such an option may not

be feasible or practical, however. Alternatively, solar sails potentially offer indefinite

maneuvering capability by using photons from the Sun as a means of propulsion. In-

corporating a solar sail model within the context of the circular restricted three-body

problem extends the design options. A model that includes a solar sail force within

the framework of the Solar Sail Circular Restricted Three-Body Problem (SS-CR3BP)

is derived. The design space in the SS-CR3BP is then explored.

4.1 Solar Sail Model

Although serious planning to explore the solar system using solar sails has gained

momentum only in last few decades, the concept of harnessing solar radiation pressure

(SRP) was first studied in 1873 by James Clerk Maxwell [13]. But, a Russian physicist,

Peter Lebedew, initially conducted laboratory experiments to demonstrate the effects

of SRP in 1900 [14]. Further interest in solar sailing technology was developed when

Konstantin Tsiolkovsky, the Soviet astronautics pioneer, and Fredrickh Tsander wrote

of “using tremendous mirrors of very thin sheets” and “using the pressure of sunlight

to attain cosmic velocities”1 [28], [15]. Carl Wiley was the first American engineer

to propose the idea of solar sailing. He went on to propose orbit raising as well as

1Collin R. McInnes, Solar Sailing: Technology, Dynamics and Mission Applications (Chichester,
United Kingdom: Springer - Praxis, 1999), 2.
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spiraling inwards towards the Sun [29]. In 1958, Rickard Garwin from the IBM Watson

Laboratory also deduced that solar sails require no propellant and are continuously

accelerated once deployed [30]. He also recognized that this continuous acceleration

leads to large velocity changes over a longer time interval. Garwin is also credited

with coining the term “solar sailing” [29].

With the advancement of the technology linked to deployable structures, along

with thin films and the development of the Space Shuttle in the 1970’s, the focus

shifted from theory to increased laboratory testing. A NASA-funded investigation in

1974, conducted at the Battelle laboratories in Ohio, delivered a promising demon-

stration of solar sailing [16]. The NASA investigation and other studies conducted

in the mid-1970’s gained worldwide interest. Eventually, a European analysis at the

Center National d’Etudes Spatiales (CNES) in Toulouse, France offered an assess-

ment of a potential deep space mission incorporating solar sails [13]. Later in the

decade, specifically in 1979, Robert Staehle of the Jet Propulsion Laboratory formed

the World Space Foundation (WSF) in California. Two years later, the Union pour

la Promotion de la Propulsion Photonique (U3P) emerged in Toulouse. The Solar

Sail Union of Japan (SSUJ) was formed in 1982 and soon joined with WSF and U3P

to promote the long term prospects of solar sails.

With further technological advancements, the first ever ground deployment of a

solar sail was conducted by the German Space Agency, Deutsches Zentrum für Luft-

und Raumfahrt (DLR), in collaboration with the European Space Agency (ESA)

and a smaller German company, INVENT GmbH, in December of 1999 at Köln,

Germany [31]. The sail was 20m x 20m and a deployed model appears in Figure

4.1. As part of solar sail development programs at both DLR and ESA, a smaller, in-

orbit demonstration is currently planned for 2013 [33]. NASA-funded programs aimed

toward development of solar sail technology were completed in 2005 by two firms, ATK

Space Systems of Goleta, California and L’Garde Inc., of Tustin California. L’Garde

used inflatable boom technology to deploy the boom. In contrast, ATK employed a

coilable graphite boom that would uncoil and support the sail structure. The 20m x
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Figure 4.1. Solar Sail Ground Deployment Test by DLR [32].

20m sails were tested at the NASA Glenn Research Center’s Plum Brook Station in

Sandusky, Ohio [34] but neither achieved Technology Readiness Level (TRL) 6.

In 2010, the first spacecraft to demonstrate the use of solar radiation pressure as a

source of propulsion in flight was launched by the Japanese Space Agency, JAXA. The

solar sail spacecraft, Interplanetary Kite-craft Accelerated by Radiation Of the Sun

(IKAROS), is a square sail, 20m in diameter, and 7.5 µm thick created from polyimide

film. A model of the IKAROS spacecraft, as well as the actual deployed spacecraft,

appears in Figure 4.2. IKAROS successfully demonstrated both a propulsive force of

1.12 mN and attitude control capabilities [19]. Thus, IKAROS paved a pathway for

further development in the field of solar sail technology.

In the United States, NASA, in collaboration with the Planetary Society, is devel-

oping the NanoSail-D (a ‘CubeSat’ project) based on solar sail technology; later, the

project was actually renamed LightSail. A laboratory-based, deployed NanoSail-D
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(a) Model of IKAROS Spacecraft [35] (b) IKAROS after Solar Sail Deployment [36]

Figure 4.2. IKAROS Solar Sail Spacecraft.

appears in Figure 4.3. NanoSail-D was onboard the SpaceX Falcon 1 in August 2008

which was designed to test the capabilities in low-Earth orbit. The Falcon 1 launch

was unsuccessful, and both the rocket and the payload were lost. Now LightSail-1

is planned to test the propulsion capabilities of the spacecraft at an altitude of 800

km. The Planetary Society had initially planned on launching LightSail-1 in 2012.

Figure 4.3. Fully Deployed NanoSail-D [37]

As of November 06, 2012, no further update is available [38]. Upon the successful

testing of LightSail-1, LightSail-2 is planned for launch to further enhance the solar

sail based control strategy. It is expected that LightSail-3 will follow with a proposed

mission that incorporates an insertion into an orbit near the Sun-Earth Lagrangian
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point, L1. LightSail-3 will provide early detection and warning of geomagnetic storms

capable of damaging power and communication systems on Earth [18]. Thus, the re-

cent rejuvenation of interest in harnessing the potential of a solar sail has accelerated

the development of technology. The success of the IKAROS mission was a significant

breakthrough and, thus, interest continues in further testing and the validation of

solar sail technology.

4.2 Solar Radiation Pressure Force

The transfer of momentum from photons, originating at the Sun in the form of

bundles of energy, to a solar sail gives rise to Solar Radiation Pressure (SRP) as

mentioned by J. C. Maxwell [13]. The pressure from the continuous bombardment

of radiation onto the sail results in the acceleration of the sail. The energy flux (W ),

carried by photons, is used to calculate the amount of momentum transfer, hence,

the SRP acting on the sail. Thus, the SRP exerted on the sail is expressed as

P =
W

c
(4.1)

where P is the solar radiation pressure and c is the speed of light. For an ideal sail,

i.e., a perfectly reflecting sail, the total radiation pressure, P , is twice that of the

value in Equation (4.1). The factor of two is due to the momentum transferred to

the sail by the incident photons as well as the momentum transferred as a result

of perfect reflection. A schematic representation appears in Figure 4.4. where n̂ is

the unit direction vector parallel to the normal to the surface of the sail and r̂13 is

the unit vector directed along the Sun-sail line. The angle between the unit vector

directed along the Sun-sail line, r̂13, and the unit vector parallel to the sail normal,

n̂, is represented by angle α. The incident photons result in a force, ~FI , along the r̂13

unit vector and the reflected photons provide the sail with a force along a direction

that is normal to r̂13. Thus, a net resultant force, ~FSail, is directed parallel to the sail

normal, n̂, evident in Figure 4.4.
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Figure 4.4. Net Force, ~Fsail, Acting on a Perfectly Reflecting Solar Sail

The solar flux, W , is a a function of the distance of the solar sail from the Sun.

Thus, the general expression for solar flux, W , is modeled as

W = W1AU

(
r1 + r2

r13

)2

(4.2)

where W1AU is the solar flux experienced by the solar sail at a distance of one as-

tronomical unit (AU), i.e., in the vicinity of the Earth. In addition, (r1 + r2) is the

distance between the primaries, in this case, the distance between the Sun and the

Earth, and r13 is the distance between the Sun and the solar sail-based spacecraft.

The amount of solar radiation pressure acting on the sail at an approximate distance

equal to 1 AU (distance from the Sun to the Earth) is available and an acceptable

value for the solar flux, W at 1 AU is

W1AU = 1368
J

m2 s
(4.3)

Consider the required solar sail size based on the desired acceleration that can be

achieved as a result of solar flux at 1 AU. The total solar radiation pressure acting
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on a perfectly reflecting solar sail at an approximate distance of 1 AU is evaluated

using Equation (4.1) and results in the value,

PSail = 2(P ) = 9.12× 10−6 N

m2
(4.4)

Assume that an experimental sail with the same size and comprised of the same

material as IKAROS is operating at 1 AU. The experimental sail is assumed to be

flat, rigid and perfectly reflecting. Thus, the total force acting on the experimental

sail due to solar radiation pressure is

FIdeal = PSail ∗ ASail = 1.824 mN (4.5)

From the data collected, IKAROS demonstrated a propulsive force of 1.12 mN [19].

Thus, for the experimental sail, the efficiency, ε, is calculated as

Efficiency (ε) =
FActual
FIdeal

× 100 = 61.4 % (4.6)

In addition, based on the information available, it is possible to calculate a sail ac-

celeration, aSail, given a total mass (consistent with the IKAROS spacecraft) that is

310 kg [39],

aSail =
FActual
massTotal

= 3.61
µm

s2
(4.7)

To be capable of carrying the total load, i.e., mass of the spacecraft, payload and

the sail, an ideal sail must be of a certain pre-specified dimensions. Such analysis

appears in Figure 4.5 for an ideal sail. The required sail edge length assumes that the

sail is square in design and a pre-specified sail acceleration capability. Based on the

sail loading and the acceleration that can be produced, the requirements for the edge

length are indicated. To investigate the sail loading capabilities, the load factor, σ,

is introduced,

σ =
mTotal

ASail
=

310 kg

200 m2
= 1550

g

m2
(4.8)

From the acceleration of the experimental sail, as well as the efficiency, an analysis

relating sail edge length and mass to the acceleration level appears in Figure 4.6.

Recall that the acceleration experienced by the experimental sail is 3.61 µm/s2 as
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Figure 4.5. Required Sail Edge Length based on Sail Loading and Sail
Acceleration for an Ideal Sail.
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Figure 4.6. Sail Edge Length requirements based on the Efficiency (ε)
= 61.4 % of the Experimental Sail.

noted in Equation (4.7). Though the acceleration, ASail, is small, it still is signifi-

cant. The plots in Figure 4.6(a) compare the sail size requirements for a sail with an
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acceleration level equal to that of IKAROS to sails with accelerations that are two

and ten times that of IKAROS. From the figure, it is easily inferred that the size and

efficiency of the sail plays a huge role in the overall acceleration level that the sail can

achieve for a given total mass. Thus, to increase the solar sail acceleration, the load

factor must be reduced. The decrease in the load factor is achieved by significantly

increasing the size of the sail.

Continuing investigations into solar sail technologies aid in improving the char-

acteristics associated with solar sails, thereby increasing efficiency. Recall that the

efficiency demonstrated by the sails on a spacecraft similar to the IKAROS space-

craft and operating at 1 AU is 61.4 %. In Figure 4.7, the sail size requirements as a

function of acceleration and total mass are apparent to demonstrate an efficiency of

90%. As an example, assume that the total mass of the spacecraft (payload and sail)
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Figure 4.7. Sail Edge Length Requirements based on the Efficiency (ε) = 90 %.

is 150 kg. Given that the experimental sail is 61.4 % efficient (same as IKAROS), to

achieve an acceleration of 36.1 µm/s2 due to SRP, the approximate dimensions that

are required equal 30m × 30m, i.e., an area of 900 m2 (Figure 4.6(a)). Similarly, if

the experimental sail is 90 % efficient, the same acceleration would require the sail
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to be appoximately 25m × 25m, i.e., area of 625 m2 (Figure 4.7(a)). Thus, reducing

the required sail area by 275 m2. In summary, a 90 % efficient sail of dimensions

30m × 30m is capable of supporting an increased total load of 200 kg and achieve an

acceleration of 36.1 µm/s2 due to SRP.

In another scenario, assume that the mission specification requires the sail ac-

celeration to be 3 mm/s2 and capable of supporting a total mass of 200 kg. The

experimental sail, with an efficiency of 61.4 % (Figure 4.6(b)), would require the sail

to be of dimension 320m × 320m, i.e., an area of 102,400 m2. Increasing the effi-

ciency of the experimental sail to 90 % would require a sail of dimension 270 m × 270

m as apparent from Figure 4.7(b). Thus, reducing the required sail area by 29,500

m2. Alternatively, if a 90 % efficient sail is still of dimension 320m × 320m, the sail

loading capacity is increased to 300 kg. Thus, increasing the sail mass-to-area ratio

to 2.93 gm/m2.

The analysis summarized in this chapter is fundamental and serves as the basic

requirements that the sail must meet to carry a certain load and achieve a desired

sail acceleration. The investigation is extended to incorporate a change in the solar

sail acceleration level as a result of a change in the sail’s position from the source

of the radiation pressure, i.e., the Sun. Incorporating the sail characteristics in the

equations of motion for a spacecraft is formulated by inclusion of the force model

due to the solar radiation pressure. Further examination is completed to analyze

the behavior of a sailcraft in the restricted three-body problem, thus, formulating a

new hybrid model labeled as the Solar Sail Circular Restricted Three-Body Problem

(SS-CR3BP).
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5. SOLAR SAIL IN THE CIRCULAR RESTRICTED

THREE-BODY PROBLEM (SS-CR3BP)

A concept for harnessing the energy carried by photons from the Sun in the form of

momentum extends the solar sail model into the CR3BP framework. The momentum

transfer from the incident and reflected photons acting on a sail result in a net force

that continuously accelerates the vehicle. Thus, a mathematical model is formulated

to incorporate the solar sail in the CR3BP. The model is consistent with previous

analyses by McInnes [13], Nuss [40] and McInnes [41]. Certain assumptions pertaining

to the solar sail and the intercepted photons are specified in the development of the

model. The location of the collinear Lagrangian points as a result of the inclusion of

the acceleration due to solar radiation pressure force is investigated.

5.1 Sail Orientation

In the development of a force model, a mathematical description of the direction

of force relative to the sail orientation is a key kinematical relationship. The quantity

of photons encountered by the solar sail is directly related to the sail orientation with

respect to the direction of photon flow. Thus, the orientation of the sail governs the

acceleration produced on the solar sail by the incident and the reflected protons. A

schematic representation appears in Figure 5.1. The orientation of the solar sail is

defined based on two angles with respect to an orthogonal reference frame as seen

in the figure. The reference frame of interest is formed from the unit vector, ẑ, the

direction that remains fixed in both the inertial and the rotating frame, as well as

the unit vector, d̂, along the Sun-sail line. The angle α represents the angle between

the Sun-sail unit direction, d̂, and the direction vector parallel to the surface normal

of the sail, n̂. The angle α is also represented in Figure 4.4; α is frequently denoted
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Figure 5.1. Solar Sail Angle Definitions.

as the cone angle or the nutation angle of the solar sail relative to the Sun-sail line.

The second angle in Figure 5.1 is represented as the angle γ. The angle γ is defined

between the plane spanned by the unit vectors, d̂ and n̂ lie and the reference unit

direction vector, k̂. The vector k̂ is defined as

k̂ =
(d̂× ẑ)× d̂
|(d̂× ẑ)× d̂|

(5.1)

In a sense, γ defines the angle by which the plane spanned by the unit vectors, d̂

and n̂ has precessed; thus, the angle γ is also the precession angle or the clock angle.

Based on the currently available technology, the maximum rate of rotation for attitude

control is equal to 0.02 deg/s for a three-axis spacecraft equipped with sails that use

sail panel rotations [42]. This attitude control rate is referenced to offer insight into

the relative time that is required for a desired maneuver. It is vital to note that

if the sail orientation angles, α and γ, remain constant relative to the Sun in the

rotating frame, the orientation will change in the inertial frame. Thus, the hardware
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must continually reorient the sail with respect to the inertial frame. To maintain the

orientation of a sail relative to the Sun in the inertial frame, the sail must reorient at

approximately one degree per day to maintain an orbit with an estimated period of

180 days.

Prior to introducing a force acting on a sail in the dynamical model, it is necessary

to mathematically express the sail orientation in the rotating frame coordinates. The

unit direction vector, n̂, as indicated in Figure 5.1, is parallel to the surface normal

of the sail. The vector n̂, in terms of the rotating frame coordinates x̂, ŷ, and ẑ is

defined as

n̂ = nxx̂+ nyŷ + nz ẑ (5.2)

where the magnitudes, nx, ny, and nz are evaluated as

nx = Cosα
(x+ µ)

|~d|
− SinαCosγ z(x+ µ)

|(~d× ẑ)× ~d|
+ SinαSinγ

y

|~d× ẑ|
(5.3)

ny = Cosα
(y)

|~d|
− SinαCosγ yz

|(~d× ẑ)× ~d|
− SinαSinγ (x+ µ)

|~d× ẑ|
(5.4)

nz = Cosα
z

|~d|
+ SinαCosγ

[y2 + (x+ µ)2]

|(~d× ẑ)× ~d|
(5.5)

and the denominators in Equations (5.3) - (5.4) are

|~d|=
√

(x+ µ)2 + y2 + z2 (5.6)

|(~d× ẑ)× ~d|=
√

(x+ µ)2 + y2 (5.7)

|~d× ẑ|=
√

(x+ µ)2z2 + y2z2 + ((x+ µ)2 + y2)2 (5.8)

Expressing n̂ in the rotating coordinate frame assists in successfully incorporating the

force and the orientation information into the force model for the CR3BP to formulate

the new set of differential equations that reflect the SS-CR3BP. Note, d̂ is always the

direction of photons from the Sun. In Figure 5.1, it is also clear that for an angle

equal to zero, α = 0o, the maximum quantity of photons are intercepted by the solar

sail surface. Thus, at the particular orientation identified as α = 0o, the solar sail

experiences the maximum acceleration due to solar radiation pressure. Consequently,

as the sail angle increases, the quantity of photons that are encountered by the solar
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sail decreases, lowering the acceleration of the sail. At a sail angle equal to α = 90o,

the sail is edge-on to the flow of photons and, thus, the solar sail acceleration receives

no contribution due to the solar radiation pressure. The sail orientation described by

α = 90o reflects a net force on the spacecraft equal to that in the CR3BP model.

5.2 Mathematical Expression for Solar Sail Acceleration

The derivation of the acceleration due to solar radiation pressure is based on

three critical assumptions and emerges as a function of the sail angles, α and γ. For

preliminary analysis, it is assumed that the solar sail is ideal and flat with a perfectly

reflecting surface, i.e., there is no absorption or refraction but only reflection due

to the incident photons. Thus, all the photons experience perfectly elastic collisions

and “bounce off” the surface of the solar sail as demonstrated in Figure 4.4. It is

also assumed that the source of photons is the primary, P1, which is the Sun. Thus,

the flow of incident photons is parallel to the Sun-sail line and the resultant force

is parallel to the sail surface normal. The total net force acting on the solar sail is

expressed as a function of angle, α, in the form

~FSail = εPSailASailCos
2α n̂ (5.9)

where ε is the efficiency of the sail. Recall, in Equation (4.8), the load factor, σ, is

defined as the ratio of the total mass supported by the sail to the total surface area

of the sail. The load factor, σ, is now used to rewrite the solar sail acceleration from

Equation (5.9),

~asail = ε
Psail
σ

Cos2α n̂ (5.10)

Thus, a new quantity is also defined as the solar sail characteristic accelerations, a∗.

The characteristic acceleration is the acceleration at 1 AU and, for the particular

orientation, such that the sail angle is equal to zero, i.e., α = 0o, or

a∗ = ε
Psail
σ

= ε
9.12

σ[g/m2]
[mm/s2] (5.11)
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The characteristic acceleration, a∗, serves as a reference value for comparison with

general solar sail accelerations. Consistent with the definition of σ, a characteristic

mass-to-area ratio, σ∗, is defined that produces a force equal and opposite to the

force acting on the sail due to solar radiation pressure, i.e.,

σ∗ =
PSail r13

G̃m1

(5.12)

Recall that G̃ is the dimensional universal gravitational constant, the quantity r13

is the dimensional scalar distance of the third body, i.e., the solar sail spacecraft,

from the first primary, P1, the Sun and m1 is the mass of the first primary, P1. The

introduction of the sail lightness parameter, β, is appropriate as

β =
σ∗

σ
(5.13)

The sail lightness parameter, also frequently denoted the sail loading parameter, is

the ratio of the acceleration due to the solar radiation pressure to the classical solar

gravitational acceleration [13]. Thus, the solar sail acceleration expression in Equation

(5.10) for efficiency equal to one, i.e., ε = 1, is rewritten as

~a = β
G̃m1

r13

Cos2α n̂ (5.14)

Now, rewriting Equation (5.14) in terms of nondimensional quantities

~̈rSail = β
(1− µ)

d2
Cos2α n̂ (5.15)

where ~̈rSail is the nondimensional acceleration of the solar sail due to solar radiation

pressure. Recall that d is the nondimensional distance of the solar sail from the Sun.

The model for the nondimensional solar sail acceleration in Equation (5.15) is now

easily included to augment the equations of motion in the classical CR3BP.

5.3 Augmented Equations of Motion in the CR3BP

The dimensional vector differential equation governing the motion of P3 under the

gravitational influence of P1 and P2 in the classical CR3BP is derived and appears
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in Equation (2.13). Augmenting the force to include the contribution due to the

solar radiation pressure acting on the spacecraft results in the following dimensional

equation,

m3
I~r3
′′ = −G̃m3m1

r3
13

~r13 −
G̃m3m2

r3
23

~r23 + β
G̃m3m1

r2
13

Cos2α n̂ (5.16)

To avoid round-off errors associated with the numerical integration and to generalize

the results, Equation (5.16) is rewritten in a nondimensional form,

I ~̈ρ = −(1− µ)

d3
~d− µ

r3
~r + β

(1− µ)

d2
Cos2α n̂ (5.17)

Thus, Equation (5.17) represents the nondimensional differential equation governing

the motion of P3 under the gravitational influence of P1 and P2 as well as the influence

of solar radiation pressure on P3 given that P3 represents a spacecraft with a solar sail

and P1 acts as the source of the solar radiation pressure. Substituting the kinematic

expression from the previously derived result in Equation (2.18) into Equation (5.17)

yields the following three second-order nondimensional scalar differential equations

of motion for the spacecraft, P3, equipped with a solar sail, under the gravitational

influence of the two primaries, P1 and P2 and the solar radiation pressure from P1,

the Sun, i.e.,

ẍ− 2ẏ − x = − (1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3
+ aSail−x (5.18)

ÿ + 2ẋ− y = − (1− µ)y

d3
− µy

r3
+ aSail−y (5.19)

z̈ =
(1− µ)z

d3
− µz

r3
+ aSail−z (5.20)

where aSail−x, aSail−y, and aSail−z are the components of the nondimensional solar sail

acceleration expressed in rotating coordinates acting along x̂, ŷ, and ẑ unit direction

vectors, respectively. The expressions for the acceleration components are as follows

aSail−x = β
(1− µ)

d2
Cos2α nx (5.21)

aSail−y = β
(1− µ)

d2
Cos2α ny (5.22)

aSail−z = β
(1− µ)

d2
Cos2α nz (5.23)
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The scalar magnitudes are the same as those in Equations (5.3) - (5.5). Based on the

definition of the pseudo-potential function in Equation (2.22), a condensed form of

Equations (5.18) - (5.20) is rewritten as

ẍ = 2ẏ + Ω∗x + aSail−x (5.24)

ÿ = − 2ẋ+ Ω∗y + aSail−y (5.25)

z̈ = Ω∗z + aSail−z (5.26)

The mathematical model represented in Equations (5.24) - (5.26) is nonlinear and

coupled, thus, no closed-form solution exists. Collinear equilibrium points exist in

the SS-CR3BP and the behavior of a solar sail equipped spacecraft is analyzed in

the vicinity of the L1 and L2 Lagrangian points. The subsequent analysis offers new

regions for exploration using the solar sails.

5.4 Collinear Lagrangian Points: Analysis in the SS-CR3BP

The inclusion of the acceleration terms due to solar radiation pressure in the

CR3BP model modifies the dynamical characteristics associated with the system. As

a result, collinear ‘displaced’ Lagrangian points emerge as new equilibrium locations.

The collinear, displaced Lagrangian points are also termed the collinear artificial

Lagrangian points. The parameters associated with the sail allow to vary the locations

of the collinear Lagrangian point along the x̂ unit direction vector, in turn, reaching

locations that might be significant from a scientific prospective.

5.4.1 Displaced Collinear Lagrangian Points

To explore the physical location of the displaced collinear Lagrangian points within

the context of a rotating frame, recall that both the relative acceleration and the
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relative velocity are zero. Consequently, the mathematical model in Equations (5.24)

- (5.26) reduces to

0 = Ω∗x + aSail−x (5.27)

0 = Ω∗y + aSail−y (5.28)

0 = Ω∗z + aSail−z (5.29)

These relationships are also expressed as the gradient of the potential function, i.e.,

−~∇Ω, such that,

−~∇Ω = β
(1− µ)

d2
Cos2α n̂ (5.30)

The location of the collinear points along the x-axis, i.e., y = 0 and z = 0, is

determined from the cross product of Equation (5.30) with n̂ gives [41], that is,

−~∇Ω× n̂ = ~0 (5.31)

For the displaced Lagrangian points along the x-axis, it is apparent from Equation

(5.31) that the equilibrium points exist for

n̂ =
−~∇Ω

|−~∇Ω|
= ±x̂ (5.32)

Thus, Equation (5.32) implies that the sail angle is equal to zero, α = 0o. The

equation governing the location of the displaced collinear Lagrangian point is derived

from Equation (5.18) after incorporating the appropriate orientation of the sail. The

assumption that y = z = 0, as well as the fact that the acceleration and velocity

components are equal to zero, yields

0 = x− (1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3
+ β

(1− µ)

d2
(5.33)

The expression in Equation (5.33) is rearranged into a more compact form as

0 = xLi −
(1− β)(1− µ)(xLi + µ)

d3
Li

− µ(xLi − 1 + µ)

r3
Li

(5.34)

where, the subscripts are consistent with those employed in Equation (2.37) for the

formulation in the C3BBP. Note that, for sail a lightness parameter equal to zero, i.e,



81

β = 0, Equation (5.34) is equivalent to Equation (2.37). Thus, the expression reduces

to the equation in the CR3BP, implying that the location of the collinear equilibrium

points in the classical CR3BP is simply a special case of the SS-CR3BP analysis, one

for which the value of β = 0.

A schematic representing the locations of the displaced collinear Lagrangian points

as a function of the sail lightness parameter, β, is plotted in Figure 5.2. As the

Figure 5.2. Displaced Sun-Earth Collinear Lagrangian Points Progression.

value of β approaches zero, the Lagrangian points shift to their location within the

context of the classical CR3BP. Alternatively, as the value of β approaches one, the

Lagrangian points, L1 and L2, both tend to asymptotically approach the barycenter,

B. Clearly, all the collinear points tend to shift closer to the primary, P1. As a result
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of variations in the sail lightness parameter, β, the displacement of L1 and L2 along

the Sun-Earth line is much more significant as compared to the displacement of L3.

Thus, the existence of displaced, artificial Lagrangian points broadens the options for

exploration within the SS-CR3BP. Further investigation into the potential existence

of periodic orbits in the vicinity of the displaced Lagrangian points is warrantied.

5.4.2 Behavior Near the Displaced Lagrangian Points in the SS-CR3BP

To obtain stability information corresponding to the displaced Lagrangian points,

differential equations are linearized relative to the equilibrium points. The linear

stability analysis is then based on the first-order variational equations. As a result

of the incorporation of the accelerations of the solar sail due to the solar radiation

pressure from the Sun, Equations (2.50) - (2.52) are rewritten as

ξ̈ − 2η̇ = (Ω∗xx + a∗Sail−xx)ξ + (Ω∗xy + a∗Sail−xy)η + (Ω∗xz + a∗Sail−xz)ζ (5.35)

η̈ + 2ξ̇ = (Ω∗yx + a∗Sail−yx)ξ + (Ω∗yy + a∗Sail−yy)η + (Ω∗yz + a∗Sail−yz)ζ (5.36)

ζ̈ = (Ω∗zx + a∗Sail−zx)ξ + (Ω∗zy + a∗Sail−zy)η + (Ω∗zz + a∗Sail−zz)ζ (5.37)

where Ω∗ij represents the second partial derivative of the pseudo-potential from Equa-

tions (2.53) - (2.55) evaluated at the specified collinear displaced Lagrangian point.

The a∗Sail−ij terms correspond to the partial derivatives of the scalar solar sail accel-

eration in the ith unit direction vector of the rotating frame with respect to the jth

position coordinate in the rotating frame. The expressions for a∗Sail−ij are summa-

rized in Appendix A. Similarly, the augmented system matrix, AAug in the state-space

representation, is now expanded as

AAug =

 N3 I3

(Ω∗i,j + a∗Sail−ij) D

 (5.38)
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and observe that AAug is a constant matrix. Thus, the state-space form for the

analysis of behavior in the vicinity of the collinear Lagrangian points with a solar sail

appears as

ξ̇

η̇

ζ̇

ξ̈

η̈

ζ̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(Ω∗xx + a∗Sail−xx) 0 0 0 2 0

0 (Ω∗yy + a∗Sail−yy) 0 −2 0 0

0 0 (Ω∗zz + a∗Sail−zz) 0 0 0





ξ

η

ζ

ξ̇

η̇

ζ̇


(5.39)

The new characteristic polynomial corresponding to the in-plane motion is formulated

using the information from Equation (5.35) - (5.36), and the result is

(5.40)
λ4 + (4− Ω∗xx − Ω∗yy − a∗Sail−xx − a

∗
Sail−yy)λ

2

+ 2(Ω∗xy − Ω∗yx + a∗Sail−xy − a
∗
Sail−yx)λ

+ ((Ω∗xx + a∗Sail−xx)(Ω
∗
yy + a∗Sail−yy)− (Ω∗xy + a∗Sail−xy)(Ω

∗
yx + a∗Sail−yx)) = 0

Confining the analysis to displaced collinear Lagrangian points, i.e. yLi = zLi = 0,

and Ω∗xy = Ω∗yx = 0, further reduces Equation (5.40) to the form

(5.41)λ4 +(4−Ω∗xx−Ω∗yy−a∗Sail−xx−a
∗
Sail−yy)λ

2 +(Ω∗xx+a∗Sail−xx)(Ω
∗
yy+a∗Sail−yy) = 0

Confining the solution to the primary plane of motion results in (Ω∗xx+a∗Sail−xx)(Ω
∗
yy+

a∗Sail−yy) < 0. The form of Equation (5.41) is easily transformed from a quartic to a

quadratic equation of the form

Λ2 + 2ρ1Λ− ρ2
2 = 0 (5.42)

where Λ again represents the roots of the Equation (5.42). The reformulations of the

coefficients from Equation (5.41) result in the associated constants,

ρ1 = 2−
Ω∗xx + Ω∗yy + a∗Sail−xx + a∗Sail−yy

2
(5.43)

ρ2
2 = − (Ω∗xx + a∗Sail−xx)(Ω

∗
yy + a∗Sail−yy) (5.44)
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Similar to Equations (2.76) - (2.77), ρ1 and ρ2 are both real. Thus, the quadratic

roots are of the same form as Equations (2.78) and (2.79), that is,

Λ1 = − ρ1 +
√
ρ2

1 + ρ2
2 (5.45)

Λ2 = − ρ1 −
√
ρ2

1 + ρ2
2 (5.46)

Analysis of the quintic roots reveals that the eigenvalues of the linear solar sail model

possess the same characteristics as the linear system represented by Equation (2.74)

That is, λ1,2 are real (<) eigenvalues and λ3,4 are purely imaginary (=) eigenvalues.

Thus, continuing the linear analysis similar to that completed for the linear model in

the traditional CR3BP, the appropriate selection of the initial conditions prevents the

excitation of the divergent behavior. Recall that the general solution for the in-plane

motion near the vicinity of the collinear Lagrangian points in the CR3BP is reflected

in Equations (2.92) and (2.93). The corresponding expression in terms of the new

definitions is rewritten as

ξ = ξ0Cos[$(τ − τ0)] +
η0

ρ3

Sin[$(τ − τ0)] (5.47)

η = η0Cos[$(τ − τ0)] + ξ0ρ3Sin[$(τ − τ0)] (5.48)

where $ and ρ3 are real quantities, i.e.,

λ3 = i$ (5.49)

ν3 = iρ3 (5.50)

The representative expressions for $ and β3 are

$ =

√
ρ1 +

√
ρ2

1 + ρ2
2 (5.51)

β3 =
$2 + Ω∗xx + a∗Sail−xx

2$
(5.52)

Thus, the initial conditions for the in-plane components of velocity are derived from

the derivatives of Equations (5.47) and (5.48) at an initial time, τ = τ0,

ξ̇0 =
η0$

ρ3

(5.53)

η̇0 = − ξ0ρ3$ (5.54)
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Note that the initial conditions are functions of the sail lightness parameter, β, since

the acceleration components for the solar sail model are directly related to the sail

lightness parameter. The impact of β on the initial conditions for the linear response

is represented in Table 5.1. To visualize the shift in both the locations of the displaced

Lagrangian points and the relative orbit about that point, the linear paths associated

with three sets of initial conditions are plotted corresponding to three different values

of the sail lightness parameter, β, in Figure 5.3. The table locates the position of the

Table 5.1 Initial Condition for Linear Orbits as a Function of Sail Parameter, β.

βi xL1 (km) ξ0 (km) η0 (km) ξ̇0 (km/s) η̇0 (km/s) Period (days)

β1 = 0.00 148105889 200,000 0 0 0.26831 ≈175

β2 = 0.03 147397139 200,000 0 0 0.141507 ≈247

β3 = 0.05 146671041 200,000 0 0 0.107480 ≈291

collinear Lagrangian point relative to P2, the Earth, and the initial velocities, ξ̇0 and

η̇0, for s specific sail parameter, β. In this example, the sail is completely “face-on”

to the flow of photons, i.e., α = 0o and γ is arbitrary. Using the information listed

in Table 5.1, the linear response for the three sets of initial conditions appears in

Figure 5.3. The set of three orbits includes the orbit corresponding to β1 = 0.00, i.e.,

equivalent to a spacecraft with either no sail or a sail completely turned edge-on as

plotted in purple. The initial conditions for each orbit in the figure is denoted as a

black dot along with the clockwise direction. Clearly, the position of the artificial

Lagrangian point, L1, shifts towards P1, i.e., the Sun. The size of the linear orbit also

decreases with sail lightness parameter. Of course, these initial conditions result in a

periodic orbit only in the linear system. In addition, the orbits are consistent with the

assumption that the sail maintains its orientation throughout the periodic orbit, i.e.,

α = 0o and γ is arbitrary. Propagation of these initial conditions in a nonlinear model

for the SS-CR3BP results in the departure of the spacecraft from the vicinity of the

linear approximation, thus, departing from an orbit about the displaced Lagrangian
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Figure 5.3. Displaced S-E Collinear Lagrangian Points Progression
with Linearized Periodic Orbits.

point. Although the trajectory departs, the linear solution is a good initial guess for

a corrections process to produce an exact solution in the nonlinear problem.
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6. DIFFERENTIAL CORRECTIONS FOR TRAJECTORY

DESIGN EMPLOYING SAIL ANGLES

Preliminary design of trajectories in the SS-CR3BP is typically based on a differential

corrections scheme. A numerical corrections approach from the CR3BP is extended

to incorporate the solar sail angles. The existence of displaced Lagrangian points

expands the regions of interest in the vicinity of these libration points. These re-

gions are explored for the existence of periodic orbits and trajectories of interest that

incorporate the solar sail model.

6.1 Augmented State Transition Matrix

The inclusion of the effects of photons on the acceleration of a solar sail based

spacecraft increases the complexity associated with the system model. Thus, the

evolution of a state over time is first analyzed in response to changes in the initial

states that include the sail angles, that is, α and γ. Assume the following form for

an eight-dimensional initial state, ~X(τ0),

~X(τ0) =
{
x0 y0 z0 ẋ0 ẏ0 ż0 α0 γ0

}T
(6.1)

Propagating the trajectory with the initial conditions in ~X(τ0) yields a baseline ref-

erence path for the augmented state transition matrix, ΦAug. Introducing a small

perturbation, δ ~X(τ0), produces the nearby initial conditions, ~X∗(τ0),

δ ~X(τ0) =
{
δx0 δy0 δz0 δẋ0 δẏ0 δż0 δα0 δγ0

}T
(6.2)

~X∗(τ0) = ~X(τ0) + δ ~X(τ0) (6.3)

The updated initial state, ~X∗(τ0), is propagated and results in a new time-varying

nearby arc. Note that the orientation of the sail, i.e., the sail angles, α0 and γ0, remain
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fixed throughout this propagation relative to the Sun in the rotating frame. Thus,

for assessing the dependencies, the sail angles are independent of the position and

the velocity states over time, τ . The new state along the trajectory, in the vicinity of

the baseline or the previous iteration, is approximated based on the linear mapping,

that is, the augmented state transition matrix, STMAug. Thus, applying a first-order

Taylor series expansion about the reference and neglecting the higher-order terms,

the linear variational relationship is written in the form,

δ ~̇X = AAug(τ)δ ~X (6.4)

Note, in contrast to Equation (5.38), the AAug matrix is time-dependent. If the three

second-order equations governing the motion of the sailcraft are expressed as six first-

order scalar equations incorporating the effects of the sail angles, the partials relative

to the initial position, velocity states and orientation angles, corresponding to the

elements of the system matrix, are formulated such that

∂ ~F

∂ ~X

∣∣∣∣
~X0

= AAug(τ) =


N3,3 I3 N3,2

(Ωi,j(τ) + aSail−ij) D C

N2,3 N2,3 N2,2

 (6.5)

where Np,q are the null matrices of size p × q. Submatrices I3, (Ωi,j(τ) + aSail−ij),

and D of matrix A are consistent with the terms defined in Equation (5.38). The

inclusion of the solar sail introduces partials relative to the effect of solar sail angles,

α and γ, on the scalar acceleration terms associated with the equations of motion.

Information related to these partials is expressed within submatrix, C.

C =


aSail−xα aSail−xγ

aSail−yα aSail−yγ

aSail−zα aSail−zγ

 (6.6)

The complete expressions for the partials of the scalar solar sail accelerations relative

to the sail angles, α and γ , in the rotating frame are listed in Appendix B. Thus,

the updated formulation for the general solution in linear vector form, is expressed as

δ ~X(τf ) = ΦAug(τf , τ0)δ ~X(τ0) (6.7)
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where ΦAug(τf , τ0) is an 8 × 8 STMAug that maps the change in initial state, δ ~X(τ0),

a 1 × 8 state vector, to the change in final state, δ ~X(τf ), also a 1 × 8 final state

vector. To determine the elements of the STMAug, the variational equations and the

equations of motion corresponding to the solar sail model are numerically integrated

simultaneously. The mathematical expression for the matrix variational equation is

given as

Φ̇(τf , τ0) = AAug(τf )ΦAug(τf , τ0) (6.8)

Based on the eight initial scalar states, the elements of the 8 × 8 STMAug, that relate

the final states to the initial eight states, are evaluated as partials, such that,

ΦAug(τf , τ0) =



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂x
∂α0

∂x
∂γ0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂y
∂α0

∂y
∂γ0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂z
∂α0

∂z
∂γ0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẋ
∂α0

∂ẋ
∂γ0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ẏ
∂α0

∂ẏ
∂γ0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0

∂ż
∂α0

∂ż
∂γ0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(6.9)

The zeros in the last two rows of the 8 × 8 STMAug matrix reflect the fact that the

sail orientation angles are independent of the position and velocity states and remain

constant over the integration arc. The remaining 48 time-varying elements of the

STMAug are evaluated by numerically integrating the matrix variational equations in

Equation (6.8) along with the equations of motions, given the initial conditions, and,

Φ(τ0, τ0) = I8×8 (6.10)

where I8×8 is a 8× 8 identity matrix. The augmented state transition matrix, STMAug

is now used in a corrections scheme to produce periodic orbits in the vicinity of

displaced collinear Lagrangian points.
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6.2 Differential Corrections Scheme based on Sail Orientation Angles

For trajectory design, a two-point boundary value problem can be solved using a

differential corrections scheme and implementing solar sail angles as design param-

eters. The corrections scheme is formulated to iteratively modify the initial states

based on the linear estimated information available from the STMAug; iterations con-

tinue until the desired final state is achieved to a specified tolerance level. The scheme

is implemented with constraints and additional free-variables, i.e., the sail orientation

angles. In the algorithm for the shooting scheme, the free-variables are the available

controls. In the case of a solar sail, in addition to initial position and velocity states,

the free variables include the orientation angles α and γ. Thus, for implementation of

the corrections scheme, a vector ~X is formulated that includes the sail states, α and γ,

acting as control parameters to achieve the vector constraints, ~F ( ~X) = ~0, associated

with the trajectory. The corrections scheme is developed based on the same strategy

as that applied in the classical CR3BP with a modified set of design variables.

6.2.1 Fixed-Time Single Shooting: Sail Angles as Design Variables

The inclusion of sail angles offers additional options for formulation of the shooting

scheme. To analyze the targeting algorithm based on sail angles, assume that a

spacecraft is located at a certain position and with some velocity. By adding to the

available controls within the initial state vector, an 8× 1 vector ~X(τ0), is defined,

~X(τ0) =



x0

y0

z0

ẋ0

ẏ0

ż0

α0

γ0



(6.11)
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Note that τ0 represents the initial nondimensional time. The corrections scheme

is formulated to target a desired six-dimensional final vector of scalar position and

velocity states, ~X∗(τf ),

~X∗(τf ) =


~r∗

~v∗

 (6.12)

where ~r∗ and ~v∗ are the three-dimensional position and velocity state vectors, respec-

tively. Thus, the TOF between the initial and the final state is defined as τf − τ0. For

this particular sample formulation, the TOF remains constant over the integration

time between successive iterations. If the initial sail angles are formulated as the only

available design variables, the ~X(τ0) vector is reduced to

~X(τ0) =

α0

γ0

 (6.13)

Equation (6.13) implies that the initial position and velocity states are not updated

– only the sail angles are allowed to vary. Given the number of design variables, to

achieve a unique solution, only two final states can be targeted from the total six-

dimensional desired state vector, ~X∗(τf ). This reduces the application of a fixed-time

single shooting algorithm that only allows sail orientation angles, α and γ as the

available design options.

6.2.2 Variable-Time Single Shooting: Sail Angles as Design Variables

Extending the analysis from a fixed-time single shooting scheme using solar sail

angles, α and γ, to a variable-time approach can increase the total number of design

variables to three. The new design variable vector, ~X(τ0), is

~X(τ0) =


α0

γ0

τ

 (6.14)
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where τ is the TOF, i.e., integration time between the initial and the final specified

state. Thus, the corrections scheme is developed to target a maximum of three

constraints. Though the number of possible solutions have increased in comparison

to a fixed-time single shooting process using only sail orientation angles for control,

the variable-time single shooting strategy with sail orientation angles plus time as

the control variables also faces the limitations. The versatility of both fixed-time and

variable-time single shooting schemes is increased by extending the basic strategy in

a multiple shooting scheme. Multiple arcs introduce more control variables that are

beneficial in meeting the final targeting constraints.

6.3 Multiple Shooting using Sail Orientation Angles

To generate a solution in a complex scenario, the differential corrections scheme is

extended to a set of n discrete patch points. Any multiple-shooting scheme is based

on a strategy that is similar to any single-shooting iteration process. In contrast,

however, the trajectory is now decomposed into a set of arcs, identified in terms of

n discrete points, thus, allowing more flexibility in the corrections process. Recall

that these points are denoted ‘patch-points’. The overall objective of a multiple

shooting differential corrections algorithm is a complete trajectory that is continuous

in position and velocity. To achieve such continuity, orientation angles associated

with the solar sail are iteratively updated to result in a final converged path. A

specific design scenario may or may not allow the TOF to vary along each segment

between the patch points. Thus, two multiple shooting formulations based on solar

sail angles is again formulated, i.e., fixed-time and variable-time multiple shooting

algorithm using sail angles, α and γ, as design parameters.

6.3.1 Fixed-Time Multiple Shooting using Sail Orientation Angles

Under the assumption that the integration time, τi, remains fixed along each arc

between the patch points, a fixed-time multiple shooting scheme is easily formulated.



93

The introduction of sail orientation angles, α and γ, within the design variable vector

is now expressed in general form as

~X =



~X1(τ01)

~X2(τ02)
...

~Xn−1(τ0n−1)

~Xn(τ0n)


(6.15)

Note that, ~Xi is now an eight-dimensional vector (as defined in Equation (6.11).)

comprised of three position states, three velocity states and two orientation angles.

Recall that n indicates the number of patch points used to discretize the trajectory

into n−1 segments. Thus, ~X is a 8n×1 dimensional design variable vector for a fixed-

time multiple shooting algorithm that incorporates sail angles along each segment.

The constraint vector, ~F ( ~X), is constructed to maintain continuity in both position

and velocity states between the end states along any arc and the subsequent patch

point, i.e.,

~F ( ~X) =



~X1(τf1)[1 : 6]− ~X2(τ02)[1 : 6]

~X2(τf2)[1 : 6]− ~X3(τ03)[1 : 6]
...

~Xn−2(τfn−2)[1 : 6]− ~Xn−1(τ0n−1)[1 : 6]

~Xn−1(τfn−1)[1 : 6]− ~Xn(τ0n)[1 : 6]


(6.16)

Continuity is maintained only for the six position and velocity states between each

arc as denoted by [1 : 6]. The sail angles are free to differ between two arcs to

achieve position and velocity continuity between two segments. Thus, the length of

the constraint vector is 6(n − 1), that is, the number of arcs is one less than the

number of patch points.
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As a result of incorporating sail angles in the multiple shooting algorithm, the

associated Jacobian matrix is modified. The partials relating the constraint vectors

to variations in the design variables is contained in the Jacobian Matrix, D~F ( ~X),

D~F ( ~X) =


(
∂ ~X1(τf1 )

∂ ~X1(τ01 )
− ∂ ~X2(τ02 )

∂ ~X1(τ01 )
) (

∂ ~X1(τf1 )

∂ ~X2(τ02 )
− ∂ ~X2(τ02 )

∂ ~X2(τ02 )
)

. . .
. . .

(
∂ ~Xn−1(τfn−1

)

∂ ~Xn−1(τ0n−1 )
− ∂ ~Xn(τ0n )

∂ ~Xn−1(τ0n−1 )
) (

∂ ~Xn−1(τfn−1
)

∂ ~Xn(τ0n )
− ∂ ~Xn(τ0n )

∂ ~Xn(τ0n )
)


(6.17)

where τ0i and τfi denote the initial and the final time, respectively, on the ith segment.

The partials reflect the variations in the state at the final time along an arc relative

to the eight-dimensional initial state vector, i.e., the position, the velocity and the

orientation angles. The position and velocity states at the end of the reference arc i,

~Xi(τfi)[1 : 6], are a function of the initial state along the segment, ~Xi(τ0i), one that

includes the eight initial states, i.e., position, velocity and the orientation angles,

α0i and γ0i . In this formulation, many terms within the D~F ( ~X) matrix are easily

recognized as the terms in the augmented STM the φAug[1 : 6, :]. The subsequent

patch point is not influenced by the selection of the previous initial patch point and,

thus,
∂ ~X2(τ02 )

∂ ~X1(τ01 )
is equal to ~0. Likewise, the end state along the ith reference arc, ~Xi(τfi),

is not a function of the subsequent patch point, ~Xi+1(τ0i), thus,
∂ ~X1(τf1 )

∂ ~X2(τ02 )
is equal to

~0. Lastly, the
∂ ~Xi(τ0i )

∂ ~Xi(τ0i )
is equal to a rectangular diagonal matrix that is a 6× 8 matrix

with diagonal entries equal to one. In other words, the matrix can be also be written

as

H6×8 =
∂ ~Xi(τ0i)

∂ ~Xi(τ0i)
=
[
I6×6 N6×2

]
(6.18)

where I6×6 is a 6× 6 identity matrix and N6×2 is a null matrix of dimensions 6× 2.

Substituting this information, the D~F ( ~X) matrix is rewritten in the form

D~F ( ~X) =


φAug(τf1 , τ01)[1 : 6, :] −H6×8

. . . . . .

φAug(τfn , τ0n)[1 : 6, :] −H6×8

 (6.19)
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This matrix is then employed in the update equation to iteratively converge the con-

straint vector, ~F ( ~X∗) to zero, i.e., ~F ( ~X∗) = ~0 within an acceptable level of tolerance.

6.3.2 Variable-Time Multiple Shooting Incorporating Sail Angles

Allowing the integration time, τi, to vary along any segment, further extends the

capabilities of using sail angles in the multiple shooting scheme, thus, resulting in

the formulation of variable-time multiple shooting algorithm. The updated design

variable vector now includes additional variables, τi. Thus, the design variable vector

is an 8n× 1 vector since there are n− 1 integration times corresponding to n− 1 arcs

between n patch points, i.e.,

~X =



~X1(8× 1)
...

~Xn(8× 1)

τ1

...

τn−1


(6.20)

The constraint vector, ~F ( ~X) is the same as that defined for a fixed-time multiple

shooting approach to maintain continuity in both position and velocity states,

~F ( ~X) =



~X1(τf1)[1 : 6]− ~X2(τ02)[1 : 6]

~X2(τf2)[1 : 6]− ~X3(τ03)[1 : 6]
...

~Xn−2(τfn−2)[1 : 6]− ~Xn−1(τ0n−1)[1 : 6]

~Xn−1(τfn−1)[1 : 6]− ~Xn(τ0n)[1 : 6]


(6.21)
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Recall that the ~F ( ~X) matrix is of dimension 6(n − 1). Since the reference state at

the end of each arc, ~Xi(τfi [1 : 6] is a function of the integration time, τi, the updated

D~F ( ~X) is rewritten as

D~F ( ~X) =


(
∂ ~X1(τf1 )

∂ ~X1(τ01 )
− ∂ ~X2(τ02 )

∂ ~X1(τ01 )
) (

∂ ~X1(τf1 )

∂ ~X2(τ02 )
− ∂ ~X2(τ02 )

∂ ~X2(τ02 )
) ∂ ~X1

∂τ1

. . .
. . .

. . .

(
∂ ~Xn−1(τfn−1

)

∂ ~Xn−1(τ0n−1
)
− ∂ ~Xn(τ0n )

∂ ~Xn−1(τ0n−1
)
) (

∂ ~Xn−1(τfn−1
)

∂ ~Xn(τ0n )
− ∂ ~Xn(τ0n )

∂ ~Xn(τ0n )
) ∂ ~Xn−1

∂τn−1


(6.22)

Inclusion of integration times introduced a new set of terms along a diagonal, ∂
~Xi
∂τi

, that

corresponds to the partial of each state at the end point along ith reference segment

with respect to the integration time for the ith arc. Thus, rewriting Equation (6.22)

in a form similar to Equation (6.19) to incorporate inclusion of time as design variable

results in an expression

D~F ( ~X) =


φAug(τfi , τ0i)[1 : 6, :] −H6×8

~̇X1[1 : 6]

. . .
. . .

. . .

φAug(τfn , τ0n)[1 : 6, :] −H6×8
~̇Xn−1[1 : 6]


(6.23)

where ~̇Xi[1 : 6] represents the time derivatives corresponding to the position and

velocity states at the end point along any reference segment, ~Xi[1 : 6]. Recall that

the orientation angles remain fixed relative to the rotating frame over the integration

time between two patch points. Finally, the update requires a minimum norm solution

since the Jacobian, D~F ( ~X), is an 8(n−1)×9n rectangular matrix. Thus, the iteration

process with a good goal to satisfy the constraint vector relationship, ~F ( ~X∗) = ~0,

proceeds. New position and velocity states are delivered along with the orientation

angles, α0i and γ0i , as well as a new TOF, τ ∗i , between each subsequent patch point.
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7. PERIODIC ORBITS AND TRAJECTORY DESIGN

IN THE SS-CR3BP

The corrections algorithm incorporating the solar sail orientation angles is extended

to construct periodic orbits in the vicinity of the artificial Lagrangian points. Pre-

vious missions have been designed to maintain a vehicle in the vicinity of the clas-

sical Lagrangian points. Incorporating the sail angles in search of new families of

three-dimensional halo orbits or other periodic orbits increases the design space for

trajectory design and, thus, potentially leads to new design scenarios for mission

applications.

7.1 Construction of Sail-Based Periodic Orbits

For the analysis and construction of periodic orbits in the nonlinear SS-CR3BP

model, it is insightful to first examine the response of initial states obtained from the

linear model when the linear initial state is propagated in the nonlinear SS-CR3BP

model. When the solar sail force is active, the trajectories generated by the initial

state from Subsection 5.4.2 is plotted in Figure 7.1. Obviously, the trajectories for

different sail parameters, β, are no longer periodic and the spacecraft quickly departs

from the path predicted by the linear model. Also note that the trajectories are all in-

plane. Thus, a corrections process is employed to determine new periodic solutions in

the vicinity of the displaced collinear Lagrangian points using sail orientation angles.

The in-plane initial state from the linear model is used as an initial guess for the

corrections scheme. The initial guess for α and γ is of order 10−5 degrees. To search

for periodic orbits, symmetry and perpendicular crossings are employed as constraints.

A generic formulation for construction of both planar orbits and three-dimensional

halo orbits facilitates this process.
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Figure 7.1. Linear Initial Guess Propagated in Nonlinear Model.

The algorithm, demonstrated in Subsection 3.4.1, for generating periodic orbits

in the vicinity of the collinear Lagrangian points is further extended to incorporate

a solar sail model. Let the initial state lie in the x̂ − ŷ plane (z = 0) with an initial

sail orientation of order 10−5 degrees, as given by sail angles, α0 and γ0, and the

initial velocity be perpendicular to the x̂ − ẑ plane, i.e., ż = 0. The in-plane initial

position and velocity states are represented in Table 5.1. The formulation for an

algorithm to obtain a periodic orbit is governed by allowing the sail angles, α0, γ0,

and the trajectory propagation time, τ , to implicitly vary by integrating to the map,

Σ : y = 0. Thus, a design vector is formulated, that is,

~X(τ0) =


α0

γ0

τ

 (7.1)

The sail angles are iteratively varied until a perpendicular crossing is achieved while

implicitly allowing the propagation time to vary, i.e., half a period for the particular

orbit. Note that for the duration of iteration, both the initial and the final states lie

on the x̂ − ẑ plane. For the final state to be perpendicular to the plane, the final
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velocities, ẋ and ż are constrained, such that, ẋ = ż = 0. Thus, the constraint vector

is selected.

~F ( ~X) =


y

ẋ

ż

 = ~0 (7.2)

The augmented D~F ( ~X) matrix of partials is formulated based on constraint vector,

~F ( ~X), as well as the design vector, ~X, that is,

D~F ( ~X) =
∂ ~F ( ~X)

∂ ~X
=


∂y
∂α0

∂y
∂γ0

∂y
∂τ

∂ẋ
∂α0

∂ẋ
∂γ0

∂ẋ
∂τ0

∂ż
∂α0

∂ż
∂γ0

∂ż
∂τ

 (7.3)

The augmented D~F ( ~X) in Equation (7.3) is now expressed in terms of the elements

of the STM and is augmented with the appropriate velocity and acceleration at the

terminal time along the reference path.

D~F ( ~X) =


φ27 φ28 φ29

φ47 φ48 φ49

φ67 φ68 φ69

 (7.4)

The equality between the number of available design variables and the number of

constraints in this example results in a square D~F ( ~X) matrix. Subsequently, the

predicted change in design variables, δα0, δγ0 and δτ is evaluated as

δ ~Xj =


δαj0

δγj0

δτ j

 = −D~F ( ~Xj)−1 ~F ( ~Xj) (7.5)
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Note that, since the integration proceeds to map, Σ : y = 0, a variable time implicit

formulation leads to explicitly updating only the sails orientation angles, α0 and γ0,

and not the integration time, τ ,

~Xj+1 =

αj+1
0

γj+1
0

 = ~Xj + δ ~Xj =

αj0
γj0

+

δαj0
δγj0

 (7.6)

The integration time is changed appropriately. An iterative process is applied to

meet the final constraints, ẋ = ż = 0, that is, a perpendicular crossing of the map,

Σ : y = 0, by updating the design variables, α0 and γ0. The initial position and

velocity states are fixed and only the sail orientation are allowed to vary in this

formulation.

Once the perpendicular crossing is delivered with an implicit variable-time scheme,

the sail orientation angles at Σ : y = 0 are again iteratively corrected to ultimately

achieve a periodic, continuous trajectory. The correction scheme is applied to the

trajectories that appear in Figure 7.1. Thus, a set of orientation angles is iteratively

calculated for each perpendicular crossing, i.e., at half the period (τ) and at one full

period (2τ) The orientation angles, α0 and γ0, for the periodic orbits plotted in Figure

7.2 are represented in Table 7.1. Recall that the maximum attitude orientation rate

Table 7.1 Sail Orientation Angles for Periodic Solution shown in Figure 7.2

βi α0(0→ 2τ) γ0(0→ τ) γ0(τ → 2τ) TOF (days)

β1 = 0.01 11.09o 90o -90o ≈181

β2 = 0.03 0.02o -90o 90o ≈249

β3 = 0.05 0.016o 90o -90o ≈290

is 0.02o/s. Several observations of Table 7.1 are notable: (1) The values in the table

in successive time block sometimes appear to shift by large amount. The value of γ,

for example, does not pass through an actual reorientation of 180o. Recall Figure 5.1,

where γ is the angle between the reference direction vector, k̂, and the projection of
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the sail normal unit vector onto a plane. By changing α from a negative to a positive

value, the sail angle, γ switches from 90o to -90o without any actual rotation of 180o.

(2) To reorient the sail, the change in projection is equivalent to a change from 11.09o

to -11.09o. The total change of 22.18o requires approximately 18.5 minutes. On the

time scale of an orbital period that is 181 days, 18.5 minutes, the interval to shift

the orientation of the sail is less than 0.007% of the period. Thus, for preliminary

analysis, the assumption of an instantaneous change in the sail angle is reasonable.

(3) It is also vital to point out that, even though the orientation of sail as defined by

angles α and γ may remain constant relative to the Sun in the rotating frame over one

half-period or along an arc, the orientation gradually changes relative to the inertial

frame. That is, the hardware must reorient the sail with respect to the inertial frame

to maintain constant orientation in relative to the rotating frame. To maintain the

orientation relative to the inertial frame, the sail must reorient at approximately one

degree per day for an orbit with an estimated period of 180 days.

As a result of the implicit variable time formulation, the period of each orbit differs

from that listed in Table 5.1. Observe that the period of the orbit increases and the

size of the orbit decreases as the artificial Lagrangian point, L1, shifts towards the

Sun as a result of an increase in the sail lightness parameter, β. The initial x-offset

in position of the particle, P3, from the location of the artificial Lagrangian point is

held constant at 200,000 km. The converged planar solution exists and appears in

Figures 7.2 for all three values of sail lightness parameter, β. The initial linear two-

dimensional guess produced trajectories that departed the vicinity of the artificial

Lagrangian point when propagated in the nonlinear model. Orientation angles, α0

and γ0 were iteratively corrected to determine a periodic solution with no restriction

on limiting the solution to two-dimensional orbit. The solution converged to a planar,

periodic trajectory that demonstrates an excursion of 22408 km in the z-direction.

The single shooting variable-time formulation is limited in its applicability because

only three design variables are available, α0, γ0 and τ . Thus, the constraint vector

is limited to a maximum size that is 3 × 1, which in previous section was limited to
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Figure 7.2. Periodic Orbits about Artificial Lagrangian Point, L1

the final position in y and the final velocity components in x and z direction, ẋ and

ż respectively. To find a solution for a more complex scenario or for the option of

additional types of constraints, the concept of differential corrections, with sail angles

as the available design variables, is further extended to develop a targeting scheme for

a set of n discrete points. The baseline trajectory is decomposed into segments that

originate from a sequence of patch points. The overall objective is convergence to a

path continuous in position and velocity. Such a result is accomplished by varying

the orientation angles, α and gamma, at each patch point such that the end position

and velocity states originating from the (n− 1)th patch point merges with the initial

position and velocity states along the next segment, i.e., the nth patch point.

7.2 Application for Trajectory Design about Artificial L1 using

Sail Orientation Angles

Reflection of photons from the Sun imparts momentum to the solar sail in an

orbit about artificial Lagrangian point. The transfer of momentum result in drifting

the spacecraft away from its nominal periodic trajectory and as a consequence, solar
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sail spacecraft will depart from the vicinity of the artificial Lagrangian Point. Unless

otherwise desired, this departure may result in mission failure and loss of vehicle.

Thus, sail orientation is changed to maintain the spacecraft in its periodic or quasi-

periodic trajectory about the artificial Lagrangian Point.

As an example, Figure 7.3 shows an orbit about the artificial Lagrangian point L1

where multiple shooting algorithm is employed to iteratively find a periodic trajectory

in the vicinity of L1. The planar solution for sail parameter, β = 0.05 is used as an

initial guess along with an initial z amplitude of 200,000 km. The number of patch

points in this example are six as marked by black dots in Figure 7.3. Note that,

the patch points are free to move. In the example presented in Figure 7.3, solar sail

angles are allowed to iteratively vary at each patch point to maintain continuity in

both position and velocity as demonstrated by the light blue orbit. The period of the

corrected orbit in blue is approximately 290 days with an approximate z-amplitude of

46,000 km. The specific sail orientation angles required for a periodic orbit are listed

in Table 7.2. Note that, though the angles appear to be small, the sail is completely

on when α = 00. Each set of orientation angle correspond to the orientation at a

Table 7.2 Sail Orientation Angles for Periodic Solution using Multiple
Shooting Algorithm

Arc No. α γ Time (≈ days)

Arc 1 0.042o 0.006o 6.74

Arc 2 -0.040o 0.002o 52.88

Arc 3 0.007o 0.015o 60.13

Arc 4 0.102o -0.002o 60.13

Arc 5 -0.005o -0.003o 60.13

Arc 6 -0.032o 0.007o 50.56

patch point and remains constant relative to the sun in the rotating frame until the

trajectory reaches the subsequent patch point. The example demonstrates that the
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Figure 7.3. Solar Sail Spacecraft Departure from the Vicinity of Artificial L1.

spacecraft will depart from its periodic trajectory without any additional algorithm

for performing trajectory design maneuvers. The departure trajectory is shown in

red.
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In Section 7.1, periodicity was maintained by applying variable-time single shoot-

ing algorithm to achieve a desired orbit. Spacecrafts equipped with solar sail can

further utilize sail angles to perform maneuvers over number of revolutions, which

otherwise would require thrusters, and thus propellant to perform the adequate ma-

neuver. As, an example, Figure 7.4 shows the application of multiple shooting scheme

to maintain a spacecraft for three revolutions. Such an orbit about an artificial La-

grangian point does not exist in the classical CR3BP. The objective of trajectory

design, as demonstrated in this example, is to maintain the spacecraft in the vicinity

of the artificial Lagrange point, L1, for a specific duration of time based on mission

specifications. A three-dimensional non-periodic trajectory with initial states and so-

lar sail angles (from the planar solution for β = 0.05 and a z-amplitude of 100,000 km)

is provided as an initial guess for the corrections scheme. The corrections algorithm

algorithm was used to maintain a nearby trajectory and periodicity, i.e., the initial

position and velocity state should be the same as the final position and velocity state

after the completion of three revolutions. The sail orientation angles for each patch

point are given in Appendix The total time for trajectory is approximately 873 days

and completes one revolution in about 291 days. As can be seen from Figure 7.4, the

approximate y and z amplitude of the orbit is 50,000 km.

7.3 Offset Periodic Orbits in the Vicinity of Artificial L1

To extend the application of solar sails, new regions for the existence of periodic

orbits is explored. Sail orientation angles can be exploited to produce periodic orbits

and to maintain the spacecraft in the vicinity of that orbit by performing orientation

maneuvers for trajectory design. The differential corrections scheme applied is specific

to maintain continuity in both position and velocity states.

In the example presented in Figure 7.5, multiple shooting scheme is employed

to maintain continuity after three revolutions. To check the validity of the multiple

shooter, for this example, the number of patch points are two per revolution, thus, a
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Figure 7.4. Trajectory Design with Sailcraft in the Vicinity of Artifi-
cial L1 for Three Revolutions

total of six for three revolutions. A three-dimensional non-periodic trajectory with a

small z-amplitude is used as an initial guess with sail completely turned on, i.e., α = γ

∼= 0o. Interesting features are displayed by the converged trajectory shown in Figure

7.5. Note that, the black dots indicate the location of patch point and the red dot is
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Figure 7.5. Off-Axis Trajectory Design in the Vicinity of Artificial L1.

the converged initial and final state. A total of six patch points were used over three

revolutions to converge the trajectory. Thus, the orientation angle history for the

duration of each arc is shown is Table 7.3. The orientation is held constant relative

to the Sun in the rotating frame until the next patch point. Upon close examination

of Figure 7.5, it s also apparent that the converged patch points are not the same but

are relatively close to each other. In this formulation, though the patch points were

free to move, the integration time between the patch point is fixed. Thus, fixed-time

multiple shooting algorithm was employed to achieve a periodic solution.

The planar x−y view does not provide much insight into the unique nature of the

trajectory but further understanding is gained by observing x − z and y − z planar

views that exhibit distinct characteristics associated with the trajectory. The three
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Table 7.3 Sail Orientation Angles for Offset Periodic Solution

Arc No. α γ Time (≈ days)

Arc 1 0.061o 0.014o 117.68

Arc 2 0.061o -0.006o 172.91

Arc 3 0.056o 0.014o 117.68

Arc 4 0.060o -0.006o 172.91

Arc 5 0.057o 0.014o 117.68

Arc 6 0.058o -0.006o 172.91

period orbit appear to exist about 5,000 km above the x− y plane. The z excursion

is approximately 5,000 km where as the y-amplitude is approximately 47,000 km.

It is also vital to note that though the trajectory exhibit periodic nature, further

propagation without adequate maneuvers will result in departure from the vicinity of

the trajectory shown in Figure 7.5.

7.4 Trajectory Design Using Sail Orientation Angles

Solar sails open new regimes for exploring periodic orbits in the vicinity of the

collinear Lagrangian points. Solar sail angles are altered to demonstrate the capabil-

ities of a sail and achieve desirable trajectory characteristics. With solar sail technol-

ogy still in the developmental stages, analyzing the behavior of solar sails with low

sail lightness parameters may be more useful in the near term.

7.4.1 y-Amplitude Adjustment of a Trajectory in the Vicinity of L1

The application of solar sails and the use of orientation angles as design variables

is extended to modify the trajectory of planar orbits. Assume that the sail lightness

parameter value of β = 0.01 is selected to model the behavior of a sail in the vicinity of

traditional Lagrange point. In Figure 7.6, y-amplitude adjustment of the trajectories
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in the vicinity of traditional Lagrange point, L1 are shown. In certain mission design

scenarios, it might be desired to increase the y-amplitude of a planar orbit to meet a

specific goal. Such a modification to a Lagrangian point orbit can be achieved simply

by reorienting the sail. The orientation angle history for Figure 7.6 is summarized in
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Figure 7.6. y-Amplitude Adjustment of the Trajectories

Table 7.4.

Each color correspond to a trajectory continuous in both the position and the

velocity. The black dots denote the initial state and the point for a pair of orbits



110

Table 7.4 Sail Orientation Angles for y-Amplitude Adjustment

Orbit No. ξ0 (km) α0(0→ 2τ) γ0(0→ τ) γ0(τ → 2τ) Period (days)

Purple a 100,000 61.08o 90o -90o 148.06

Purple b 100,000 76.86o -90o 90o 183.72

Green a 200,000 54.44o 90o -90o 160.38

Green b 200,000 66.22o -90o 90o 191.83

Blue a 300,000 48.54o 90o -90o 169.28

Blue b 300,000 58.08o -90o 90o 202.09

Red a 450,000 53.81o 90o -90o 186.49

Red b 450,000 43.40o -90o 90o 226.25

where a change in the orientation angles result in a change in the trajectory, i.e.,

new orbit. Whereas the yellow dots with black circle correspond to the intermediate

correction in orientation angle for perpendicular crossing of Σ : y = 0. Recall, the

Earth is magnified ten times its actual size for visualization. Each color shows a long

period and short period trajectories which are labeled as orbit a and b respectively in

Table 7.4. The integration time corresponding to a half-orbit is τ . As an example, the

red trajectory starts from the initial state marked by a solid black dot. The spacecraft

starts by moving along the smaller orbit with sail orientation shown in Table 7.4 for

orbit number: Red a. After completing one revolution, the sail reorients to alter its

path and move along the larger orbit. The orientation of the sail is given by orbit

number: Red b as shown in Table 7.4. Varying the sail angles, the vehicle can either

be maneuvered from one orbit to another by changing the orientation angle of the sail

or can be maintained along the same trajectory. It is also important to note that the

change in angle results in a change in time (see Table 7.4) it takes for the trajectory

to return to the same initial position and velocity state. The importance of time and

location is evident from the perspective of a rendezvous problem. If the spacecraft

that is incoming for docking experiences a delay, the docking station, equipped with
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solar sails, can alter its trajectory by changing the sail orientation and take a longer

route to account for the delay in approach of the incoming spacecraft.

7.4.2 L1-Earth Cycling Trajectory

Prior to launching a solar sail spacecraft away from the Earth about the artificial

Lagrangian points, it is important to test its maneuvering capabilities in Earth’s

vicinity and in an orbit about the classical Lagrangian points, specifically, L1. The

sample trajectory proposed in this subsection corrects the path of a sail to orbit

Lagrangian point, L1, transition to a trajectory towards the Earth, complete two

revolutions about the Earth, and then fly back to same orbit about the Lagrangian

point, L1. The trajectory shown in Figure 7.7 demonstrates the capability of a solar

sail to achieve such a path by solely changing the orientation angles of a sail. Specific

to this trajectory design, the maneuvers, i.e., changes in sail orientation angles, are

performed at the crossing of map Σ : y = 0.

The initial and the final state, represented by a green dot in Figure 7.7, is located

between the Sun and L1 at a distance of 250,000 km away from L1 along the Sun-

Earth line. The black dots correspond to the intermediate locations of maneuvers that

are performed to achieve the designed trajectory. The sequence in which each path is

flown is marked by the Leg #. Based on the mission specification, the trajectory can

be manipulated using a sail to meet specific mission goals. The proposed trajectory

starts from the initial state represented by a green dot and moves along Leg 1 for

101.05 days. After performing a sail orientation maneuver, the spacecraft continues

on its path towards the Earth as shown by Leg 2 of the trajectory. Subsequently,

after a third sail orientation maneuver, Leg 3 is traversed, completing one revolution

about the Earth. After performing additional orientation changes, the spacecraft

travels along Leg 4 and Leg 5 before a final reorientation that results in the Leg 6

of the trajectory that brings the spacecraft back to the initial state. Note, that the

Earth is magnified 10 times its actual size for visualization purpose. The nearest
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approach of the trajectory is approximately 279,868 km away from the surface of the

Earth. The approach is at a distance that is closer than the Moon’s mean orbital

radius, thus, a higher fidelity model may be necessary for further analysis to account

for the gravitational influence of the moon. The orientation history for the sail angles

and the time of flight for each leg is shown in table 7.5.

The total time of flight to complete one cycle, i.e., returning back to the initial

state as shown in Figure 7.7, is 563.35 days. The algorithm for the proposed trajectory
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Table 7.5 Sail Orientation Angles for L1-Earth Cycling Trajectory

Leg No. α γ TOF (days)

Leg 1 58.08o -90o 101.05

Leg 2 29.58o -90o 71.63

Leg 3 29.58o 90o 71.63

Leg 4 23.15o 90o 108.99

Leg 5 23.15o -90o 108.99

Leg 6 58.08o -90o 101.05

is currently designed to perform two revolutions of the Earth and return back to the

initial state in an orbit about the L1. Upon returning, the trajectory continues to

follow the same path with the same orientation angle sequence as outlined in the

Table 7.5. The algorithm is capable of increasing the number of revolutions either

about the L1 or in an orbit about the Earth and still return to its initial state after the

completion of trajectory excursions. The proposed trajectory verifies the application

of a solar sail for designing a trajectory that is capable of maintaining a spacecraft

in a certain orbit or evolving a trajectory specific to a mission. Such a trajectory

demonstrates the capability of a sailcraft to alter the periapsis or provide contingency

options for a spacecraft to return back to the Earth in case of an emergency while

enroute to an orbit about the L1.

7.4.3 Earth-L1 Halo-Earth Return Trajectory with Solar Sail

Halo orbits in the vicinity of L1 Lagrangian point are of significant scientific inter-

est. In the proposed example, the spacecraft, equipped with solar sail, departs along

the trajectory outlined by the SS-CR3BP dynamics and arrive in a low inclination

halo orbit. A sample departure from the vicinity of Earth is shown in Figure 7.8.

In the illustration presented, the spacecraft leaves the vicinity of the Earth from a
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medium earth orbit (MEO) at an altitude of approximately 13,525 km in the x direc-

tion and -117 km in z direction. The red dot indicates the departure location from

the vicinity of the Earth in the direction as indicated in Figure 7.8. The orbital speed

at an altitude of 13524 km is approximately 4.48 km/s. Thus, to depart along the

indicated trajectory, an initial boost of 1.79 km/s is required to raise the velocity of

the sailcraft to 6.24 km/s and continue along the trajectory outlined by Leg 1.

Complete trajectory for departure and arrival at a halo orbit is shown in Figure

7.9. On arrival, there is no cost associated with the insertion into the halo orbit. Sail

orientation angles are changed in order to accomplish the desired insertion and follow

a periodic trajectory about the L1.

The orientation history for the sail angles is shown in Table 7.6 It is evident from

Figure 7.9(b) that the halo orbit demonstrates a small excursion in the z-direction.

During the transition phase between Leg 2 and Leg 3, the sail reorients itself such

that the angle γ switches from 74.68o to -74.68o. Once again, this is a change in the

projection of the sail normal vector, n̂ and not an actual reorientation by 149.36o.

An equivalent change in α is of 130.72o. Based on the maximum turn rate of 0.02o/s,

the sail would take approximately 109 minutes to reorient itself. Comparing the time

to reorient with the time of flight for that particular segment (Leg 3), the orientation

time is less than 0.08% of the segment flight time. Thus, it is appropriate to assume
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Figure 7.9. Projections for Three-Dimensional Trajectory about L1

Table 7.6 Earth to L1 Halo Return Trajectory with Solar Sail

Leg No. α γ TOF (days)

Leg 1 66.30o 100.00o 89.79

Leg 2 65.36o 74.68o 96.18

Leg 3 65.36o -74.68o 96.18

Leg 4 66.30o -100.00o 89.79

that the change in orientation is instantaneous. Based on the mission specification,

the orientation angles are selected to either maintain the solar sail in an orbit about

the Lagrangian point, L1, or perform a number of revolutions about the L1 and

eventually return back to the vicinity of the Earth. The sample mission design shown

in Figure 7.9 leaves the vicinity of the Earth, performs one revolution about the L1,

and then departs along Leg 4 back to the vicinity of the Earth. Such a trajectory also

demonstrates the capability of a sailcraft to be able to depart from various altitudes

and enter a halo orbit of different sizes. It also provides contingency options for a

spacecraft to return back to the Earth in case of an emergency while enroute to an

orbit about the L1. The orientation angles and the time of flight for each leg is
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indicated in Table 7.6. Thus, the total time of flight to complete the sample mission

is 371.94 days.

7.4.4 Three-Dimensional Trajectory Design about L1 Lagrangian Point:

z-Amplitude Adjustment

To expand the trajectory design tool kit using sail angles, it is desirable to look

into three-dimensional trajectories. As an example, a mission may require a tra-

jectory to have a variable z-amplitude to meet specific objective. To compute a

three-dimensional trajectory, an initial state is selected between the Sun and L1 at

a distance of 200,000 km away from L1. A z-amplitude of 10,000 km is added to

the initial state. A linear guess for velocity is generated and a corrections scheme is

applied. Initial and final state of the trajectory are marked by a green dot as shown in

Figure 7.10. The converged trajectory follows a path that resembles the trajectory of

three different halo orbits. In Figure 7.10, the black dots correspond to the locations

where orientation angles are changed prior to the following Leg. As the sail-based

spacecraft moves along a particular Leg, the orientation angles remain fixed relative

to the Sun in the rotating frame until the trajectory reaches the subsequent maneu-

ver location. Planar projections of the traversed trajectory are shown in Figure 7.11.

The orientation angles and the time of flight for each Leg of the trajectory is given

in Table 7.7.

Though it may appear that the sail angle, γ, reorients itself from -169.74o to

169.74o, this is simply a change in the projection. In other words, angle α reorients

by 62.20. Thus, the time to reorient the spacecraft is 52 minutes for α. Compared to

the time of flight for Leg 5, the reorientation time is only 0.02% of the total time for

that Leg. Thus, it is appropriate to assume instantaneous change in sail angle for the

preliminary analysis presented in this work. The total time of flight to complete one

cycle, i.e. traverse the trajectory shown by three halos, is approximately 563 days. If

the algorithm is propagated for longer duration of time, the spacecraft will traverse
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Table 7.7 Sail Orientation Angles for y-Amplitude Adjustment in the Vicinity of L1

Leg No. α γ TOF (days)

Leg 1 55.18o 118.85o 81.48

Leg 2 34.54o 27.81o 93.78

Leg 3 31.10o -169.74o 106.1

Leg 4 31.10o 169.74o 106.1

Leg 5 34.54o -27.81o 93.78

Leg 6 55.18o -118.85o 81.48

the same trajectory with the same orientation angle history. The proposed trajectory

provides flexibility to either remain in a low z-amplitude orbit or transition to a

higher amplitude orbit, or traverse the whole trajectory multiple times. Thus, based
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Figure 7.11. Projections for Three-Dimensional Trajectory y-
Amplitude Adjustment about L1

on mission specification and the orientation history provided in Table 7.7, the sail

angle maneuvers can be scheduled to reorient at the maneuver locations and achieve

the desired Leg.
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Based on the results, it is evident that the use of solar sail provides the space-

craft with certain abilities that lie beyond the reach of the spacecraft within classical

CR3BP. The examples provided in this section demonstrate new design capabilities

with solar sail for planar as well as three-dimensional trajectories. Further research

and development in the field of solar sail technology can assist in an efficient trajectory

design to meet mission goal, thus, realizing the true potential of solar sails.



120

8. SUMMARY AND RECOMMENDATIONS

This chapter summarizes the findings and results of a preliminary investigation of

the effects of incorporating a solar sail force model into the circular restricted three-

body problem. Concluding remarks are made on the results of this investigation, and

recommendations are provided to further extend the scope and validity of this work.

8.1 Summary

In this investigation, the motion of a spacecraft equipped with solar sail is ex-

amined under the gravitational as well as solar radiation influence. As a result of

incorporating the solar sail model, the locations of the collinear artificial Lagrangian

points are variable within the limits on the sail lightness parameter available with the

current technology. The size and location of a periodic orbit in the vicinity of the

collinear Lagrangian point, L1, is varied, with possible mission application allowing

observation of the Sun from a closer distance than the classical L1 point. The closer

location for observing solar weather would facilitate the early detection of potentially

hazardous solar flares and solar winds. Preliminary analysis is carried out to analyze

the solar sail acceleration that can be achieved based on the sail lightness parameter

the total mass of spacecraft. A decrease in the efficiency of the sail led to a higher re-

quirement for the total sail area to achieve the same level of acceleration. If the total

sail area is kept constant, the total amount of load that the sail can carry decreases

or the acceleration due to the radiation pressure decreases.

Stability information corresponding to the displaced collinear Lagrangian points

is derived based on the linear model of the Solar Sail Circular Restricted THREE-

Body Problem (SS-CR3BP). Analysis of the quintic root revealed that the linear

solar sail model exhibits the same stability characteristics that of a classical CR3BP
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model. Thus, linear initial conditions are generated that correspond to the linearized

periodic orbits in the vicinity of the collinear Lagrangian point, L1. An augmented

state transition matrix is introduced that describes variations in the position and

velocity states as a result of changes in the initial state including the initial sail

orientation angles. Differential corrections schemes are developed that utilize the

solar sail orientation angles s the available controls to target a trajectory with the

desired characteristics.

Initial conditions from the linear SS-CR3BP model are located and are employed

as the initial guess for a differential corrections process to locate periodic orbits.

Changes in the sail lightness parameter are explored, and yields a change in both the

size and the period of an orbit in the vicinity of an artificial Lagrangian point, L1.

Sail orientation angles are employed for trajectory design to maintain a spacecraft

in the vicinity of the artificial L1 Lagrangian point for an extended duration. Using

this technique, a sample offset three-dimensional, unsymmetric trajectory is located

that hovers above the artificial Lagrangian point. The existence of this orbit is a

result of incorporating the solar sail model and cannot be achieved within the scope

of classical CR3BP.

The solar sail orientation angles prove to be important design tools in the SS-

CR3BP model. Incorporating the solar sail model reveals orbit transformations be-

tween planar orbits in the vicinity of L1. By varying the solar sail orientation angles,

a spacecraft is capable of transitioning between orbits of different y-amplitude and

varying periodicity. A cycling trajectory between the Earth and L1 is proposed for

preliminary analysis to understand and exploit the advantages of solar sails. The

proposed mission transitions from an orbit about the L1 equilibrium point to an orbit

about the Earth, where two revolutions are made before going back into an orbit

about L1. This behavior is repeated and the number of revolutions are controlled

based on mission specifications.

The sail orientation angles are used as design variables for the purpose of demon-

strating the capability of a sail for a three-dimensional trajectory design. Thus, the
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ability to transition between the halo orbits of varying z-amplitude is also shown. Fi-

nally, a sample transfer from a medium Earth orbit (MEO) is presented that exploits

the solar sail capabilities to transfer from a MEO, enter into a low inclination halo

orbit about the L1 and returns back to the same MEO about the Earth. The behavior

is repeatable and the number of revolutions in the orbit about L1 are controlled by

the orientation angles. After completing the desired number of revolutions, the sail

is reoriented to enter a Leg that delivers the spacecraft back to the vicinity of the

Earth.

8.2 Recommendations for Future Work

This investigation is a preliminary analysis on the inclusion of a solar sail model

into the circular restricted three-body problem. The purpose of this work is to lay

the foundation to further research in solar sail technology.

The proposed trajectories in this investigation are in the vicinity of Earth and

the Lagrangian point L1 prior to extending the investigation to artificial Lagrangian

points. It is assumed that the sail angle orientation can be changed instantaneously

as the relative time frame of the Sun-Earth system is large when compared to the

time to reorient a sail. Including the time for rotation into the dynamical model can

given a more realistic feel for trajectory and, thus, provide a better approximation.

Further investigation of the off-axis Lagrangian points will provide insight into the

types of orbits that exist in these regions. It is also of interest to place a solar sail

spacecraft at an artificial Lagrangian point L3 to provide complete coverage of the

variations in the solar atmosphere at all time. Positing a sail at L3 can aid in the

prediction of solar flares, and in monitoring solar weather phenomenon that may pose

as a potential hazard to Earth.

To date, only one spacecraft, IKAROS by JAXA, was successfully able to harness

solar radiation pressure (SRP) as a means of propulsion. Though the acceleration

due to SRP is of the order 10−6 m/s2 for the current available technology, the ac-
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celeration can provide velocity accumulation required for deep space missions. Solar

sail technology can be applied to visit the inner plants, such as IKAROS, or to move

closer to the Sun for scientific observation, or to facilitate a mission to the asteroids.

Replacing the CR3BP with an ephemeris model will increase the accuracy of the

model and provide new solutions. Further research in the development of solar sail

technology is recommended to improve on the sail lightness parameter. An improved

sail lightness parameter will open up even more regimes and shift the Lagrangian

point closer to the Sun which can prove to be of greater importance for much earlier

and accurate detection of solar weather.

A catalog of available solutions for a variety of sail parameter values would be use-

ful to determine an appropriate sail for a specific mission. Further study of the sail

lightness parameter could help motivate the development of a sail possessing variable

sail lightness parameter to enhance the dynamical regimes in which the sail can func-

tion. Variable lightness parameter sail also require the development of a differential

corrections algorithm employing β as a control variable. Much more research and

development of solar sail technology is required, and such efforts are motivated by

propulsion needs of missions that are prohibitively expensive in terms of fuel. Thus,

solar sail technology is a technology of the future, applicable to both near and far

missions that is capable of attaining great velocities over time and lower the cost

associated with the mission.

8.3 Conclusions

The solar sail model provides the capability to successfully harness the solar radi-

ation pressure. The applications of solar sails are investigated from a mission design

perspective. New artificial Lagrangian points are found, periodic trajectories in their

vicinity are located and investigated. Solar sail prove an effective tool for trajectory

design and the computation of the offset periodic orbits from the x−y plane. The sail

orientation angles provide the capability to transfer between orbits of different size
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and period. Transfer from the vicinity of the Earth to a halo orbit about the artificial

L1 point further demonstrated the application of a solar sail. Further research and

investigation will yield new ideas for the application of solar sails that can assist in

taking the concept of human space exploration to a new level.
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Appendix A: Partial Derivatives of Solar Sail Acceleration Relative to the

Position Coordinates

The partial derivatives of the scalar solar sail acceleration components relative

to the position coordinates in the Sun-Earth rotating frame are listed below. The

aSail−ij terms correspond to the partial derivatives of the scalar solar sail acceleration

components in the ith unit direction vector of the rotating frame with respect to the

jth position coordinate in the rotating frame. The angles associated with the solar

sail, i.e., α and γ, are assumed to be independent of the position coordinates.
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|(~d× ẑ)× ~d|3

}

aSail−zx = β
(1− µ)

d2
Cos2α

{
−2

(x+ µ)

d2
nz − Cosα

(x+ µ)z

d3

+SinαCosγ
(x+ µ)((x+ µ)2 + y2)z2

|(~d× ẑ)× ~d|3

}
(A.7)

aSail−zy = β
(1− µ)

d2
Cos2α

{
−2

y

d2
nz − Cosα

yz

d3
+ SinαCosγ

((x+ µ)2 + y2)yz2

|(~d× ẑ)× ~d|3

}
(A.8)

aSail−zz = β
(1− µ)

d2
Cos2α

{
−2

z

d2
nz + Cosα

((x+ µ)2 + y2)

d3

−SinαCosγ ((x+ µ)2 + y2)2z

|(~d× ẑ)× ~d|3

}
(A.9)
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Appendix B: Partial Derivatives of Solar Sail Acceleration Relative to the

Sail Angles, α and γ

The partial derivatives of the scalar solar sail acceleration components relative

to the sail angles, α and γ, in the Sun-Earth rotating frame are listed below. The

aSail−ij terms correspond to the partial derivatives of the scalar solar sail acceleration

components in the ith unit direction vector of the rotating frame with respect to the

jth angle corresponding to the solar sail angles, α and γ, in the rotating frame.

aSail−xα = β
(1− µ)

d2
Cosα

{
−3CosαSinα

(x+ µ)

d2
+ (1− 3Sin2α)Sinγ

y

|(~d× ẑ)|3

−(1− 3Sin2α)Cosγ
(x+ µ)z

|(~d× ẑ)× ~d|3

}
(B.1)

aSail−yα = β
(1− µ)

d2
Cosα

{
−3CosαSinα

y

d2
− (1− 3Sin2α)Sinγ

(x+ µ)

|(~d× ẑ)|3

−(1− 3Sin2α)Cosγ
yz

|(~d× ẑ)× ~d|3

}
(B.2)

aSail−zα = β
(1− µ)

d2
Cosα

{
−3CosαSinα

z

d2
+ (1− 3Sin2α)Cosγ

(y2 + (x+ µ)2)

|(~d× ẑ)× ~d|3

}
(B.3)

aSail−xγ = β
(1− µ)

d2
Cos2α

{
SinαCosγ

y

|(~d× ẑ)|3
+ SinαSinγ

(x+ µ)z

|(~d× ẑ)× ~d|3

}
(B.4)

aSail−yγ = β
(1− µ)

d2
Cos2α

{
−SinαCosγ (x+ µ)

|(~d× ẑ)|3
+ SinαSinγ

yz

|(~d× ẑ)× ~d|3

}
(B.5)

aSail−zγ = β
(1− µ)

d2
Cos2α

{
−SinαSinγ (y2 + (x+ µ)2)

|(~d× ẑ)× ~d|3

}
(B.6)
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Appendix C: Solar Sail Orientation Angles at Successive Patch Point for

Trajectory Shown in Figure 7.4

In Table C.1, the Sail Orientation history is provided for each successive patch

point for the periodic trajectory. The trajectory is about an artificial Lagrangian

Point, L1 and is being maintained in an orbit by using corrections algorithm employ-

ing solar sail angles for trajectory design. These angles correspond to preliminary

analysis. It is assumed that spacecraft orientation can be made to 0.0010 precision.

Table C.1 Sail Orientation Angle History for Figure 7.4

Arc No. α γ

Arc 1 0.042o 0.006o

Arc 2 -0.040o 0.002o

Arc 3 0.007o 0.015o

Arc 4 0.102o -0.002o

Arc 5 -0.005o -0.003o

Arc 6 -0.032o 0.007o

Arc 7 0.042o 0.006o

Arc 8 -0.040o 0.002o

Arc 9 0.008o 0.015o

Arc 10 0.103o -0.002o

Arc 11 -0.005o -0.003o

Arc 12 -0.032o 0.007o

Arc 13 0.042o 0.006o

Arc 14 -0.041o 0.002o

Arc 15 0.008o 0.015o

Arc 16 0.104o -0.002o

Arc 17 -0.005o -0.003o

Arc 18 -0.032o 0.007o


