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ABSTRACT

Kakoi, Masaki. M.S.A.A., Purdue University, December, 2005. Transfers Between
the Earth-Moon and Sun-Earth Systems Using Manifolds and Transit Orbits. Major
Professor: Kathleen C. Howell.

The L1 and L2 libration points have been proposed as gateways granting inex-

pensive access to interplanetary space. The lunar libration points, in conjunction

with the collinear libration points in the Sun-Earth system, may also become pri-

mary hubs for future human activities in the Earth’s neighborhood. The associated

manifold tubes have been introduced by a number of researchers as the basis for

design strategies to produce trajectories that shift between different systems. Inter-

sections may ultimately be sought between many tubes from many different libration

point orbits in each system; the complexity forces a new look at the computations.

Individual transfers between three-body systems have been the focus of some recent

investigations. This study presents an approach to solve the general problem for

transfers between the Earth-Moon system (lunar orbits and/or lunar libration point

orbits) and Sun-Earth/Moon L2 libration point orbits. The solutions are transitioned

to the full ephemeris models with additional perturbations and the transfers can be

determined for various lunar phases. The solution process also seeks the particular

Lissajous trajectory in each system to accomplish the transfer at a low cost. Some

results are presented for various types of transfer problems.
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1. Introduction

In 2005, spacecraft and the ability to launch them successfully to any orbit - near

Earth, in the Earth’s neighborhood, or throughout the solar system - influence many

aspects of life. For example, it is common to check the weather every day, and weather

prediction cannot be accomplished without weather satellites. Also, telecommunica-

tions and the Global Positioning System rely on constellations of satellites. Scientists

have discovered fascinating facts about the Earth and its neighborhood from numer-

ous scientific missions including the Apollo missions, Voyager to Mars, Galileo to

Jupiter, and more recently spacecraft to libration point orbits such as GENESIS,

WIND, and others. Launch, orbit design, maneuvers, station keeping, constellation

design, navigation, tracking, etc. are all based on a fundamental knowledge of orbital

mechanics. For some applications, the current knowledge base is sufficient. However,

as humans move away from the Earth, both human and robotic missions become

more complex, and further understanding of orbital mechanics and astrodynamics is

required.

1.1 Problem Definition

Based on Newton’s fundamental Laws of Motion, as well as the Law of Gravity,

mathematicians have been able to model the planetary motions in terms of differential

equations for at least 300 years. However, the greatest challenge is to actually solve the

equations of motion for a system involving n bodies. Newton developed his solution for

the differential equations governing a system consisting of only two bodies. However,

it became extremely difficult to solve the equations when even just one more body

is added to the system. The three-body problem has defied closed-form solution for

the last 200 years by any of the great mathematicians. For example, for the problem
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of 3 bodies, 18 integrals of the motion are required for solution. Thus, to solve this

problem, it requires 18 constants. With judicious assumptions and a reformulation of

the problem, Euler first simplified the problem sufficiently for detailed investigation.

It has long been known that analytical solution of the multi-body problem is hin-

dered by a lack of sufficient integrals. A reformulation of the problem was required for

progress. Euler first introduced the synodic (rotating) coordinate system and, with

various assumptions, simplified the three-body problem to the Circular Restricted

Three-Body Problem (CR3BP) [2, 3]. Both Euler and Lagrange then sought equilib-

rium solutions in this restricted problem. In 1772, Euler determined three collinear

solutions, now denoted the L1, L2, and L3 equilibrium points. Lagrange verified Eu-

ler’s results and subsequently identified two triangular solutions currently labelled L4

and L5 [2]. These solutions are called Lagrange points or libration points. However,

Euler and Lagrange still did not determine a closed-form solution to the problem. In

1887, Bruns proved that there exist only ten classical integrals of motion for a rect-

angular coordinate system and this particular solution approach [2]. However, this

conclusion did not discourage mathematicians from studying the three-body problem.

In fact, mathematicians have continuously studied this problem over the last two cen-

turies, but not until the mid-20th century did understanding of the problem increase

sufficiently to consider spacecraft applications. Any recent advances are greatly due

to the development of computers.

As the computational power increases due to technological developments, it be-

comes faster and more efficient to integrate differential equations numerically. Since

there is no closed-form solution, numerical simulations play a large role in the study

of the multi-body problem. Therefore, the vast improvement of computational capa-

bilities has influenced research significantly. However, the Circular Restricted Three-

Body Problem (CR3BP) remains a challenge because of the complexity of the prob-

lem. Further investigation of the problem is required. Computation in the three-body

problem is also complicated by sensitivity to the initial conditions. This is a prop-

erty of chaotic systems [4, 5]. Henri Poincaré first described the chaotic behavior of



3

a dynamical system mathematically by identification of homoclinic points [2]. It is

inherent in the nonlinear dynamics associated with the three-body problem. Even

though the numerical integration is easily accomplished, the problem sensitivity im-

plies a very difficult design process. Without knowledge of the underlying dynamical

structure, the design process is extremely time consuming and inefficient.

The gravity force of the Sun can have a significant influence on the vehicles in

the vicinity of the Earth. Any Sun-planet system can be modelled as a three-body

problem: Sun-Mars, Sun-Earth, Sun-Jupiter. It is also possible to model some planet-

moon combinations as three-body systems: Earth-Moon, Jupiter-Europa, Saturn-

Titan. The Earth-Moon case is unique because of the relatively larger mass of the

Moon, as well as the influence of the Sun. Including the gravity force of the Sun,

Earth and the Moon, the problem becomes a four-body problem. This special four-

body problem is of increasing interest as new mission scenarios seek the capability to

move freely in the Sun-Earth-Moon space.

It is not trivial to design effectively in a four-body regime, however. Of course,

time-consuming shooting techniques can be employed, but more sophisticated tech-

niques are sought. If it is possible to combine the Sun-Earth and Earth-Moon three-

body systems, perhaps more effective design tools can be developed. To accomplish

such a task, insight into both the three- and four-body problems, as well as their

overlap, is required. The specific challenge in this work is to develop a methodology

to not only design a trajectory in this four-body regime, but to compute one that

shifts between regions that are dominated by one three-body system or the other. Of

course, any such result must be shown to exist in the full ephemeris model as well.

1.2 Previous Work

Henri Poincaré’s strong interest in the three-body problem resulted in significant

contributions. Poincaré introduced the Poincaré map in 1881 [6]. Perko [6] notes

that the Poincaré map is “probably the most basic tool for studying the stability and
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bifurcations of periodic orbits.” Poincaré’s contributions extend to a wide range of

topics. Poincaré’s discovery of homoclinic points “embodied the first mathematical

description of chaotic motion in a dynamical system” [2].

Near the end of 1960’s, Robert Farquhar began to publish studies of the three-

body problem in association with John Breakwell [7]. A unique challenge existed

for NASA’s proposed Apollo 18 mission. The Moon always maintains the same face

directed toward the Earth; the Apollo 18 vehicle would land on the back side of the

Moon. Farquhar suggested the use of a periodic orbit in the vicinity of the Earth-

Moon L2 point with in-plane and out-of-plane frequencies that were nearly commen-

surate for a communications satellite to maintain a link with astronauts on the lunar

surface [7]. This is the origin of the basic concept of a halo orbit. Unfortunately,

the mission was cancelled. The opportunity to test Farquhar’s idea was postponed.

However, Breakwell and Farquhar saw great potential in halo orbits and proceeded

with further study. Many of the libration-point missions accomplished in the 1990’s

were based on the ideas that Breakwell and Farquhar suggested at the time [7].

To calculate halo orbits in the vicinity of the translunar L2 libration point, the out-

of-plane amplitude must be sufficient to make the orbit visible from Earth. However,

the linearized model is no longer valid when the amplitude becomes large. Breakwell

[8] observed that the effect of the nonlinear terms becomes significant if the orbit

size is comparable with the distance of L2 from the Moon in the Earth-Moon system.

(Also notable, the in-plane and out-of-plane frequencies are commensurate only if the

nonlinear terms are included.) Farquhar and Kamel [9] used a truncated Lindstedt-

Poincaré series to calculate these orbits. This nonlinear method included the Solar

gravity [9]. Breakwell and Brown [8] established a numerical method to calculate

orbits with large amplitudes by using the fact that the periodic orbits are symmetric.

From the structure of the mathematical model, the plane of symmetry is apparent.

They computed families of halo orbits near L1 and L2 in the Earth-Moon system [8].

Halo orbits are known to generally be unstable. However, Breakwell and Brown [8]
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located a narrow band of stable orbits. Later, Howell [10] extended the search for

halo families and the stable region to different mass ratios.

An historic moment for the application of the three-body problem to spacecraft

design occurred on November 20, 1978. The International Sun-Earth Explorer-3

(ISEE-3) spacecraft was placed into a halo orbit associated with the Sun-Earth L1

libration point [11]. This was the first such libration point mission and the goal

was to complete a number of particles and fields investigations in the interplanetary

medium [11, 12]. The halo obit near L1 was well-suited as a location from which to

observe the characteristics of the solar wind and other solar-induced phenomena, such

as solar flares, without disturbance from Earth [11,12]. The halo orbit concept truly

gained credibility by the success of the ISEE-3 [7].

As the halo orbit concept gained credibility, interest in missions to libration points

increased. Without an analytical solution to the three-body problem, mission design-

ers required improved design techniques for more complex and numerous missions.

Prior to the 1980’s, as one of a number of such developments, Goddard Space Flight

Center developed a trajectory design software package called Goddard Mission Anal-

ysis System (GMAS) for mainframe computers [13]. Then, during the late 1990’s,

Goddard Space Flight Center developed a operational program called Swingby for

personal computers [13]. Swingby is capable of calculating trajectories with gravity

assists for lunar, planetary, libration, and deep space missions [13]. The Swingby

software was also a significant step by introducing new graphics capabilities. The

complete mission analysis and operations support for the WIND, SOHO, and ACE

missions was provided by the Swingby [13]. The Swingby software was developed, in

part, to address the computational difficulties apparent in a problem with no analyt-

ical solution. However, Swingby, as well as other more conventional tools, does not

incorporate any new theoretical understanding of the multi-body problem. True for

all problems in this regime, very good initial conditions are required for these pro-

grams. Without a good preliminary design process, it requires a significant amount

of time to design a mission.
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In the 1990’s, with the improvement in the computational capabilities, the numeri-

cal techniques were further developed to update the mission design process. The most

recent steps forward have been accomplished by close study of the dynamical struc-

ture of the CR3BP. The focus of the recent studies is the set of special solutions, such

as libration points, periodic orbits, quasi-periodic trajectories, and invariant mani-

folds. An invariant manifold is a surface such that “orbits starting on the surface

remain on the surface throughout the course of their dynamical evolution” [14].

At Purdue University, a design software package called Generator was also devel-

oped by Howell et al. Besides some traditional approaches, Generator is also capable

of producing different types of solution arcs based on dynamical systems theory; other

conventional software, including Swingby, does not currently exploit this dynamical

structure [13, 15]. Generator does reduce the time for design and/or analysis for

certain applications [15]. The Generator software was used for analysis in support

of actual missions, such as MAP; Generator was also used to produce the original

trajectories for GENESIS. Even though Generator reduces the time to design and/or

analyze trajectories in the multi-body problem, a good initial guess for the initial

conditions is still required. This indicates the necessity of an accurate preliminary

design technique.

In the vicinity of the Earth, but sufficiently beyond the Earth’s sphere of influence,

mission designers consider the Sun, the Earth, and the Moon as the major gravita-

tional bodies. The implication is that the CR3BP is not a sufficient model in this case;

a model that includes at least four bodies is necessary. By combining the three-body

Sun-Earth and Earth-Moon systems, a simplified model can be built. It is possible to

exploit the knowledge of the CR3BP in this way. The result must, of course, be tran-

sitioned to the full ephemeris model. To design a mission in the simplified model first,

transfers or overlapping trajectories between the Sun-Earth and Earth-Moon systems

must be available. Thus, a methodology to accomplish such a design is the next step.

Techniques involving transfers between two CR3BPs have been studied recently by a

few mathematicians and engineers. One useful technique suggested by Koon et al. is
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the use of transit orbits [16]. Transit orbits exist inside the closed surface of invariant

manifolds, sometimes called a manifold tube. In this technique, transfers are achieved

by connecting transit orbits inside two manifold tubes. For example, in the system

including the Sun, Earth, and Moon, a manifold tube is obtained in each system. If

these two manifold tubes intersect, it might be possible to connect transit orbits near

the intersection point. Koon et al. introduce a method to obtain transit orbits inside

the manifold tubes. This method is not limited to the Sun-Earth-Moon system. It

has also been applied to interplanetary transfers [17]. Topputo et al. investigate the

problem further, [18], i.e., transfers that can be determined even when there is no

intersection between two manifold tubes by using a two-body Lambert arc to connect

the tubes, Topputo et al. create acceptable transfers.

1.3 Current Work

Although previous researchers have published remarkable results, the analysis is

limited to specific sets of initial conditions. The methodology to seek the best possible

transfer under arbitrary conditions is not developed. The difficulty in completing

such a search follows from the complexity of the problem dynamics. The purpose of

this study is to establish a preliminary design strategy to compute the best possible

transfer between a Sun-Earth L2 halo orbit and an Earth-Moon L2 halo orbit or the

vicinity of the Moon. The “best” transfer is defined as one corresponding to the

lowest required velocity difference. Similar to other researchers, the Sun-Earth-Moon

system is modelled as a combination of two CR3BPs. In this study, the establishment

of the methodology is based on the dynamics of transit orbits and invariant manifold

tubes.

The development of this design process and representative examples are detailed

in the following chapters:

• Chapter 2
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Any study of this problem requires a basic understanding of the Circular Re-

stricted Three-Body Problem. The detailed definition of the problem is pre-

sented with all appropriate notation. First, a brief introduction to the n-Body

Problem is presented; subsequently, the problem is reduced to the Circular Re-

stricted Three-Body Problem. Basic properties, such as the existence of the

libration points and Jacobi Constant are derived. Unique orbits and/or tra-

jectory arcs in the CR3BP, such as halo orbits and invariant manifolds, are

introduced.

• Chapter 3

Application of the basic knowledge introduced in the previous chapter yields

some unique tools for use in the system-to-system transfer problem. The steps

in the computation of invariant manifold tubes and transit orbits in two dimen-

sions are outlined. Computational procedures to produce a transit orbit passing

through two manifold tubes in the same three-body system are presented. Tran-

sit orbits that pass through manifold tubes in two different three-body systems

are examined. An example is also discussed.

• Chapter 4

This chapter initiates an investigation of the three-dimensional problem. A

transit orbit in three dimensions increases the computational complexity signif-

icantly. Of course, a single transit orbit is not the ultimate goal. Thus, the basic

technique to design a transfer trajectory using a transit orbit is presented. It is

noted that the Earth-Moon to Sun-Earth transfers as well as the Sun-Earth to

Earth-Moon transfers each have unique requirements. Also, the transfer design

process is integrated into a single procedure. Transfers from the Sun-Earth sys-

tem to the Earth-Moon system are completed. The validity of the methodology

is tested via the complete models in the Generator software. A brief explanation

concerning Generator is included. Results from application of the new strategy

and the final design from Generator are compared.The differences are discussed.
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• Chapter 5

Results from the technique establised in the previous chapter are analyzed in

this chapter. A new more efficient technique is developed by analyzing the

results. The validity of the methodology is tested via the complete models in

the Generator software. The Results from the new technique and the previous

technique are compared. Also, the technique developed in the previous chapter

is compared with the cell estimation technique. This chapter also includes

examples of transfers to the Moon.
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2. Background

A successful outcome to a challenge is accomplished by a persistent attack with

the proper strategies based on the correct knowledge of the problem. The study

of the three-body problem is not an exception. The most general model of the n-

body problem under Newton’s Law of Gravity is not solvable in closed-form and

must be reduced to make progress. Here, it is reduced to the CR3BP under certain

assumptions. The fundamental mathematics and properties of the CR3BP are later

seen to be the fundamental elements that are required for strategies to attack the

n-body problem.

2.1 n-Body Problem

Assume that n particles are given and that they are spherically symmetric. Each

particle is of mass mi. Newton’s Law of Gravity models the attraction among the

masses as an inverse square gravitational force between each pair of particles. Let

the subscript i identify the particle. Then the mass of particle i is represented as mi.

The total force, F̄t, on the mass, mi, can be expressed by assuming that gravity is

the only force acting as follows,

F̄t = −Gmi

n∑

j=1,j 6=i

mj

r3
ji

r̄ji , (2.1)

where

r̄ji = r̄i − r̄j . (2.2)

The position vectors r̄i and r̄j represent the position of particles i and j, respectively.

(Overbars indicate vectors.) The constant G is the universal gravitational constant.

In Figure 2.1, the total force on m1, F̄t, appears. The total gravity force is due to

the existence of m2, m3, ..., mi where i = 1, 2, ...n. The position vectors r̄1 and r̄2
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are measured from the origin in the inertial frame [ξ̂, η̂, ζ̂]T . (The carets above the

vectors indicate unit vectors and the superscript T indicates the transpose.) The set

of unit vectors comprises a right-handed orthonormal triad. The position vector r̄21

represents the position of m1 relative to m2 as noted in Figure 2.1. The force model

in Equation (2.1) is substituted into Newton’s law of motion, that is,

mi
d2r̄i

dt2
= −G

n∑

j=1,j 6=i

mimj

r3
ji

r̄ji . (2.3)

This vector second-order differential equation is written in terms of dimensional quan-

tities.

ζ̂

m2

mn

F̄t

r̄21

ξ̂

η̂

m1

m4

m3

r̄1

r̄2

Figure 2.1. n-Body Problem: Total Force on m1

Equation (2.3) applies in the most general case with an arbitrary number, n,

of particles in the system. Since there are n number of bodies in this problem,

it is called n-body problem. Of course, Equation (2.3) represents six first-order,

scalar differential equations. Thus, 6n constants are required to solve the problem.

However, the known integrals are limited to ten. In 1887, Bruns proved that the ten

classical integrals are the only independent algebraic integrals in the problem when

the rectangular coordinates are selected as dependent variables [2].
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2.2 Circular Restricted Three Body Problem

A system with just two particles requires 12 constants for a closed-form analytical

solution. However, the two-body problem is analytically solvable if it is formulated

in terms of relative motion. Without an analytical solution, a relative formulation

might also yield results in the three-body problem. Euler first assumed that two of

the bodies rotate in a circle about the center of the mass, and that the third body,

of infinitesimal mass, moves under the influence of the gravitational forces of the

other two, but without influencing them [2]. Significantly, Euler also formulated the

problem relative to the rotating coordinate frame [2]. This problem is called the

Circular Restricted Three-Body Problem (CR3BP). The schematics of the problem

appear in Figure 2.2. The first two masses P1 and P2 are called the primary bodies.

Arbitrarily, let P1 be more massive than P2, then the center of the mass is closer to

P1. The center of the mass is called the barycenter and labelled B. The barycenter is

assumed to be fixed in the inertial frame [ξ̂, η̂, ζ̂]T . Under these assumptions, Equation

(2.3) can be reduced to the following,

d2R̄

dt2
= −G

2∑

j 6=i

mj

r3
j3

r̄j3 , (2.4)

where

R̄ = r̄3 − r̄B . (2.5)

The position vector R̄ indicates the position of the third body with respect to the

barycenter. The position of the barycenter and P3 with respect to the origin, O, of

the inertial frame are r̄B and r̄3, respectively. Also r̄j3 is the distance between the

primary body j and the particle of interest, P3.

2.3 Characteristic Quantities

One way to simplify the problem without losing the generality of the mathematical

model is nondimensionalization. It can be accomplished by defining parameters that

are characteristic in the problem, i.e., the characteristic quantities. In the CR3BP,
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o

r̄B

P2

P3

ξ̂

η̂

r̄3

R̄

ζ̂

B

P1

Figure 2.2. Circular Restricted 3-Body Problem

the distance between primary bodies is defined to be the reference distance, Lref . The

sum of the masses of the primary bodies is defined to be the reference mass, Mref .

The time taken by the primaries to rotate through exactly one radian is defined to

be the reference time, tref . The mean motion of the primaries is evaluated as follows,

n =

√
GMref

L3
ref

. (2.6)

Define θ to be the angle of rotation of a frame moving with the primaries relative to

the inertial frame, then, θ
n

is the time taken to rotate through θ. This is true because

primaries rotate in a circle about the center of the mass in this model at a constant

rate. Therefore, the reference time, tref , is expressed as follows,

tref =

√
L3

ref

GMref

. (2.7)

Dividing Equation (2.4) by GMref and multiplying it by L2
ref , will nondimensionalize

the equation, and it appears in the following form,

d2R̄

dt2
L2

ref

GMref

= −m1L
2
ref

Mrefr3
13

r̄13 −
m2L

2
ref

Mrefr3
23

r̄23 . (2.8)
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Nondimensional position vectors are defined as follows,

r̄13nd =
r̄13

Lref

, (2.9)

r̄23nd =
r̄23

Lref

. (2.10)

The subscript ‘nd’ indicates a nondimensional quantity. The nondimensional mass of

the secondary primary is m2

Mref
= µ. Therefore m1

Mref
can be expressed as 1− µ. Also,

the nondimensional time is defined as follows,

tnd =
t

tref

. (2.11)

where t is the dimensional time. Thus, Equation (2.8) can be simplified as follows,

d2R̄nd

dt2nd

= −1− µ

r3
13nd

r̄13nd − µ

r3
23nd

r̄23nd . (2.12)

Define the dimensional distance between the barycenter and larger primary body to

be rB1, that can, then, be expressed in the following form by using the relationship

that defines the center of mass,

rB1 =
m2

m1 + m2

Lref . (2.13)

This equation can be rewritten as follows,

rB1

Lref

=
m2

Mref

. (2.14)

Therefore, the nondimensional distance between the barycenter and larger primary

body, rB1nd, is the following,

rB1nd =
m2

Mref

= µ . (2.15)

The nondimensional distance between the barycenter and the smaller primary body,

rB2nd, can be obtained in the same process and expressed as follows,

rB2nd =
m1

Mref

= 1− µ . (2.16)

These nondimensional variables are used in the derivation of the equation of motion

in the next section.
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2.4 Equations of Motion

Let ξ, η, ζ be defined as the nondimensional position components of the third

body with respect to the barycenter written in terms of in the inertial frame, i.e.,

R̄nd = ξξ̂ + ηη̂ + ζζ̂. Then, Equation (2.12) can be rewritten as the following set of

second order scalar differential equations,

ξ̈ = (1− µ)
ξ1 − ξ

r2
13nd

+ µ
ξ2 − ξ

r2
23nd

, (2.17)

η̈ = (1− µ)
η1 − η

r2
13nd

+ µ
η2 − η

r2
23nd

, (2.18)

ζ̈ = (1− µ)
ζ1 − ζ

r2
13nd

+ µ
ζ2 − ζ

r2
23nd

, (2.19)

where

r2
13nd = (ξ1 − ξ)2 + η2 + ζ2 ,

r2
23nd = (ξ2 − ξ)2 + η2 + ζ2 .

Dots indicate the derivatives with respect to the nondimensional time and relative

to the inertial frame. The subscript 1 and 2 refer the first primary and second

primary bodies respectively. Now define Euler’s synodic frame, s, such that x̂ is

always directed from P1 towards P2, ŷ is perpendicular to x̂ and in the plane of

motion of the primaries and in the general direction of primary velocity. Then, ẑ

is a right-handed cross product of x̂ × ŷ and is equal to ζ̂. Recall that the angular

velocity, I ω̄s, is constant in magnitude and direction since I ω̄s = nζ̂ = nẑ. Define the

position coordinates of the particle P3 relative to B, in terms of the rotational frame,

to be x, y, and z respectively, i.e.,

r̄3nd = xx̂ + yŷ + zẑ . (2.20)

The x-y projection of the system appears in Figure 2.3. In terms of the rotaing frame,

the position of P1 is written [x1, 0, 0]T , and the position of P2 is expressed [x2, 0, 0]T .

Hence, r13nd and r23nd can be expressed in the following form,

r2
13nd = (x1 − x)2 + y2 + z2 , (2.21)
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θ

ŷ

µ

P1

η̂

P2

1− µ

R̄nd

P3

x̂

ξ̂

Figure 2.3. Formulation of Circular Restricted 3-Body Problem

r2
23nd = (x2 − x)2 + y2 + z2 . (2.22)

The rotating and inertial coordinates can be related by using the following transfor-

mation,

ξ = x cos tnd − y sin tnd , (2.23)

η = x sin tnd + y cos tnd , (2.24)

ζ = z . (2.25)

Differentiating the scalar equations twice with respect to nondimensional time yields

the following,

ξ̈ = ẍ cos tnd − 2ẋ sin tnd − x cos tnd − ÿ sin tnd − 2ẏ cos tnd + y sin tnd , (2.26)

η̈ = ẍ sin tnd + 2ẋ cos tnd − x sin tnd + ÿ cos tnd − 2ẏ sin tnd − y cos tnd , (2.27)

ζ̈ = z̈ . (2.28)
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After substituting Equations (2.26), (2.27), and (2.28) into Equations (2.17), (2.18),

and (2.19), the algebraic process yields,

ẍ− 2ẏ − x = −(1− µ)
x− x1

r3
13

− µ
x− x2

r3
23

, (2.29)

ÿ + 2ẋ− y = −
(

1− µ

r3
13

+
µ

r3
23

)
y , (2.30)

z̈ = −
(

1− µ

r3
13

+
µ

r3
23

)
z . (2.31)

Define a pseudo potential function as the following,

U∗ =
1

2
(x2 + y2) +

1− µ

r13

+
µ

r23

. (2.32)

Then,

∂U∗

∂x
= x +

(1− µ)(x1 − x)

r3
13

+
µ(x2 − x)

r3
23

, (2.33)

∂U∗

∂y
= y − (1− µ)y

r3
13

− µy

r3
23

, (2.34)

∂U∗

∂z
= −

(
1− µ

r3
13

+
µ

r3
23

)
z . (2.35)

Therefore, Equations (2.29), (2.30), and (2.31) can also be written in the form,

ẍ− 2ẏ =
∂U∗

∂x
, (2.36)

ÿ + 2ẋ =
∂U∗

∂y
, (2.37)

z̈ =
∂U∗

∂z
. (2.38)

These are the standard, nondimensional, scalar equations of motion in the CR3BP.

They can be numerically integrated to compute trajectories.

2.5 Jacobi’s Integral

As mentioned previously, only ten integrals of motion are known to exist in the

CR3BP. One of the integrals can be derived from the equations of motion [19], as
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discussed by A.E. Roy. Multiplying Equation (2.36) by ẋ, Equation (2.37) by ẏ, and

Equation (2.38) by ż and adding, yields

ẋẍ + ẏÿ + żz̈ =
∂U∗

∂x
ẋ +

∂U∗

∂y
ẏ +

∂U∗

∂z
ż . (2.39)

Integrating this equation results in the expression

ẋ2 + ẏ2 + ż2 = 2U∗ − C , (2.40)

where C is the integration constant. With the substitution of the definition for

the pseudo potential, U∗ in Equation (2.32), the equation can be expressed as the

following,

ẋ2 + ẏ2 + ż2 = (x2 + y2) + 2

(
1− µ

r13

)
+

2µ

r23

− C. (2.41)

This is the only integral of motion that can be obtained in the CR3BP and is denoted

as Jacobi’s Integral [19]. The constant C is usually labelled the Jacobi Constant [3].

2.6 Libration Points

In 1772, Euler sought equilibrium points and identified three such collinear points

along the x-axis. Lagrange confirmed this result and added two triangular equilibrium

points [2]. These five equilibrium points are called Lagrange or libration points [2,19].

The relative location of each libration point appears in Figure 2.4. Libration points

L1, L2, L3 are termed the collinear points and are linearly unstable [19]. A particle

placed at any of these libration points leaves the vicinity of the point if perturbed

slightly. Libration points L4 and L5 complete equilateral triangles with the primary

bodies, and are linearly stable for certain values of mu [19]. Thus, motion in the

vicinity of L4 or L5 is bounded even under perturbation. The labels in Figure 2.4

are consistent with those defined by NASA. Without a general analytical solution to

Equations (2.36)-(2.38) and only one integral, equilibrium solutions offer insight and

greater understanding of the problem.
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L3

P2P1

L5

L4

L1
x̂

L2

ŷ

Figure 2.4. Libration Points

2.7 Linear Analysis

Let x̄ be a state vector in three-dimensional space, i.e., x̄ = [x, y, z, ẋ, ẏ, ż]T . Then,

a nonlinear dynamical system can be described by a differential equation of the form

˙̄x = f(x̄) . (2.42)

In the CR3BP, the equations of interest are Equations (2.36), (2.37), and (2.38).

Various types of particular solutions to the nonlinear differential equations are known

to exist, for example, the constant equilibrium points as well as an infinite number of
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periodic orbits. To linearize Equation (2.42) about an equilibrium point or a periodic

orbit, expand the reference solution in a Taylor series. To model the behavior near

the reference solution, ignore the hight order terms in the expansion. Define the

perturbation relative to the reference as δx̄ such that δx̄ = [δx, δy, δz, δẋ, δẏ, δż]T .

Then, the variational equations can be rewritten as a linear homogeneous equation,

i.e.,

δ ˙̄x = A(t)δx̄ , (2.43)

where, in general, A(t) is a 6 × 6 time-varying square matrix. The A(t) matrix is

evaluated on the reference solution. Generally, the reference solution changes with

time. Thus, A(t) is not constant. However, the A(t) matrix is constant when the

reference solution is constant, e.g., an equilibrium point.

2.7.1 Stable and Unstable Manifolds: Equilibrium Points

The variational differential equations relative to an equilibrium point, such as a

libration point, results in a constant A matrix and, thus, appear in the following form.

δ ˙̄x = Aδx̄ . (2.44)

Consider a nonlinear system as represented in Equation (2.42) and a constant equilib-

rium solution x̄eq. Suppose an A matrix is computed by linearizing Equation (2.42)

about x̄eq. If the eigenvalues, λ, of A possess negative and positive real parts, stable

and unstable subspaces exist, i.e., Es and Eu respectively, and they are spanned by

stable and unstable eigenvectors, i.e., v̄s and v̄u respectively. Consider the neighbor-

hood of x̄eq. Then, the local stable manifold, W s
loc(x̄eq), is the local flow approaching

x̄eq as the time goes to ∞. Also, the local unstable manifold, W u
loc(x̄eq), is the local

flow approaching x̄eq as the time goes to -∞. Guckenheimer and Holmes [20] state

the following theorem.

Theorem 2.7.1 (Stable Manifold Theorem for a Fixed Point) Suppose that ẋ

= f(x) has a hyperbolic fixed point x̄. Then there exist local stable and unstable man-

ifolds W s
loc(x̄), W u

loc(x̄), of the same dimensions ns, nu as those of the eigenspaces
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Es, Eu of the linearized system, and tangent to Es, Eu at x̄. W s
loc(x̄), W u

loc(x̄) are as

smooth as the function f .

At a hyperbolic point, the eigenvalues of A possess no zero real parts or pure imaginary

parts. An example of stable and unstable manifolds that correspond to a hyperbolic

equilibrium point appears in Figure 2.5. Arrows indicate the direction of the flow.

Stable manifolds approach x̄eq, and unstable manifolds move away from x̄eq. The

global stable and unstable manifolds, W s and W u, respectively can be “obtained

by letting points in W s
loc flow backwards in time and those in W u

loc flow forwards”

[20]. For the collinear libration points, there exist six eigenvalues of A, and four are

pure imaginary. Thus, the collinear points are not hyperbolic points. Guckenheimer

and Holmes [20] state the following theorem for a non-hyperbolic equilibrium point,

x̄eq = 0̄ .

Theorem 2.7.2 (Center Manifold Theorem for Flows) Let f̄ be a Cr vector

field on Rn vanishhing at the origin (f̄(0̄) = 0̄) and let A = Df(0̄). Divide the

spectrum of A into three parts, σs, σc, σu with

Re(λ) =





< 0 if λ ∈ σs ,

= 0 if λ ∈ σc ,

> 0 if λ ∈ σu .

Let the (generalized) eigenspaces of σs, σc, and σu be Es, Ec, and Eu, respectively.

Then there exist Cr stable and unstable invariant manifolds W u and W s tangent to

Eu and Es at 0 and a Cr−1 center manifold W c tangent to Ec at 0. The manifolds

W u, W s, W c are all invariant for the flow of f̄ . The stable and unstable manifolds

are unique, but W c need not be.

For the collinear points, two of the eigenvalues of A are real; one is negative and the

other is positive. Thus, stable and unstable modes can be identified to compute stable

and unstable manifolds, W s and W u, respectively. Recall that the libration points

are equilibrium points. For example, to place a satellite at the L2 point, manifolds

represent potential transfer trajectories to deliver a vehicle into the L2 point or to
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depart the L2 for another location. However, the existence of a positive real part in

the eigenvalues indicates that the collinear libration points are unstable. The libration

point L2 has often been proposed as a location for an astrophysical observatory. Even

though it’s not practical to place a satellite at L2, it might be possible to stay at the

vicinity.

-v̄u

Eu

W
u+

loc

v̄u

W u−
loc

W s+

loc

Es

-v̄s

v̄s

x̄eq

W s−
loc

Figure 2.5. Stable and Unstable Manifolds Near a Hyperbolic Equilibrium Point

2.8 Periodic Orbits

Near the beginning of the 20th century, a number of researchers studied the

three-body problem and developed approximation methods to compute periodic or-

bits. Most worked in the two-dimensional problem. The determination of three-

dimensional orbits was the focus of fewer studies because of the computational chal-

lenges. In his early analysis in the 1920’s, F.R. Moulton determined three types of

finite, precisely periodic solutions at collinear points in the CR3BP [21]. He included

three-dimensional orbits in the study. K.C. Howell [21] discusses each type of solu-

tions and offers earlier references on the analytical and numerous developments. One

type of solution is the Lyapunov, planar, periodic orbit for motion in the x-y plane.

One of the Lyapunov orbits near L2 in the Earth-Moon system appears in Figure
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2.6. The orbit possesses a large in-plane excursion in the direction of the y-axis,

i.e., Ay = 58,850 km. Note that any three-dimensional trajectory is presented as an

orthographic projection. The origin of the plot is the barycenter of the Earth-Moon

system. The upper left plot is the x-y projection; the lower left is the x-z view; and,

the projection in the lower right is onto the y-z plane, that is, the view from the

negative x̂-direction. Although a Lyapunov orbit is symmetric about the x-axis, it

is not circular or elliptic. The shape is very unique to the CR3BP. As seen in the

figure, there is no out-of-plane component in a Lyapunov orbit. The second type of

solution is the nearly vertical orbit, also symmetric about x-axis. This type of orbit

is dominated by the out-of-plane component, but not exclusively in the z-direction.

The third type is the halo orbit. The halo orbit is actually a combination of the

Lyapunov and nearly vertical orbits. It is three-dimensional and an example appears

in Figure 2.7. This particular halo orbit is computed in the Earth-Moon system and

possesses an out-of-plane amplitude Az = 15,100 km, an in-plane excursion Ay =

38,850 km. The x-y projection of the orbit appears in the upper left, and looks iden-

tical to a Lyapunov orbit. However, in the x-z and y-z projections, the out-of-plane

component is clearly evident. Note that a halo orbit is not planar.

Computing a periodic orbit in the CR3BP is not an easy task. Not only is there

no analytical solution, but this is also a region of space that is chaotic. Thus, most

computational methods are burdened by a sensitivity to initial conditions. However,

numerical tools and mathematical results not available to Moulton, now offer insight,

such as certain characteristics of periodic orbits. With a good initial guess for the

initial conditions, linear analysis can be used to numerically compute a periodic orbit.

2.8.1 State Transition Matrix (STM)

Instead of placing a satellite at a collinear libration point, using a periodic orbit

near a libration point is a more practical option. As such, it is necessary to com-

pute periodic orbits efficiently. However, numerical computation of periodic orbits
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Figure 2.6. Lyapunov Orbit: Earth-Moon System, Ay = 58,800 km
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Figure 2.7. Halo Orbit: Earth-Moon System, Az = 15,100 km, Ay = 38,850 km
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is generally time consuming unless a good initial guess is already available. A trial-

and-error process is an option to obtain a good initial guess, but it is not always

effective. Thus, development of a numerical method to improve an initial guess by

predicting behavior near the reference solution is desirable. Such a method requires

the information concerning sensitivity of the state to changes in the initial guess, i.e.,

state transition matrix.

Recall the nonlinear equation, ˙̄x = f(x̄). If a periodic orbit exists, it is possible

to linearize about the periodic orbit. Then, again, Equation (2.43), δ ˙̄x=A(t)δx̄, is

obtained. The 6 × 6 Jacobian matrix, A(t), appears in the form as follows [22],

A(t) =


 I3 03

U∗
ij 2Ω3


 , (2.45)

where the submatrices I3 and 03 correspond to the 3 × 3 identity matrix and null

matrix, respectively. Also the elements of the submatrix, U∗
ij appear as follows,

U∗
ij =




U∗
xx U∗

xy U∗
xz

U∗
yx U∗

yy U∗
yz

U∗
zx U∗

zy U∗
zz


 , (2.46)

where U∗ is the pseudo-potential defined in Equation (2.32) and each element is the

second partial derivative with respect to the position states that are indicated by the

subscript. Also, the constant 3 × 3 submatrix Ω3 is evaluated as follows,

Ω3 =




0 1 0

−1 0 0

0 0 0


 . (2.47)

Let ψ(t) be any nonsingular 6 × 6 matrix that satisfies the following,

ψ̇(t) = A(t)ψ(t) . (2.48)

Then, the general solution of Equation (2.43) can be expressed in the form [23],

δx̄(t) = ψ(t)c̄ , (2.49)
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where c̄ is a constant vector. At the initial time, t0, Equation (2.49) is the following,

δx̄(t0) = ψ(t0)c̄ . (2.50)

This equation can be solved for c̄ as follows,

c̄ = ψ(t0)
−1δx̄(t0) . (2.51)

Then, substitute this equation into Equation (2.49),

δx̄(t) = ψ(t)ψ(t0)
−1δx̄(t0) . (2.52)

The state transition matrix (STM), Φ(t, t0), is defined as follows,

Φ(t, t0) = ψ(t)ψ(t0)
−1 . (2.53)

Now, the general solution can be expressed in the following form,

δx̄(t) = Φ(t, t0)δx̄(t0) . (2.54)

Since Equation (2.54) must also be true if evaluated at the initial time,

Φ(t0, t0) = I , (2.55)

where I is the identity matrix. The STM relates its initial state and the state at

some future time, t. In other words, the STM indicates the sensitivity of subsequent

behavior of the system to its initial state. Therefore, the STM is sometimes called

the sensitivity matrix. Also, the state transition matrix after one complete cycle,

Φ(T, t0), is labelled the monodromy matrix.

2.8.2 Poincaré and Stroboscopic Maps

Consider a system described by Equation (2.42), ˙̄x=f(x̄). If a periodic orbit Γ

exists, a hyperplane Σ that is perpendicular to Γ at a point, x̄0, exists such that an

orbit departing from any point x̄ ∈ Σ near x̄0, crosses Σ again at a point P (x̄) near
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x̄0 [6]. This concept is illustrated in Figure 2.8 for a lower-dimensional system. This

mapping technique yields the Poincaré map [5,6,20]. The Poincaré map is constructed

by defining a Poincaré Section. In Figure 2.8, a periodic orbit is seen to exist in a

three-dimensional system. A Poincaré Section essentially “slices” through the phase

space to reduce the dimension by one [24]. Thus, in Figure 2.8, the two-dimensional,

plane Σ is the Poincaré Section. The system in Equation (2.42) is six-dimensional.

Thus, the Poincaré Section is higher dimensional in this case. The concept behind

a Poincaré map was introduced by Henri Poincaré in 1881 [6]. When the Poincaré

Section is used, the crossing time, tps, i.e., when an orbit crosses the Σ, is not fixed.

Thus, the general solution can be expressed in the following form,

δx̄(t0 + tps) = Φ(tps, t0)δx̄(t0) . (2.56)

The Poincaré map is also used to study the stability of the periodic orbit. When

the state representing a periodic orbit Γ on Σ is disturbed slightly from x̄0, the next

crossing of the orbit on Σ occurs at a different point. If the point on the Σ is closer

to x̄0 than the initial point, the periodic orbit is stable. If the periodic orbit is not

stable, it is unstable.

A special case of the Poincaré map is a stroboscopic map. A stroboscopic map

maps a trajectory onto a hyperplane Σ at a constant time interval [5,25]. The general

solution in this case can be represented as follows,

x̄(t0 + T ) = Φ(t0 + T, t0)x̄(t0) , (2.57)

where T is a certain time period. If T is the period of a periodic orbit, the form of

the solution after l revolutions is,

x̄(t0 + lT ) = Φ(t0 + lT, t0)x̄(t0) , l = 1, 2, .... (2.58)

Of course, T can be any other constant time. Then, this equation represents the

solution after l iterations of the stroboscopic map.

In this study, the Poincaré map is used because it allows free movement of a

Poincaré section.
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Figure 2.8. Poincaré Map

2.8.3 Differential Corrections

To compute a periodic orbit, specific initial conditions for the orbit are required.

However, since there is no closed-form solution and this region of space is very sensitive

to initial conditions, a search for such conditions can be time consuming. Thus, an

efficient technique is necessary.

The characteristics of a periodic orbit offer useful information. As mentioned pre-

viously, the Lyapunov orbit and the x-y projection of a halo orbit near the collinear

points are symmetric about the x-axis. Therefore, they possess perpendicular cross-

ings on the x-axis. By locating the initial conditions on the x-axis, a periodic orbit

re-crosses the x-axis, perpendicularly, at the half period of the orbit. If it is possible to

determine such initial conditions, a periodic orbit can be computed. Two trajectory

arcs appear in Figure 2.9. The thicker arc is a target arc that is a half periodic orbit;

this is apparent from the perpendicular crossings of the x-axis. Another, thinner arc

is the initial arc that is perturbed slightly from the target arc. By correcting the

initial difference δx̄0, the final variation relative to the reference, δx̄f , is modified.

Thus, when the correction is successful, the thinner arc converges onto the target arc.
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Figure 2.9. Differential Corrections

To determine a specific relationship between δx̄0 and δx̄f , exploit the STM. The

final state of a trajectory can be computed by integrating the initial conditions until

tf , the final time. Thus, the final state can be expressed in the following form,

x̄(tf ) = f(x0, y0, z0, ẋ0, ẏ0, ż0, tf ) , (2.59)

where x0, y0, z0, ẋ0, ẏ0, and ż0 are initial values corresponding to each component.

The variation of the final x component via a change in the initial conditions and final

time can be expressed as follows,

δxf =
∂x

∂x0

δx0 +
∂x

∂y0

δy0 +
∂x

∂z0

δz0 +
∂x

∂ẋ0

δẋ0 +
∂x

∂ẏ0

δẏ0 +
∂x

∂ż0

δż0 +
∂x

∂t
δtf , (2.60)

where the partial derivatives are all evaluated at tf . The variation in the other

components can be expressed in the similar form. Since there is only one independent

variable,
∂

∂t
=

d

dt
. (2.61)
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Thus, ∂x
∂t

becomes dx
dt

= ẋ. Also, partial derivatives with respect to the components

of state vector are just elements of the STM at tf , i.e., Φ(tf , t0). Then, the linear

variational equations can be written as follows,

δx̄f = Φ(tf , 0)δx̄0 + ˙̄x|tf δtf , (2.62)

where ˙̄x|tf is the vector time derivative of the state vector, evaluated at tf . In matrix

form, Equation (2.62) can be expressed as follows,




δx

δy

δz

δẋ

δẏ

δż




tf

=




Φ11 Φ12 Φ13 Φ14 Φ15 Φ16

Φ21 Φ22 Φ23 Φ24 Φ25 Φ26

Φ31 Φ32 Φ33 Φ34 Φ35 Φ36

Φ41 Φ42 Φ43 Φ44 Φ45 Φ46

Φ51 Φ52 Φ53 Φ54 Φ55 Φ56

Φ61 Φ62 Φ63 Φ64 Φ65 Φ66




tf




δx0

δy0

δz0

δẋ0

δẏ0

δż0




+




ẋ

ẏ

ż

ẍ

ÿ

z̈




tf

δtf , (2.63)

where Φij indicates the element of STM at ith row and jth column. Also, the sub-

script, tf , indicates that the vectors and matrix are evaluated at tf . Now, let the

vector of initial conditions be the following,

x̄(t0) = [x0, y0, z0, ẋ0, ẏ0, ż0]
T . (2.64)

From Figure 2.9, it is obvious that y0 is zero. Since the target arc has a perpendicular

crossing on the x-axis, ẋ0 is zero. Also, ż0 is zero. Thus, the variational vector

corresponding to the initial state under perturbation can be expressed as follows,

δx̄(t0) = [δx0, 0, δz0, 0, δẏ0, 0]T . (2.65)

Similarly, the final variation conditions can be written as follows,

δx̄(tf ) = [δxf , 0, δzf , 0, δẏf , 0]T , (2.66)
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where δxf , δzf , and δẏf are final values of each component. Therefore, Equation

(2.63) can be reduced to the following,

δyf = Φ21δx0 + Φ23δz0 + Φ25δẏ0 + ẏfδtf , (2.67)

δẋf = Φ41δx0 + Φ43δz0 + Φ45δẏ0 + ẍfδtf , (2.68)

δżf = Φ61δx0 + Φ63δz0 + Φ65δẏ0 + z̈fδtf , (2.69)

where Φij indicates the element of the STM at ith row and jth column. Since a crossing

at x-axis is observed, δyf is always zero. Thus, Equation (2.67) can be solved for δtf

as follows,

δyf = 0 = Φ21δx0 + Φ23δz0 + Φ25δẏ0 + ẏfδtf . (2.70)

This equation can be solved for δtf , which is substituted it into Equations (2.68) and

(2.69). Then, they become,

δẋf = Φ41δx0 + Φ43δz0 + Φ45δẏ0 − ẍf

ẏf

(Φ23δz0 + Φ25δẏ0) , (2.71)

δżf = Φ61δx0 + Φ63δz0 + Φ65δẏ0 − z̈f

ẏf

(Φ23δz0 + Φ25δẏ0) , (2.72)

where ẍf and z̈f are the fourth and sixth components of ˙̄x|tf . Assume x0 is fixed, i.e.,

δx0 = 0, then, by substitution into Equations (2.71) and (2.72), these expressions can

be rewritten as follows,

 δẋf

δżf


 =





 Φ43 Φ45

Φ63 Φ65


− 1

ẏf


 ẍf

z̈f




[
Φ23 Φ25

]




 δz0

δẏ0


 . (2.73)

It is desired to offset the error in the final state, so the follwoing corrections are

assumed,

δẋf = −ẋf , (2.74)

δżf = −żf . (2.75)

The states at the perpendicular crossing can be computed by numerically integrat-

ing Equations (2.29), (2.30), and (2.31). The initial conditions for the simulation

is required. Also, elements of the variable A(t) matrix in Equation (2.43) can be
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computed as required. Substitution of Equation (2.54), δx̄(t) = Φ(t, t0)δx̄(t0), into

Equation (2.43), δ ˙̄x=A(t)δx̄, yields,

Φ̇(t, t0) = A(t)Φ(t, t0) . (2.76)

Given Φ(t, t0), sufficient information is available to compute δz0 and δẏ0 in Equation

(2.73). The computed δz0 and δẏ0 are the necessary change to the current initial

conditions. Assume the desired initial condition as follows,

x̄d = [xd, 0, zd, 0, ẏd, 0]T . (2.77)

Then, the current initial conditions can be expressed as follows,

x̄0 = x̄d + δx̄0 . (2.78)

Thus, new initial conditions, x̄new are,

x̄new = x̄0 − δx̄0 . (2.79)

The new initial conditions can be evaluated by an iterative process. It may require

several iterations till the new δz0 and δẏ0 satisfy the desired tolerance.

2.8.4 Stable and Unstable Manifolds: Periodic Orbits

Even though the collinear libration points are linearly unstable, periodic orbits

in their vicinity are well-suited as options for certain missions. However, designing

a transfer trajectory from some primary body to a three-dimensional periodic orbit

near an Li point is a challenging task. An understanding of the natural dynamics of

a periodic orbit is essential. A key property of a periodic orbit that has proven to be

very useful is the existence of manifolds.

As for equilibrium points, stable and unstable manifolds offer much insight into

the flow near a periodic orbit. Let N(Γ) be the neighborhood of the periodic orbit Γ.

Perko [6] states the following theorem.
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Theorem 2.8.1 (The Stable Manifold Theorem for Periodic Orbits) Let f ∈
C1(E) where E is an open subset of Rn containing a periodic orbit,

Γ : x̄ = γ(t) ,

of ˙̄x = f(x̄) of period T . Let φt be the flow of ˙̄x = f(x̄) and γ(t) = φt(x̄0). If k of

the characteristic exponents of γ(t) have negative real part where 0 ≤ k ≤ n− 1 and

n − k − 1 of them have positive real part then there is a δ > 0 such that the stable

manifold of Γ,

S(Γ) = {x̄ ∈ Nδ(Γ) | d(φt(x̄), Γ) → 0 as t →∞
and φt(x̄) ∈ Nδ(Γ) for t ≥ 0} ,

is a (k + 1) - dimensional, differentiable manifold which is positively invariant under

the flow φt and the unstable manifold of Γ,

U(Γ) = {x̄ ∈ Nδ(Γ) | d(φt(x̄), Γ) → 0 as t → −∞
and φt(x̄) ∈ Nδ(Γ) for t ≤ 0} ,

is an (n−k) - dimensional, differentiable manifold which is negatively invariant under

the flow φt. Furthermore, the stable and unstable manifolds of Γ intersect transversally

in Γ.

Thus, stable (unstable) manifolds approach (leave) a periodic orbit asymptotically.

Thus, it is not possible to obtain an exact point where a stable (unstable) mani-

fold approaches (leaves) the periodic orbit. However, initial conditions are required

to compute a manifold numerically. This indicates that it is necessary to approxi-

mate the manifolds for their use to estimate the initial conditions. Since the global

manifolds in the nonlinear problem are tangent to the eigenspace near the periodic

orbit, eigenvectors from the monodromy matrix can be exploited to approximate the

manifolds. Guckenheimer [20] states the relationships between the subspaces and

eigenvalues of the state transition matrix.

Es = span{eigenvectors whose eigenvalues have modulus < 1} ,

Eu = span{eigenvectors whose eigenvalues have modules > 1} .
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To obtain stable (unstable) eigenvectors that span the stable (unstable) subspace,

a point on the periodic orbit is selected. Then, eigenvalues are computed from the

monodromy matrix, Φ(T, t0) at the point. The structure of the eigenvalues of the

monodromy matrix is established by the following theorem [22,23],

Theorem 2.8.2 (Lyapunov’s Theorem) If λ is an eigenvalue of the monodromy

matrix Φ(T, 0) of a t-invariant system, then λ−1 is also an eigenvalue, with the same

structure of elementary divisors.

One of the eigenvalues must be one for a periodic orbit to exist; the structure of the

system also results in eigenvalues that are always in reciprocals pairs. So, consistent

with the theorem, at least two of eigenvalues are one. If one of the eigenvalues is real

and not unity, its reciprocal eigenvalue must exist. Thus, if the magnitude of one

of the real eigenvalues is smaller than one, the magnitude of another real eigenvalue

must be larger than one due to the reciprocal structure. This indicates that stable and

unstable manifolds must co-exist. If one of the eigenvalues is imaginary, its reciprocal

imaginary eigenvalue must exist. To satisfy this condition, imaginary eigenvalues are

all on the unit circle.

Once eigenvectors are computed from the eigenvalues, initial conditions to com-

pute stable (unstable) manifolds numerically can be estimated. Let V̄ Ws and V̄ Wu be

stable and unstable eigenvectors, respectively. Also, suppose V̄ Ws = [xs, ys, zs, ẋs, ẏs, żs]
T

and V̄ Wu = [xu, yu, zu, ẋu, ẏu, żu]
T . Then, let Ȳ Ws and Ȳ Wu be defined as follows [25],

Ȳ Ws =
V̄ Ws

√
x2

s + y2
s + z2

s

, (2.80)

Ȳ Wu =
V̄ Wu

√
x2

u + y2
u + z2

u

. (2.81)

The initial state vectors for a stable and unstable manifold are X̄Ws
0 and X̄Wu

0 , re-

spectively. These vectors are evaluated as follows,

X̄Ws
0 = x̄∗ + dȲ Ws (2.82)

X̄Wu
0 = x̄∗ + dȲ Wu , (2.83)



35

where x̄∗ is the fixed point on the halo orbit and d is a scalar distance. The value

of d depends on the system. Also, it should be sufficiently small to satisfy the range

of validity for the linear assumption. However, if d is too small, “the time of flight

becomes too large due to the asymptotic nature” of manifolds [25]. A subspace is

spanned by any multiple of its eigenvector [26]. Thus, there are two directions for

each Ȳ Ws and Ȳ Wu . For each direction, half a manifold exists. An example of a single

stable and a single unstable manifold corresponding to a fixed point along an L2 halo

orbit in the Sun-Earth system appears in Figure 2.10. The figure is in the Sun-Earth

rotating frame. The Az of the halo orbit is 130,300 km. Blue indicates the stable

manifold. Red indicates the unstable manifold. The blue circle represents the Earth.

The black dot indicates the L2 point. Note the symmetry apparent when the stable

and unstable manifolds are compared. Since the initial conditions can be estimated by

using any point along the periodic orbit, there exist infinitely many manifolds along a

periodic orbit [14]. In configuration space, this result can be visualized as surfaces of

stable and unstable flow arriving at or departing from the orbit. To identify specific

manifolds along the orbit, “tag numbers” are defined for fixed points on the periodic

orbit. An example of selected points along a halo orbit appears in Figure 2.11. The

halo orbit is near the Sun-Earth L2, and the Az value is 130,300 km. In the figure,

34 points are selected, and the time between each point is equal. The tag number

“1” is indicated by a number one in the figure. It is on the x-axis and on the far

side of the second primary, the Earth in this case. Then, the tag numbers increase

clockwise. More points can be selected by decreasing the time between each point.

However, the location of the tag number 1 is always the same. Theoretically, it is

possible to compute infinitely many manifolds. However, it is not practical because it

requires an infinite amount of computation time. However, it is possible to estimate

the surface from the selected manifolds. A surface associated with the unstable Sun-

Earth manifolds for a halo orbit near L2 appears in Figure 2.12. This figure is also

in the Sun-Earth rotating frame. The Az is 130,300 km. The surface forms a tube;

trajectories corresponding to globalized manifolds comprise the surface. Hence, the
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surface is sometimes labelled a “manifold tube”. Manifold tubes are useful in the

design of low cost transfer trajectories involving periodic orbits.

It is observed that stable and unstable manifold tubes also generally separate

trajectories that are not actually on the tubes into two different types [17]. One type

of orbits remains inside a manifold tube, and another type maintains a path beyond

the manifold tube. Therefore, manifold tubes in the two-dimensional problem are

also separatrices.

1.49 1.495 1.5 1.505 1.51 1.515 1.52 1.525

x 10
8

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

6

x [km]

y 
[k

m
]

Stable Manifold 

Unstable Manifold 

Earth 

L
2
 

Figure 2.10. Sun-Earth Stable and Unstable Manifolds Near L2; Az = 130,300 km
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3. Two-Dimensional Transfers Between the Earth-Moon

(EM) System and Sun-Earth (SE) System

Designing trajectories in a multi-body system is complicated and time consuming.

The search for new, innovative techniques continues. Even though there is no closed-

form solution in the CR3BP, knowledge of particular types of solutions generates

part of a foundation for the design process. This is certainly critical in the system-

to-system transfer problem.

3.1 Transit Orbits

Invariant manifolds offer unique insight into trajectories in the CR3BP. They

indicate the existence of patterns in the dynamical structure. Understanding the

dynamics associated with invariant manifolds might result in new ideas. One of

the interesting manifestations of invariant manifolds is a manifold tube. A manifold

tube, particularly as envisioned in configuration space, indicates the dynamical flow

at a certain energy level. If there exists an orbit that passes through a manifold

tube, it should yield a significant advantage in the trajectory design process and it is

possible to compute such orbits. Under certain conditions, orbits called transit orbits,

remain inside the manifold tube for all time [17]. One of the necessary conditions

for computation of a transit orbit is that the corresponding Jacobi Constant is the

same as that associated with the manifold tube of interest [17]. This property can be

exploited to generate a transit orbit.
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3.1.1 Generating Two-Dimensional Transit Orbits

Transit orbits exist in connection with either two- or three-dimensional manifold

tubes. In the two-dimensional case, the manifold tube collapses to a plane. An

example of a transit orbit passing through a manifold tube appears in Figure 3.1.

The direction of the transit orbit is indicated by an arrow. The transit orbit passes

through an unstable Sun-Earth manifold tube, red in this figure. The location of the

Earth is indicated by a blue circle. To compute a transit orbit inside the tube, it

is necessary to obtain the initial conditions corresponding the orbit. However, it is

not trivial to obtain such an initial state vector. The Poincaré Section is particularly

useful precisely because it reduces the dimension of the system by one. As discussed

previously, the location of a Poincaré Section is flexible. The first step is to select

a plane in configuration space to create a map. Let the plane be defined to be the

“PS plane”. Of course, such a plane can be selected at any orientation in the space,

but a convenient choice appears in Figure 3.2. In the figure, the two-dimensional

Sun-Earth manifold tube is terminated such that the “x” values of all the manifold

trajectories equal that corresponding to the Earth location. This orientation is termed

a “vertical Poincaré section”. The location of the Poincaré Section is indicated by

the PS plane in the figure. This manifold tube is the collection of unstable manifolds

from the Lyapunov orbit near L2. The Poincaré Section is defined along the y-axis

where the manifold tube crosses the Earth’s x-coordinate. Thus, x is fixed. In this

two-dimensional tube, the free variables at the section are reduced to y, ẏ, and ẋ. To

select y and ẏ, the phase plot y vs ẏ at the Poincaré Section is useful. The phase

plot appears in Figure 3.3. Note that this plot is a closed curve. Thus, this closed

curve indicates the boundary conditions for transit orbits [17]. There exist two ẏ

values for each y value on the curve. The higher value is the upper boundary, and the

lower value is the lower boundary. There also exist boundaries of y values for each

ẏ value. This means that the combination of y and ẏ must remain inside the closed

curve for a given transit orbit. By selecting a point inside the closed curve, y and ẏ
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are determined. As a result, ẋ is the only free variable. It is necessary for the transit

orbit to possess the same value of Jacobi Constant as the value that corresponds to

the manifold tube. Therefore, ẋ is modified to satisfy this condition. The initial

conditions are ready to be integrated when the desired Jacobi Constant is achieved.
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Figure 3.1. Two-Dimensional Transit Orbit Inside Unstable Sun-
Earth Manifold Tube; Ay = 920,000 km

3.2 Transit Orbit through Two tubes

By using the transit orbit, it is possible to move from one manifold tube to another.

An example appears in Figure 3.4. These manifolds are computed in the Earth-Moon

system. The red manifold tube consists of unstable manifolds from the Lyapunov

orbit associated with the Earth-Moon L2 point and the Ay value is 49,100 km. The

blue manifold tube is generated via a Lyapunov orbit in the L1 family and is a stable

manifold tube. The Ay amplitude is 46,200 km. The black orbit passing through the

two manifold tubes is the transit orbit. Of course, these two manifold tubes must

possess the same Jacobi Constant, about 3.129, for the transit orbit to pass through
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both tubes without a maneuver. So, the associated halo orbits are not exactly the

same size. Once the two manifold tubes are computed, a PS plane is defined in

configuration space where the tubes intersect. In this case, the plane is defined at the

x-coordinate corresponding to the location of the Earth. In the previous section, only

one closed curve appears in the phase plot of ẏ vs y because only one manifold tube

crosses the section. However, two manifold tubes intersect the plane in this case, one

stable/one unstable. There are two closed curves in the phase plot. If a transit orbit

exists inside both of the manifold tubes, then the two closed curves must intersect.

The intersection serves to define the boundary conditions for the transit orbit. Any

point inside the intersection can be selected to define ẏ and y. The value of ẋ is

adjusted to produce the same value of Jacobi Constant as the manifold tubes. [In

the three-dimensional transfer, z and ż values must be determined. The value of z

can be selected anywhere inside the tubes. Also, simply zero can be selected for the

ż value. However, the existence of a transit is not guaranteed.]
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3.3 Transfer between Earth-Moon System and Sun-Earth System in Two-

Dimensions

The previous section presents a process to compute a transit orbit through two

manifold tubes in a single system. However, it is possible to adapt the technique to

transfer between two different systems. In the vicinity of the Earth and the Moon, it

is necessary to consider the Sun-Earth-Moon system due to the significant influence

of the solar gravity on spacecraft trajectories. Then, the model of the system can be

constructed as overlapping three-body systems, i.e., the Earth-Moon system and the

Sun-Earth system. Thus, it is possible to apply transit orbits to the trajectory design

process in the vicinity of the Earth and the Moon. The goal is the determination of

low cost transfer orbits between the Sun-Earth system and the Earth-Moon system.

This step can be accomplished by applying the transit orbit technique. Transferring

between systems does require multiple transformations and additional transformation

matrices are required. Then, the transfer from the Earth-Moon to the Sun-Earth

system is considered. Finally, a transfer in the opposite direction, i.e., from Sun-

Earth to Earth-Moon system, is detailed.

3.3.1 Two-Dimensional Sun-Earth-Moon Model

The two-dimensional Sun-Earth-Moon system can be modelled by simply over-

lapping two CR3BP’s, the Earth-Moon system and the Sun-Earth system, in the

same plane, as it appears in Figure 3.5. The Earth-Moon and Sun-Earth rotating

frames are defined by [â1, â2]
T and [b̂1, b̂2]

T , respectively. The center of rotation of

the Earth-Moon system is shifted from the barycenter to the Earth. Then, the mod-

ified Earth-Moon system is placed in the Sun-Earth system. Thus, the Moon is still

assumed to move in a circular orbit.
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Figure 3.5. Two-Dimensional Model

3.3.2 Earth-Moon (EM) Manifold Tube

The first step to obtain a transit orbit is to compute the manifold tube. For a

transfer from the Earth-Moon system to the Sun-Earth system, an unstable Earth-

Moon manifold tube and a stable Sun-Earth manifold tube are required. The unstable

manifold tube is the collection of unstable manifolds. Each unstable manifold is com-

puted by the method discussed in the previous chapter. For this example, 58,800 km

is selected arbitrarily for the Ay amplitude of a Lyapunov orbit. Then, the manifold

tube must be transformed into the Sun-Earth system to compute an intersection with

a Sun-Earth manifold tube.

The transformation is developed via the following steps. Recall that the Earth-

Moon rotating frame is generally defined in terms of the unit vectors [â1, â2, â3]
T .

Then, the coordinates of a position vector associated with the state along a trajectory

in the Earth-Moon frame is defined as follows,

r̄nd = xâ1 + yâ2 + zâ3 , (3.1)
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where x, y, and z are nondimensional position components in each direction. Thus,

r̄nd is a nondimensional position vector. The angle between the inertial frame and

rotating frame is defined to be θEM . To transform the position from the Earth-Moon

frame to Sun-Earth frame, the angle between the Earth-Moon rotating frame and

Sun-Earth rotating frame, θSE−EM , is required. The angle between the Sun-Earth

rotating frame and inertial frame, θSE, is defined to be,

θSE = nSE ∗ t , (3.2)

where nSE is the mean motion of the Sun-Earth rotating frame with respect to the in-

ertial frame, and t is the dimensional time. Then, the angle θSE−EM can be computed

easily, since,

θSE−EM = θEM − θSE . (3.3)

Suppose that the Sun-Earth rotating frame is defined, in general via unit vectors,

[b̂1, b̂2, b̂3]
T . Then, the direction cosine matrix from the Earth-Moon rotating frame

to Sun-Earth rotating frame is written as follows,

BCA =




cos θSE−EM − sin θSE−EM 0

sin θSE−EM cos θSE−EM 0

0 0 1


 . (3.4)

In a more compact form, the Earth-Moon rotating frame and Sun-Earth rotating

frame can be related as follows,

[ b̂1, b̂2, b̂3 ]T =B CA[ â1, â2, â3 ]T . (3.5)

Therefore, the position vector in the Earth-Moon rotating frame can be transferred

into the Sun-Earth rotating frame by using this matrix.

Transforming the velocity components can also be accomplished. Since the Earth-

Moon rotating frame possesses constant angular velocity relative to the inertial frame,

it is necessary to use the following equation,

idB r̄

dt
=

idAr̄

dt
+ Aω̄B × Ar̄, (3.6)
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to relate derivatives of vectors relative to different observers. Note that B r̄ is the

position vector in the Sun-Earth rotating frame, Ar̄ is the position vector in the Earth-

Moon rotating frame, and Aω̄B is the angular velocity of the Sun-Earth rotating frame

with respect to the Earth-Moon rotating frame. Therefore,
idB r̄
dt

is the time derivative

of B r̄ in the inertial frame, where the symbol ‘i’ in the upper left indicates that the

derivative is relative to an inertial observer. Similarly,
idAr̄
dt

is the time derivative of

Ar̄ in the inertial frame. All the vectors are nondimensional, defined consistent with

the characteristic quantities in the Earth-Moon system. Equation (3.6) is known as

the Basic Kinematic Equation (BKE).

After the position and velocity components along a trajectory associated with the

Earth-Moon manifold tube are transformed into the Sun-Earth rotating frame, these

components must be dimensionalized by the same characteristic quantities that are

used to nondimensionalize, i.e., characteristic quantities in the Earth-Moon system,

to determine an intersection with a Sun-Earth tube. Of course, the Sun-Earth tube

must be dimensionalized using the characteristic quantities in the Sun-Earth system.

Then, a Poincaré Section is selected. It is possible to select the Poincaré Section

anywhere in the system. A good intersection may vary depending on a number of

parameters. A dimensionalized, Earth-Moon manifold tube in the Sun-Earth rotating

frame appears in Figure 3.6. A vertical Poincaré Section is arbitrarily located at an

x-coordinate equal to 1.494 × 108 km relative to the Sun-Earth rotating frame in

this case. It is important to track the times that each trajectory reaches the section

because they are all different. Unstable Earth-Moon manifolds are in red. The Ay

excursion of the Lyapunov orbit corresponding to the manifolds is 58,800 km. The

lunar circular orbit appears in blue. The Earth is represented by the small blue circle.

The arrow indicates the direction to the Sun.

Once the intersection is determined in the Sun-Earth rotating frame, different ap-

proaches are available to accomplish the transfer to the Sun-Earth system. Of course,

the approach is determined by the mission objective. There are four different types of

mission scenarios considered. (1) One scenario is a transfer from an Earth-Moon Lya-
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punov orbit to a Sun-Earth Lyapunov orbit. This type of transfer can be accomplished

by shifting from an Earth-Moon manifold to a Sun-Earth manifold. The concept is

to simply determine a transfer by identifying an Earth-Moon manifold that intersects

a Sun-Earth manifold. However, this is not a trivial task when only numerical ap-

proaches are available. (2) The second scenario is a transfer from an Earth-Moon

Lyapunov orbit to a transit orbit through a Sun-Earth tube. This approach is ac-

tually the simplest. (3) The third scenario is to transfer from a transit orbit inside

an Earth-Moon tube to a Sun-Earth manifold. Then, the transfer trajectory arrives

at a Lyapunov orbit. In this type, it is necessary to transform an intersecting point,

determined in the Sun-Earth rotating frame, into the Earth-Moon rotating frame to

compute a transit orbit inside an Earth-Moon tube. This simple transformation is

challenging due to the unknown transfer time. (4) The fourth scenario is the transit

transfer from an Earth-Moon tube to Sun-Earth tube. This transfer has the same

challenge as type (3). Thus, the transfer types (2)-(4) are discussed here. The first

type is discussed later.
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Figure 3.6. Unstable Earth-Moon Tube in Sun-Earth Frame; Ay = 58,800 km
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3.3.3 Transit Transfers to Sun-Earth System

Once a Poincaré Section is determined, the intersection between the Earth-Moon

tube and Sun-Earth tube can be obtained. An example of intersecting manifolds in

the Sun-Earth rotating frame appears in Figure 3.7. The Earth-Moon manifolds are

the same as those in Figure 3.6. Stable Sun-Earth manifolds appear in blue. These

manifolds are associated with a Lyapunov orbit near L2 point, and the Ay amplitude

is 920,000 km. To obtain conditions for a transit orbit, the ẏ vs y phase plot at this

Poincaré Section is useful. The phase plot appears in Figure 3.8. The color in the

plot corresponds to the color of the manifolds. Since the two closed curves intersect,

it indicates the possibility of a free transit orbit inside the Sun-Earth tube or/and

the Earth-Moon tube. Now, different types of transfers are considered.
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Manifold-to-Transit Transfers

In Figure 3.8, a part of the red curve is inside the blue curve. If a point is

selected from this part on the red curve, a free transit orbit that passes inside the

Sun-Earth tube should be possible. The necessary condition for the existence of such

an orbit is that the values of the Jacobi Constants are equal: the Jacobi Constant of

the selected point on the red curve – on the Earth-Moon manifold – and the Jacobi

Constant corresponding to the blue Sun-Earth tube. If they are indeed equal, a free

transit orbit is possible. If they are not equal, the size of the Sun-Earth Lyapunov

orbit must be modified to obtain the desired Jacobi Constant. Note that the value of

Jacobi Constant that corresponds to an Earth-Moon manifold transformed into the

Sun-Earth rotating frame is not constant because of the rotation of the Earth-Moon

rotating frame. Thus, the value of Jacobi Constant varies along the red curve. If one

of the values is the same as the value of the Sun-Earth tube, a free transit orbit is
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possible. If none of them is the same, the size of the Sun-Earth Lyapunov orbit has

to be changed to obtain the desired value of Jacobi Constant. The desired value can

be selected from the Jacobi Constant value at any point on the red curve. Once the

Sun-Earth tube is computed with the desired value of Jacobi Constant, again, it is

necessary to examine the ẏ vs y phase plot. The selected point has to be inside the

closed curve computed from the new Sun-Earth tube. If the curve does not include

the point, no cost-free transfer is possible. Then, it is necessary to change ẏ to make

the point inside the closed curve. Also, it is necessary to change ẋ to adjust the

value of Jacobi Constant. This indicates that a maneuver, i.e., δV̄ is required. Again,

the boundary condition for ẏ along the transit orbit is defined by the blue curve in

Figure 3.8. The ẏ value has to be inside the blue curve when adjusted to satisfy the

Jacobi Constant constraint. If the desired value cannot be achieved by changing ẏ, ẋ

is changed.

Even if no value of Jacobi Constant along the red curve is the same as the value

of Jacobi Constant on the Sun-Earth tube, it it possible to construct a transit orbit

inside the Sun-Earth tube by applying a maneuver. The ẏ vs y phase plot is again

used. An example of manifold-to-transit transfers appears in Figure 3.9. A transit

orbit inside the Sun-Earth tube appears in black.

Transit-to-Manifold Transfers

One of the options for the transfers from the Earth-Moon system to the Sun-

Earth system is a transit-to-manifold transfer. A transit orbit inside the Earth-Moon

tube can be transferred to an intersecting Sun-Earth manifold. To compute such a

transfer, the Sun-Earth manifold is selected first. Any Sun-Earth manifold can be

selected such that – once propagated to the Earth-Moon system – it arrives inside

the Earth-Moon tube. Then, the state of the Sun-Earth manifold at an intersection

point is transformed into the Earth-Moon rotating frame to compute a transit orbit.
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Figure 3.9. Manifold-to-Transit Transfer

To transform the state, the orientation of the Earth-Moon rotating frame rela-

tive to the Sun-Earth rotating frame is required. The orientation of the Earth-Moon

rotating frame is dependent on the time at which the transit orbit arrives at the

intersection. Determining the arrival time defines the orientation. Determination of

the time can be accomplished in an iterative process. The appropriate time is then

used to transform the point inside the Earth-Moon tube in the Earth-Moon rotating

frame. A good initial guess for the appropriate time can be obtained from the time

of intersection of nearby EM manifolds. Thus, after defining a PS plane in the Sun-

Earth rotating frame, the time at which each Earth-Moon manifold intersects the PS

plane is measured in the Earth-Moon rotating frame. Then, the intersecting time

corresponding to each EM manifold appears in Figure 3.10. Note that characteristic

quantities in the Earth-Moon system are used to dimensionalize the time. The value

along the x-axis represents the tag numbers corresponding to the Earth-Moon mani-

folds. (Recall Figure 2.11) The first manifold is propagated from the point where the

Lyapunov orbit crosses the x-axis perpendicularly on the far side of the Moon. Then,

the point moves clockwise as the number increases. In the Earth-Moon rotating frame,
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the transit orbit and Earth-Moon manifolds are under a similar gravitational influ-

ence, that is, the gravity of the Moon. Of course, the condition must be maintained

in the Sun-Earth rotating frame. Also, the orientation of the Earth-Moon system

determines the orientation of the Moon in the Sun-Earth rotating frame. Thus, the

intersecting time of the transit orbit should be close to the intersecting time of the

Earth-Moon manifolds. Therefore, the first guess can be selected from this range.

However, an iterative process is still required to determine the precise time within

this range.

After the transformation of the state into the Earth-Moon rotating frame, the next

step is the computation of the conditions that define the transit orbit. However, the

intersection in the Earth-Moon rotating frame is not a smooth vertical line, rather,

it appears as is in Figure 3.11. In the figure, the blue circle indicates the Earth, and

the magenta circle identifies the Moon. Each manifold leaves the Lyapunov orbit and

terminates at a different point. In this case, the ẏ vs y phase plot is not sufficient

to determine the boundary conditions for a transit orbit. It is useful to re-define a

Poincaré Section in the Earth-Moon rotating frame. The new Poincaré Section is

determined by defining a new PS plane in the Earth-Moon rotating frame. The new

PS plane such that it includes the desired transformed point, as it appears in Figure

3.12. Now the intersection is a smooth straight line. Also, a new reference frame is

useful to determine the conditions for a transit orbit. As seen in the figure, the xps-

axis is defined along the PS plane. Then, the yps-axis is perpendicular to the xps-axis

so that it is parallel to the y-axis when the xps is parallel to the x-axis. Then, the

velocity conditions for a transit orbit can be determined from the ˙xps vs xps phase

plot. Of course, ˙yps can be modified, if necessary. An example of transit-to-manifold

transfers appears in Figure 3.13.
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Figure 3.11. Unstable Earth-Moon Tube in Earth-Moon Frame; Ay = 58,800 km

Transit-to-Transit Transfers

A transit-to-transit transfer orbit can be computed applying a combination of the

techniques from the previous two transfer types. First, a point is selected inside two
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Figure 3.12. New PS Plane in Earth-Moon Rotating Frame
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Figure 3.13. Transit-to-Manifold Transfer
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intersecting tubes in Figure 3.7. To compute a transit orbit inside the Sun-Earth

tube, the boundary condition corresponding to ẏ is obtained from the ẏ vs y phase

plot on the Poincaré Section in a figure similar to Figure 3.8. The value of Jacobi

Constant associated with the Sun-Earth tube is achieved by modifying both ẏ and ẋ.

Once the state of the Sun-Earth transit orbit is determined in the Sun-Earth rotating

frame, it is transformed to the Earth-Moon rotating frame to obtain an Earth-Moon

transit orbit. Of course, it is necessary to determine the transfer time. Then, again,

a Poincaré Section is defined in the Earth-Moon rotating frame to obtain the velocity

conditions for the transit orbit. The ẋps vs xps phase plot and the value of Jacobi

Constant of the Earth-Moon tube are used to determine ẋps and ẏps. An example of

transit-to-transit transfers appears in Figure 3.14.
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3.3.4 Example

Koon et al. [16] suggest that a transfer from the EM system to the SE system can

be achieved with 34 m/sec. To verify the technique determined previously, a similar

transfer is sought. However, the details of the transfer are not provided in the reference

by Koon et al. The sizes of the EM and SE Lyapunov orbits are unknown. Only

the location of the ∆V is available from the reference. This information determines

the location of a Poincaré Section, however. The location of the Poincaré Section

appears in Figure 3.15. The EM unstable manifold tube is in red. The endpoints of

the trajectories in Figure 3.15 in the EM rotating frame correspond to the trajectories

that terminate at the vertical Poincaré Section in the SE rotating frame. In this case,

an arbitrary vertical PS plane is defined as seen in the figure. The circular lunar orbit

appears in blue.

In this example, no cost-free transfer is possible because good intersection cannot

be obtained under the Jacobi Constant condition. Instead of searching for a SE Lya-

punov orbit with the desired value of Jacobi Constant, a more arbitrary SE Lyapunov

orbit is selected first. The desired transfer can be modelled as a manifold-to-transit

transfer in this case. So, secondly, it is necessary to compute a transit orbit inside

the Sun-Earth tube. Since a low cost transfer is sought, it is necessary to compare

the value of Jacobi Constant associated with each EM manifold in the Sun-Earth

rotating frame with the desired Jacobi Constant value. Then, the small difference

between the values indicates a relatively low cost maneuver. Thus, possible manifolds

for the transfer are selected. The change in the value of the Jacobi Constant appears

in Figure 3.16. The values along the x-axis represent the tag numbers corresponding

to EM manifolds. Recall that the first manifold is computed at the point where the

EM Lyapunov orbit crosses its x-axis vertically on the far side of the Moon. Then,

the point moves clockwise as the manifold number increases. This figure identifies

the location of a potential transit orbit. For example, a SE Lyapunov orbit with the

Jacobi constant value of 3.000825429642264 is selected. The Ay amplitude is 650,000
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km. This desired value is indicated by a black line in Figure 3.16. In this case, the

5th, 6th, 33rd, and 34th manifolds are desirable for the transit orbit because their

values are close to the desired value. The ẏ vs y phase plot at the Poincaré Section

appears in Figure 3.17. The red dots are points from the Earth-Moon manifolds. The

points from the desired manifolds are identified by black. The blue curve represents

the points on the Sun-Earth tube. In the figure, all desired points are outside the

blue curve. Also, it is obvious that a big change in ẏ is required to move each point

into the blue curve. Thus, a low cost transfer is not possible in this case.

There are several possible options when there is no good intersection. One possi-

bility is a change in the size of the EM and SE Lyapunov orbits. The second option is

to change the orientation of the EM manifold tube. Another alternative is to change

the location of the Poincaré Section. These three options are attempted visually.

Sometimes it may require the combination. One of the results appears in Figure 3.18.

The Ay amplitudes of the EM and SE Lyapunov orbits are 88, 000 km and 650, 000

km, respectively. The EM manifolds are in red, and SE manifolds are in blue. An

EM manifold that possesses a value of Jacobi Constant that is close to the one cor-

responding to the the SE Lyapunov orbit is selected as the location for application

of a ∆V at the Poincaré Section. This result requires 31.8 m/sec of ∆V and is very

close to the expected value. The transit orbit appears in black.
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4. Three-Dimensional System-to-System Transfers

A collection of manifolds associated with a halo orbit creates a closed surface in three-

dimensional space [14]. In this case, the closed surface forms a tube. It is also possible

to compute transit orbits inside the three-dimensional tubes. However, the technique

varies slightly from that described in the previous chapter. The difference is due to

the complexity of the system by the out-of-plane motion of the Moon.

An addition of one dimension to the two-dimensional case causes additional com-

plexity in the transfer problem. Thus, it is necessary to modify the procedures applied

in the two-dimensional case to adjust to more complicated transfers. All the techiques

established previously involve visual inspection. In the three-dimensional case, the

visual inspection is more complicated because one projection is not sufficient to ob-

tain the necessary information. Moreover, a visual decision process is not available

when the design process is automated.

4.1 Model of Three-Dimensional System-to-System Transfers

In the two-dimensional model, the Earth-Moon system and the Sun-Earth system

are assumed to be in the same plane. Thus, the orientation of the Earth-Moon system

can be defined simply by one angle. However, this model is far from the reality. The

Moon orbit is not actually in the same plane as the Earth orbit. Thus, the results from

the two-dimensional model cannot be applied to the ephemeris model that includes

actual information concerning the planetary ephemerides. However, a more accurate

model is available in the three-dimensional model by including the inclination of the

Moon. Some definitions associated with the three-dimensional model appear in Figure

4.1. The Earth-Moon and Sun-Earth rotating frames are defined by [â1, â2, â3]
T and

[b̂1, b̂2, b̂3]
T , respectively. The orientation of the Earth-Moon system is represented by
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the angle sequence, Body-two 3-1-3. The first angle α defines the lunar line of nodes

with respect to b̂1. The second angle is i, the inclination angle, and is fixed to be 5

degrees in this model. The third angle, β, positions the Moon in its orbit with respect

to the line of nodes.

Earth

Line of Nodes

Moon

â1
i

α

β

b̂1

b̂2

â3
b̂3

Figure 4.1. Angle Definitions in the Three-Dimensional Model

4.2 Correction of Jacobi Constant

Computing transit orbits requires correction of the value of Jacobi Constant. In

the two-dimensional case, two variables, ẋ and ẏ, are available to correct the Jacobi

Constant. However, another variable, ż, is added in the three-dimensional case. Once

a hyperplane is defined, a Poincaré Section can be computed. However, it is four-

dimensional. For application to this problem, this Poincaré Section can be projected

to subspaces that yields two-dimensional plots. Then, plots of the velocity component

as a function of position components in each direction can be examined to identify

the velocity constraints of interest for a transit orbit. Changing only one variable

can occasionally achieve the desired value of Jacobi Constant in the two-dimensional
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case. However, it is often necessary to change more than one variable in the three-

dimensional case.

4.3 Four-Section Method

In the three-dimensional case, a task as simple as identifying an intersection be-

tween manifold tubes is nontrivial. Determining a Poincaré Section simplifies the

task by reducing the system by one dimension. Then, a new frame can be defined

relative to the Sun-Earth rotating frame at the location of the Poincaré Section such

that the Zref -axis is parallel to the b̂3-axis and the Xref -axis is along the Poincaré

Section. In this way, the position components in the direction of the Yref -axis are

zero. The plane defined by the Xref -axis and the Zref -axis is still denoted as the PS

plane. Even though it is easy to identify an intersection visually, visual inspection is

not available in an automated process. Thus, the logic to identify an intersection is

necessary for automation.

Consider the transfer from the Sun-Earth to the Earth-Moon system. Each Sun-

Earth manifold is examined if it is inside the Earth-Moon tube. This condition is

required to compute a transit orbit inside the Earth-Moon tube. The logic to examine

this condition is fairly simple. The conceptual illustration appears in Figure 4.2. Blue

dots and one red dot represent the Earth-Moon manifolds and a selected Sun-Earth

manifold, respectively. Only position components are considered in this case. First,

the Zref component of the Sun-Earth manifold is compared with the Zref components

of the all Earth-Moon manifolds. This separates the Earth-Moon manifolds into two

groups. One is the upper group with a higher Zref component. Another one is the

lower group with a relatively lower Zref component. Then, the Xref component of the

Sun-Earth manifold is compared with Xref components of the Earth-Moon manifolds

in each group. Thus, the upper group is separated into subgroups 1 and 2. Also,

the lower group is separated into subgroups 3 and 4. If the Sun-Earth manifold is
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surrounded by Earth-Moon manifolds, these four groups must exist. If one or more

groups are missing, the Sun-Earth manifold is outside of the Earth-Moon tube.

12

3 4

X̂ref

Ẑref

Figure 4.2. Schematics of the Four-Section Method

4.4 Design Technique for Low Cost System-to-System Transfers

The goal of this study is to establish a technique to efficiently design system-to-

system transfers. The design of a low cost transfer in a four-body problem is extremely

challenging. The three-dimensional model in Figure 4.1 simplifies the design process

since characteristics of certain trajectory arcs in the CR3BP, such as halo orbits and

invariant manifolds, can be exploited.

4.4.1 Sun-Earth and Earth-Moon Manifolds

It is possible to depart a Sun-Earth halo orbit from any point along the orbit

using unstable manifolds for, essentially, no departure cost. However, globalization

of the unstable manifolds reveals the unstable manifold tube and the limited regions
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of space that can be accessed. The tube may deliver a vehicle to a wide variety of

locations depending on the particular halo orbit with which the tube is associated

and the specific trajectory that is exploited. Only certain manifolds might deliver a

spacecraft to the desired location, and/or no manifolds may be available that reach

the desired location in a reasonable time. The basis for a system-to-system transfer

is a requirement that the Sun-Earth manifolds intersect the Earth-Moon manifolds.

An example of a Sun-Earth unstable manifold tube appears in Figure 4.3. These

manifolds are associated with a halo orbit defined by an in-plane excursion amplitude

of Ay = 699,000 km and an out-of-plane amplitude Az = 200,000 km. It is obvious

that some of the manifolds pass very close to the Earth. These manifolds do not

generally yield productive intersections with the Earth-Moon manifolds, thus, it is

not necessary to compute them for potential system-to-system transfers. To tag

manifolds along the tube that may be useful, the halo orbit is decomposed into four

regions, A, B, C, and D, as seen in Figure 4.4. In computation of manifolds by the

integration of specific sets of initial conditions, manifolds departing from regions C

and D are accessible to Earth-Moon manifolds. Thus, the search is focused on this

part of a Sun-Earth tube.

Stable and unstable manifolds also exist in the Earth-Moon system since periodic

orbits can be computed near all collinear libration points. For instance, once a stable

manifold tube for a specified halo orbit is propagated backwards in the Earth-Moon

coordinate frame, the position and velocity states along the tube can be transformed

to another frame for visualization. In Figure 4.5, the relevant part of the Sun-Earth

manifold is plotted in red. It is computed from regions C and D along the halo orbit.

Also in the figure, the Earth-Moon stable manifold tube (blue) has been transformed

to the Sun-Earth coordinate frame and plotted. The â1- and â2-axis appear in the

figure to indicate the initial position of the Moon. The transformation in the figure

assumes arbitrary values for the orientation of the Earth-Moon coordinate frame, that

is, α = 60 degrees and β = -30 degrees.
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Figure 4.3. Sun-Earth unstable manifolds near L2; Ay = 699,000 km,
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Figure 4.4. Sun-Earth Halo Orbit Near L2; Ay = 699,000 km, Az = 200,000 km
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4.4.2 Poincaré Sections

In this simplified model, the key concept in the design of system-to-system trans-

fers is that the manifold tubes in the phase space provide the “pathways” from one

system to another and, thus, this basic structure controls the trajectory. The inter-

section of the tubes allows motion from one system to the next. In the 3-D spatial

CR3BP, the phase space is 6-D; the Jacobi Constant reduces it by one. Then, for some

transversal slice, the Poincaré Section is an object in 4-D. The intersection of two such

objects is not obvious. As discussed by Gómez et al. [17], however, projections of the

objects onto lower dimensional planes can yield significant insight. Such projections

originate with additional characteristics for the transfer that might be specified. For

example, from the Sun-Earth halo orbit, integrate a tube associated with the unsta-

ble manifold forward in time until the trajectories cross the PS plane. This location
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is identified by the angle ψ in Figure 4.6 that can be visualized in Figure 4.3. The

angle is measured from the b̂1-axis and specifies a plane for intersection of the tubes.

The angle is positive for rotation counter-clockwise about the b̂3-axis. Once the angle

is specified, a stable manifold tube in the Earth-Moon system can be computed to

also arrive at the same PS plane in negative time. It is noted again that, in the

spatial problem, this plane is not actually a Poincaré Section, merely a projection

given specified characteristics. It is denoted as a section for simplicity. Given that

both manifold tubes are projected onto this plane and an intersection is determined, a

transfer is defined by a search for essentially two possible types of state vectors. One

type is a position state that is on both tubes (with a possible velocity discontinuity).

A location on the tube (or, in reality, very near), ensures that the solution will pass

from the Sun-Earth halo orbit to an Earth-Moon halo orbit. However, a transit orbit

inside the tubes can also accomplish a shift from one system to the other. Transit

orbits may or may not pass very close to the boundary. Since this study does not

consider transitions from a stable to an unstable manifold corresponding to the same

libration point orbit, non-transit orbits are not considered here.

Earth

PS Plane

b̂1
ψ

b̂2

Figure 4.6. Definition of ψ
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From the general concept, that is, defining a transfer via intersecting tubes, the

lowest cost option is sought. But, the complexity of the system-to-system transfer

problem between the Earth-Moon and the Sun-Earth systems increases further when

the inclination of the lunar orbit is introduced. For efficient transfer design, the

orientation of the Earth-Moon system, that is, the timing in the ephemeris model, is

critical. The orientation of the Earth-Moon coordinate frame is determined by the

three angles, α, i (fixed), and β. Of course, the location of the PS plane is another

design parameter and unknown. Thus, the search for a low cost transfer is reduced

to the three angles α, β, and ψ. It is necessary to search over the two angles α and

β, as well as the PS plane orientation angle ψ.

4.4.3 Manifold Intersections

In the spatial problem, the intersection of two manifold tubes is nontrivial. In an

automated process, it is especially difficult without the benefit of any visual inspec-

tion. To aid in this process, again, the PS plane and a new coordinate frame defined

in the physical PS plane are exploited.

Even though Earth-Moon manifolds and Sun-Earth manifolds form a continuous

surface, they are usually computed numerically from individual trajectories. An ex-

ample of intersecting Earth-Moon and Sun-Earth manifolds appears in Figure 4.7,

where discrete points are plotted in the PS plane. It is apparent that computation of

the actual point of intersection, even in the physical plane of the figure, is nontrivial.

Thus, an approximate method is required to determine the intersection in a short

period of time. The intersection point is estimated in configuration space via splines.

From the estimate, the full state vectors can be computed.

Although an intersection of the tubes in configuration space will yield a transfer,

the velocity states are not generally equal and a maneuver is required. Most likely,

the Earth-Moon and Sun-Earth manifolds actually intersect in, at least, two points in

the PS plane. (See Figure 4.7.) It is simple to determine which of the two possesses
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a smaller velocity discontinuity. The point of interest, however, is undoubtedly not

at the best orientation. Thus, a modification of α and β will improve the result.

To change the orientation, without affecting the intersecting point, it is necessary to

change α and β at the same time. For example, when α is increased, β is decreased

by the same angle. Strictly speaking, the intersecting point changes because the

Earth-Moon manifolds are inclined. But, incorporating this assumption renders a

preliminary estimate of the angles that results in a reasonably low maneuver cost.

4.4.4 Transit Orbits and Maneuvers

To complete a transfer between the Earth-Moon and Sun-Earth systems, one

option is to shift between trajectories that lie on the manifold surfaces. Generally,

the velocity states are not equal at the intersection point and the ∆V is computed as

the norm of the vector defined by the differences in the velocity components. However,

a transit orbit will also deliver a vehicle between the systems. To determine a transit

orbit, velocity components must satisfy certain conditions [16]. Again, projections
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onto the PS plane are useful in the form of phase plots of velocity components as

functions of position components. Two phase plots for the Earth-Moon tube (blue)

and Sun-Earth tube (red) appear in Figure 4.8. The Xref components are plotted on

the left, and on the right are curves representing the relationship for Zref components.

For the selected Sun-Earth manifolds, note that the curves do intersect. The closed

blue curves are boundary conditions for a transit orbit [16]. Thus, when a maneuver is

applied, the new velocity components must be within the blue boundaries to approach

the Moon. Another condition for a transit orbit is the Jacobi Constant. The value

of the Jacobi Constant corresponding to a transit orbit must equal the value for

trajectories on the Earth-Moon tube. However, because of the transformation, the

value of the Jacobi Constant changes for points that lie on the blue Earth-Moon

curve in Figure 4.8, i.e., in the PS coordinates and Sun-Earth rotating frame. Thus,

it is most efficient to first transform the curves from Figure 4.8 into the Earth-Moon

rotating frame. The value of the Jacobi Constant along the Earth-Moon manifolds

is constant for representations in the Earth-Moon rotating frame. When points that

intersect the PS plane of the Sun-Earth frame are transformed into the Earth-Moon

rotating frame, they are no longer contained in a plane, however. In this case, two

phase plots are no longer sufficient to determine the boundary conditions. It is useful

to define a new local “Poincaré Section” and reference frame in the Earth-Moon

rotating frame. The definition of the new reference frame in the Earth-Moon rotating

frame appears in Figure 4.9. The xref -axis is directed from the barycenter of the

system to the tube intersection point of interest from Figure 4.8. The zref -axis is

parallel to the â3-axis, and the yref -axis is perpendicular to the xref -zref plane. Thus,

this new projection of the Poincaré Section is defined by the xref -zref plane. The

black solid line in Figure 4.9 represents the x-y projection of the new PSEM plane.

Phase plots of Earth-Moon manifolds on the PSEM appear in Figure 4.10. These

plots relate velocity as a function of position in both the xref and zref components.

Now, the maneuver can be computed with these two phase plots and the value of the

Jacobi Constant for the Earth-Moon tube.
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4.4.5 Example: Halo-to-Halo Transfer

A transfer from a Sun-Earth halo orbit to an Earth-Moon halo orbit in the CR3BP

is most simply achieved by connecting invariant manifolds. The velocity difference

between the Earth-Moon and a Sun-Earth manifold at the intersection point becomes

the ∆V for the transfer. For example, consider a Sun-Earth L2 halo orbit with Az =

200,000 km and an Earth-Moon L2 halo orbit with Az = 30,000 km. The computed

∆V from the previous methodology is 22.2 m/s when ψ is arbitrarily selected to be

95 degrees. To test the validity of this result, it is transitioned to the ephemeris

model that uses the actual ephemerides for the locations of the of planets. The

software package Generator, developed at Purdue University, is used to simulate the

results in the ephemeris model. Generator uses JPLDE405 to simulate the ephemeris

environment. The results appear in Figure 4.11. A complete halo-to-halo transfer

in the ephemeris model appears in Figure 4.11. The figure is centered at the Earth

and, in the Sun-Earth rotating frame, the Sun’s direction is indicated. The ephemeris

Moon location throughout the transfer appears in the figure in blue. A closeup of

the transfer arriving in an Earth-Moon Lissajous orbit is plotted in Figure 4.12. This

figure is centered at the Moon. The Earth is placed to the left of the Moon for a

reference, but it shifts position in an ephemeris model. The ephemeris results appear

in Table 4.1. In the ephemeris model, this transfer can be achieved with zero ∆V .

The sizes of the Earth-Moon and Sun-Earth Lissajous orbits are slightly different

from the sizes of original halo orbits, i.e., now Earth-Moon Az = 30,300 and Sun-

Earth Az = 195,000 km. In Figure 4.11, the first x-axis crossing location in the SE

rotating frame, after the departure from the SE Lissajous orbit, is indicated by ×.

Also, in Figure 4.12, the x-axis crossing location in the EM rotating frame, before

the arrival at the EM Lissajous orbit, is indicated by ×. The transfer time between

these locations is defined to be the time of flight. This is because it is impossible

to identify the exact location of the departure (arrival) along a Lissajous orbit. The

time of flight for this transfer is approximately 50.6 days.
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Table 4.1 Transfer Results in the Ephemeris Model

Earth-Moon Az [km] Sun-Earth Az [km] ∆V [m/sec] Time of Flight [days]

30,300 195,000 0 50.6
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5. Analysis

A large challenge in trajectory design in a multi-body regime is the sensitivity. Nev-

ertheless, a large number of transfers can be determined using the previous design

strategy. The results that emerge highlight some useful relationships, particularly

the angle relationships that yield the results with the lowest cost. It was originally

assumed that the key relationship to design transfers between the Earth-Moon and

the Sun-Earth systems is the orientation of the Earth-Moon system in the Sun-Earth

rotating frame. More information about the orientation of the Earth-Moon system

reduces the computation time in the trajectory design process. Since the orientation

is determined by α and β for a certain lunar phase angle ψ , any known relationship

between these angles is useful.

5.1 Relationship Between θ and ψ

First, it is necessary to examine which combinations of angles are related in a

simple or straightforward manner. Since the angles α and β are traded off in the

design process, their sum is notable and this angle is defined to be θ, i.e., θ = α + β.

An example of the relationship between θ and ψ appears in Figure 5.1. A particular

Sun-Earth halo orbit with out-of-plane amplitude Az = 200,000 km is defined and

transfers are computed to Earth-Moon halo orbits of various amplitudes. The range

of the angle θ is selected from 80 degrees and 110 degrees. Usually, Earth-Moon

and Sun-Earth manifolds intersect within this range. Fewer opportunities to obtain

intersections exist beyond these values. The Earth-Moon orbits are sized from Az

values of 16,000 km to 30,000 km. The plots are not smooth because the angle

increment is fixed at one degree. To achieve smoother results, the increment could be

reduced, for example, 0.1 degree. However, an increment of one degree is sufficient
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to observe trends. The solid lines are linear fits of each data set. Thus, θ and ψ

appear linearly related for different Earth-Moon halo orbits paired with a Sun-Earth

periodic orbit of Az = 200,000 km. This result is also true if a search for transfers is

expanded to include other Sun-Earth periodic orbits with Az amplitudes from 120,000

km to 200,000 km. Thus, it is possible to relate θ and ψ for each case by a linear

equation i.e., θ = aψ + b. Moreover, these variables can be correlated in other ways.

A linear relationship between the slope a and the Az amplitude of the Sun-Earth

halo orbit appears in Figure 5.2; transfers to various Earth-Moon halo orbits are

included. The relationship between b and various Sun-Earth halo orbits (represented

through their Az amplitude) appears in Figure 5.3. Thus, these relationships allow an

immediate estimate of θ for any lunar phase ψ and the correlation of these angles to

the size of various Earth-Moon and Sun-Earth orbits. Although these relationships are

very useful, the orientation of the Earth-Moon system is not immediately determined

because θ is a combination of α and β. To determine a specific orientation, it is

necessary to specify α or β. Once either angle is available, the other is obtained from

θ.

5.2 Relationship Between α and β

Given the value of θ, if the relationship between α and β is identified, the angles

can be determined. The relationship between α and β actually appears to be some-

what nonlinear. The relationship for transfers from a Sun-Earth halo orbit of Az =

120,000 km appears in Figure 5.4. The solid lines are quadratic fits of the data set.

As the Az amplitude of the periodic Sun-Earth orbit is increased, the relationship

becomes more complicated. Various transfers from a Sun-Earth halo orbit of Az =

200,000 km to a number of Earth-Moon orbits are plotted as points in Figure 5.5.

The data points are not in any obvious relationship. However, the points are crowded

into certain regions. Thus, the general trends are identified from crude linear rela-
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tionships. As seen in the figure, the solid lines do not pass through all the data points.

But, the combinations that appear in the figure offer initial estimates.

5.3 Transfers: α-β Combinations

Even though the relationship between α and β is not known perfectly, it is now

possible to estimate the values of α and β that will yield a successful system-to-system

transfer for each combination of Earth-Moon and Sun-Earth halo orbits. Results using

the α-β estimated relationship are compared with actual data in Table 5.1. For this

case, the Earth-Moon orbit is defined such that Az = 30,000 km and the corresponding

Sun-Earth halo possesses Az = 200,000 km. Also, note that ψ is selected to be 95

degrees. From such an initial transfer, the cost is investigated to determine: (a)

whether the transfer can be transitioned to the ephemeris model; and, (b) whether a

lower cost transfer can be computed from the estimate, if necessary. If the results are

satisfactory, the estimate is useful. Some results are compared in Table 5.2. In the

CR3BP, a transfer is constructed using the α-β estimated relationship to determine
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the orientation of the Moon at initiation of the transfer. The resulting ∆V for a

manifold-to-manifold transfer is 20.7 m/sec. This value is actually smaller than a

nearby transfer computed as part of the initial sweep of solutions, a maneuver equal

to 22.2 m/sec. More importantly, the final results in the ephemeris model are nearby

solutions, and in both cases, the ∆V is reduced to zero. Thus, a slight difference in the

α-β angles did not significantly affect the final result and the estimate is satisfactory.

Other examples appear in Table 5.3. All cases share the same phase angle, ψ = 95

degrees, and the Earth-Moon halo orbit with Az = 30,000 km. The largest difference

between the original data and the estimated angles is noted for the Sun-Earth orbit

of Az = 170,000 km. The difference is 5 degrees for each angle. However, once the Az

= 170,000 km case from Table 5.3 is transitioned to the ephemeris model, a zero cost

solution still emerges from both CR3BP transfers. The comparison of the results in

the ephemeris model appears in Table 5.4. Thus, even though the ∆V computed from

the angle relationship is slightly larger in the CR3BP, the out-of-plane Az amplitude
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in the final Lissajous orbits in the ephemeris model are still close to those specified in

the CR3BP. Also, the difference in the time of flight is less than a day. Such results

are useful in the design process. That is, nearby solutions are available for different

α-β combinations.

Table 5.1 Angles α and β Computed from Actual Data and the Esti-
mated Relationship; EMAz = 30,000 km, SEAz = 200,000 km, ψ =
95 degrees

α [deg] β [deg]

Actual Data 31 -45

Estimate 33 -46
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Table 5.2 Comparison of Results from the Original Data and the Es-
timated Relationship; EMAz = 30,000 km, SEAz = 200,000 km

Data Estimate

CR3BP

∆V [m/sec] 22.2 20.7

Ephemeris

EMAz [km] 30,300 30,900

SEAz [km] 195,000 197,000

∆V [m/sec] 0 0

Table 5.3 Comparison of α and β from the Original Data and Esti-
mated Relationship; EMAz = 30,000 km

Data Estimate

Sun-Earth Az [km] α [deg] β [deg] α [deg] β [deg]

190,000 35 -48 35 -48

180,000 38 -50 37 -49

170,000 43 -55 38 -50

160,000 47 -58 44 -54

150,000 49 -59 47 -57

140,000 51 -60 50 -59

5.4 Transfers: Sun-Earth/Earth-Moon Halo Orbit Combination

The methodology allows for the computation of relatively low cost system-to-

system transfers in a short time. Thus, it is possible to collect a large amount of data

for a variety of cases. A comparison of interest is the combinations of Earth-Moon and

Sun-Earth halo orbits that yield the lowest cost transfers. The halo orbits are always

represented by their out-of-plane amplitude, Az. The range of the Az amplitude for

the Earth-Moon halo orbits covers 16,000 km to 30,000 km. The Sun-Earth periodic
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Table 5.4 Comparison of Results from Estimated Relationship and
Original Data; EMAz = 30,000 km, SEAz = 170,000 km

Data Estimate

CR3BP

∆V [m/sec] 14.0 23.1

Ephemeris

EMAz [km] 25.900 26,400

SEAz [km] 167,000 169,000

∆V [m/sec] 0 0

Time of Flight [days] 52.7 53.2

orbits range over values of Az from 120,000 to 200,000 km. Also, the angle ψ varies

from 80 degrees to 120 degrees. The best result for arrival into each Earth-Moon

halo orbit appears in Table 5.5. From the results, good locations for maneuvers to

achieve low cost transfers are apparently near ψ = 110 degrees, except in the last

case. Also, for all Earth-Moon halo orbits, it appears possible to achieve a transfer

with a relatively small ∆V .

To obtain complete information, it is necessary to examine the results in the

ephemeris model. All results in Table 5.6 are transitioned to the ephemeris model, and

the results appear in Table 5.7. The Earth-Moon halo orbits are fixed at the original

values in terms of amplitude. Then, a Lissajous-to-Lissajous transfer is constructed by

applying the same ∆V that is obtained in the CR3BP. If necessary, the Sun-Earth halo

orbit is modified via a change in the amplitude Az. For each combination, a transfer

is accomplished successfully with a change in the Sun-Earth orbit. The transfer to

an Earth-Moon orbit with Az = 18,000 km requires a ∆V of 10.6 m/sec. This value

is actually less than that computed in the CR3BP. Note that further reduction in

the ∆V can be accomplished in the ephemeris model if there are no constraints. In

fact, all can be reduced to zero for some change in the Sun-Earth Lissajous orbit.
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Transfers with zero ∆V appear in Table 5.7. Note that the Earth-Moon orbit in the

third case changes from Az = 20,000 km to 19,000 km. To accomplish this result is

more challenging than any other example. A change in only the Sun-Earth orbit is not

sufficient. If flexibility exists to modify the size of the Earth-Moon orbit via the out-

of-plane component, the zero cost transfer is computed. If the size of the Sun-Earth

orbits is fixed, a zero cost transfer can also be accomplished by modification of the

size of the Earth-Moon orbit in all cases. Actually, this option is easier to accomplish

in general. However, since the magnitude of the Earth-Moon Az amplitude is smaller

than that of the Sun-Earth orbit, the same amount of change in the Earth-Moon Az

amplitude causes a larger percentage error. Thus, this option might not be desirable

for certain missions. In Table 5.6, the change in the time of flight is relatively small

as the Earth-Moon Az altitude increases. The longest time of flight is 54.1 days for

the sixth case in the table, i.e., the Earth-Moon Az is 26,000 km. The shortest time

of flight is 49.6 days when the Earth-Moon Az is 30,000 km. Also, the cost reduction

rarely affects the time of flight for all cases.

Table 5.5 Best Sun-Earth Az and ψ Combinations for Each EM Az;
halo-to-halo transfer

Earth-Moon Az [km] Sun-Earth Az [km] ∆V [m/sec] ψ [deg]

16,000 120,000 17.9 110.5

18,000 130,000 14.5 109

20,000 130,000 11.0 110

22,000 130,000 7.5 110.5

24,000 130,000 4.2 111

26,000 130,000 1.0 110

28,000 160,000 1.4 107.5

30,000 180,000 2.8 98
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Table 5.6 Best Combinations Tested in the Ephemeris Model; Earth-
Moon Az’s fixed

Earth-Moon Az [km] Sun-Earth Az [km] ∆V [m/sec] Time of Flight [days]

16,000 113,000 17.9 51.2

18,000 133,000 10.6 53.2

20,000 161,000 11.0 53.2

22,000 115,000 7.5 53.1

24,000 124,000 4.2 53.2

26,000 129,000 0.9 54.1

28,000 154,000 1.4 50.2

30,000 155,000 2.8 49.6

Table 5.7 Best Combinations with ∆V = 0 m/sec in the Ephemeris Model

Earth-Moon Az [km] Sun-Earth Az [km] ∆V [m/sec] Time of Flight [days]

16,000 111,000 0 51.3

18,000 142,000 0 53.7

19,000 140,000 0 53.7

22,000 126,000 0 53.3

24,000 130,000 0 53.2

26,000 131,000 0 54.1

28,000 155,000 0 50.1

30,000 157,000 0 49.4

5.5 System-to-System Transfers From Cells

System-to-system transfers computed using the previous design process rely on

knowledge of the libration point orbits at each end of the transfer. The trajectory

arcs are extracted directly from the invariant manifolds. However, that step is not
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necessary. For example, the particular libration point orbit may not be constrained or,

in the case of transit orbits, the trajectory arc is not from a manifold. An alternative

technique to compute a transfer involves the use of cells to represent a volume of

manifolds [1]. This technique allows storage of a large amount of estimated manifold

information in the CR3BP. Thus, it avoids computation of manifolds numerically for

a wide variety of different periodic halo orbits to search for intersections. The halo

orbit is a design parameter and emerges as part of the procedure.

Given a number of Sun Earth L2 periodic halo orbits, a set of cells can be created

that approximates a continuous distribution of manifolds from the volume of halo

orbits. Such a set of cells appears in Figure 5.6; they approximate the stable manifolds

corresponding to a range of L2 halo orbits. Assume that some trajectory enters the

volume. The trajectory may be an Earth-Moon manifold, an Earth-Moon transit

orbit, or some other trajectory from another region of space. In the figure, the

unstable manifolds associated with an Earth-Moon L1 halo orbit of amplitude Az =

39,000 km are entering the volume. The goal is to deliver the trajectory to the region

of the Sun-Earth L2 libration point orbit with a minimum cost. For any trajectory

that enters the volume, a cell can be identified that envelops the entering trajectory.

Within the cell, approximate analytical relationships represent position and velocity

states for manifolds that approach Sun-Earth L2 halo orbits. A maneuver to bring the

trajectory to a halo orbit can be approximated. Transitioned to the ephemeris model,

an actual transfer can be determined and the cost reduced, frequently to zero [1]. In

this example, only the manifolds in the Sun-Earth system have been approximated,

but approximations for the Earth-Moon system are also possible.

For this investigation, the problem is focused on transfers from Sun-Earth L2 halo

orbits to the vicinity of the Moon. Let an Earth-Moon halo orbit be defined by an

Az amplitude of 30,000 km. From the numerical study summarized in Table 5.5, the

“best” Sun-Earth halo orbit for this transfer is Az = 180,000 km. Recall that the

∆V is equal to 2.8 m/sec at a phase angle ψ = 98 degrees. The orientation of the

Earth-Moon tube is determined such that α = 31 degrees and β = -44 degrees. Then,
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this Earth-Moon tube is propagated to enter the cell volume. A search ensues for an

intersecting Sun-Earth manifold that yields the lowest ∆V . For a single Earth-Moon

manifold, all the intersecting Sun-Earth manifolds in the local volume are examined.

The results from the cell estimation process in the CR3BP appear in Table 5.8. The

Sun-Earth Az is reduced to 165,000 km. Also, the resulting value of ψ is 123.9

degrees. This is beyond of the range of the ψ angle that is typically examined (80-

120 degrees) in this study. The manifold intersection process will still determine an

intersection at this value of ψ using the same orientation angles. However, the ∆V

values are usually larger with ψ beyond the typical range. Actually, in this case, the

manifold intersection process yields ∆V = 60.6 m/s at ψ = 123.9 degrees for the same

orientation. However, the transfer estimation process using cells incorporates two

∆V s. The first, ∆V1, is a maneuver to leave a Sun-Earth halo orbit. This maneuver

is required because the cell estimation technique uses the estimation of manifolds, not

actual, globalized manifolds. The second maneuver, ∆V2, is the maneuver to transfer

from a Sun-Earth manifold to an Earth-Moon manifold. Thus, the total ∆V is the

sum, i.e., 22.0 m/sec. The approximation from the cell procedure is also shifted to

the ephemeris model and can, once again, be reduced to a system-to-system transfer

with zero cost. The results in the ephemeris model appear in Table 5.9. The final

solution, based on an initial guess with two maneuvers, is different than that obtained

from the angle approximations. A solution still exists, however.

Table 5.8 Results from the Cell Estimation Technique; CR3BP

Earth-Moon Az [km] 30,000

Sun-Earth Az [km] 165,000

ψ [deg] 123.9

∆V1 [m/sec] 14.4

∆V2 [m/sec] 7.6
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Table 5.9 Results with Zero Cost in the Ephemeris Model

Earth-Moon Az [km] 29,000

Sun-Earth Az [km] 160,000

∆V1 [m/sec] 0

∆V2 [m/sec] 0

5.6 Transfer From Sun-Earth Halo Orbit Near L2 to The Moon

The accessibility of the Moon may also be critical in the system-to-system design

problem. Computation of a transfer from a halo orbit in the Sun-Earth L2 family to

a lunar orbit is also possible by using this system-to-system transfer design strategy,

i.e., halo-to-halo transfers and transfers incorporating transit orbits.
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5.6.1 Halo-to-Halo Transfer

A straightforward option to reach the Moon from a halo orbit near the Sun-Earth

L2 libration point is a simple modification of a halo-to-halo transfer. Since a halo-

to-halo transfer allows arrival in the vicinity of an L2 halo orbit in the Earth-Moon

system, the transfer to the Moon can be accomplished by exploiting an unstable

Earth-Moon manifold after arrival in the Earth-Moon libration point orbit. One

example in the ephemeris model appears in Figure 5.7. The original halo-to-halo

transfer in the CR3BP between a Sun-Earth halo orbit of amplitude Az = 130,000

km and arrival in an Earth-Moon halo orbit with Az equal to 24,000 km is selected for

this example. With this combination, the Earth-Moon Az amplitude and Sun-Earth

out-of-plane Az do not change as the solution is shifted to the ephemeris model as is

evident in Table 5.7. The Lissajous-to-Lissajous trajectory in Figure 5.7 is plotted in

the Earth-Moon rotating frame. Departure from a halo or Lissajous along an unstable

manifold incurs no cost. The trajectory includes at least one revolution of the Moon.

A maneuver is necessary, of course, to maintain the lunar orbit. In this example,

the altitudes at the periapsis and apoapsis of the new orbit are 2,090 km and 3,230

km. Also noted, the angle between the orbit plane and the Earth-Moon x-y plane is

about 35 degrees. The end-to-end transfer from the Sun-Earth L2 Lissajous orbit to

a Moon orbit in the Sun-Earth rotating frame as computed in the ephemeris model

appears in Figure 5.8. In this case, the time of flight is defined differently. It is still

measured from the same location, as previous definition, where the trajectory crosses

the Sun-Earth x-axis. However, the time is measured till the first closest approach to

the Moon. Then, the time of flight is about 115.8 days. In this case, however, there

are about four revolutions around the Earth-Moon Lissajous orbit, so it is possible

to reduce the time by reducing the number of revolutions.
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5.6.2 Transit Orbit

A system-to-system transfer can also be accomplished by computing a transit

orbit inside a stable Earth-Moon tube. Transit orbits allow a more direct delivery of

the trajectory to the vicinity of the Moon. Thus, it is possible to apply transit orbits

in developing transfers to the Moon. An example of such a transfer in the ephemeris

model appears in Figures 5.9 and 5.10. The sizes of these orbits are the same as

those in the previous example. The arrival orbit does not converge to the halo orbit,

but rather approaches the Moon. Again, this transfer is cost-free to the vicinity of

the Moon and the trajectory encircles the Moon at least once. Then, a ∆V is, of

course, necessary to permanently insert into lunar orbit. In the figure, the periapsis

and apoapsis of this new orbit are 6,980 km and 9,170 km, respectively. Also, in this

example, the angle between the orbit plane and the Earth-Moon x-y plane is about

21 degrees. No constraint was applied to specify a particular inclination. A complete

transfer in the Sun-Earth rotating frame appears in Figure 5.10. The time of flight is

about 72.9 days. This transfer allows arriving at the Moon earlier than the previous

transfer.
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6. Conclusions and Recommendations

The objective of this research effort is the development of a technique for the prelim-

inary design of system-to-system transfers between the Sun-Earth and Earth-Moon

systems. The technique is based on the application of the dynamical structure of

the invariant manifold tubes associated with the periodic libration point orbits. This

technique allows a search for low cost transfers in a relatively short time period by lim-

iting the search space with the knowledge of the dynamics. The linear and quadratic

angle relationships are introduced to determine desirable orientations of the Earth-

Moon system for low cost transfers. These relationships can directly determine an

orientation of the Earth-Moon system in the Sun-Earth rotating frame for orbit sizes

and the lunar phase angle ψ, within certain error bounds. The relationships then

represent timing constraints in the full model. All results are successfully reproduced

in the ephemeris model for zero cost and meet all timing conditions. Examples of

transfers to the Moon are introduced by application of the process to construct a

halo-to-Moon transfer via a Lissajous or transit trajectory. These transfers allow a

relatively quick design process for transferring from a Sun-Earth Lissajous orbit near

L2 to the vicinity of the Moon for zero cost.

In this study, certain ranges of ψ and Az amplitudes are selected. It would be

interesting to analyze the data from wider ranges. It may be possible to identify

a new relationship between α and β by studying wider ranges. Also, it would be

very convenient if the relationship between angles, α and β, and Az altitudes can be

identified. It may be necessary to define new parameters to identify new relation-

ships. Although the transfers summarized here are only one-way, i.e., the Sun-Earth

system to the Earth-Moon system, this technique can be modified for various types

of transfers between two systems.
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