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ABSTRACT

Sood, Rohan M.S.A.A., Purdue University, December 2012. Solar Sail Applications
for Mission Design in Sun-Planet Systems from the Perspective of the Circular Re-
stricted Three-Body Problem. Major Professor: Kathleen C. Howell.

As a consequence of the successful harnessing of solar radiation pressure demon-
strated by JAXA’s IKAROS mission, the interest and developments in the field of
solar sails has gained a significant momentum. Sail-based spacecraft potentially offer
indefinite maneuvering capability by exploiting photons from the Sun as a means
of propulsion. Incorporating a solar sail model within the context of the circular
restricted three-body problem extends trajectory design options. In the last few
decades, the Lagrangian points, L;, as defined in the restricted problem, have in-
creasingly become a focus for scientific spacecraft mission applications. In this inves-
tigation, a hybrid model that incorporates a solar sail force into the circular restricted
three-body problem (SS-CR3BP) is developed. As a result of the additional force,
the displaced locations of artificial collinear Lagrangian points are determined and ex-
ploited for trajectory design. In fact, various trajectories are constructed that employ
only sail orientation angles to move through this dynamical regime. In particular,
periodic orbits are computed in the vicinity of the displaced artificial L; equilibrium
point, located between the Sun and the Earth in this Sun-planet system. A sample
offset periodic orbit is demonstrated that hovers over the displaced L; point. Tra-
jectory modifications are performed in the vicinity of the Ly equilibrium point using
solar sail angles. Three-dimensional transfers between halos at three different sizes
is also constructed to exhibit the capabilities of solar sails based on specific mission
objectives. Thus, in this investigation, solar sail capabilities that widen the design

space for mission design in the restricted three-body problem are explored.



1. INTRODUCTION

The interest in space exploration and the desire for a comprehensive analysis of ob-
jects moving through regions of space beyond the Earth has resulted in a long-term
scientific effort to better understand the behavior of stars and planets as well as their
mutual interactions. Technological advancements offer the opportunity to expand
the number of worlds to be visited and the number of targets per mission. But new
technology also offers alternative exploration strategies and mission scenarios to ex-
plore a wider range of bodies. The asteroid mission OSIRIS-RE, (to be launched in
2016), designed to examine and return a sample from asteroid 1999 RQsg, exemplifies
the shift to a broader focus. Consistent with the interest in alternative concepts,
solar sails continue to intrigue scientists and engineers. Solar sails offer both unique
opportunities as well as challenges.

Solar sails offer spacecraft maneuvering capabilities within a dynamical environ-
ment by using photons from the Sun as a means of propulsion. The orientation of
the sail is adjusted to support a wide variety of activities. For example, sails can
be employed to modify trajectories to enter new orbits, find new periodic orbits, as
well as more general trajectory design. Based on a specific orientation, the pressure
from the photons delivers a small but continuous acceleration to the sail and, thus,
opens dynamical regimes that typically lie beyond the natural dynamical flow or may
require significant propellant. The focus of this investigation is the solar radiation
pressure acting on a solar sail that expands the dynamical boundaries leading to new

new orbits that are significant from certain mission design perspectives.



1.1 Problem Definition

The classical three-body problem provides a dynamical framework to investigate
and explore a wide range of space. Thus, a precise definition allows the development

of an appropriate model.

1.1.1 The Circular Restricted Three-Body Problem

The N-body problem was first studied by Sir Issac Newton in the 17th century [1].
Limiting the number of bodies to two (N = 2) leads to an understanding of the
relative behavior of one body under the gravitational influence of another body. To
model the solar system, one body is frequently much larger than the other body.
Thus, a complete model represented in terms of the equations of motion, yields a well
known conic solution that is solvable analytically. To increase the complexity of the
problem and better model the gravitational influence of additional bodies, the number
of interacting bodies is increased to three, N' = 3. With additional assumptions, this
resultant model is termed the Circular Restricted Three-Body Problem (CR3BP).

The simplified CR3BP model still does not possess an analytical solution.

1.1.2 Lagrangian Point and Periodic Orbits

The differential equations in the CR3BP do admit five equilibrium solutions.
The equilibrium solutions were first investigated in 1772 by Joseph-Louis Lagrange
and, hence, are denoted the Lagrangian Points. Three of the Lagrangian points are
collinear, i.e., they lie along the line connecting the two primary bodies. The remain-
ing two Lagrangian points form equilateral triangles with the two primaries within
the primary plane of the motion. The existence of the Lagrangian points offers an
opportunity to explore the regions in the vicinity of a set of constant solutions.

Planar and three-dimensional periodic orbits are known to exist in the vicinity

of Lagrangian points [2]. One such three-dimensional family of orbits have been of



particular interest and is identified as the ‘halo’ orbit family [3]. The Sun-Earth La-
grangian points, L;, are significant from a mission design perspective. Thus, further
examination of orbits in the vicinity of the collinear Lagrangian points will aid un-
derstanding of the dynamical region and create additional options for future scientific

missions.

1.1.3 Solar Sails in Circular Restricted Three-Body Problem

The inclusion of solar sails expands the dynamical structures in the classical circu-
lar restricted three-body problem. The force due to Solar Radiation Pressure (SRP)
modifies the dynamical force model, and, thus, the locations of the equilibrium points
as well as the trajectories are governed by the new dynamical environment. Powered
by the continuous flow of photons from the Sun, solar sails provide additional ac-
celeration capabilities to the spacecraft. Thus, solar sails are equipped with the
capability of a continuous thrusting force, a force that would otherwise require pro-
pellant. Though the level of the force is small, a continuous flow applied over a long
duration can enable velocities beyond the capabilities of conventional propulsive sys-
tems. Recent studies from Cosmos-1 and Sun-Diver have projected velocities as high
as ~50 km/s [4].

The use of SRP can be extended to add maneuvering capabilities to a spacecraft,
for example, trajectory design and new periodic orbits in the vicinity of an artificial
equilibrium point. Such applications of a solar sail could decrease the reliability on
conventional maneuvers requiring propellant but also potentially offer a nearly infinite
maneuvering capability to the spacecraft. Thus, this investigation further explores
such capabilities to exploit the Sun as a source of continuous propulsion with the aid

of a solar sail based spacecraft.



1.2 Prior Contribution

History bears testimony to human curiosity that previously led to the investigation
of planetary motion. From understanding the origins of solar system to a search for

the origins of life, the exploration of space has forever offered intriguing problems.

1.2.1 Classical Circular Restricted Three-Body Problem

The formulation of the three-body problem dates back to Newton in the 17th
century [1]. But later, in 1772, Euler introduced a rotating frame to the restricted
three-body problem and, simultaneously, Lagrange derived an analytical solution that
led to the identification of the equilibrium points [5]. Approximately half a century
later, Carl Gustav Jacobi recognized a constant of integration associated with the
rotating frame formulation [6]. The constant was later renamed and is now commonly
labeled as the Jacobi constant.

In 1897, Heinrich Bruns proved the non-existence of any other constant of motion
in the three-body problem. Two years later, Jules Henri Poincaré also proved the lack
of a non-algebraic constant of motion, i.e., the restricted three-body problem problem
is non-integrable [5]. Poincaré also confirmed the existence of periodic solutions in
the restricted three-body problem. Research efforts in the three-body problem slowed
for over half a century until Victor G. Szebehely thoroughly detailed the derivation
and particular solutions in the restricted three-body problem in his book Theory of
Orbits: The Restricted Problem in the Three Bodies [5]. The last 50 years have
witnessed technological advancements that have, once again, spurred new research

efforts in the CR3BP.

1.2.2 Motion in the Vicinity of the Collinear Lagrangian Points

The dynamical region in the vicinity of the collinear Lagrangian points has been

a topic of interest from various scientific mission prospectives. In 1980, David L.



Richardson presented an approximation for periodic orbits in the Sun-Earth circu-
lar restricted problem near the collinear Lagrangian points [7]. In 1982, Kathleen
C. Howell, in collaboration with John V. Breakwell, used continuation based on a
numerical technique to generate periodic orbits, i.e., halo orbits, that lie beyond the
computational capabilities of any analytical approximations [8]. Howell and Break-
well supplied some foundations and demonstrated the existence of stable periodic
orbits in the vicinity of the Lagrangian points [9].

The collinear Lagrangian point, L, proves to be of particular significance in the
investigation of the effects of solar winds and solar flare emissions from the Sun. In
1978, the International Sun-Earth Explorer-3 (ISEE-3) was a joint mission planned by
NASA and ESA and was first placed in a halo orbit about the Sun-Earth Lagrangian
point, L; [10]. The success of ISEE-3 motivated the scientific community to further
investigate the solar atmosphere, the solar winds and to study the structure of the
Sun. Thus, in 1995, the Solar and Heliospheric Observatory was launched as a joint
scientific project by NASA and ESA [11]. Today, it still relays a continuous beam of
data for predicting space weather and monitoring solar activity. The Global Geospace
Science WIND spacecraft was launched in 1994 and was also placed in a small halo
orbit about the Sun-Earth L; point. The objective of the WIND mission is to observe
unperturbed solar winds and provide scientific data to better understand the Solar-
Earth relationship [11], [12]. In 1997, NASA launched the Advanced Composition
Explorer (ACE) spacecraft to collect solar and interplanetary particles [11]. The ACE
spacecraft transmits important data and warning signs of upcoming solar storms daily

to Jet Propulsion Laboratory’s Deep Space Network.

1.2.3 Study of Solar Radiation Pressure

The history of scientific and engineering inquiry involving solar radiation pressure
dates back to 1873 when James Clerk Maxwell theoretically proved the existence of

pressure due to radiation [13]. The first laboratory experiment was conducted by



Peter Lebedew who, in 1900, experimentally demonstrated the existence and effects
of solar radiation pressure [14]. The application of solar radiation pressure as a means
of propulsion was ultimately proposed by Konstantin E. Tsiolkovsky and Fridrickh
Tsanders in 1924 [15]. In the 1970’s, when NASA developed an interest in solar
sail technology, a serious focus emerged and laboratory experiments were initiated.
Within the next four years, NASA’s continuous research resulted in a successful lab-
based demonstration in 1974 [16]. In the same year, NASA applied the use of solar
radiation pressure to the Mariner 10 spacecraft that required attitude control but was
low on fuel. The spacecraft solar arrays were turned to face the Sun and employed
solar radiation pressure for attitude control. Though the spacecraft was not specif-
ically designed as a sail-based spacecraft, the small but effective force due to solar
radiation pressure was demonstrated. India’s INSAT 2A and INSAT 3A communi-
cations satellites exploited a small solar sail to offset the torque resulting from solar
radiation pressure on the solar array [17]. Within the last decade, NASA’s collabora-
tion with the Planetary Society has resulted in the active development of a NanoSail
vehicle. LightSail-1 and LightSail-2 have been planned to test the solar radiation
pressure within the low Earth orbit. Upon successful demonstration, LightSail-3 will
be launched for insertion into an orbit in the vicinity of L; to enhance early detec-
tion of variations in space weather that may be capable of a significant influence on
Earth [18]. The recent success of Japan’s Interplanetary Kite-craft Accelerated by
Radiation Of the Sun (IKAROS) has rejuvenated the ongoing quest for exploiting
solar radiation as a source of propulsion. The spacecraft successfully demonstrated
both a propulsive force as well as attitude control in July 2010 [19]. The IKAROS

spacecraft is currently on its way to Venus.

1.3 Current Work

The core of this investigation is the construction of periodic orbits in the vicinity of

artificial collinear Lagrangian points. Based on the characteristics associated with the



solar sail, the location of a Lagrangian point can be altered. Thus, both planar and
three-dimensional periodic orbits are computed within the vicinity of the Lagrangian
point, L;. The solar sail orientation angles are used to remain in vicinity of the
equilibrium point for an extended period of time. Offset orbits are also determined
that hover near the artificial Lagrangian point L.

The analysis in this investigation is accomplished by incorporating the solar sail
force model into the classical circular restricted three-body problem (CR3BP). Later,
a solar sail force is added to represent a hybrid solar sail system in the circular re-

stricted three-body (SS-CR3BP) model.

The investigation is organized into the following chapters:

Chapter 2.
BACKGROUND: THE THREE-BODY PROBLEM

The circular restricted three-body model is introduced and the equations of mo-
tions are derived. This model governs the motion of an infinitesimal particle under
the gravitational influence of two larger bodies. Assumptions simplify the analysis
and a rotating frame relative to an inertial frame is introduced. The equations of
motion that are derived are nonlinear and coupled. Thus, the existence of an integral
of motion acts as an important tool to compute boundaries, trajectories and orbits.
Equilibrium solutions, also labeled Lagrangian points, are evaluated and further anal-
ysis is focused near the collinear equilibrium points. Linear behavior in the vicinity of
the collinear Lagrangian points is explored. Initial conditions from the linear model
are propagated and a linear periodic orbit about the collinear Lagrangian point, L,
is determined. This linear periodic orbit seeds as an initial guess to compute the

periodic orbit in the nonlinear model.



Chapter 3.
DIFFERENTIAL CORRECTIONS ALGORITHM FOR TRAJECTORY DESIGN
This chapter initiates the analysis into the evolution of the state vector over time in
response to a change in the initial state. A differential corrections scheme is introduced
to modify the design variables to meet certain constraints based on the information
supplied by the state transition matrix. The targeting schemes are further employed
to determine periodic orbits in the vicinity of the collinear Lagrangian points. A
complete formulation is also detailed for the construction of three-dimensional halo
orbits. Northern and southern halo families are computed and plotted for the La-

grangian point L; and Ls.

Chapter 4.
BACKGROUND: SOLAR SAILS

A brief background of solar radiation pressure and solar sails is summarized. Solar
sail models in various developmental stages are discussed. JAXA’s IKAROS mission
is analyzed in depth and a formulation to model the acceleration due to solar radia-
tion pressure is developed. Comparisons are completed between different sail models

based on their size, efficiency and sail loading.

Chapter 5.
SOLAR SAIL IN THE CIRCULAR RESTRICTED THREE-BODY
PROBLEM (SS-CR3BP)

A mathematical expression for the acceleration force due to solar radiation pres-
sure as applied to a solar sail is derived. The expression for the acceleration force
is then incorporated into the circular restricted three-body model, thus, the model
evolves into the Solar Sail Circular Restricted Three-Body Problem (SS-CR3BP). The
definitions and assumptions involved in this development are summarized. Displaced
collinear Lagrangian points are constructed where their locations are based on a cer-

tain sail parameter. Behavior of a spacecraft in the vicinity of a displaced collinear



Lagrangian point is also discussed. Finally, a linear model for periodic orbits in the
vicinity of displaced Lagrangian points is analyzed based on the sail characteristics

and orientation angles.

Chapter 6.
DIFFERENTIAL CORRECTIONS FOR TRAJECTORY DESIGN EMPLOYING
SAIL ANGLES

The SS-CR3BP model is further investigated to develop a corrections algorithm
that employs the sail orientation angles as design variables. An augmented state
transition matrix is formulated to analyze the variations in the final position and ve-
locity states as a result of changes in the orientation angles. The corrections schemes
introduced in Chapter 3 are modified to employ only the sail orientation angles lead-
ing to sail-based update schemes. A new targeting scheme is formulated to construct
trajectories; the associated families of orbits are established in the vicinity of the La-
grangian points based on specific sail characteristics. Trajectories are designed using
sail orientation angles to achieve and maintain desired trajectory based on mission

specifications.

Chapter 7.
PERIODIC ORBITS AND TRAJECTORY DESIGN IN SS-CR3BP

The targeting schemes are further employed to determine periodic orbits in the
vicinity of the artificial collinear Lagrangian point L;. A linear model is employed
as an initial guess. Sail orientation angles are iteratively corrected and a periodic
solution is constructed. Sample trajectory designs incorporating solar sail angles are
demonstrated. The y-amplitude adjustments are made to the trajectories in the vicin-
ity of Ly by varying the orientation angles. A three-dimensional trajectory is designed

about L that transfers between three orbits of different y- and z-amplitudes.
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Chapter 8.
SUMMARY AND RECOMMENDATIONS
Concluding remarks summarize the results of the current investigation. Sugges-

tions for potential future work are also offered.
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2. BACKGROUND: THE THREE-BODY PROBLEM

Preliminary knowledge and understanding of the basic principles governing the mo-
tion of a particle in the gravitational environment of multiple bodies is critical to
examination of the behavior of a spacecraft. The complexity associated with for-
mulating a mathematical model to represent the N-body problem [1] requires some
simplifications to gain insight. Casting the problem within the context of the classical
Circular Restricted Three-Body Problem (CR3BP) offers the essential features of the
motion with some mathematical advantages [20]. To characterize this analysis, the
CR3BP is formulated in detail. The governing differential equations are derived in a

form that will later allow the inclusion of a solar sail force.

2.1 The Circular Restricted Three-Body Problem

To understand the interactions between an unspecified number of bodies, all mov-
ing under their mutual gravitational influence, the N-body problem was first math-
ematically formulated by Sir Issac Newton in 1687 [1]. For N/ bodies coupled under
mutual gravitational forces, any direct derivation of the equations of motion produces
6 scalar differential equations. Due to the lack of available integrals of the motion,
no closed-form analytical solution exists for the motion in the general N-body prob-
lem. Thus, beginning in the 17*" century, many mathematicians investigated a wide
variety of approaches to gain insight into the natural behavior. The earliest successes

limited the number of particles and shifted the observer [21].



12

2.1.1 Assumptions

The general N-Body Problem (AV-BP) is complex and an analytical solution is not
available. Thus, some initial assumptions are useful. In an extension to more than
two particles, a mathematical formulation of the N-BP yields 6/ scalar differential
equations. A solution for such a system requires 6V scalar integrals of the motion.
However, only 10 constants of the motion are available in the gravitational problem.
In fact, for N' > 3, no analytical solution exists. Thus, beyond the conic problem,
the introduction of even one more particle alters the character of the problem. Yet,
consider the number of particles. If N' = 2, the required number of constants is 12.
However, as is well known, if the two-Body Problem (2-BP) is recast in terms of
a relative formulation, only six differential equations completely model the relative
behavior and the problem is analytically solvable, i.e., the well known conic sections
[22].

The lack of a closed-form solution in the A-BP results in a first assumption to
narrow the number of particles to three. Recall that, in the Three-Body Problem
(3-BP), the derivation of a complete solution requires 18 first-order scalar differential
equations to completely describe the motion of a single body relative to two other
bodies. Due to the lack of integrals (only 10 are known), additional assumptions are
incorporated to further simplify the problem and gain some insight into the nonin-
tegrable behavior. The second assumption in the problem involves the masses. The
third body P, of mass mgs, is assumed to be infinitesimal in comparison to the other
two larger bodies. These are termed the two primaries, P; and P, and are of mass
my and mao, respectively, such that ms < my, my. Thus, P; does not gravitationally
influence the motion of P; and P,; the orbits of P, and P, are completely Keplerian
in nature and the relative motion is modeled as a two-body problem. If the rela-
tive motion of P; and P, is Keplerian, then the two primaries follow conic paths.
Although it is not required, for simplicity, assume that the two primaries move on

circular orbits about their common center of mass, that is, the barycenter, B. With
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the assumptions, the number of first-order scalar differential equations that govern
the relative behavior of the two primaries, P; and P, in the system is reduced from
18 to 6 and the two primaries move on conic paths. For simplicity, let the motion
of the P, and P, be circular. Then, the motion of an in finitesimal mass, P3, under

the gravitational influence of the two larger primaries, P; and P, is investigated by

studying the CR3BP.

2.1.2 Geometry Associated with CR3BP

An innovation in the analysis of the 3-BP, introduced by Euler, is the shift to a
rotating view. Thus, to specify the orientation and position of the three bodies with
respect to each other, two coordinate frames are defined. The first reference frame
is the inertially-fixed coordinate frame, I, whose dextral, perpendicular set of unit

vectors are defined as X , Y, 7 as represented in Figure 2.1. Note that the caret ()

YA \ Pe(m3)

<>

=

P (m,)

Figure 2.1. Geometrical Definitions in the Circular Restricted Three-Body Problem.

symbol represents a vector of unit magnitude. The X-Y plane denotes the plane

of motion of the two primaries and Z is directed parallel to the conic orbital angular
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momentum vector; as noted previously, the primaries move on circular orbits relative
to each other. A second coordinate frame, R, is rotating consistent with the orbital
motion of the primaries. The dextral, orthogonal set of unit vectors associated with
the rotating frame is denoted as Z, 7, Z where T is always directed from P; to Ps.

A precise formulation of the problem requires specifying the relative orientation
and position vectors within the context of the CR3BP. The center of mass of the two
primaries is defined as the barycenter, B, as represented in Figure 2.1. The orientation
of & with respect to X is defined by the angle 8; note that the reference for 6, i.e.,
6 = 0° occurs when # and X are aligned. As the two primaries are moving along
circular paths about the barycenter, the angular velocity, 9, remains constant. (Dots
reflect derivatives with respect to time.) In addition, Z is parallel to 7 , i.e., in the
direction of primary orbital angular momentum. Then, y completes the right-handed
triad. The position vectors corresponding to the locations of the three bodies, P;, P,
and Pj, relative to the barycenter, are defined as 7, 7 and 73 whereas 73 and 753
define the position vector of Pj relative to P, and Ps, respectively, as represented in
Figure 2.1. Note that the arrow (—) over a symbol denotes a vector and, without an
arrow, the symbol reflects a scalar magnitude. The geometrical definitions assist in

formulating the problem and deriving the equations of motion.

2.1.3 Nondimensional Quantities

Characteristic quantities are defined to generalize the governing differential equa-
tions through nondimensionalization. To avoid round-off errors associated with the
numerical integration process and to generalize the results, characteristic mass, length,
and time quantities are specified. Let the distance between the two primaries be de-

fined as the characteristic length, {*, such that
"=ry+r (2.1)

where r; is the distance between the system barycenter and the two primaries, P; and

P, respectively. Due to the assumption of circular orbits for the motion of the two



15

primaries, [* is the sum of the semi-major axis of P, relative to P; and is constant.
Characteristic mass, m*, is defined as the sum of masses of the two primaries such
that

m* = mi + Mo (22)

Characteristic length and mass in Equations (2.1) and (2.2) also yield the charac-
teristic time, t*. Characteristic time, t*, is defined such that the nondimensional

gravitational constant, GG, is equal to a value of one, i.e.,

l*3
t" = = 2.3
. (2.3)

where G is the dimensional universal gravitational constant. The dimensional mean
motion, N, of the system is expressed as

ém*

N = l*3

(2.4)

Based on these characteristic definitions, other quantities of interest are now easily

deduced in nondimensional form. The nondimensional mean motion, n, reduces as

G m* [*3
=Nt = - =1 2.5
" V3 Gm* (2:5)

Nondimentional mass ratio, pu, is introduced such that

follows

mo
= 2.6
p= (2.6
Now, the nondimensional masses of the two primaries, based on u, are
my
=1- 2.7
" p (2.7)
mo
= p (2.8)




16

Nondimentional time and relative position vectors are then expressed in the form

= — 2.9
r=t (2.9
LTy
p:l—*:xx—l—yy—i—zz (2.10)
> T3 NP
d= m =(z+p)z+yy+ 22 (2.11)
LT e s
7= ;3 =(x—14p)a+yy+ 22 (2.12)

where p)] CZ 7 represent the nondimensional position vectors of Pj relative to the
barycenter, P, and P,, respectively. Note that the position vectors are expressed in
coordinates defined in terms of rotating unit vectors. The expressions in Equations
(2.9) - (2.12) assist in formulating the differential equation and deriving a mathemat-

ical model for the motion of Pj.

2.1.4 Derivation of Equations of Motion in CR3BP

The total force acting on the infinitesimal particle, Ps, is evaluated using Newton’s
Law of Gravity. Based on the geometry in the CR3BP appearing in Figure 2.1,
the vector differential equation governing the motion of P; under the gravitational

influence of P, and P is

I= 1 Gmam; Gmsms
mg'ry’ = ———5—T13— —5 123 (2.13)
T13 T3

Note that the superscript I denotes that the derivative of the position vector is eval-
uated as seen by an inertial observer. The prime symbol (') represents the derivative
with respect to dimensional time, . Based on the characteristic quantities, Equation

(2.13) can be rewritten in a nondimensional form as

A-—pz »

1>
p= d 73

7 (2.14)

Note that the derivatives in Equation (2.14) are with respect to nondimensional time,
7. Thus, the dot symbol () represents the derivative with respect to nondimensional

time, 7. Since p'is expressed in terms of rotating coordinates, a kinematic expansion is
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employed to develop the derivatives of p. Evaluating p and its subsequent derivatives
with respect to an inertial observer is based on the following expressions

I= R =
IS 1% P | I-R o

= — = — 2.15
P=at ~a TP (2.15)

where 7@ is the nondimensional angular velocity of the rotating frame with respect
to the inertial frame. Since the primary motion is circular, the angular velocity vector

possesses a magnitude equal to unity, that is,
IGR =0z =nz=(1)2 (2.16)

Recall that the mean motion, n, equals the constant angular velocity for primary
motion in circular orbits. The second derivative of g is deduced from the expression
for 15 such that _ _

I I d[ ﬁ R dI p—*

=0 = a +16R x g (2.17)

The derivative from Equation (2.17) is then substituted for the left side of Equa-

tion (2.14) and results in the following kinematic expression.
Ig= (& — 20— )i+ (§ + 20 — ) + 2 (2.18)

Substituting the kinematic expression from Equation (2.18), along with nondimen-
sional position vectors 7" and cf, into Equation (2.14) yields the following three second-
order nondimensional scalar equations of motion for P; under the gravitational influ-

ence of two primaries, P, and P,

A—p)(x+p) plz—1+p)

Fo%—a= — e i (2.19)
N L—py  py
. (1—p)z pz

Equations (2.19) - (2.21) are reduced to six first-order scalar differential equations. A
more condensed formulation is available based on the gravitational potential function

associated with a conservative system. Since the differential equations are written in
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terms of the rotating frame, a suitable potential function augments the gravitational

potential. This pseudo-potential function, 2*, is defined as

L—pop 15 o
Or=—=+4= 2.22
Tttty (2.22)

Note that the pseudo-potential function is not an explicit function of time. The
partials of the pseudo-potential, €2f, with respect to the rotating coordinates are

evaluated as

0 =g I-—pw+p) ple—1+p)

e - 5 (2.23)
) (L—py py
; (1—pz  pz

A condensed form of the differential equations of motion, Equations (2.19)-(2.21), are

derived based on these partials, that is,

i= 2+ (2.26)
j= —2i+Q (2.27)
F= (2.28)

Equations (2.26) - (2.28) represent the mathematical model that governs the motion
of P3. The nonlinear and coupled nature of these differential equations increases the
complexity associated with the behavior. Thus, insight into the motion is sought

through a constant of motion associated with the differential equations, if one exists.

2.1.5 Integral of Motion in CR3BP

To gain further insight, a search for an integral of the motion originates with
Equations (2.19) - (2.21). The nonlinear and coupled nature of the Equations (2.19) -
(2.21) does not allow a closed-form solution. However, the forces acting within the

system are conservative, thus, there is a possibility that an energy-like quantity is
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constant. To expose such an integral, Equations (2.19) - (2.21) are multiplied by z,

y and 2, respectively. The summation of these three equations reduces to

BE A g 2E = QL Qg+ Q2 (2.29)
_owds ontdy 00 d
 Qx dr Oy dr Oz dr

Recall that 7 represents the nondimensional time and 2* is a function of nondimen-

(2.30)

sional mass and the position coordinates only. The right side of Equation (2.30)

represents the total time derivative of the pseudo-potential function

Q* Q* Q* o
a@x le_i * a@y ;l_i * 88_2% - ddT (2:31)
Integrating both sides of Equation (2.31) by nondimensional time, 7, results in
L

2

1

: (2.32)

where J* is the constant of integration. The constant of integration, J*, is labeled
as the Jacobi constant, named after Carl Gustav Jacobi [6]. In Equation (2.32), the
magnitude of the relative velocity, that is, v, appears and simplifies the expression to
the form

v? = 20" — J* (2.33)

Further substituting for Q*, Equation (2.33) is easily rewritten as

J* = 20" — ¢ (2.34)

(I1—p) 2
d + ;) —v (2.35)

Analysis employing the Jacobi constant is an effective approach to compute bound-

= (2* +y%) +2(

aries, orbits, trajectories and some transfers. It is also very useful to maintain ac-
curacy in the numerical integration process. However, the addition of other external

forces may eliminate this constant.

2.2 Analysis of the Equilibrium Solutions

Within the context of the CR3BP, five particular solutions exist for the equa-
tions of motion represented by Equations (2.26) - (2.28) in the rotating frame [23].
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These equilibrium solutions, also termed the libration or Lagrangian points, were
first recognized by Joseph-Louis Lagrange in 1772 while investigating the three-body
problem [5].

2.2.1 Equilibrium Points in the CR3BP

To locate any equilibrium points, the velocity and acceleration relative to the
rotating frame must be zero. Thus, the first and second derivatives of the position
coordinates corresponding to the equilibrium points are zero. Equations (2.26) -

(2.28) are evaluated for these conditions
Q=0 =0,=0 (2.36)

Substituting the result from Equation (2.36) into Equations (2.23) - (2.25) results in

the following three algebraic relationships

(I —p)(wp, +p)  plrr, — 14 p)

L—wye,  myL,
0=y, — ( d3) L L (2.38)
Li TLi
(I —p)z,  pe,
0= = - (2.39)
L; L;

where z., yr., 21,, along with dy, and r,, are the coordinates and relative distances
of P in the rotating frame with respect to B, P;, and P, respectively. For Equation
(2.39) to be satisfied, z;, must be equal to zero. Thus, the Lagrangian points lie in
the zy plane. Apparent from Equation (2.38), certain equilibrium solutions exist for
y = 0. Thus, equilibrium solutions exist along the line connecting the two primaries.
These equilibrium points are termed the collinear Lagrangian points. Solving Equa-
tion (2.37) for the locations of the collinear points is nontrivial. The degree of the
polynomial in Equation (2.37) suggests that there are three roots to the equation,

i.e., three collinear points exist. The relative position of the Lagrangian points are
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represented in Figure 2.2 and, thus, the coordinates of the Lagrangian points are

redefined relative to the nearest primary as

rp, =dy — L, (2.40)
Ty = dg + YL, (241)
Ty = — d1 — VL3 (242)

such that d; and dy are the nondimensional distances of P, and P,, respectively,
relative to the barycenter, B. First, consider equilibrium points in the vicinity of the

smaller primary, P,. Then, Equation (2.37) is written as a function of 7,

(1= pw)(di +v2,) +p)  p(di +2,) =1+ p)

f(’yLi) =0= (dl + ’-)/Li) - 03 - r3 (2'43)

Ll' Li
where d; = dy and v, = —71,, VL, respectively, when solving for vz, and vz,. When
the solution for ~;, is being computed, d; = —d; and vy, = —v., For an equilibrium

solution in the vicinity of the larger primary, P;, define L; as L3 such that v, is
computed; then d; = —d; and 7, = —yr,. Equation (2.43) is then solved iteratively

using Newton’s Method .
7%4—1 _ Vé B f(Vil)
’ tfon)

This iteration process is continued until the desired accuracy in |v}j _7“ is achieved

(2.44)

and, for this analysis, the tolerance is of order 107'2. The remaining two noncollinear
Lagrangian points, termed the equilateral points, are apparent via observations of
Equation (2.38). These final two Lagrangian points form equilateral triangles with
the two primaries at two vertices of a triangle and the third vertex of the triangle
reflects the location of the Lagrangian point. By convention, Lagrangian point L4 has
a positive y coordinate, and Ls is located with a negative y coordinate in the x — y
plane. The x and y coordinates of L,5 expressed relative to the barycenter, B are

then

(2.45)

TLys =

DN | —

|
©[& =

YLy, = £ (2.46)
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73

Figure 2.2. Lagrangian Points in the Circular Restricted Three-Body Problem.

The relative locations of all five Lagrangian points for a given system appears in
Figure 2.2. These Lagrangian points are the only known equilibrium solutions to the

equations of motion.

2.2.2 Behavior in the Vicinity of the Collinear Lagrangian Points

To further the investigation of the behavior of Pj, the stability information cor-
responding to the equilibrium points is investigated [24]. Since the differential equa-
tions are nonlinear, linear stability analysis in the vicinity of the equilibrium points is
based on the first-order variational equations. Approximate solutions are generated
by linearizing the equations of motion for P; relative to the Lagrangian points. The

equations of motion represented in Equations (2.26) - (2.28) are used to derive the
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linear variational equations relative to the equilibrium solutions. Given equilibrium

solutions, perturbations are introduced such that

r=uxr, +¢& (2.47)
Y=y, t1n (2.48)
r=2xr,+( (2.49)

where &, n, ¢ are variations relative to the Lagrangian points in x, y, and z re-
spectively. The equations of motion are rewritten, incorporating the perturbations,
using a Taylor series expansion, and neglecting second- and higher-order terms. The

resulting second-order, scalar, linear variational equations are

i+ 26 = L+ n+ (2.51)
(= QL&+ QUn+ Q. (2.52)

where 7 represents the second partial derivative of the pseudo-potential, that is,

A—p) p 30-p@+p® 3ule—1+u)

. =1- Fr s o " (2.53)
=1 U ;3”) -5+ 3u ;5“)y2 + 3/;32 (2.54)
922:1—(1;3”)—%+3(1 ;5“)22+3ﬁ52 (2.55)
0, = 3(1 - uzlg:v +uy | Sl —r: + 1y (2.56)
0= 3(1— ,uziga: + 1)z N u(x —T; + 1)z (2.57)
= 30 ;5“)3’2 + 3%2 (2.58)
= (2.59)
o, =0, (2.60)

Q= (2.61)
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For convenience, the differential equations are rewritten in the state-space form. Let

the states be collected in the six-dimensional state vector, &, such that

. . T
i=len ¢ & ¢ (2.62)
Then, in matrix form, Equations (2.50) - (2.52) are rewritten as
(. ) ( )
§ §
n n
N3 1
CU_Ne Loy Jc (2.63)
£ Q; D §
Ui n
\ C J \ C J

where submatrix N3 is a 3 x 3 null or zero matrix and submatrix Iz is the 3 x 3
identity matrix. The elements of the submatrix €2f; represent the second partial

920"

derivatives, Sy evaluated at the specified collinear Lagrangian point.

€O, @, €.
Q= |, @, Q. (2.64)

O, &,
The cross-partial terms in the matrix in Equation (2.64) are evaluated from Equations
(2.56) - (2.61). All the cross-partial values are zero because yr, = z, = 0 for the
collinear Lagrangian points. Concerning the diagonal elements, it is apparent via

observations of Equations (2.53) - (2.55) that the appropriate signs are
Q. >0, ), <0, Q<0 (2.65)

Similary, based on the linear variational Equations (2.50) - (2.52), submatrix D is

easily evaluated as
0 20

D=|-2 0 0 (2.66)
0 00
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Equation (2.63) can be rewritten in a condensed state-space form as

7= A7 (2.67)
where matrix A is the system matrix
N3 I
A=|77 (2.68)
Q;k,j D

and it observed that A is a constant matrix. In an expanded form, Equation (2.67)

appears as

(. ) B q [ )
¢ 0O 0 0 1 00 ¢
7 0O 0 0 0 10 n
: 0O 0 0 0 01
<§. = g (2.69)
¢ Q. 0 0 0 20 ¢
i 0 , 0 -200 0
| ¢ (0 0 Q. 0 00] (]

From Equation (2.69), it is noted that the linear out-of-plane motion, represented by
¢ and its derivatives, is decoupled from the linear in-plane motion in terms of £ and
n. As previously noted, 2%, < 0; therefore, the roots associated with the out-of-plane

motion are purely imaginary, and the linear out-of-plane motion is sinusoidal, that is,
¢ = C1Cos(wt) + CySin(wr) (2.70)

where () and Cy are constants; w = +/|Q%,| is the frequency associated with the
harmonic out-of-plane component, (. For the in-plane motion, the solution to the

linear, first-order differential equations appears in the form

4
E= ) A (2.71)
k=1
4
n=Y B (2.72)
k=1

where A, and By are interdependant constants of integration, and A, are the four

eigenvalues of matrix A associated with the in-plane motion. Note that there are
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only four terms in the summation as the remaining two terms associated with the
out-of-plane motion are decoupled from the in-plane excursions. The characteristic
polynomial corresponding only to the in-plane behavior is formulated using informa-

tion from Equations (2.50) - (2.51),

M (4—Q5, — 0 )N+ 20, — Q)N+ (2,95, — Q5 Q0,) =0 (2.73)

Limiting the analysis to the collinear points, i.e. yr, = zr, = 0 and 2} = Q) =0,

further reduces Equation (2.73) to the form

M+ (A—-Qr, -0 )N+ 9,00 =0 (2.74)

T yy T

Note that Q3,2 < 0. Because of the form of Equation (2.74), it is easily transformed

from a quartic to a quadratic characteristic equation of the form
A+ 28N - B3 =0 (2.75)

where A represents the roots of Equation (2.75). The associated constants are refor-

mulations of the coefficients from Equation (2.74), that is,

Q4+ QF
B =2— — vy (2.76)

Note that, 8; and Py are both real. The quadratic roots of Equation (2.75) are

A= = Bi+\/B}+ B3 (2.78)

A= —p1—/Bi+ 153 (2.79)

evaluated as

Based on the signs of 7, and €27 , then (27 QF < 0, and the observation leads to

the conclusion that A; > 0 and Ay < 0. Thus, the quintic roots of Equation (2.74)

are computed as

Aig = VA (2.80)
Aoa= £ /Ay (2.81)
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Further analysis into the quintic eigenvalues reveals that A, o are real (R) eigenvalues
and A3 4 are pure imaginary () eigenvalues associated with the system represented by
Equation (2.74). Lyapunov’s criteria for the stability associated with a linear system

and a corresponding nonlinear solution states that [25]

o If the R(\;) < 0V the eigenvalues associated with the linear system of equations

relative to L;, the nonlinear solution is asymptotically stable.

o If the R(\;) > 0 for at least one of the eigenvalues associated with the linear

system of equations relative to L;, the nonlinear solution is unstable.

o If the R(\;) < 0 and at least one of the R(\;) = 0 for the eigenvalues associated
with the linear system of equations relative to L;, no conclusion is available

concerning the stability of the solution in the nonlinear system.

Equation (2.80) demonstrates that there are two real eigenvalues associated with the
in-plane motion relative to the collinear Lagrangian points, one of which is positive
and the other is negative. Thus, the positive, real eigenvalue result yields the conclu-
sion that the collinear Lagrangian points are intrinsically linearly unstable. Equation
(2.81) further demonstrates that there exist imaginary eigenvalues associated with
the in-plane motion in the vicinity of the collinear Lagrangian points. Consequently,
it is possible to appropriately select initial conditions, £(79) and 7(7p) such that the
divergent behavior is not excited.

To explore the planar behavior in the vicinity of the collinear Lagrangian points,
it is possible to select the coefficients in Equations (2.71) - (2.72) such that only
the stable terms are excited [5]. As noted previously, coefficients in Equation (2.71)
- (2.72) are interdependent and the following relationship is developed between the

coefficients associated with the in-plane motion

where

v, = LT (2.83)
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By expanding Equations (2.71) and (2.72)

5 = AleAlT + A2€A2T —I— A36>\3T + A4€>\4T (284)

n = AreMT + Aorae™ + Asvse™T + AgvgeT (2.85)

and it is evident that coefficients A; and A, are associated with the unstable eigenval-

ues A; and Ay. To inhibit the excitation of the unstable mode, initial conditions must

be selected such that A; and A, are equal to zero. Also recall that the imaginary

roots are equal in magnitude, i.e., \y = —A3 and vy = —r3. Thus, initial conditions,
given Az and Ay, are evaluated from

£ = Ase™ 4 Aye7 (2.86)

n = Asv3e™T — Ayvse 8T (2.87)

Initially, &(79) = & and n(79) = no. Equations (2.86) and (2.87) are then evaluated

at the initial time, 7 = 7y, and the following expressions for Az and A4 are deduced

Sovz + Mo
Ay =2—_— 2.88
3 2V3€)‘3T0 ( )
SoVz — Mo
Ay =2 = 2.89
1T QugeNem (2.89)

When 7 = 0, A3 and A, are further reduced to

Sovz + Mo
Ag =2— T 2.
3 2V3 ( 90)
Eovs — Mo
Ay =>2— = 2.91
4 21/3 ( 9 )

The general solution for in-plane motion near the vicinity of the collinear Lagrangian

points is summarized as

& =& Cos[s(T — 1) + %Sm[s(T —70)] (2.92)
n = noCosls(T — 70)] + & B3Sin[s(T — 10)] (2.93)

where s and [33 are real quantities, i.e.,

A3 = is (2.94)

V3 = Zﬁg (295)
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The representative expressions for s and (3 are

s=\fB+ \fBE+ 5 (2.96)

82 + Q*
p— —‘rx 2;
B3 5% (2.97)

Initial conditions for the in-plane relative velocity components are derived by evalu-

ating the derivatives of Equations (2.92) and (2.93) at 7 = 79

_ "os
B3
no = — &ofss (2.99)

& (2.98)

For a particular set of initial conditions, £ and 7, a specific set of initial velocities, ¢
and 7, results in a periodic orbit about L; Lagrangian point as plotted in Figure 2.3.
For visualization purposes, the Earth has been scaled to 10 times its actual size. The
trajectory in the figure represents a first-order linear approximation to a particular
solution of the equations of motion in CR3BP. An initial state along the z-axis at
a distance of 200,000 km from the L, libration point but opposite to the Earth is

selected. Based on this value, other initial conditions are generated.

& = 200,000 km & = 0 km/s
o =0 km flo = 0.268306831786395 km /s

The period of this orbit is 175 days, approximately half the period of the Earth in
its orbit about the Sun. Propagation of these initial conditions in a nonlinear model
results in departure of the spacecraft from the vicinity of this linear approximate
trajectory, i.e., once the unstable behavior is triggered, the path departs from the L,
vicinity. But the linear solution can be employed as a good initial guess for numerical

techniques to produce an exact solution in the nonlinear model.
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Figure 2.3.

Ly Linearized Periodic Orbit in Sun-Earth System.
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3. DIFFERENTIAL CORRECTIONS ALGORITHM
FOR TRAJECTORY DESIGN

Construction of trajectories within a nonlinear force environment can be facilitated
with a differential corrections scheme. Any corrections algorithm employs numerical
techniques to search for periodic orbits and trajectories in the CR3BP; of particular
interest are the regions in the vicinity of the Lagrangian points. To accomplish the
development of a corrections algorithm, it is important to understand the sensitivity

associated with the states along the trajectory.

3.1 The State Transition Matrix

Prior to assessing the behavior of a particle or body under the influence of non-
linear forces, it is critical to investigate the evolution of a state over time in response
to changes in the initial state. This linear map, that is, the state transition matrix
(STM), is formulated based on a linear variational model to estimate the final state
as a response to certain perturbations introduced in the initial state [26]. The STM is
particularly useful for trajectory design and periodic orbit computation. To develop
an expression for the STM, a baseline reference arc is first calculated. Let there be a
certain six-dimensional initial state vector, X (70), that results in a time-varying ref-
erence path, X (7). By introducing a small perturbation, 6X (7o), to the initial state,

an updated initial state, X *(70), results in a new time-varying nearby arc, X *(7),

X*(10) = X (70) + 6X (70) (3.1)
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where

—

T
X(m0) = {l’o Yo 20 To Yo 20} (3.2)

. T
6X(m) = {60 Syo 620 v Sjo %) (3.3)
A schematic demonstrating the above scenario appears in Figure 3.1. The state along

Nearby Trajectory X (T)

Perturbed State Reference Trajectory

X (7o)

Figure 3.1. Reference Trajectory, Perturbed State and Nearby Trajectory Arc.

a nearby trajectory is approximated based on the STM. Using the first-order Taylor
series expansion about the reference and neglecting the higher-order terms, the linear

vector variational relationship is written
6X = A(1)6X (3.4)

In contrast to Equation (2.68), the A matrix is time dependent, and the partials
of the equations of motion are evaluated along the reference path. The partials

corresponding to the elements of A matrix are formulated such that

OF N I
=A== 7 (3.5)
0X X(7) QiJ(T) D

The general solution to the linear vector form of variational relationship in Equation

(3.4) is expressed as

5X (14) = B(74,70)0X (70) (3.6)
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where ® (74, 75) is the STM that maps the change in initial state, 6.X () to the change
in final state, 6X (7¢) at a final time, 7, along the reference trajectory, X (7). The
elements of the STM matrix are evaluated by simultaneously numerically integrating
the variational vector equation along with the equations of motion for the system.

The matrix form of the differential equations is

D(7¢,70) = A(14)P(74, 70) (3.7)

Given six scalar variational states, as defined in Equation 3.3, the elements of the

6 x 6 STM are evaluated in terms of the following partials

[ 00 00 00 o 0z o
Oxg Yo 0z0 Oxg Yo 0%p

Oy Oy 9y 9y Yy Oy
Oxo dyo 0z0 Oxg 9Yo 0%p

R S S VY VY
Oz Yo 0z0 0T Yo 0%0
O(7s,70) = (3.8)
o6 9 96 0b 08 0
dxg Oyo Ozp Oxg OYyo 020

Oy Oy 9y 9y 9y 9y
Org Oyo Ozp Oxg OYyo OZo
0: 0 0 0: 05 02
Oxg Yo 0z0 Oxg Yo 0%9

To numerically integrate and evaluate the 36 time-varying elements of the STM, the
initial conditions for the matrix differential equation in Equation (3.7) are specified;

the initial state is also apparent from Equation (3.6), that is,
®(70,70) = Toxe (3.9)

where Igx¢ is a 6 X 6 identity matrix. The STM is employed in any corrections
strategy to design trajectory arcs and periodic orbits. It also offers insight in the

examination of the stability associated with the trajectory.

3.2 Differential Corrections Algorithm

Trajectory design is accomplished through the application of a differential correc-
tions scheme to a two-point boundary value problem (2PBVP). The STM is formu-

lated to supply a linear estimate of the final states as the result of a variation in the
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initial states and is then incorporated in a shooting algorithm. An iterative process
is employed that is based on information provided by the STM. In a simple targeting
scheme, given an available baseline reference trajectory, the corrections algorithm is
applied to iteratively adjust the initial states, based on the miss difference at the
final state, until a certain level of tolerance is achieved. There are a variety of ap-
proaches to implement a corrections process. A formulation based on constraints and
free-variables is employed in this analysis.

In the algorithm for the shooting scheme, constraints can be specified as the de-
sired target states; then, free-variables are the available controls. This formulation is
relatively easy to implement and the constraints are straightforward to add. In simple
targeting, the ‘controls’ are the initial states governing the path of the spacecraft. In
a general formulation, the vector, X , includes the states acting as control parameters
that are employed to meet some set of constraints associated with the trajectory.
Initiate the algorithm by first recognizing n free-variables that form a base design

variable vector, X

X(r) = : (3.10)

For the simple case, let X, be a one-dimensional vector. Thus, this control variable
vector can consist of the six states associated with the position and the velocity at
some initial time, 7. The m scalar constraint equations, FZ(X ), are required to be

fulfilled by the available controls and are collected into the vector F(X)

( 3\

Fi(X)
Fy(X)
F(X) = : (3.11)




35

The constraints are formulated such that F(X) = 0 if all the individual scalar con-
straints are satisfied. The corrections algorithm proceeds iteratively until a certain
level of accuracy is achieved. The set of control variables that satisfy the constraints
are defined as, X*, ie.,

F(X*) =0 (3.12)
Samples of typical constraints include the position and the velocity or any other space-
craft related parameters. Thus, the constraint vector function, F ()2 ), is evaluated in

terms of a Taylor series expansion about a reference value, X ¢ such that,
F(X)~ F(X')+ DF(X')(X — X/ (3.13)

where DF(X?) is an m x n Jacobian matrix,

[ or  oFm . OF
0 X, 0Xo 0Xn
- = aFZ 8F2 8F2
S OF (X X, 00X, = 98X
DE(XY) = # = ! (3.14)
0X? : : . :
OFm  OFm ... OFm
| 9X1  0Xs 9 X, J

Since the goal is F(X) = 0, the expression in Equation (3.13) is employed to determine
the value of X that achieves the goal. Recognizing that the system is nonlinear,

Equation (3.13) is rewritten as an expression that is to be solved iteratively, that is,
F(X7)+ DF(X7)(X7*' = X7) =0 (3.15)
The partials within the Jacobian matrix, DF ()?J ) depend on the previous iteration

G

XU+ until

) or the initial guess for the design vector, X. The goal is to iteratively solve for

— =

F(XHY = F(X) ~0 (3.16)

The process is continued until reaching a pre-specified tolerance level.
The number of control variables, n, and constraints, m, influences the type of pos-
sible solutions that exist for Equation (3.15). When the number of control variables

equals the number of constraints

n=m = Unique Solution (3.17)
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The uniqueness of this solution is based on DF(X7) as a square matrix and is then

inverted to determine a solution to Equation (3.15),

—

X = X7 — DF(X7)"'F(XY) (3.18)

The change in initial control variables is then 6X

- = . — .

6X = —DF(X')'F(X7) (3.19)
When the number of controls available is greater than the number of constraints
n>m = Infinite Number of Solutions (3.20)

The Jacobian matrix, DF ()Z' 7), is no longer a square matrix and to select a solution
from among all the possible options that satisfy Equation (3.15), a minimum norm

solution yields

X = X7 — DF(X?)T|DF(X?)DF(X?)T| 7 F(XY) (3.21)
Equation (3.21) can be rewritten as the change in the initial control states that are

required to meet the constraints, i.e.

§X = —DF(X)T[DF(X))DF(X?)T| 7 F(X7) (3.22)
A minimum norm solution is based on a gradient search process that is more successful
when 0.X is small. Thus, this methodology seeks a solution that exists in the vicinity
of X7 such that Xi+! is characterized by traits that are closely related to those of
XJ. This corrections scheme can be applied in both fixed- and variable-time single

shooting algorithms.

3.2.1 Fixed-Time Single Shooting

As an example of a targeting algorithm, consider a vehicle at a given location
with some velocity. The goal is the modification of the initial velocity to reach a

specified position downstream. A fixed-time single shooting algorithm is employed to
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determine a single arc that is delivered to the desired final state, X *(7¢), by adjusting

the available controls within the initial state vector, X (7o),

( )
Zo

Yo

X(r) = {)?1} -~ ;o (3.23)

Yo

\ Z‘O J
Note, X is comprised of only one six-dimensional state vector. A schematic repre-
senting a fixed-time single shooting algorithm appears in Figure 3.2. Note that 7
represents the initial nondimensional time and the state, X , is initially defined at
To. A reference trajectory is generated that acts as the baseline for the corrections
scheme and is supplied as an initial guess for the appropriate arc. The state at the
end of the reference trajectory is defined as X (7).

)Z*(Tf)

Final Desired Trajectory

)Z(Tf)

Reference Trajectory

X*(To)' X(To)

Figure 3.2. Fixed-Time Single Shooting Illustration.

In the example, the corrections scheme is formulated to target a desired state,
X *(1¢). The final six-dimensional state vector is expressed in terms of the three-
dimensional position vector, 7*, and the three-dimensional velocity vector, v*, that

18

=y

X*(ry) = (3.24)

<y
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where 7 is the nondimensional time corresponding to the end of the arc and delivers
the path to the target state. Based on the definitions, (7 — 79) is the time of flight
(TOF) between the initial and the final states; one option maintains the TOF, thus,
the time remains fixed along both the baseline trajectory and the desired path. To
formulate the problem in this simple example, only the position state, 7*, at the end
of the desired trajectory is targeted and the velocity state, v*, at the final time is

unrestricted. The desired final scalar position states, i.e., the target vector, is

The initial three velocity states are formulated to define the available design variables

in the design variable vector, X (70), and are submitted to the algorithm as

o

X(r0) =1t = | (3.26)

20

The constraint vector is written as the difference between the position states along

the reference path at the terminal time and the final specified target position states,

FX) = {tep) ~m )} = |y — v (3.27)

The iterations proceed until the constraint equation meets the F ()? *) = 0 requirement
such that the actual value F(X*) &~  within a specified tolerance level. For this
example, the Jacobian matrix introduced in Equation (3.14) is written in terms of

submatrices relating the final position and velocity to the initial position and velocity

vectors
oEXR) |5 o
- > o O,
DF(X)=—"—~=|"" "7 (3.28)
0X o 97

Org 00
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As the initial design variables are represented in X (1) in Equation (3.26) and only
the end position states, 7, at time, 7, are targeted using the initial velocity states,
U, as the available design variables, Equation (3.28) reduces to the following 3 x 3

matrix,

or o o

[l dYo [SEN)
aF{):ﬁ: dy Oy Iy (3.29)
aX 8770 [l Yo 020
o2 02 0
_adto dYo (9730_

Comparison between Equation (3.8) and Equation (3.29) results in a new expression

for DF(X) in terms of the elements of the STM

e
S5 or
DF(X):a_?;: 21 P25 P (3-30)
_¢34 ®35 ¢36_

The elements, ¢,,, in Equation (3.30) represent the change in the position states at the

|7 as a result of adjustments

terminal time along the reference trajectory, ¥ = [z y z
in the initial velocity state, ) = [Z¢ 9o 20)7. The partials are, thus, all evaluated
along the reference path. For the update equation, the number of available controls,

n, equals the number of constraints, m, so a unique solution exists. The update

equation for successive iteration is expressed as,

i+ w| |6
Xt — G| = Xi4§Xi = g+ 6w (3.31)
Ca 2] 0%
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where j represents the j¥ iteration while applying Newton’s method to solve for the
unique solution. As is apparent in Equation (3.30), DF(X) is a square matrix. Thus,

the change in the initial control variables is evaluated as

5.J
0

OX7 = |og | = —DF(XI) " F(X) (3.32)

]
0%

Note that the reference path is updated at each step, that is, the (j — 1) arc serves
as a reference path to trigger the j* iteration. The iterative process, originating with
the reference trajectory, continues until a final desired trajectory is determined that

meets the end constraints to a specific tolerance.

3.2.2 Variable-Time Single Shooting

The strategy to develop a variable-time single shooting algorithm is easily formu-
lated by augmenting the process summarized for a fixed-time single shooting scheme.
The algorithm is augmented to allow the time-of-flight (TOF), i.e., the integration
time (7 = 77 — 7p), to vary over successive iterations. A schematic for variable-time
single shooting appears in Figure 3.3. Note that the propagation time along the final
desired path leading to desired state, X *(77), is different from the end state, X (7¢),
along the reference trajectory. Thus, TOF is now included in the design variable

vector. Thus, the augmented design variable vector X (7o) is

_j:O_
X (1) = = (3.33)
T Zb
L T -

The shooting scheme is developed to target the same final position states as rep-

resented in Equation (3.25). Thus, the constraint vector remains the same as in
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Final Desired Trajectory

Reference Trajectory

>_(.*(To), )Z(To)

Figure 3.3. Variable-Time Single Shooting Illustration.

Equation (3.27). The Jacobian matrix introduced in Equation (3.14) is augmented

to relate the final position and velocity to the initial position, velocity and TOF, 7,

[ or or  or
L o OF(X o on, or
DF(X) = a§?>: af af N (3.34)

The augmented design variable vector represented in Equation (3.33) and the final

desired position states reduce Equation (3.34) to the following form

or 0 O oo

L. Oxg Yo 020 or
[ OF (X

DE(X) = a()‘(' ) _ {

or orl _ |8y 9y 9y Oy
U } 0T Yo 0%0 or (335)

02 9z 9z 0
| 90 990 020 o7

Recall that the elements of this matrix are all evaluated along the reference path.
The augmented matrix DF(X) is rewritten in terms of the elements of the STM and

the velocities at the terminal time along the reference path

P14 P15 P16 T
Dﬁ()?)z{gi %}Z P21 Qa5 P26 Y (3.36)

O34 P35 P36 2

S
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Note that the matrix is no longer square. Since the number of available controls, n, is
greater than the number of constraints, m, there exist an infinite number of solutions.

Thus, the new update equation for successive iterations is expressed in the form

i)t i) o)

L1 i .

Lo w U 814
Xtl=1 | =X4+6X=| |+ | (3.37)

T 5 63

-Tj+1- _Tj- _5Tj-

Recall, the subscript, 0, represents the initial state at time, 79. The solution is no
longer unique. Based upon a minimum norm solution, the change in the initial control

variables is evaluated from

o)

Lo (o YU

§X7=| | ==DF(X?)"[DF(X/)DF(X?)"] ' F(X/) (3.38)
5%
_57—j_

Again, the algorithm is repeated to update the design parameters until the constraint

vector meets a certain level of tolerance.

3.3 Multiple Shooting Algorithm

For more complex scenarios and for the option of additional types of constraints,
the concept of differential corrections is further extended to develop a targeting
scheme for a set of n discrete points. The foundation of any multiple shooting strat-
egy lies in the corrections algorithm which can be based on the same steps as those
employed in a single shooting scheme. The trajectory is decomposed into segments
that originate from a sequence of patch points. The objective is typically conver-
gence to a path continuous in position and velocity. Such a result is accomplished

by targeting the end state originating from the (n — 1) patch point such that it
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merges with the initial states along the next segment, i.e., the n'"* patch point. An
illustration that demonstrates a multiple shooting scheme is represented in Figure 3.4
where X;(7y,) represents the initial state at each patch point and X;(ry,) identifies
the reference states after the trajectory arc is propagated for nondimensional time,
7;, that is equivalent to

Ti = Tf — To, (3.39)

Multiple patch points aid in offsetting the numerical sensitivity associated with the

)Zl f -
e - X, (sz )
X, (:02)\"0 . X,z )
i 0. n-1\"f ) °
)Zl (zo,) Xy2 (TOH) X, (7,)
X n-2 (Tf",2 )
Xn—l (TOH)

Figure 3.4. Unconverged Multiple Shooting Schematic.

trajectory design in the vicinity of the Lagrangian points. To formulate a trajectory
continuous in both position and velocity, constraints are added such that the end
states along any segment coincide with the initial point on the subsequent segment.
Once a converged path is achieved, the updated states, )ZZ*(TOi), are iteratively estab-

lished as illustrated in Figure 3.5. Based on the specific scenario, the TOF may or

X;(Toz)

. X:(Ton)

XI(Tol) X2 (Ton,z)

X net (To" . )

Figure 3.5. Converged Multiple Shooting Schematic.
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may not be allowed to vary along each segment. This option allows two different for-
mulations for multiple shooting, i.e., fixed-time and variable-time multiple shooting

scheme.

3.3.1 Fixed-Time Multiple Shooting

Fixing the integration time, 7;, along each of the trajectory segments that com-
prise the path results in the formulation of a fixed-time multiple shooting scheme.
The design variable vector is comprised of both the position and the velocity states

corresponding to each patch point, in the general form

4 )

—

Xl (7-01)

—

Xo(70,)

ot
Il

(3.40)

Xn—l (TOn—l)
Xn(,ron)

7

where Xi(Toi) is a six-dimensional vector and n indicates the number of path points
to discretize the trajectory into segments. Thus, X is a 6n x 1 dimensional design
variable vector for a fixed-time multiple shooting algorithm. As represented in Figure
3.4, there exists a discontinuity between the end reference states along each segment,
)?i(Tfi), and the states at the subsequent patch point, )Z};H(Tom), that is, the initial
point on the subsequent arc. The constraint vector, F ()Z' ), is constructed to maintain
continuity in both position and velocity states across multiple arcs,

— - )

o) - 5 (3.41)
Xn_g(Tfn,Q) — Xo1(10, )

—

Xn_l (Tfn—l) - Xn<7-0n)

J
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The length of the constraint vector is 6(n— 1) since the number of arcs is one less than
the number of patch points. Again the objective is convergence to a path continuous

in both position and velocity to a pre-specified tolerance.
The Jacobian matrix, DF ()Z' ), is constructed based on the partials relating the
constraint vector to variations in the design variables. The Jacobian matrix, DF (X )

is a banded matrix, i.e., the non-zero entries are along the diagonals,

(a)il(rh) _ 9X5(70,) (a)fl(rfl) _ 9X5(70,)
0X1(10,) 9X1(7o,) 0X2(70,) X2 (70,)
DF(X) =
(ainfl(Tfnfl) _ 3)277/(7'0“) (6)?,1,1(@"71) _ 3)?71(7'0”)
0Xn_1(r0,_,) 0Xn_1(70,_,) X (10,,) X (70,,)
(3.42)

The end state along the reference arc i, Xi-(m), is a function of the initial states,
XZ‘(TOi). In this example, many of the scalar partials are elements of the STM. The

subsequent patch point is not affected by the selection of the previous initial patch

X1 (ry, . = .. .
point and, thus, Xa}lénf) ‘_;1) is equal to 0. Similarly, the end state along the 7
reference arc, X i(7¢,), is not a function of the subsequent patch point, Xiﬂ. Thus,
0Xi(ry,) is equal to 0. Finally, the partlal O%i(m,) g equal to the 6 x 6 identity
8X1+1(7'02+1) X ( 70;)
matrix. Substituting this information yields a 6(n — 1) x 6n matrix,
¢(Tf1’7_01) _IGXG
. o OF(X
DF(X) = (ﬁ ) = (3.43)
0X
O(Tf 15 Ton 1) —I6x6

Iteration is again employed to converge the constraint vector, F ()Z ) to 0 within an
acceptable tolerance by applying the appropriate update equation using the DF ()Z' )

matrix.

3.3.2 Variable-Time Multiple Shooting

Varying the integration time, 7;, along each segment or arc results in the formula-
tion of a variable-time multiple shooting scheme. The addition of integration time to

the design variable vector results in a 7n — 1 vector; for n patch points, there are n —1
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integration times corresponding to n — 1 arcs. Thus, the augmented design variable

vector 1s
C \

Xl (T(h)

Xn (Ton)

o
I

(3.44)

71

\ Tn—1 J
To maintain continuity in both position and velocity, the constraint vector, F ()? ), is
of dimension 6(n — 1), the same as was specified in the case of fixed-time multiple

shooting scheme.

F(X) - : (3.45)
Xn_g(Tfn,Q) — Xn-1(70,_1)

Xn_]- (Tfn—l) - Xn(TOn)

Introduction of time as a new variable changes the banded matrix, Dﬁ()z ), as each

end reference state, X,(Tfl) is a function of an integration time, 7,. The matrix
represented in Equation (3.43) is augmented due to the inclusion of time as a variable

and is rewritten as

—

(74, 70,) —Isx6 X1

DF(X) =

¢(Tfn’7—fn71) (P Xn—l

(3.46)

where X; represents the time derivatives of the end reference state, Xl<7f) The
minimum norm solution is obtained as the Jacobian, DF(X), is a 6(n — 1) x 7n
rectangular matrix. The algorithm is iteratively simulated until the desired level of

tolerance is achieved for the constraint vector, F (X ) = 0. At the end of the process,
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new converged position and velocity states are determined for the patch points along

with new times, 7; between each pair of patch points.

3.4 Periodic Orbits in the CR3BP

A corrections scheme is applied for the construction of periodic orbits in the
vicinity of the collinear Lagrangian points. Families of planar and three-dimensional
orbits have been investigated over the past few decades [2] and a number of three-
dimensional families bifurcate from planar families. One type of three-dimensional
periodic orbit is a simple symmetric orbit in the set that comprises the ‘halo’ family
of orbits [3]. Halo orbits have been of particular interest since 1978 when the Inter-
national Sun-Earth Explorer-3 (ISEE-3) spacecraft was launched and inserted into a

halo orbit in the vicinity of the Sun-Earth Lagrangian point, Ly [10].

3.4.1 Construction of a Three-Dimensional Halo Orbit

A three-dimensional shooting algorithm is developed to compute three-dimensional
halo orbits that exist in the vicinity of the collinear Lagrangian points. Because the
differential equations are time-invariant, certain symmetric properties are observed.
One straightforward approach to compute solutions involves a search for a periodic
orbit that is symmetric across the x — z plane. To initiate the construction of a family
or orbits, an initial guess is generated by exploiting this symmetry property but is
based on the linear model developed in Subsection 2.2.2. By introducing an out-
of-plane step along z, a variable-time single-step corrections scheme is developed to
determine the symmetric periodic halo orbits. Symmetry and perpendicular crossings
are then employed as constraints to generate the orbits.

As noted previously, one strategy for construction of periodic orbits assumes per-
pendicular crossings at the x — z plane [27]. Given an initial guess to initiate the

corrections process, free variables are first identified. Assuming that the initial state
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lies in the & — 2 plane and the initial velocity is normal to the plane, the initial state

is of the form
Zo

20

X (1) = (3.47)

Yo

0

where only three of six states are non-zero. A simple formulation is governed by fixing
one initial condition and allowing the others to vary. An iterative process yields a
perpendicular crossing, i.e., a half period for any three-dimensional halo orbit. Note
that both the initial and the final states correspond to perpendicular crossings of the
x — 2z plane. To meet the final goal of a perpendicular crossing, both the final velocity
in the = and z directions should be zero, i.e., & = Z = 0 at the final crossing. Thus,
the selection of a set of free variables allows one of the non-zero variables, xq, 2o, o,
to be constrained. For example, to construct a halo orbit that crosses the z-axis at a
specified location, constrain xg and then iterate to determine zy and 7. For simply
periodic three-dimensional orbits that are symmetric across the x — 2z plane, there
are, consequently, three options for selecting free variables from the initial position

and velocity states.

. Zo 20 Zo
X(m) = or or (3.48)

Yo Yo 20
To demonstrate the algorithm, zy is selected as a free variable, along with g,. To
ensure a perpendicular crossing at the next & — 2 plane crossing, the constraint vector

is carefully defined as,

R T y—o}
F( 20,90 ) = =
“{y=0}

(=)

(3.49)
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where the subscripts, 2o, 9y, on X represent the design variable vector used in this

formulation. The DF ()_('Z()’y-o) matrix is formulated by direct application of the chain

rule
Ok | 0t Oy 0 , O Oy
Dﬁ(X:ZO’yO) _ 020 dy 0z0  OYo 9y Yo (3.5())
et s Bt Syons
where

y(x(r), 2(1),7) =0 (3.51)

serves as the stopping condition (in contrast to time) to ensure delivery precisely
to the x — z plane. In this formulation, the integration time has been implicitly
defined as the time to cross the map, X : y = 0, i.e., half the period of the orbit. To
evaluate the partials in Equation (3.50), Equation (3.51) is differentiated with respect

to nondimensional time, 7, resulting in the following two expressions,

Jdy Oy ot
—4+—=—=0 3.52
or i or (3:52)
dy Oyoz
— 4+ =— = 3.53
or " 0zor (3.53)
Consequently, the expressions for g—‘; and g—; are
ot i
-z 3.54
i (3.54)
0z Z
ez 3.55
o~ s (3.55)

The matrix of partials, DF(X), in Equation (3.50) is then rewritten in terms of the
elements of the STM and Equations (3.54) - (3.55)

¢43 - %¢23 ¢45 - §¢25
Zo,yo) - (356)

¢63 - §¢23 ¢65 - §¢25

—

DF(

<

A more compact formulation is expressed in the form

.. a3 Pus 1|2
DF(XZO,yo) = - [¢23 </525} (3-57)
®63  Des Y1z
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Similarly, using the other two possible design variable vectors in Equation (3.48)

results in the following two alternative DF ()Z matrices,

i

DF(

—

Dﬁ( J»‘0720) =

Given an equal number of constraints

ro,yo) -

Pa3 92545_ T
| Pez Dos. y €
_¢41 ¢43- 1 E
| P61 Po3 | y €

\

o1 6 (3.58)

(621 6] (3.59)

and design variables, the DF(X) matrices in

Equations (3.57) - (3.59) are all square matrices. The update equations for successive

iterations are formulated for the three possible design variable vectors as follows

+1
N 7"
XJ+1
20,90 .
-J+1
Yo
+1
2F
21
0,90 )
-j+1
Yo
+1
B 7"
j+1
Xxmzo - 1
:J
Yo

e

20,90

=X’ .

Z0,Y0

_ g

0,20

where the change in the design variables is then evaluated as

§X7

20,90

5X7

z0,Y0

5 X7 _

0,20

J
02

900

J
oy

9%

J
dx)

J
02

. @) 0%
X, =1 |+ (3.60)

w| 9%

N @) 0%
X, =1 |+ | (3.61)

%) [9%]

. | |92
+0X3 =1 |+ ' (3.62)

Uo| 000
= —DF(X.50)F(X], ) (3.63)
= = DF(Xao40) F (X3, o) (3.64)
= —DF(Xoy.) F(X], .,) (3.65)

Iteration produces a solution that meets the final constraints £ = Z = 0 and, conse-

quently, produces a perpendicular crossing of the map, > : y = 0. Initial conditions
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are selected such that the state lies on the map, > : y = 0 with an initial velocity only
along the ¢ unit direction vector. This results in the reference trajectory illustrated

in Figure 3.6. After implementing the targeting scheme to construct a perpendicu-

x 10°
6
4| Reference Trajectory
c 2 . Converged Trajectory
ff, 0
o\
-4
8 >:y=0
x 10°
y km

w km 1.485

0 148 X108

Figure 3.6. Targeting Perpendicular Crossing of the Map ¥ : y = 0.

lar crossing of the map, ¥ : y = 0, a converged trajectory is achieved that meets
the constraints by varying the design parameters. For this illustration, the design
parameters are zy and .

Once the trajectory has been corrected to deliver perpendicular crossings with a
variable-time scheme, a complete halo orbit is available by propagating the new initial
conditions over precisely twice the integration time that is required for a half orbit. A
three-dimensional view of the halo orbit, relative to the Lagrangian point, Ly, as well
as the Earth is represented in Figure 3.7(b). Note that the Earth has been scaled x6
for visualization purposes. The three planar projections offer a better understanding

of the general shape of the orbit as is apparent in Figures 3.7(a), 3.7(c) and 3.7(d).



52

As noted from Figure 3.7(c), this halo orbit possesses a relatively large out-of-plane
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Figure 3.7. Sun-Earth System L; Halo Orbit

z amplitude. The in-plane component of the halo orbit has amplitudes A, = 350,000
km and A, = 900,000 km, whereas the out-of-plane amplitude is A, = 600,000 km.

Nearby halo orbits can now be explored to construct a family of trajectories.
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3.4.2 Halo Families in the Vicinity of L;/L, Collinear Lagrangian Points

Construction of a three-dimensional, symmetric, periodic halo orbit using the
corrections process is further extended to investigate the dynamical regime near the
collinear Lagrangian points. Family members in the vicinity of the converged orbit
are computed using a slope-based continuation scheme. A three-dimensional view
of a selected subset of periodic trajectories that are members of the Sun-Earth I,

northern halo family appears in Figure 3.8. Continuation is employed to determine the

x 10 -1 q4g 149 19 g
y (km) x (km) x 10

Figure 3.8. Periodic Trajectories in the Sun-Earth L; Northern Halo Family

northern and the southern family members respectively. Planar projections of orbits

from the Sun-Earth L; northern halo family are plotted in Figure 3.9. Similarly, a



=
S
S SoTLY

5
x 10
201
15} N
NN
LR
TN
WA
~10F W
N\,
£
N r N
To Sun
O L
_5 L

1.48 1.49 15 151
X (km) x 10°

(b)  — z Planar View

(¢) z — z Planar View

Figure 3.9. Projections of the Sun-Earth L; Northern Halo Family

selected subset of periodic trajectories that are members of the Sun-Earth L, southern

halo family are illustrated in Figures 3.10 and 3.11.

Moving to the Sun-Earth L, Lagrangian point, a subset of northern halo family
is illustrated in Figures 3.12 and 3.13.

A selected subset of periodic trajectories that are members of the Sun-Earth L,

southern halo family are illustrated in Figures 3.14 and 3.15.  All four families of
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Figure 3.10. Periodic Trajectories in the Sun-Earth L; Southern Halo Family

periodic orbits are combined into one figure for comparison. An illustration for all
four families, encompassing Sun-Earth L; and Ly northern and southern halo family
members, is represented in Figures 3.16 and 3.17. Note that these orbits are based
on natural dynamics within the circular restricted three-body regime. To further
investigate the effects of external forces that also act upon a spacecraft, deriving an
extended dynamical model, based upon the specifications of the force, is relatively

straightforward.
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4. BACKGROUND: SOLAR SAILS

The exploration of solar sails to move throughout the solar system is based on a
dynamical concept for harnessing the energy carried by photons from the Sun in the
form of momentum. Conventional propulsion systems for maneuvers deplete propel-
lant over time and, thus, the life of the spacecraft is limited. The operational lifetime
can be increased by increasing the amount of propellant; such an option may not
be feasible or practical, however. Alternatively, solar sails potentially offer indefinite
maneuvering capability by using photons from the Sun as a means of propulsion. In-
corporating a solar sail model within the context of the circular restricted three-body
problem extends the design options. A model that includes a solar sail force within
the framework of the Solar Sail Circular Restricted Three-Body Problem (SS-CR3BP)
is derived. The design space in the SS-CR3BP is then explored.

4.1 Solar Sail Model

Although serious planning to explore the solar system using solar sails has gained
momentum only in last few decades, the concept of harnessing solar radiation pressure
(SRP) was first studied in 1873 by James Clerk Maxwell [13]. But, a Russian physicist,
Peter Lebedew, initially conducted laboratory experiments to demonstrate the effects
of SRP in 1900 [14]. Further interest in solar sailing technology was developed when
Konstantin Tsiolkovsky, the Soviet astronautics pioneer, and Fredrickh Tsander wrote
of “using tremendous mirrors of very thin sheets” and “using the pressure of sunlight
to attain cosmic velocities”" [28], [15]. Carl Wiley was the first American engineer

to propose the idea of solar sailing. He went on to propose orbit raising as well as

LCollin R. Mclnnes, Solar Sailing: Technology, Dynamics and Mission Applications (Chichester,
United Kingdom: Springer - Praxis, 1999), 2.
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spiraling inwards towards the Sun [29]. In 1958, Rickard Garwin from the IBM Watson
Laboratory also deduced that solar sails require no propellant and are continuously
accelerated once deployed [30]. He also recognized that this continuous acceleration
leads to large velocity changes over a longer time interval. Garwin is also credited
with coining the term “solar sailing” [29].

With the advancement of the technology linked to deployable structures, along
with thin films and the development of the Space Shuttle in the 1970’s, the focus
shifted from theory to increased laboratory testing. A NASA-funded investigation in
1974, conducted at the Battelle laboratories in Ohio, delivered a promising demon-
stration of solar sailing [16]. The NASA investigation and other studies conducted
in the mid-1970’s gained worldwide interest. Eventually, a European analysis at the
Center National d’Etudes Spatiales (CNES) in Toulouse, France offered an assess-
ment of a potential deep space mission incorporating solar sails [13]. Later in the
decade, specifically in 1979, Robert Staehle of the Jet Propulsion Laboratory formed
the World Space Foundation (WSF) in California. Two years later, the Union pour
la Promotion de la Propulsion Photonique (U3P) emerged in Toulouse. The Solar
Sail Union of Japan (SSUJ) was formed in 1982 and soon joined with WSF and U3P
to promote the long term prospects of solar sails.

With further technological advancements, the first ever ground deployment of a
solar sail was conducted by the German Space Agency, Deutsches Zentrum fiir Luft-
und Raumfahrt (DLR), in collaboration with the European Space Agency (ESA)
and a smaller German company, INVENT GmbH, in December of 1999 at Koln,
Germany [31]. The sail was 20m x 20m and a deployed model appears in Figure
4.1. As part of solar sail development programs at both DLR and ESA, a smaller, in-
orbit demonstration is currently planned for 2013 [33]. NASA-funded programs aimed
toward development of solar sail technology were completed in 2005 by two firms, ATK
Space Systems of Goleta, California and L’Garde Inc., of Tustin California. L’Garde
used inflatable boom technology to deploy the boom. In contrast, ATK employed a

coilable graphite boom that would uncoil and support the sail structure. The 20m x
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Figure 4.1. Solar Sail Ground Deployment Test by DLR [32].

20m sails were tested at the NASA Glenn Research Center’s Plum Brook Station in
Sandusky, Ohio [34] but neither achieved Technology Readiness Level (TRL) 6.

In 2010, the first spacecraft to demonstrate the use of solar radiation pressure as a
source of propulsion in flight was launched by the Japanese Space Agency, JAXA. The
solar sail spacecraft, Interplanetary Kite-craft Accelerated by Radiation Of the Sun
(IKAROS), is a square sail, 20m in diameter, and 7.5 pm thick created from polyimide
film. A model of the IKAROS spacecraft, as well as the actual deployed spacecraft,
appears in Figure 4.2. IKAROS successfully demonstrated both a propulsive force of
1.12 mN and attitude control capabilities [19]. Thus, IKAROS paved a pathway for
further development in the field of solar sail technology.

In the United States, NASA, in collaboration with the Planetary Society, is devel-
oping the NanoSail-D (a ‘CubeSat’ project) based on solar sail technology; later, the
project was actually renamed LightSail. A laboratory-based, deployed NanoSail-D
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(a) Model of IKAROS Spacecraft [35] (b) IKAROS after Solar Sail Deployment [36]

Figure 4.2. IKAROS Solar Sail Spacecratft.

appears in Figure 4.3. NanoSail-D was onboard the SpaceX Falcon 1 in August 2008
which was designed to test the capabilities in low-Earth orbit. The Falcon 1 launch
was unsuccessful, and both the rocket and the payload were lost. Now LightSail-1
is planned to test the propulsion capabilities of the spacecraft at an altitude of 800

km. The Planetary Society had initially planned on launching LightSail-1 in 2012.

Figure 4.3. Fully Deployed NanoSail-D [37]

As of November 06, 2012, no further update is available [38]. Upon the successful
testing of LightSail-1, LightSail-2 is planned for launch to further enhance the solar
sail based control strategy. It is expected that LightSail-3 will follow with a proposed

mission that incorporates an insertion into an orbit near the Sun-Earth Lagrangian
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point, L. LightSail-3 will provide early detection and warning of geomagnetic storms
capable of damaging power and communication systems on Earth [18]. Thus, the re-
cent rejuvenation of interest in harnessing the potential of a solar sail has accelerated
the development of technology. The success of the IKAROS mission was a significant
breakthrough and, thus, interest continues in further testing and the validation of

solar sail technology.

4.2 Solar Radiation Pressure Force

The transfer of momentum from photons, originating at the Sun in the form of
bundles of energy, to a solar sail gives rise to Solar Radiation Pressure (SRP) as
mentioned by J. C. Maxwell [13]. The pressure from the continuous bombardment
of radiation onto the sail results in the acceleration of the sail. The energy flux (W),
carried by photons, is used to calculate the amount of momentum transfer, hence,
the SRP acting on the sail. Thus, the SRP exerted on the sail is expressed as

p=" (4.1)

C

where P is the solar radiation pressure and c is the speed of light. For an ideal sail,
i.e., a perfectly reflecting sail, the total radiation pressure, P, is twice that of the
value in Equation (4.1). The factor of two is due to the momentum transferred to
the sail by the incident photons as well as the momentum transferred as a result
of perfect reflection. A schematic representation appears in Figure 4.4. where n is
the unit direction vector parallel to the normal to the surface of the sail and 713 is
the unit vector directed along the Sun-sail line. The angle between the unit vector
directed along the Sun-sail line, 713, and the unit vector parallel to the sail normal,
n, is represented by angle a. The incident photons result in a force, F, along the 73
unit vector and the reflected photons provide the sail with a force along a direction
that is normal to 715. Thus, a net resultant force, ﬁsau, is directed parallel to the sail

normal, n, evident in Figure 4.4.
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Solar Sail = 4 Fe..
R

Incident Photons

Reflected Photons

Figure 4.4. Net Force, ﬁsail, Acting on a Perfectly Reflecting Solar Sail

The solar flux, W, is a a function of the distance of the solar sail from the Sun.

Thus, the general expression for solar flux, W, is modeled as

72\
W=W1AU( - 2) (4.2)

13

where Wi 4y is the solar flux experienced by the solar sail at a distance of one as-
tronomical unit (AU), i.e., in the vicinity of the Earth. In addition, (ry + r3) is the
distance between the primaries, in this case, the distance between the Sun and the
Earth, and ry3 is the distance between the Sun and the solar sail-based spacecraft.
The amount of solar radiation pressure acting on the sail at an approximate distance
equal to 1 AU (distance from the Sun to the Earth) is available and an acceptable
value for the solar flux, W at 1 AU is

J

m? s

Wiav = 1368 (4.3)

Consider the required solar sail size based on the desired acceleration that can be

achieved as a result of solar flux at 1 AU. The total solar radiation pressure acting
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on a perfectly reflecting solar sail at an approximate distance of 1 AU is evaluated

using Equation (4.1) and results in the value,

Psait = 2(P) = 9.12 x 107° —

(4.4)
Assume that an experimental sail with the same size and comprised of the same
material as IKAROS is operating at 1 AU. The experimental sail is assumed to be
flat, rigid and perfectly reflecting. Thus, the total force acting on the experimental

sail due to solar radiation pressure is
Fracat = Psait * Asair = 1.824 mN (4.5)

From the data collected, IKAROS demonstrated a propulsive force of 1.12 mN [19].

Thus, for the experimental sail, the efficiency, €, is calculated as

F ctua
Efficiency (¢) = —22* » 100 = 61.4 % (4.6)
Ideal

In addition, based on the information available, it is possible to calculate a sail ac-
celeration, ag,, given a total mass (consistent with the IKAROS spacecraft) that is
310 kg [39],

F ctua
Qg = —2ual_ _ 361 21

MasSTotal el (47)

To be capable of carrying the total load, i.e., mass of the spacecraft, payload and
the sail, an ideal sail must be of a certain pre-specified dimensions. Such analysis
appears in Figure 4.5 for an ideal sail. The required sail edge length assumes that the
sail is square in design and a pre-specified sail acceleration capability. Based on the
sail loading and the acceleration that can be produced, the requirements for the edge
length are indicated. To investigate the sail loading capabilities, the load factor, o,
is introduced,

Mrotar 310 kg g

= = = 1550 = 4.8
77 Agur 200 w2 m? 4

From the acceleration of the experimental sail, as well as the efficiency, an analysis
relating sail edge length and mass to the acceleration level appears in Figure 4.6.

Recall that the acceleration experienced by the experimental sail is 3.61 um/s? as
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= 61.4 % of the Experimental Sail.

noted in Equation (4.7). Though the acceleration, Ag.;, is small, it still is signifi-

cant. The plots in Figure 4.6(a) compare the sail size requirements for a sail with an
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acceleration level equal to that of IKAROS to sails with accelerations that are two
and ten times that of IKAROS. From the figure, it is easily inferred that the size and
efficiency of the sail plays a huge role in the overall acceleration level that the sail can
achieve for a given total mass. Thus, to increase the solar sail acceleration, the load
factor must be reduced. The decrease in the load factor is achieved by significantly
increasing the size of the sail.

Continuing investigations into solar sail technologies aid in improving the char-
acteristics associated with solar sails, thereby increasing efficiency. Recall that the
efficiency demonstrated by the sails on a spacecraft similar to the IKAROS space-
craft and operating at 1 AU is 61.4 %. In Figure 4.7, the sail size requirements as a
function of acceleration and total mass are apparent to demonstrate an efficiency of

90%. As an example, assume that the total mass of the spacecraft (payload and sail)

40 . : : : : 500
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(a) Analysis for Lower Sail Accelerations (b) Analysis for Higher Sail Accelerations

Figure 4.7. Sail Edge Length Requirements based on the Efficiency (¢) = 90 %.

is 150 kg. Given that the experimental sail is 61.4 % efficient (same as IKAROS), to
achieve an acceleration of 36.1 um/s* due to SRP, the approximate dimensions that
are required equal 30m x 30m, i.e., an area of 900 m? (Figure 4.6(a)). Similarly, if

the experimental sail is 90 % efficient, the same acceleration would require the sail



72

to be appoximately 25m x 25m, i.e., area of 625 m? (Figure 4.7(a)). Thus, reducing

2. In summary, a 90 % efficient sail of dimensions

the required sail area by 275 m
30m x 30m is capable of supporting an increased total load of 200 kg and achieve an
acceleration of 36.1 um/s? due to SRP.

In another scenario, assume that the mission specification requires the sail ac-
celeration to be 3 mm/s* and capable of supporting a total mass of 200 kg. The
experimental sail, with an efficiency of 61.4 % (Figure 4.6(b)), would require the sail

to be of dimension 320m x 320m, i.e., an area of 102,400 m?

. Increasing the effi-
ciency of the experimental sail to 90 % would require a sail of dimension 270 m x 270
m as apparent from Figure 4.7(b). Thus, reducing the required sail area by 29,500
m?2. Alternatively, if a 90 % efficient sail is still of dimension 320m x 320m, the sail
loading capacity is increased to 300 kg. Thus, increasing the sail mass-to-area ratio
to 2.93 gm/m?.

The analysis summarized in this chapter is fundamental and serves as the basic
requirements that the sail must meet to carry a certain load and achieve a desired
sail acceleration. The investigation is extended to incorporate a change in the solar
sail acceleration level as a result of a change in the sail’s position from the source
of the radiation pressure, i.e., the Sun. Incorporating the sail characteristics in the
equations of motion for a spacecraft is formulated by inclusion of the force model
due to the solar radiation pressure. Further examination is completed to analyze
the behavior of a sailcraft in the restricted three-body problem, thus, formulating a
new hybrid model labeled as the Solar Sail Circular Restricted Three-Body Problem
(SS-CR3BP).
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5. SOLAR SAIL IN THE CIRCULAR RESTRICTED
THREE-BODY PROBLEM (SS-CR3BP)

A concept for harnessing the energy carried by photons from the Sun in the form of
momentum extends the solar sail model into the CR3BP framework. The momentum
transfer from the incident and reflected photons acting on a sail result in a net force
that continuously accelerates the vehicle. Thus, a mathematical model is formulated
to incorporate the solar sail in the CR3BP. The model is consistent with previous
analyses by McInnes [13], Nuss [40] and McInnes [41]. Certain assumptions pertaining
to the solar sail and the intercepted photons are specified in the development of the
model. The location of the collinear Lagrangian points as a result of the inclusion of

the acceleration due to solar radiation pressure force is investigated.

5.1 Sail Orientation

In the development of a force model, a mathematical description of the direction
of force relative to the sail orientation is a key kinematical relationship. The quantity
of photons encountered by the solar sail is directly related to the sail orientation with
respect to the direction of photon flow. Thus, the orientation of the sail governs the
acceleration produced on the solar sail by the incident and the reflected protons. A
schematic representation appears in Figure 5.1. The orientation of the solar sail is
defined based on two angles with respect to an orthogonal reference frame as seen
in the figure. The reference frame of interest is formed from the unit vector, Z, the
direction that remains fixed in both the inertial and the rotating frame, as well as
the unit vector, cf, along the Sun-sail line. The angle a represents the angle between
the Sun-sail unit direction, cz, and the direction vector parallel to the surface normal

of the sail, n. The angle « is also represented in Figure 4.4; « is frequently denoted
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Figure 5.1. Solar Sail Angle Definitions.

as the cone angle or the nutation angle of the solar sail relative to the Sun-sail line.
The second angle in Figure 5.1 is represented as the angle . The angle ~ is defined
between the plane spanned by the unit vectors, d and 7 lie and the reference unit

direction vector, k. The vector k is defined as

~ ~

N>
—

(5.1)

—
Q| X
X | X
N>

X d|
In a sense, 7 defines the angle by which the plane spanned by the unit vectors, d
and n has precessed; thus, the angle 7 is also the precession angle or the clock angle.
Based on the currently available technology, the maximum rate of rotation for attitude
control is equal to 0.02 deg/s for a three-axis spacecraft equipped with sails that use
sail panel rotations [42]. This attitude control rate is referenced to offer insight into
the relative time that is required for a desired maneuver. It is vital to note that
if the sail orientation angles, a and 7, remain constant relative to the Sun in the

rotating frame, the orientation will change in the inertial frame. Thus, the hardware
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must continually reorient the sail with respect to the inertial frame. To maintain the
orientation of a sail relative to the Sun in the inertial frame, the sail must reorient at
approximately one degree per day to maintain an orbit with an estimated period of
180 days.

Prior to introducing a force acting on a sail in the dynamical model, it is necessary
to mathematically express the sail orientation in the rotating frame coordinates. The
unit direction vector, n, as indicated in Figure 5.1, is parallel to the surface normal
of the sail. The vector n, in terms of the rotating frame coordinates z, ¢, and 2 is
defined as

=Nyl + nyy +n.2 (5.2)

where the magnitudes, n,, n,, and n, are evaluated as

n, = Cosa (z 4;#) - SinaCOS’yM + SinaSiny Y (5.3)
|d| |(d x 2) x d] |d x 2|
ny = C’osa@ - SinaCosv# — SinaSiny (xj_ 2 (5.4)
|d| |(d x 2) x d |d x 2|
2 2
n, = Cosa— + SinaCosy v j— (z + m_,] (5.5)
\d| |(d x 2) x d]

and the denominators in Equations (5.3) - (5.4) are

|d|= /(z + p)? + 3% + 22 (5.6)
|(d % 2) x d]= /(2 + p)? + 32 (5.7)
d'x 2= /(z+ )22 + 222 + ((z + p)? + 32)? (5.8)

Expressing n in the rotating coordinate frame assists in successfully incorporating the
force and the orientation information into the force model for the CR3BP to formulate
the new set of differential equations that reflect the SS-CR3BP. Note, d is always the
direction of photons from the Sun. In Figure 5.1, it is also clear that for an angle
equal to zero, a = 0°, the maximum quantity of photons are intercepted by the solar
sail surface. Thus, at the particular orientation identified as a = 0°, the solar sail
experiences the maximum acceleration due to solar radiation pressure. Consequently,

as the sail angle increases, the quantity of photons that are encountered by the solar
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sail decreases, lowering the acceleration of the sail. At a sail angle equal to a = 90°,
the sail is edge-on to the flow of photons and, thus, the solar sail acceleration receives
no contribution due to the solar radiation pressure. The sail orientation described by

a = 90° reflects a net force on the spacecraft equal to that in the CR3BP model.

5.2 Mathematical Expression for Solar Sail Acceleration

The derivation of the acceleration due to solar radiation pressure is based on
three critical assumptions and emerges as a function of the sail angles, a and . For
preliminary analysis, it is assumed that the solar sail is ideal and flat with a perfectly
reflecting surface, i.e., there is no absorption or refraction but only reflection due
to the incident photons. Thus, all the photons experience perfectly elastic collisions
and “bounce off” the surface of the solar sail as demonstrated in Figure 4.4. It is
also assumed that the source of photons is the primary, P;, which is the Sun. Thus,
the flow of incident photons is parallel to the Sun-sail line and the resultant force
is parallel to the sail surface normal. The total net force acting on the solar sail is

expressed as a function of angle, «, in the form
ﬁSail = GPS(M'IASMZCOSZQ n (59)

where € is the efficiency of the sail. Recall, in Equation (4.8), the load factor, o, is
defined as the ratio of the total mass supported by the sail to the total surface area
of the sail. The load factor, o, is now used to rewrite the solar sail acceleration from

Equation (5.9),
Psail

g

Cos*a (5.10)

Qsail = €

Thus, a new quantity is also defined as the solar sail characteristic accelerations, a*.
The characteristic acceleration is the acceleration at 1 AU and, for the particular

orientation, such that the sail angle is equal to zero, i.e., a = 0°, or

at =€

Piail 9.12
=€

o = o/l [mm /s (5.11)
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The characteristic acceleration, a*, serves as a reference value for comparison with
general solar sail accelerations. Consistent with the definition of o, a characteristic
mass-to-area ratio, ox, is defined that produces a force equal and opposite to the

force acting on the sail due to solar radiation pressure, i.e.,

. Psqil 713
Gm1

o (5.12)

Recall that G is the dimensional universal gravitational constant, the quantity 13
is the dimensional scalar distance of the third body, i.e., the solar sail spacecraft,
from the first primary, P;, the Sun and m; is the mass of the first primary, P;. The

introduction of the sail lightness parameter, (3, is appropriate as

=2 (5.13)

The sail lightness parameter, also frequently denoted the sail loading parameter, is
the ratio of the acceleration due to the solar radiation pressure to the classical solar
gravitational acceleration [13]. Thus, the solar sail acceleration expression in Equation

(5.10) for efficiency equal to one, i.e., € = 1, is rewritten as

Gm1

Cos’a 7 (5.14)
T13

i=p

Now, rewriting Equation (5.14) in terms of nondimensional quantities

(1—p)
d2

Foail = I6] Cos’a i (5.15)

where ?gail is the nondimensional acceleration of the solar sail due to solar radiation
pressure. Recall that d is the nondimensional distance of the solar sail from the Sun.
The model for the nondimensional solar sail acceleration in Equation (5.15) is now

easily included to augment the equations of motion in the classical CR3BP.

5.3 Augmented Equations of Motion in the CR3BP

The dimensional vector differential equation governing the motion of P3 under the

gravitational influence of P, and P, in the classical CR3BP is derived and appears
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in Equation (2.13). Augmenting the force to include the contribution due to the

solar radiation pressure acting on the spacecraft results in the following dimensional

equation,
T Gmsm, _ Gmsma _ Gmsmy 9
my 73" = — T3 — T3+ B——5—Cos"an (5.16)
r r r
13 23 13

To avoid round-off errors associated with the numerical integration and to generalize

the results, Equation (5.16) is rewritten in a nondimensional form,

o A=pw p_ o (1—p)
e = L e

Cos*a (5.17)
Thus, Equation (5.17) represents the nondimensional differential equation governing
the motion of P; under the gravitational influence of P, and P; as well as the influence
of solar radiation pressure on P given that P; represents a spacecraft with a solar sail
and P; acts as the source of the solar radiation pressure. Substituting the kinematic
expression from the previously derived result in Equation (2.18) into Equation (5.17)
yields the following three second-order nondimensional scalar differential equations
of motion for the spacecraft, P;, equipped with a solar sail, under the gravitational

influence of the two primaries, P, and P, and the solar radiation pressure from P,

the Sun, i.e.,

(1—p)(@+p) ple—1+p)

T — 2y — T = — B — 3 + ASail—x (518)
.. . 1-—
Yy + 22 — Y= — (d—3/~0)y — % + ASail—y (519)
. 1—pu)z z
Z = % — /;—3 + ASail—» (520)

where agqil—z, ASqil—y, and agqi—. are the components of the nondimensional solar sail
acceleration expressed in rotating coordinates acting along 2, ¢, and 2z unit direction

vectors, respectively. The expressions for the acceleration components are as follows

1—

ASail—z = ﬁ( pP ) Cos*a n, (5.21)
1 —

ASail—y = B(d—zu)C’os%z Ty (5.22)
1 —

ASqil—» = B( M)Cos2oz n, (5.23)

d2
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The scalar magnitudes are the same as those in Equations (5.3) - (5.5). Based on the
definition of the pseudo-potential function in Equation (2.22), a condensed form of

Equations (5.18) - (5.20) is rewritten as

=25+ O 4 asui (5.24)
y = — 20+ QZ + ASail—y (525)
zZ= Qz + aSail—z (526)

The mathematical model represented in Equations (5.24) - (5.26) is nonlinear and
coupled, thus, no closed-form solution exists. Collinear equilibrium points exist in
the SS-CR3BP and the behavior of a solar sail equipped spacecraft is analyzed in
the vicinity of the L; and Ly Lagrangian points. The subsequent analysis offers new

regions for exploration using the solar sails.

5.4 Collinear Lagrangian Points: Analysis in the SS-CR3BP

The inclusion of the acceleration terms due to solar radiation pressure in the
CR3BP model modifies the dynamical characteristics associated with the system. As
a result, collinear ‘displaced’ Lagrangian points emerge as new equilibrium locations.
The collinear, displaced Lagrangian points are also termed the collinear artificial
Lagrangian points. The parameters associated with the sail allow to vary the locations
of the collinear Lagrangian point along the & unit direction vector, in turn, reaching

locations that might be significant from a scientific prospective.

5.4.1 Displaced Collinear Lagrangian Points

To explore the physical location of the displaced collinear Lagrangian points within

the context of a rotating frame, recall that both the relative acceleration and the
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relative velocity are zero. Consequently, the mathematical model in Equations (5.24)

- (5.26) reduces to

0= Q; + ASail—z (527)
0= QZ + Asail—y (528)
0= + asuir_» (5.29)

These relationships are also expressed as the gradient of the potential function, i.e.,
—69, such that,

—VQ = 6(1 ;Q'M) Cos*a (5.30)

The location of the collinear points along the z-axis, i.e., ¥y = 0 and z = 0, is

determined from the cross product of Equation (5.30) with n gives [41], that is,
—VQxha=0 (5.31)

For the displaced Lagrangian points along the x-axis, it is apparent from Equation

(5.31) that the equilibrium points exist for
~VQ
-Vl

A= — 47 (5.32)

Thus, Equation (5.32) implies that the sail angle is equal to zero, « = 0°. The
equation governing the location of the displaced collinear Lagrangian point is derived
from Equation (5.18) after incorporating the appropriate orientation of the sail. The
assumption that y = z = 0, as well as the fact that the acceleration and velocity
components are equal to zero, yields

(1—p)
d2

O:w_(1—u)(fﬁ+u)_u(flf—1+u)+ﬁ

a3 r3

(5.33)

The expression in Equation (5.33) is rearranged into a more compact form as

dj . Ty,

7

where, the subscripts are consistent with those employed in Equation (2.37) for the

formulation in the C3BBP. Note that, for sail a lightness parameter equal to zero, i.e,



81

B =0, Equation (5.34) is equivalent to Equation (2.37). Thus, the expression reduces
to the equation in the CR3BP, implying that the location of the collinear equilibrium
points in the classical CR3BP is simply a special case of the SS-CR3BP analysis, one
for which the value of 5 = 0.

A schematic representing the locations of the displaced collinear Lagrangian points

as a function of the sail lightness parameter, 3, is plotted in Figure 5.2. As the
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Figure 5.2. Displaced Sun-Earth Collinear Lagrangian Points Progression.

value of 8 approaches zero, the Lagrangian points shift to their location within the
context of the classical CR3BP. Alternatively, as the value of 5 approaches one, the
Lagrangian points, I; and Lo, both tend to asymptotically approach the barycenter,
B. Clearly, all the collinear points tend to shift closer to the primary, P;. As a result
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of variations in the sail lightness parameter, 3, the displacement of L, and L. along
the Sun-Earth line is much more significant as compared to the displacement of Ls.
Thus, the existence of displaced, artificial Lagrangian points broadens the options for
exploration within the SS-CR3BP. Further investigation into the potential existence

of periodic orbits in the vicinity of the displaced Lagrangian points is warrantied.

5.4.2 Behavior Near the Displaced Lagrangian Points in the SS-CR3BP

To obtain stability information corresponding to the displaced Lagrangian points,
differential equations are linearized relative to the equilibrium points. The linear
stability analysis is then based on the first-order variational equations. As a result
of the incorporation of the accelerations of the solar sail due to the solar radiation

pressure from the Sun, Equations (2.50) - (2.52) are rewritten as

é_ 277 = (Q::a: + agail—xz)g + (Q;y + agail—my)n + (Q;z + a*Sail—zz)C (535)

ﬁ + 2§ = (QZx + agail—yw)g + (QZy + a*Sail—yy)n + (quz + a*Sail—yz)g (536)

C.: = (QZ:L' + az'ailfzz>£ + (Q:’y + aj*Sailfzy)n + (Q:’z + az‘ailfzz)c (537>

where ()}, represents the second partial derivative of the pseudo-potential from Equa-

tions (2.53) - (2.55) evaluated at the specified collinear displaced Lagrangian point.
The A5q—;, terms correspond to the partial derivatives of the scalar solar sail accel-
eration in the %" unit direction vector of the rotating frame with respect to the j*
position coordinate in the rotating frame. The expressions for ag,;_; are summa-
rized in Appendix A. Similarly, the augmented system matrix, A 4,, in the state-space

representation, is now expanded as

Ay = (5.38)
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and observe that A, is a constant matrix. Thus, the state-space form for the

analysis of behavior in the vicinity of the collinear Lagrangian points with a solar sail

appears as
(. ) B 1 7 \
3 0 0 0 1 0 0] ¢
n 0 0 0 0 10 n
¢ 0 0 0 001
é (Q;x+agail—zx) 0 0 0 2 0 f
ﬁ 0 (QZy+a*Sail—yy) 0 -2 00 77
\ C V, L 0 0 (sz—i—ai’gail*zz) 0 0 O_ L C )
(5.39)

The new characteristic polynomial corresponding to the in-plane motion is formulated

using the information from Equation (5.35) - (5.36), and the result is

)\4 + (4 - Q;x - QZy - agailfmz - agailfyy>>\2
+ Q(QZy - QZJE + agailf:py - agailfyl)A (540)
+ ((Q;m + a*Sail—xm)(QZy + a*Sail—yy) - (Q;y + agail—xy)<QZm + a*Sail—yz)) =0

Confining the analysis to displaced collinear Lagrangian points, i.e. yr, = 2z, = 0,

k3

and ;= Q= 0, further reduces Equation (5.40) to the form

)\4 + (4 - Q;kcx - QZy - a’*Sail—acI - agail—yy ))\2 + (Q;x + a*Sail—xI ) (Q;y + a*Sail—yy) =0 (541)

Confining the solution to the primary plane of motion results in (€2}, +a%,; ., ) (€25, +
A3gi1—y,) < 0. The form of Equation (5.41) is easily transformed from a quartic to a

quadratic equation of the form
A +2pA—p5=0 (5.42)

where A again represents the roots of the Equation (5.42). The reformulations of the
coefficients from Equation (5.41) result in the associated constants,
. Q;x + QZy + a’gail—azw + a*Sail—yy

2
p% = = (Q;z + agail—zx)<ngy + agail—yy) (544)
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Similar to Equations (2.76) - (2.77), p1 and ps are both real. Thus, the quadratic

roots are of the same form as Equations (2.78) and (2.79), that is,

Av= —pi+\/pi+ 05 (5.45)
\/7

Ay = —pr— /P + 13 (5.46)

Analysis of the quintic roots reveals that the eigenvalues of the linear solar sail model
possess the same characteristics as the linear system represented by Equation (2.74)
That is, A\; 2 are real (R) eigenvalues and A3 4 are purely imaginary () eigenvalues.
Thus, continuing the linear analysis similar to that completed for the linear model in
the traditional CR3BP, the appropriate selection of the initial conditions prevents the
excitation of the divergent behavior. Recall that the general solution for the in-plane
motion near the vicinity of the collinear Lagrangian points in the CR3BP is reflected

in Equations (2.92) and (2.93). The corresponding expression in terms of the new

definitions is rewritten as

¢ = &Cos|w(r — )] + Z—Zsm[w(T — )] (5.47)
n = noCoslw (T — 79)] + &opsSin|w (T — 79)] (5.48)

where w and p3 are real quantities, i.e.,
A3 = 1w (5.49)
V3 = ip3 (5.50)
The representative expressions for w and 3 are

w = \/p1+\/p¥+,0§ (5.51)

w2—|—Q* +a* )
ﬁ _ TT Sail—x, (552)

3 2w

Thus, the initial conditions for the in-plane components of velocity are derived from
the derivatives of Equations (5.47) and (5.48) at an initial time, 7 = 79,
=" (5.53)
P3

Mo = — &opsw (5.54)
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Note that the initial conditions are functions of the sail lightness parameter, 3, since
the acceleration components for the solar sail model are directly related to the sail
lightness parameter. The impact of § on the initial conditions for the linear response
is represented in Table 5.1. To visualize the shift in both the locations of the displaced
Lagrangian points and the relative orbit about that point, the linear paths associated
with three sets of initial conditions are plotted corresponding to three different values

of the sail lightness parameter, 5, in Figure 5.3. The table locates the position of the

Table 5.1 Initial Condition for Linear Orbits as a Function of Sail Parameter, (.

B | @, (km) | & (km) | no (km) | & (km/s) | s (km/s) | Period (days)
£1 = 0.00 | 148105889 | 200,000 0 0 0.26831 ~175
By = 0.03 | 147397139 | 200,000 0 0 0.141507 ~247
B3 = 0.05 | 146671041 | 200,000 0 0 0.107480 ~291

collinear Lagrangian point relative to Py, the Earth, and the initial velocities, & and
7o, for s specific sail parameter, 5. In this example, the sail is completely “face-on”
to the flow of photons, i.e., & = 0° and ~ is arbitrary. Using the information listed
in Table 5.1, the linear response for the three sets of initial conditions appears in
Figure 5.3. The set of three orbits includes the orbit corresponding to £, = 0.00, i.e.,
equivalent to a spacecraft with either no sail or a sail completely turned edge-on as
plotted in purple. The initial conditions for each orbit in the figure is denoted as a
black dot along with the clockwise direction. Clearly, the position of the artificial
Lagrangian point, L, shifts towards Py, i.e., the Sun. The size of the linear orbit also
decreases with sail lightness parameter. Of course, these initial conditions result in a
periodic orbit only in the linear system. In addition, the orbits are consistent with the
assumption that the sail maintains its orientation throughout the periodic orbit, i.e.,
a = 0° and v is arbitrary. Propagation of these initial conditions in a nonlinear model
for the SS-CR3BP results in the departure of the spacecraft from the vicinity of the

linear approximation, thus, departing from an orbit about the displaced Lagrangian
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Figure 5.3. Displaced S-E Collinear Lagrangian Points Progression
with Linearized Periodic Orbits.

point. Although the trajectory departs, the linear solution is a good initial guess for

a corrections process to produce an exact solution in the nonlinear problem.
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6. DIFFERENTIAL CORRECTIONS FOR TRAJECTORY
DESIGN EMPLOYING SAIL ANGLES

Preliminary design of trajectories in the SS-CR3BP is typically based on a differential
corrections scheme. A numerical corrections approach from the CR3BP is extended
to incorporate the solar sail angles. The existence of displaced Lagrangian points
expands the regions of interest in the vicinity of these libration points. These re-
gions are explored for the existence of periodic orbits and trajectories of interest that

incorporate the solar sail model.

6.1 Augmented State Transition Matrix

The inclusion of the effects of photons on the acceleration of a solar sail based
spacecraft increases the complexity associated with the system model. Thus, the
evolution of a state over time is first analyzed in response to changes in the initial
states that include the sail angles, that is, a and . Assume the following form for

an eight-dimensional initial state, X (70),

—

T
X(TO):{% Yo 20 To Yo 20 Qo ’Yo} (6.1)

Propagating the trajectory with the initial conditions in X (7o) yields a baseline ref-
erence path for the augmented state transition matrix, ®4,,. Introducing a small

perturbation, §.X (7o), produces the nearby initial conditions, X *(10),

N T
5X(7_0): {(51‘0 5y0 520 (5[L'0 (Sy() 520 50(0 5’}/0} (62)

—

X*(10) = X(70) + 6X (10) (6.3)

The updated initial state, X *(19), is propagated and results in a new time-varying

nearby arc. Note that the orientation of the sail, i.e., the sail angles, o and vy, remain
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fixed throughout this propagation relative to the Sun in the rotating frame. Thus,
for assessing the dependencies, the sail angles are independent of the position and
the velocity states over time, 7. The new state along the trajectory, in the vicinity of
the baseline or the previous iteration, is approximated based on the linear mapping,
that is, the augmented state transition matrix, STM 4,4. Thus, applying a first-order
Taylor series expansion about the reference and neglecting the higher-order terms,

the linear variational relationship is written in the form,
6X = Apuy(T)0X (6.4)

Note, in contrast to Equation (5.38), the A 4,, matrix is time-dependent. If the three
second-order equations governing the motion of the sailcraft are expressed as six first-
order scalar equations incorporating the effects of the sail angles, the partials relative
to the initial position, velocity states and orientation angles, corresponding to the

elements of the system matrix, are formulated such that

aF N33 Is Ns2
| = Au(T) = [ (Qyy(7) + asail-i;) D C (6.5)
0X |z,

N23 N23 Na2

)

where Ny, 4 are the null matrices of size p X q. Submatrices I, (£2i;(7) + asail—i;),
and D of matrix A are consistent with the terms defined in Equation (5.38). The
inclusion of the solar sail introduces partials relative to the effect of solar sail angles,
a and 7, on the scalar acceleration terms associated with the equations of motion.

Information related to these partials is expressed within submatrix, C.

ASail-zo ASail—z~
C= ASail—y,  ASail—y, (6-6)

ASail—zo ASail—2z,
The complete expressions for the partials of the scalar solar sail accelerations relative
to the sail angles, o and 7 , in the rotating frame are listed in Appendix B. Thus,

the updated formulation for the general solution in linear vector form, is expressed as

SX (14) = ® gug (15, 70)0 X (10) (6.7)
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where ® 4,4(7f,70) is an 8 x 8 STM 4,, that maps the change in initial state, 6X (1),
a 1 x 8 state vector, to the change in final state, 5)2(77), also a 1 x 8 final state
vector. To determine the elements of the STMy,,, the variational equations and the
equations of motion corresponding to the solar sail model are numerically integrated
simultaneously. The mathematical expression for the matrix variational equation is
given as

(77, 70) = Anug(T7) P aug (77, 70) (6.8)

Based on the eight initial scalar states, the elements of the 8 x 8 STM 4,4, that relate

the final states to the initial eight states, are evaluated as partials, such that,

or o 9 O O O Bs O
Org Oyo Ozp Ofo OYo OZp9 Oap Ovo
Oy Oy 9y 9y Yy Ody Oy Iy
Odrg Oyo Ozp Oxo 9OYo OZp Oap Ovo
Oxg Yo 0z0 Ox0 9Yo [EN) dag 90
o5 o5 08 0 0 0b 85 0
Oxg dyo 0z0 o0 9Yo 029 dag 2%}
(I)Aug(va TO) = (6.9)
Oz Yo 0z0 O0xo Yo 020 dag Y0
02 02 0 0 0 05 9: 0%
dxrg  Oyo 020 Oxg O0yo 0z20 Oap Ovo
0 0 O 0 0 O 1 0
0 0 0 0 0 0 0 1

The zeros in the last two rows of the 8 x 8 STM 4,4 matrix reflect the fact that the
sail orientation angles are independent of the position and velocity states and remain
constant over the integration arc. The remaining 48 time-varying elements of the
STM 4., are evaluated by numerically integrating the matrix variational equations in

Equation (6.8) along with the equations of motions, given the initial conditions, and,

®(70, 70) = Lsxs (6.10)

where Igyg is a 8 x 8 identity matrix. The augmented state transition matrix, STM 4,4
is now used in a corrections scheme to produce periodic orbits in the vicinity of

displaced collinear Lagrangian points.
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6.2 Differential Corrections Scheme based on Sail Orientation Angles

For trajectory design, a two-point boundary value problem can be solved using a
differential corrections scheme and implementing solar sail angles as design param-
eters. The corrections scheme is formulated to iteratively modify the initial states
based on the linear estimated information available from the STM 4,,; iterations con-
tinue until the desired final state is achieved to a specified tolerance level. The scheme
is implemented with constraints and additional free-variables, i.e., the sail orientation
angles. In the algorithm for the shooting scheme, the free-variables are the available
controls. In the case of a solar sail, in addition to initial position and velocity states,
the free variables include the orientation angles o and . Thus, for implementation of
the corrections scheme, a vector X is formulated that includes the sail states, a and 7,
acting as control parameters to achieve the vector constraints, F ()Z' )= 0, associated
with the trajectory. The corrections scheme is developed based on the same strategy

as that applied in the classical CR3BP with a modified set of design variables.

6.2.1 Fixed-Time Single Shooting: Sail Angles as Design Variables

The inclusion of sail angles offers additional options for formulation of the shooting
scheme. To analyze the targeting algorithm based on sail angles, assume that a
spacecraft is located at a certain position and with some velocity. By adding to the

available controls within the initial state vector, an 8 x 1 vector X (7o), is defined,

( )
Zo

Yo
20
X(r) =1 (6.11)
Yo
20

Qp

Yo
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Note that 7y represents the initial nondimensional time. The corrections scheme
is formulated to target a desired six-dimensional final vector of scalar position and
velocity states, )Z'*(Tf),

7—,'*

X*(15) = (6.12)

N
where 7™ and v™ are the three-dimensional position and velocity state vectors, respec-
tively. Thus, the TOF between the initial and the final state is defined as 7 — 7. For
this particular sample formulation, the TOF remains constant over the integration
time between successive iterations. If the initial sail angles are formulated as the only
available design variables, the X () vector is reduced to

(&%)

X(m) = (6.13)

Yo
Equation (6.13) implies that the initial position and velocity states are not updated
— only the sail angles are allowed to vary. Given the number of design variables, to
achieve a unique solution, only two final states can be targeted from the total six-
dimensional desired state vector, X *(7¢). This reduces the application of a fixed-time
single shooting algorithm that only allows sail orientation angles, a and ~ as the

available design options.

6.2.2 Variable-Time Single Shooting: Sail Angles as Design Variables

Extending the analysis from a fixed-time single shooting scheme using solar sail
angles, & and ~, to a variable-time approach can increase the total number of design

variables to three. The new design variable vector, X (70), 18

&%)

X(10) = | (6.14)
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where 7 is the TOF, i.e., integration time between the initial and the final specified
state. Thus, the corrections scheme is developed to target a maximum of three
constraints. Though the number of possible solutions have increased in comparison
to a fixed-time single shooting process using only sail orientation angles for control,
the variable-time single shooting strategy with sail orientation angles plus time as
the control variables also faces the limitations. The versatility of both fixed-time and
variable-time single shooting schemes is increased by extending the basic strategy in
a multiple shooting scheme. Multiple arcs introduce more control variables that are

beneficial in meeting the final targeting constraints.

6.3 Multiple Shooting using Sail Orientation Angles

To generate a solution in a complex scenario, the differential corrections scheme is
extended to a set of n discrete patch points. Any multiple-shooting scheme is based
on a strategy that is similar to any single-shooting iteration process. In contrast,
however, the trajectory is now decomposed into a set of arcs, identified in terms of
n discrete points, thus, allowing more flexibility in the corrections process. Recall
that these points are denoted ‘patch-points’. The overall objective of a multiple
shooting differential corrections algorithm is a complete trajectory that is continuous
in position and velocity. To achieve such continuity, orientation angles associated
with the solar sail are iteratively updated to result in a final converged path. A
specific design scenario may or may not allow the TOF to vary along each segment
between the patch points. Thus, two multiple shooting formulations based on solar
sail angles is again formulated, i.e., fixed-time and variable-time multiple shooting

algorithm using sail angles, a and ~y, as design parameters.

6.3.1 Fixed-Time Multiple Shooting using Sail Orientation Angles

Under the assumption that the integration time, 7;, remains fixed along each arc

between the patch points, a fixed-time multiple shooting scheme is easily formulated.
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The introduction of sail orientation angles, o and ~, within the design variable vector
is now expressed in general form as

Xi1(70,)

—

Xo(70,)

!
Il

(6.15)

Xn (Ton )

/

Note that, X; is now an eight-dimensional vector (as defined in Equation (6.11).)
comprised of three position states, three velocity states and two orientation angles.
Recall that n indicates the number of patch points used to discretize the trajectory
into n—1 segments. Thus, X is a 8nx 1 dimensional design variable vector for a fixed-
time multiple shooting algorithm that incorporates sail angles along each segment.
The constraint vector, ]3()2 ), is constructed to maintain continuity in both position
and velocity states between the end states along any arc and the subsequent patch

point, 1.e.,

Y

1

1
J

F(X) = : (6.16)
Xooa(7p, ) [1: 6] = X1 (70,_,)[1 : 6]
X a(rp, )12 6] = Xo(mo,)[1: 6]

\

Continuity is maintained only for the six position and velocity states between each
arc as denoted by [1 : 6]. The sail angles are free to differ between two arcs to
achieve position and velocity continuity between two segments. Thus, the length of
the constraint vector is 6(n — 1), that is, the number of arcs is one less than the

number of patch points.
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As a result of incorporating sail angles in the multiple shooting algorithm, the
associated Jacobian matrix is modified. The partials relating the constraint vectors

to variations in the design variables is contained in the Jacobian Matrix, DEF(X),

(fv&(m) - 822(702>> (ail(m) _ 9Xs(70,)
X1(r0,)  0Xi(7o,) 9Xa(10,)  0X2(70y)

DF(X) =
0Xn-1(rs, ) 9Xu(r0p) ) (8)?%1(%_1) _a)‘(’n(mn))
i 0Xn-1(r0, ) 9Xn-1(r0, ;) X (10,,) 0Xn(10,)" |
(6.17)

where 70, and 7/, denote the initial and the final time, respectively, on the i segment.
The partials reflect the variations in the state at the final time along an arc relative
to the eight-dimensional initial state vector, i.e., the position, the velocity and the
orientation angles. The position and velocity states at the end of the reference arc 1,
Xi(Tfi)[l . 6], are a function of the initial state along the segment, X;(7o,), one that
includes the eight initial states, i.e., position, velocity and the orientation angles,
ap, and 7o,. In this formulation, many terms within the DF(X) matrix are easily
recognized as the terms in the augmented STM the ¢4,4[1 : 6,:]. The subsequent
patch point is not influenced by the selection of the previous initial patch point and,

thus, g;(f—go?; is equal to 0. Likewise, the end state along the i*" reference arc, )?Z'(Tfi),
1(704
9X1(rp)

" 9Xa(10,)

is not a function of the subsequent patch point, )Z'iﬂ(roi), thus is equal to

9X;(ro,)

0. Lastly, the 9X;(70,)

is equal to a rectangular diagonal matrix that is a 6 x 8 matrix
with diagonal entries equal to one. In other words, the matrix can be also be written

as
. aXZ<TOZ) .
H6><8 - 8)21(7'0) - [IGXG N6><2:| (618>

where Igyg is a 6 X 6 identity matrix and Ngyo is a null matrix of dimensions 6 x 2.

Substituting this information, the DF(X) matrix is rewritten in the form

(bAug(Tfl?TOl)[l : 67 :] _H6><8

DF(X) = (6.19)

G ug(Ts, T0,)[1 1 6,:] —Hexsg
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This matrix is then employed in the update equation to iteratively converge the con-

straint vector, F(X*) to zero, i.e., F(X*) = 0 within an acceptable level of tolerance.

6.3.2 Variable-Time Multiple Shooting Incorporating Sail Angles

Allowing the integration time, 7;, to vary along any segment, further extends the
capabilities of using sail angles in the multiple shooting scheme, thus, resulting in
the formulation of variable-time multiple shooting algorithm. The updated design
variable vector now includes additional variables, 7;. Thus, the design variable vector
is an 8n x 1 vector since there are n — 1 integration times corresponding to n — 1 arcs
between n patch points, i.e.,

( \

X1(8 x 1)

P
I

(6.20)

The constraint vector, F ()? ) is the same as that defined for a fixed-time multiple
shooting approach to maintain continuity in both position and velocity states,

(

— — )

F(X) = ; (6.21)
Xna(7g, 5)[11 6] — Xoo1(70,.,)[1 : 6]
X1 (g, )12 6] = Xo(7o,)[1: 6]

\
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Recall that the F(X) matrix is of dimension 6(n — 1). Since the reference state at
the end of each arc, X;(4,[1 : 6] is a function of the integration time, 7;, the updated
DF(X) is rewritten as

(2Xulr) _ 0Xa(roy) (2Xalr) _ 0Xa(roy) 0%,
0X1(710,)  0X1(70y) 0X2(10,)  0X2(70,) o7
DF(X) =
(a)?n—l('rfnq) _0Xa(10,) ) (8)?"—1("77%1) _ 3)?71,("'071,)) 90X 1
0Xn—1(10, ;) 9Xn—1(70, ;) X, (10,,) X, (70,,) OTn_1

—

Inclusion of integration times introduced a new set of terms along a diagonal, %f? , that

corresponds to the partial of each state at the end point along i** reference segment
with respect to the integration time for the i arc. Thus, rewriting Equation (6.22)
in a form similar to Equation (6.19) to incorporate inclusion of time as design variable

results in an expression

—

¢ Aug (7f;, 70,)[1 : 6] —Hexs X1[1:6]

P Aug (T, 70,)[1:6,:]  —Hexs X, [l : 6]
(6.23)

where )Z'Z[l : 6] represents the time derivatives corresponding to the position and
velocity states at the end point along any reference segment, )?Z[l : 6]. Recall that
the orientation angles remain fixed relative to the rotating frame over the integration
time between two patch points. Finally, the update requires a minimum norm solution
since the Jacobian, DF(X), is an 8(n—1) x 9n rectangular matrix. Thus, the iteration
process with a good goal to satisfy the constraint vector relationship, F ()? *) = 6,
proceeds. New position and velocity states are delivered along with the orientation

angles, o, and 7p,, as well as a new TOF, 7, between each subsequent patch point.
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7. PERIODIC ORBITS AND TRAJECTORY DESIGN
IN THE SS-CR3BP

The corrections algorithm incorporating the solar sail orientation angles is extended
to construct periodic orbits in the vicinity of the artificial Lagrangian points. Pre-
vious missions have been designed to maintain a vehicle in the vicinity of the clas-
sical Lagrangian points. Incorporating the sail angles in search of new families of
three-dimensional halo orbits or other periodic orbits increases the design space for
trajectory design and, thus, potentially leads to new design scenarios for mission

applications.

7.1 Construction of Sail-Based Periodic Orbits

For the analysis and construction of periodic orbits in the nonlinear SS-CR3BP
model, it is insightful to first examine the response of initial states obtained from the
linear model when the linear initial state is propagated in the nonlinear SS-CR3BP
model. When the solar sail force is active, the trajectories generated by the initial
state from Subsection 5.4.2 is plotted in Figure 7.1. Obviously, the trajectories for
different sail parameters, 3, are no longer periodic and the spacecraft quickly departs
from the path predicted by the linear model. Also note that the trajectories are all in-
plane. Thus, a corrections process is employed to determine new periodic solutions in
the vicinity of the displaced collinear Lagrangian points using sail orientation angles.
The in-plane initial state from the linear model is used as an initial guess for the
corrections scheme. The initial guess for a and + is of order 107° degrees. To search
for periodic orbits, symmetry and perpendicular crossings are employed as constraints.
A generic formulation for construction of both planar orbits and three-dimensional

halo orbits facilitates this process.
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Figure 7.1. Linear Initial Guess Propagated in Nonlinear Model.

The algorithm, demonstrated in Subsection 3.4.1, for generating periodic orbits
in the vicinity of the collinear Lagrangian points is further extended to incorporate
a solar sail model. Let the initial state lie in the & — ¢ plane (z = 0) with an initial
sail orientation of order 10~> degrees, as given by sail angles, o and 7, and the
initial velocity be perpendicular to the & — Z plane, i.e., Z = 0. The in-plane initial
position and velocity states are represented in Table 5.1. The formulation for an
algorithm to obtain a periodic orbit is governed by allowing the sail angles, ag, Yo,
and the trajectory propagation time, 7, to implicitly vary by integrating to the map,

Y .y = 0. Thus, a design vector is formulated, that is,

&%)

X(m) = [0 (7.1)

T

The sail angles are iteratively varied until a perpendicular crossing is achieved while
implicitly allowing the propagation time to vary, i.e., half a period for the particular
orbit. Note that for the duration of iteration, both the initial and the final states lie

on the & — 2 plane. For the final state to be perpendicular to the plane, the final
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velocities, © and 2 are constrained, such that, £ = 2 = 0. Thus, the constraint vector

is selected.

_y_
F(X)=|z| =0 (7.2)

The augmented DF ()Z' ) matrix of partials is formulated based on constraint vector,

ﬁ()?), as well as the design vector, X, that is,

Oy 9y 9y
dag 00 or

(X 8]5()?) di 9 i
DF(X) = Y = \sac 5 bn (7.3)

0 9: 0:
_8010 90 87’_

The augmented DF(X) in Equation (7.3) is now expressed in terms of the elements
of the STM and is augmented with the appropriate velocity and acceleration at the

terminal time along the reference path.

(b0 dus o
DF(X) = Ga7 Pug Pag (7.4)

_¢67 ¢68 ¢69_

The equality between the number of available design variables and the number of
constraints in this example results in a square DF (X' ) matrix. Subsequently, the

predicted change in design variables, dag, d79 and 7 is evaluated as

J
day

§X7 = |5y | = -DF(X7)'F(X) (7.5)

s
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Note that, since the integration proceeds to map, ¥ : y = 0, a variable time implicit
formulation leads to explicitly updating only the sails orientation angles, agy and 7,

and not the integration time, 7,

O S IR (7] B LT
Xt = | =X46X7=| |+ (7.6)
A w| 0%

The integration time is changed appropriately. An iterative process is applied to
meet the final constraints, £ = Z = 0, that is, a perpendicular crossing of the map,
Y. 1y = 0, by updating the design variables, oy and 7. The initial position and
velocity states are fixed and only the sail orientation are allowed to vary in this
formulation.

Once the perpendicular crossing is delivered with an implicit variable-time scheme,
the sail orientation angles at > : y = 0 are again iteratively corrected to ultimately
achieve a periodic, continuous trajectory. The correction scheme is applied to the
trajectories that appear in Figure 7.1. Thus, a set of orientation angles is iteratively
calculated for each perpendicular crossing, i.e., at half the period (7) and at one full

period (27) The orientation angles, ag and g, for the periodic orbits plotted in Figure

7.2 are represented in Table 7.1. Recall that the maximum attitude orientation rate

Table 7.1 Sail Orientation Angles for Periodic Solution shown in Figure 7.2

Bi aop(0 = 27) | 7%(0 = 7) | vo(T — 27) | TOF (days)
1 =0.01 11.09° 90° -90° ~181
B2 = 0.03 0.02° -90° 90° ~249
B3 = 0.05 0.016° 90° -90° ~290

is 0.02°/s. Several observations of Table 7.1 are notable: (1) The values in the table
in successive time block sometimes appear to shift by large amount. The value of ~,
for example, does not pass through an actual reorientation of 180°. Recall Figure 5.1,

where v is the angle between the reference direction vector, l%, and the projection of
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the sail normal unit vector onto a plane. By changing « from a negative to a positive
value, the sail angle, v switches from 90° to -90° without any actual rotation of 180°.
(2) To reorient the sail, the change in projection is equivalent to a change from 11.09°
to -11.09°. The total change of 22.18° requires approximately 18.5 minutes. On the
time scale of an orbital period that is 181 days, 18.5 minutes, the interval to shift
the orientation of the sail is less than 0.007% of the period. Thus, for preliminary
analysis, the assumption of an instantaneous change in the sail angle is reasonable.
(3) It is also vital to point out that, even though the orientation of sail as defined by
angles « and v may remain constant relative to the Sun in the rotating frame over one
half-period or along an arc, the orientation gradually changes relative to the inertial
frame. That is, the hardware must reorient the sail with respect to the inertial frame
to maintain constant orientation in relative to the rotating frame. To maintain the
orientation relative to the inertial frame, the sail must reorient at approximately one
degree per day for an orbit with an estimated period of 180 days.

As a result of the implicit variable time formulation, the period of each orbit differs
from that listed in Table 5.1. Observe that the period of the orbit increases and the
size of the orbit decreases as the artificial Lagrangian point, L, shifts towards the
Sun as a result of an increase in the sail lightness parameter, 5. The initial z-offset
in position of the particle, P3, from the location of the artificial Lagrangian point is
held constant at 200,000 km. The converged planar solution exists and appears in
Figures 7.2 for all three values of sail lightness parameter, 5. The initial linear two-
dimensional guess produced trajectories that departed the vicinity of the artificial
Lagrangian point when propagated in the nonlinear model. Orientation angles, ag
and vy were iteratively corrected to determine a periodic solution with no restriction
on limiting the solution to two-dimensional orbit. The solution converged to a planar,
periodic trajectory that demonstrates an excursion of 22408 km in the z-direction.

The single shooting variable-time formulation is limited in its applicability because
only three design variables are available, ayg, 7 and 7. Thus, the constraint vector

is limited to a maximum size that is 3 x 1, which in previous section was limited to
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Figure 7.2. Periodic Orbits about Artificial Lagrangian Point, L,

the final position in y and the final velocity components in z and z direction, & and
Z respectively. To find a solution for a more complex scenario or for the option of
additional types of constraints, the concept of differential corrections, with sail angles
as the available design variables, is further extended to develop a targeting scheme for
a set of n discrete points. The baseline trajectory is decomposed into segments that
originate from a sequence of patch points. The overall objective is convergence to a
path continuous in position and velocity. Such a result is accomplished by varying
the orientation angles, a and gamma, at each patch point such that the end position
and velocity states originating from the (n — 1) patch point merges with the initial

position and velocity states along the next segment, i.e., the n** patch point.

7.2 Application for Trajectory Design about Artificial L; using

Sail Orientation Angles

Reflection of photons from the Sun imparts momentum to the solar sail in an
orbit about artificial Lagrangian point. The transfer of momentum result in drifting

the spacecraft away from its nominal periodic trajectory and as a consequence, solar
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sail spacecraft will depart from the vicinity of the artificial Lagrangian Point. Unless
otherwise desired, this departure may result in mission failure and loss of vehicle.
Thus, sail orientation is changed to maintain the spacecraft in its periodic or quasi-
periodic trajectory about the artificial Lagrangian Point.

As an example, Figure 7.3 shows an orbit about the artificial Lagrangian point L,
where multiple shooting algorithm is employed to iteratively find a periodic trajectory
in the vicinity of L;. The planar solution for sail parameter, § = 0.05 is used as an
initial guess along with an initial z amplitude of 200,000 km. The number of patch
points in this example are six as marked by black dots in Figure 7.3. Note that,
the patch points are free to move. In the example presented in Figure 7.3, solar sail
angles are allowed to iteratively vary at each patch point to maintain continuity in
both position and velocity as demonstrated by the light blue orbit. The period of the
corrected orbit in blue is approximately 290 days with an approximate z-amplitude of
46,000 km. The specific sail orientation angles required for a periodic orbit are listed
in Table 7.2. Note that, though the angles appear to be small, the sail is completely

on when o = 0°. Each set of orientation angle correspond to the orientation at a

Table 7.2 Sail Orientation Angles for Periodic Solution using Multiple
Shooting Algorithm

Arc No. a v Time (= days)
Arc 1 0.042¢ | 0.006° 6.74
Arc 2 | -0.040° | 0.002° 02.88
Arc 3 | 0.007° | 0.015° 60.13
Arc4 | 0.102° | -0.002° 60.13
Arc 5 | -0.005° | -0.003° 60.13
Arc 6 | -0.032° | 0.007° 50.56

patch point and remains constant relative to the sun in the rotating frame until the

trajectory reaches the subsequent patch point. The example demonstrates that the
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Figure 7.3. Solar Sail Spacecraft Departure from the Vicinity of Artificial L;.

spacecraft will depart from its periodic trajectory without any additional algorithm

for performing trajectory design maneuvers. The departure trajectory is shown in

red.
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In Section 7.1, periodicity was maintained by applying variable-time single shoot-
ing algorithm to achieve a desired orbit. Spacecrafts equipped with solar sail can
further utilize sail angles to perform maneuvers over number of revolutions, which
otherwise would require thrusters, and thus propellant to perform the adequate ma-
neuver. As, an example, Figure 7.4 shows the application of multiple shooting scheme
to maintain a spacecraft for three revolutions. Such an orbit about an artificial La-
grangian point does not exist in the classical CR3BP. The objective of trajectory
design, as demonstrated in this example, is to maintain the spacecraft in the vicinity
of the artificial Lagrange point, Lq, for a specific duration of time based on mission
specifications. A three-dimensional non-periodic trajectory with initial states and so-
lar sail angles (from the planar solution for § = 0.05 and a z-amplitude of 100,000 km)
is provided as an initial guess for the corrections scheme. The corrections algorithm
algorithm was used to maintain a nearby trajectory and periodicity, i.e., the initial
position and velocity state should be the same as the final position and velocity state
after the completion of three revolutions. The sail orientation angles for each patch
point are given in Appendix The total time for trajectory is approximately 873 days
and completes one revolution in about 291 days. As can be seen from Figure 7.4, the

approximate y and z amplitude of the orbit is 50,000 km.

7.3 Offset Periodic Orbits in the Vicinity of Artificial L,

To extend the application of solar sails, new regions for the existence of periodic
orbits is explored. Sail orientation angles can be exploited to produce periodic orbits
and to maintain the spacecraft in the vicinity of that orbit by performing orientation
maneuvers for trajectory design. The differential corrections scheme applied is specific
to maintain continuity in both position and velocity states.

In the example presented in Figure 7.5, multiple shooting scheme is employed
to maintain continuity after three revolutions. To check the validity of the multiple

shooter, for this example, the number of patch points are two per revolution, thus, a
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Figure 7.4. Trajectory Design with Sailcraft in the Vicinity of Artifi-
cial L, for Three Revolutions

total of six for three revolutions. A three-dimensional non-periodic trajectory with a
small z-amplitude is used as an initial guess with sail completely turned on, i.e., a =7y
= (°. Interesting features are displayed by the converged trajectory shown in Figure

7.5. Note that, the black dots indicate the location of patch point and the red dot is
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Figure 7.5. Off-Axis Trajectory Design in the Vicinity of Artificial L.

the converged initial and final state. A total of six patch points were used over three
revolutions to converge the trajectory. Thus, the orientation angle history for the
duration of each arc is shown is Table 7.3. The orientation is held constant relative
to the Sun in the rotating frame until the next patch point. Upon close examination
of Figure 7.5, it s also apparent that the converged patch points are not the same but
are relatively close to each other. In this formulation, though the patch points were
free to move, the integration time between the patch point is fixed. Thus, fixed-time
multiple shooting algorithm was employed to achieve a periodic solution.

The planar x —y view does not provide much insight into the unique nature of the
trajectory but further understanding is gained by observing x — z and y — 2z planar

views that exhibit distinct characteristics associated with the trajectory. The three
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Table 7.3 Sail Orientation Angles for Offset Periodic Solution

Arc No. a 0l Time (=~ days)
Arc 1 | 0.061° | 0.014° 117.68
Arc 2 | 0.061° | -0.006° 172.91
Arc 3 | 0.056° | 0.014° 117.68
Arc 4 | 0.060° | -0.006° 172.91
Arc 5 | 0.057° | 0.014° 117.68
Arc 6 | 0.058° | -0.006° 172.91

period orbit appear to exist about 5,000 km above the x — y plane. The 2z excursion
is approximately 5,000 km where as the y-amplitude is approximately 47,000 km.
It is also vital to note that though the trajectory exhibit periodic nature, further
propagation without adequate maneuvers will result in departure from the vicinity of

the trajectory shown in Figure 7.5.

7.4 Trajectory Design Using Sail Orientation Angles

Solar sails open new regimes for exploring periodic orbits in the vicinity of the
collinear Lagrangian points. Solar sail angles are altered to demonstrate the capabil-
ities of a sail and achieve desirable trajectory characteristics. With solar sail technol-
ogy still in the developmental stages, analyzing the behavior of solar sails with low

sail lightness parameters may be more useful in the near term.

7.4.1 y-Amplitude Adjustment of a Trajectory in the Vicinity of [,

The application of solar sails and the use of orientation angles as design variables
is extended to modify the trajectory of planar orbits. Assume that the sail lightness
parameter value of 5 = 0.01 is selected to model the behavior of a sail in the vicinity of

traditional Lagrange point. In Figure 7.6, y-amplitude adjustment of the trajectories
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in the vicinity of traditional Lagrange point, L, are shown. In certain mission design
scenarios, it might be desired to increase the y-amplitude of a planar orbit to meet a
specific goal. Such a modification to a Lagrangian point orbit can be achieved simply

by reorienting the sail. The orientation angle history for Figure 7.6 is summarized in

y(km)

1.2475 148 1485 149 1495 1.k
X (km) ¥ 16°

Figure 7.6. y-Amplitude Adjustment of the Trajectories

Table 7.4.
Each color correspond to a trajectory continuous in both the position and the

velocity. The black dots denote the initial state and the point for a pair of orbits
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Table 7.4 Sail Orientation Angles for y-Amplitude Adjustment

Orbit No. | & (km) | ap(0 — 27) | 7%(0 = 7) | 7%(7 — 27) | Period (days)
Purple a | 100,000 61.08° 90° -90° 148.06
Purple b | 100,000 76.86° -90° 90° 183.72
Green a | 200,000 54.44° 90° -90° 160.38
Green b | 200,000 66.22° -90° 90° 191.83

Blue a | 300,000 48.54° 90° -90° 169.28
Blue b | 300,000 58.08° -90° 90° 202.09
Red a 450,000 53.81° 90° -90° 186.49
Red b | 450,000 43.40° -90° 90° 226.25

where a change in the orientation angles result in a change in the trajectory, i.e.,
new orbit. Whereas the yellow dots with black circle correspond to the intermediate
correction in orientation angle for perpendicular crossing of 3 : y = 0. Recall, the
Earth is magnified ten times its actual size for visualization. Each color shows a long
period and short period trajectories which are labeled as orbit a and b respectively in
Table 7.4. The integration time corresponding to a half-orbit is 7. As an example, the
red trajectory starts from the initial state marked by a solid black dot. The spacecraft
starts by moving along the smaller orbit with sail orientation shown in Table 7.4 for
orbit number: Red a. After completing one revolution, the sail reorients to alter its
path and move along the larger orbit. The orientation of the sail is given by orbit
number: Red b as shown in Table 7.4. Varying the sail angles, the vehicle can either
be maneuvered from one orbit to another by changing the orientation angle of the sail
or can be maintained along the same trajectory. It is also important to note that the
change in angle results in a change in time (see Table 7.4) it takes for the trajectory
to return to the same initial position and velocity state. The importance of time and
location is evident from the perspective of a rendezvous problem. If the spacecraft

that is incoming for docking experiences a delay, the docking station, equipped with
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solar sails, can alter its trajectory by changing the sail orientation and take a longer

route to account for the delay in approach of the incoming spacecraft.

7.4.2 [;-Earth Cycling Trajectory

Prior to launching a solar sail spacecraft away from the Earth about the artificial
Lagrangian points, it is important to test its maneuvering capabilities in Earth’s
vicinity and in an orbit about the classical Lagrangian points, specifically, L;. The
sample trajectory proposed in this subsection corrects the path of a sail to orbit
Lagrangian point, L, transition to a trajectory towards the Earth, complete two
revolutions about the Earth, and then fly back to same orbit about the Lagrangian
point, L;. The trajectory shown in Figure 7.7 demonstrates the capability of a solar
sail to achieve such a path by solely changing the orientation angles of a sail. Specific
to this trajectory design, the maneuvers, i.e., changes in sail orientation angles, are
performed at the crossing of map X : y = 0.

The initial and the final state, represented by a green dot in Figure 7.7, is located
between the Sun and L; at a distance of 250,000 km away from L; along the Sun-
Earth line. The black dots correspond to the intermediate locations of maneuvers that
are performed to achieve the designed trajectory. The sequence in which each path is
flown is marked by the Leg #. Based on the mission specification, the trajectory can
be manipulated using a sail to meet specific mission goals. The proposed trajectory
starts from the initial state represented by a green dot and moves along Leg 1 for
101.05 days. After performing a sail orientation maneuver, the spacecraft continues
on its path towards the Earth as shown by Leg 2 of the trajectory. Subsequently,
after a third sail orientation maneuver, Leg 3 is traversed, completing one revolution
about the Earth. After performing additional orientation changes, the spacecraft
travels along Leg 4 and Leg 5 before a final reorientation that results in the Leg 6
of the trajectory that brings the spacecraft back to the initial state. Note, that the

Earth is magnified 10 times its actual size for visualization purpose. The nearest
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Figure 7.7. Li-Earth Cycling Trajectory

approach of the trajectory is approximately 279,868 km away from the surface of the
Earth. The approach is at a distance that is closer than the Moon’s mean orbital
radius, thus, a higher fidelity model may be necessary for further analysis to account
for the gravitational influence of the moon. The orientation history for the sail angles
and the time of flight for each leg is shown in table 7.5.

The total time of flight to complete one cycle, i.e., returning back to the initial

state as shown in Figure 7.7, is 563.35 days. The algorithm for the proposed trajectory
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Table 7.5 Sail Orientation Angles for Li-Earth Cycling Trajectory

Leg No. « ~v | TOF (days)
Leg 1 | 58.08° | -90° 101.05
Leg 2 | 29.58% | -90° 71.63
Leg 3 | 29.58° | 90° 71.63
Leg 4 | 23.15° | 90° 108.99
Leg 5 | 23.15% | -90° 108.99

Leg 6 | 58.08° | -90° 101.05

is currently designed to perform two revolutions of the Earth and return back to the
initial state in an orbit about the L;. Upon returning, the trajectory continues to
follow the same path with the same orientation angle sequence as outlined in the
Table 7.5. The algorithm is capable of increasing the number of revolutions either
about the L; or in an orbit about the Earth and still return to its initial state after the
completion of trajectory excursions. The proposed trajectory verifies the application
of a solar sail for designing a trajectory that is capable of maintaining a spacecraft
in a certain orbit or evolving a trajectory specific to a mission. Such a trajectory
demonstrates the capability of a sailcraft to alter the periapsis or provide contingency
options for a spacecraft to return back to the Earth in case of an emergency while

enroute to an orbit about the L.

7.4.3 Earth-L,; Halo-Earth Return Trajectory with Solar Sail

Halo orbits in the vicinity of L, Lagrangian point are of significant scientific inter-
est. In the proposed example, the spacecraft, equipped with solar sail, departs along
the trajectory outlined by the SS-CR3BP dynamics and arrive in a low inclination
halo orbit. A sample departure from the vicinity of Earth is shown in Figure 7.8.

In the illustration presented, the spacecraft leaves the vicinity of the Earth from a
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Figure 7.8. Departure from Earth’s Orbit

medium earth orbit (MEQO) at an altitude of approximately 13,525 km in the x direc-
tion and -117 km in z direction. The red dot indicates the departure location from
the vicinity of the Earth in the direction as indicated in Figure 7.8. The orbital speed
at an altitude of 13524 km is approximately 4.48 km/s. Thus, to depart along the
indicated trajectory, an initial boost of 1.79 km/s is required to raise the velocity of
the sailcraft to 6.24 km/s and continue along the trajectory outlined by Leg 1.

Complete trajectory for departure and arrival at a halo orbit is shown in Figure
7.9. On arrival, there is no cost associated with the insertion into the halo orbit. Sail
orientation angles are changed in order to accomplish the desired insertion and follow
a periodic trajectory about the L;.

The orientation history for the sail angles is shown in Table 7.6 It is evident from
Figure 7.9(b) that the halo orbit demonstrates a small excursion in the z-direction.
During the transition phase between Leg 2 and Leg 3, the sail reorients itself such
that the angle v switches from 74.68° to -74.68°. Once again, this is a change in the
projection of the sail normal vector, n and not an actual reorientation by 149.36°.
An equivalent change in « is of 130.72°. Based on the maximum turn rate of 0.02°/s,
the sail would take approximately 109 minutes to reorient itself. Comparing the time
to reorient with the time of flight for that particular segment (Leg 3), the orientation

time is less than 0.08% of the segment flight time. Thus, it is appropriate to assume
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Figure 7.9. Projections for Three-Dimensional Trajectory about L,

Table 7.6 Earth to L; Halo Return Trajectory with Solar Sail

Leg No. a y TOF (days)
Leg1 | 66.30° | 100.00° 89.79
Leg 2 | 65.36° | 74.68° 96.18
Leg 3 | 65.36° | -74.68° 96.18
Leg 4 | 66.30° | -100.00° 89.79

that the change in orientation is instantaneous. Based on the mission specification,

the orientation angles are selected to either maintain the solar sail in an orbit about

the Lagrangian point, L;, or perform a number of revolutions about the L; and

eventually return back to the vicinity of the Earth. The sample mission design shown

in Figure 7.9 leaves the vicinity of the Earth, performs one revolution about the L,

and then departs along Leg 4 back to the vicinity of the Earth. Such a trajectory also

demonstrates the capability of a sailcraft to be able to depart from various altitudes

and enter a halo orbit of different sizes. It also provides contingency options for a

spacecraft to return back to the Earth in case of an emergency while enroute to an

orbit about the L;. The orientation angles and the time of flight for each leg is
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indicated in Table 7.6. Thus, the total time of flight to complete the sample mission
is 371.94 days.

7.4.4 Three-Dimensional Trajectory Design about L; Lagrangian Point:
z-Amplitude Adjustment

To expand the trajectory design tool kit using sail angles, it is desirable to look
into three-dimensional trajectories. As an example, a mission may require a tra-
jectory to have a variable z-amplitude to meet specific objective. To compute a
three-dimensional trajectory, an initial state is selected between the Sun and L; at
a distance of 200,000 km away from L;. A z-amplitude of 10,000 km is added to
the initial state. A linear guess for velocity is generated and a corrections scheme is
applied. Initial and final state of the trajectory are marked by a green dot as shown in
Figure 7.10. The converged trajectory follows a path that resembles the trajectory of
three different halo orbits. In Figure 7.10, the black dots correspond to the locations
where orientation angles are changed prior to the following Leg. As the sail-based
spacecraft moves along a particular Leg, the orientation angles remain fixed relative
to the Sun in the rotating frame until the trajectory reaches the subsequent maneu-
ver location. Planar projections of the traversed trajectory are shown in Figure 7.11.
The orientation angles and the time of flight for each Leg of the trajectory is given
in Table 7.7.

Though it may appear that the sail angle, v, reorients itself from -169.74° to
169.74°, this is simply a change in the projection. In other words, angle a reorients
by 62.2°. Thus, the time to reorient the spacecraft is 52 minutes for ae. Compared to
the time of flight for Leg 5, the reorientation time is only 0.02% of the total time for
that Leg. Thus, it is appropriate to assume instantaneous change in sail angle for the
preliminary analysis presented in this work. The total time of flight to complete one
cycle, i.e. traverse the trajectory shown by three halos, is approximately 563 days. If

the algorithm is propagated for longer duration of time, the spacecraft will traverse
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Table 7.7 Sail Orientation Angles for y-Amplitude Adjustment in the Vicinity of L;

Leg No. a vy TOF (days)
Leg1 |55.18% | 118.85° 81.48

Leg 2 | 34.54° | 27.81° 93.78

Leg 3 | 31.10° | -169.74° 106.1

Leg 4 | 31.10° | 169.74° 106.1

Leg 5 | 34.54° | -27.81° 93.78

Leg 6 | 55.18° | -118.85° 81.48

the same trajectory with the same orientation angle history. The proposed trajectory
provides flexibility to either remain in a low z-amplitude orbit or transition to a

higher amplitude orbit, or traverse the whole trajectory multiple times. Thus, based
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on mission specification and the orientation history provided in Table 7.7, the sail
angle maneuvers can be scheduled to reorient at the maneuver locations and achieve

the desired Leg.
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Based on the results, it is evident that the use of solar sail provides the space-
craft with certain abilities that lie beyond the reach of the spacecraft within classical
CR3BP. The examples provided in this section demonstrate new design capabilities
with solar sail for planar as well as three-dimensional trajectories. Further research
and development in the field of solar sail technology can assist in an efficient trajectory

design to meet mission goal, thus, realizing the true potential of solar sails.
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8. SUMMARY AND RECOMMENDATIONS

This chapter summarizes the findings and results of a preliminary investigation of
the effects of incorporating a solar sail force model into the circular restricted three-
body problem. Concluding remarks are made on the results of this investigation, and

recommendations are provided to further extend the scope and validity of this work.

8.1 Summary

In this investigation, the motion of a spacecraft equipped with solar sail is ex-
amined under the gravitational as well as solar radiation influence. As a result of
incorporating the solar sail model, the locations of the collinear artificial Lagrangian
points are variable within the limits on the sail lightness parameter available with the
current technology. The size and location of a periodic orbit in the vicinity of the
collinear Lagrangian point, L, is varied, with possible mission application allowing
observation of the Sun from a closer distance than the classical L; point. The closer
location for observing solar weather would facilitate the early detection of potentially
hazardous solar flares and solar winds. Preliminary analysis is carried out to analyze
the solar sail acceleration that can be achieved based on the sail lightness parameter
the total mass of spacecraft. A decrease in the efficiency of the sail led to a higher re-
quirement for the total sail area to achieve the same level of acceleration. If the total
sail area is kept constant, the total amount of load that the sail can carry decreases
or the acceleration due to the radiation pressure decreases.

Stability information corresponding to the displaced collinear Lagrangian points
is derived based on the linear model of the Solar Sail Circular Restricted THREE-
Body Problem (SS-CR3BP). Analysis of the quintic root revealed that the linear

solar sail model exhibits the same stability characteristics that of a classical CR3BP
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model. Thus, linear initial conditions are generated that correspond to the linearized
periodic orbits in the vicinity of the collinear Lagrangian point, L;. An augmented
state transition matrix is introduced that describes variations in the position and
velocity states as a result of changes in the initial state including the initial sail
orientation angles. Differential corrections schemes are developed that utilize the
solar sail orientation angles s the available controls to target a trajectory with the
desired characteristics.

Initial conditions from the linear SS-CR3BP model are located and are employed
as the initial guess for a differential corrections process to locate periodic orbits.
Changes in the sail lightness parameter are explored, and yields a change in both the
size and the period of an orbit in the vicinity of an artificial Lagrangian point, L;.
Sail orientation angles are employed for trajectory design to maintain a spacecraft
in the vicinity of the artificial L, Lagrangian point for an extended duration. Using
this technique, a sample offset three-dimensional, unsymmetric trajectory is located
that hovers above the artificial Lagrangian point. The existence of this orbit is a
result of incorporating the solar sail model and cannot be achieved within the scope
of classical CR3BP.

The solar sail orientation angles prove to be important design tools in the SS-
CR3BP model. Incorporating the solar sail model reveals orbit transformations be-
tween planar orbits in the vicinity of L;. By varying the solar sail orientation angles,
a spacecraft is capable of transitioning between orbits of different y-amplitude and
varying periodicity. A cycling trajectory between the Earth and L; is proposed for
preliminary analysis to understand and exploit the advantages of solar sails. The
proposed mission transitions from an orbit about the L; equilibrium point to an orbit
about the Earth, where two revolutions are made before going back into an orbit
about L;. This behavior is repeated and the number of revolutions are controlled
based on mission specifications.

The sail orientation angles are used as design variables for the purpose of demon-

strating the capability of a sail for a three-dimensional trajectory design. Thus, the
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ability to transition between the halo orbits of varying z-amplitude is also shown. Fi-
nally, a sample transfer from a medium Earth orbit (MEO) is presented that exploits
the solar sail capabilities to transfer from a MEQ, enter into a low inclination halo
orbit about the L; and returns back to the same MEO about the Earth. The behavior
is repeatable and the number of revolutions in the orbit about L; are controlled by
the orientation angles. After completing the desired number of revolutions, the sail
is reoriented to enter a Leg that delivers the spacecraft back to the vicinity of the

Earth.

8.2 Recommendations for Future Work

This investigation is a preliminary analysis on the inclusion of a solar sail model
into the circular restricted three-body problem. The purpose of this work is to lay
the foundation to further research in solar sail technology.

The proposed trajectories in this investigation are in the vicinity of Earth and
the Lagrangian point L, prior to extending the investigation to artificial Lagrangian
points. It is assumed that the sail angle orientation can be changed instantaneously
as the relative time frame of the Sun-Earth system is large when compared to the
time to reorient a sail. Including the time for rotation into the dynamical model can
given a more realistic feel for trajectory and, thus, provide a better approximation.
Further investigation of the off-axis Lagrangian points will provide insight into the
types of orbits that exist in these regions. It is also of interest to place a solar sail
spacecraft at an artificial Lagrangian point L3 to provide complete coverage of the
variations in the solar atmosphere at all time. Positing a sail at L3 can aid in the
prediction of solar flares, and in monitoring solar weather phenomenon that may pose
as a potential hazard to Earth.

To date, only one spacecraft, IKAROS by JAXA, was successfully able to harness
solar radiation pressure (SRP) as a means of propulsion. Though the acceleration

due to SRP is of the order 1075 m/s? for the current available technology, the ac-
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celeration can provide velocity accumulation required for deep space missions. Solar
sail technology can be applied to visit the inner plants, such as IKAROS, or to move
closer to the Sun for scientific observation, or to facilitate a mission to the asteroids.

Replacing the CR3BP with an ephemeris model will increase the accuracy of the
model and provide new solutions. Further research in the development of solar sail
technology is recommended to improve on the sail lightness parameter. An improved
sail lightness parameter will open up even more regimes and shift the Lagrangian
point closer to the Sun which can prove to be of greater importance for much earlier
and accurate detection of solar weather.

A catalog of available solutions for a variety of sail parameter values would be use-
ful to determine an appropriate sail for a specific mission. Further study of the sail
lightness parameter could help motivate the development of a sail possessing variable
sail lightness parameter to enhance the dynamical regimes in which the sail can func-
tion. Variable lightness parameter sail also require the development of a differential
corrections algorithm employing 8 as a control variable. Much more research and
development of solar sail technology is required, and such efforts are motivated by
propulsion needs of missions that are prohibitively expensive in terms of fuel. Thus,
solar sail technology is a technology of the future, applicable to both near and far
missions that is capable of attaining great velocities over time and lower the cost

associated with the mission.

8.3 Conclusions

The solar sail model provides the capability to successfully harness the solar radi-
ation pressure. The applications of solar sails are investigated from a mission design
perspective. New artificial Lagrangian points are found, periodic trajectories in their
vicinity are located and investigated. Solar sail prove an effective tool for trajectory
design and the computation of the offset periodic orbits from the x —y plane. The sail

orientation angles provide the capability to transfer between orbits of different size
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and period. Transfer from the vicinity of the Earth to a halo orbit about the artificial
Ly point further demonstrated the application of a solar sail. Further research and
investigation will yield new ideas for the application of solar sails that can assist in

taking the concept of human space exploration to a new level.
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Appendix A: Partial Derivatives of Solar Sail Acceleration Relative to the

Position Coordinates

The partial derivatives of the scalar solar sail acceleration components relative
to the position coordinates in the Sun-Earth rotating frame are listed below. The
asqil—i; terms correspond to the partial derivatives of the scalar solar sail acceleration
components in the i** unit direction vector of the rotating frame with respect to the
4" position coordinate in the rotating frame. The angles associated with the solar

sail, i.e., a and =, are assumed to be independent of the position coordinates.
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Appendix B: Partial Derivatives of Solar Sail Acceleration Relative to the
Sail Angles, o and 7

The partial derivatives of the scalar solar sail acceleration components relative
to the sail angles, o and ~, in the Sun-Earth rotating frame are listed below. The
asqil—i; terms correspond to the partial derivatives of the scalar solar sail acceleration
components in the i** unit direction vector of the rotating frame with respect to the

4" angle corresponding to the solar sail angles, a and ~, in the rotating frame.

(1-p) ) ey
ail—zq = C —3CosaSina——->—=+ (1 — 35 Siny———
aSail—z, = 7 osa osaina— 5 + ( in“a) m7|(d <P

- ( +p)z
—(1 —-3Sin“a)Cosy—————— B.1
( ) %M N<|} (B.1)

1 —
Sail—yo = ( Ve Z Cosa {_300%&71&% —- 35in%)5im%

—(1 — 3Sin*a)Cos # B.2
( ) 7y(dxzv)xdp} (B2)

(1—p) ‘ (v* + (= +1)?)
ASail—z, = Cosa —3CosaSma— 1 —3Sin’a)Cos =
suil—za = P75 2l Ty

(B.3)

ASail—z, = ﬁ(l _21u) 003205 SinaC’osy_,L =+ SZTZOZSZTZ’Y%
d (d'x 2)|? [(d % 2) x

1—
ASail—y, = ﬁ( 2,u) Cos’a —SinaCosfy@,—i_—’u) + Smasmfy#
d (dx 2)]? |(d x 2) x df?

ASail—z, = P (1-x) Cos’a {—SinaSinv(y:dj_ (z+ 'MZF) } (B.6)
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Appendix C: Solar Sail Orientation Angles at Successive Patch Point for
Trajectory Shown in Figure 7.4

In Table C.1, the Sail Orientation history is provided for each successive patch
point for the periodic trajectory. The trajectory is about an artificial Lagrangian
Point, L; and is being maintained in an orbit by using corrections algorithm employ-
ing solar sail angles for trajectory design. These angles correspond to preliminary

analysis. It is assumed that spacecraft orientation can be made to 0.001° precision.

Table C.1 Sail Orientation Angle History for Figure 7.4

Arc No. o v
Arc 1 | 0.042° | 0.006°
Arc 2 | -0.040° | 0.002°
Arc 3 | 0.007° | 0.015°
Arc 4 | 0.102° | -0.002°
Arc 5 | -0.005° | -0.003°
Arc 6 |-0.032° | 0.007°
Arc 7 | 0.042° | 0.006°
Arc 8 |-0.040° | 0.002°
Arc 9 | 0.008° | 0.015°
Arc 10 | 0.103° | -0.002°

Arc 11 | -0.005° | -0.003°

Arc 12 | -0.032° | 0.007°
Arc 13 | 0.042° | 0.006°
Arc 14 | -0.041° | 0.002°
Arc 15 | 0.008° | 0.015°
Arc 16 | 0.104° | -0.002°
Arc 17 |-0.005° | -0.003°
Arc 18 | -0.032° | 0.007°




