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Abstract In the Circular Restricted Three-Body Problem (CRP), periodic or-
bits, stable and unstable manifolds, chaotic regions, and other dynamical features
have all proven useful for engineering applications. These phase-space structures
can be identified because the system is autonomous in a rotating frame. In more
complex multi-body and high-fidelity models, classic invariant sets are not read-
ily identifiable and new approaches are required. The approach here exploits the
anisotropy of the growth or decay of perturbations to the trajectories, building on
recent ideas from the theory of hyperbolic Lagrangian Coherent Structures (LCS).
The present framework yields a mechanism to construct transfers in multi-body
systems. In particular, it is applied to a restricted four-body problem and trans-
fers are constructed requiring smaller Av values than are necessary to accomplish
the corresponding shift in Jacobi constant values for the associated embedded
three-body problems.

Keywords Multi-body dynamical systems - Spacecraft trajectory design
Cauchy—Green strain tensor - Finite-time Lyapunov exponent - Lagrangian
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1 Introduction

Of fundamental importance in aerospace engineering, particularly within the field
of astrodynamics, is a geometrical understanding of the possible motions a space-
craft or a satellite can assume under the influence of gravitational forces. In the
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presence of one body, the Keplerian motion of the massless body is integrable and
yields explicit analytical solutions. In the case of the Circular Restricted Three-
Body Problem (CRP, or simply “restricted problem” throughout), the equations
of motion are autonomous in a rotating frame, revealing periodic orbits, invari-
ant manifolds, chaotic regions, and other classic phase-space structures. In more
intricate gravitational fields, however, classical dynamical systems approaches do
not apply. The goal of this work is to introduce new geometric techniques for such
complex models.

A common technique for investigation in the restricted problem is leveraging
the conservation of the Jacobi constant to generate a Poincaré section on a two-
dimensional subsurface ¥. In more complex gravitational models, new strategies
are required since (1) the trajectory may never return to ¥ due to the lack of a
conserved quantity, and (2) if, by chance, a trajectory does return to 3 at a point
p, the map still depends on the initial time at which the trajectories are launched.
Iterations may no longer be relevant: if F; (p) denotes the first return to X of a
point p, then F (F:, (p)) has no physical meaning if the system is not autonomous
in the given frame. The gravitational forces at time ¢, differ from those at the time
of the first return to Fy, (p).

Previous efforts to geometrically describe different trajectory behaviors em-
ploy the Finite-Time Lyapunov Exponent (FTLE) scalar field (Gawlik et al. 2009;
Short et al. 2011; Pérez et al. 2012; Short and Howell 2014), which measures the
locally largest stretching in the flow. The direction of largest stretching is also
considered in this paper. These directions are exploited to identify useful paths
of motion from an initial point and to parameterize regions that separate distinct
trajectory patterns using the related notions of stretchlines associated with the
largest stretching direction as well as reduced strainlines, respectively. These ex-
tensions are motivated by the recent notions of hyperbolic Lagrangian Coherent
Structures (LCS) developed in Haller (2011), Farazmand and Haller (2012), and
Blazevski and Haller (2014).

One advantage of the new concepts focused on stretchlines is the development
of a mechanism to build low-energy transfer trajectories directly in many-body
systems and models incorporating any degree of fidelity. This notion is illustrated
through the construction of transfers from Oberon to Titania in a bicircular four-
body model. Transfers are identified with Av values smaller than those necessary to
supply the theoretical energy change between the initial and final Jacobi constant
values. In the process, the approach established here also clarifies the underlying
dynamical structures.

The problem formulation and implementation of the methodology are described
in detail throughout this document. In Section 2, related work is highlighted and
the notion of LCS, as well as some underlying mathematical concepts, are dis-
cussed. Subsequently, in Sections 3—4, details of particular multi-body formula-
tions and mapping strategies are summarized. Some background material follows
directly from Short, Howell, and Tricoche (2011) as well as Short and Howell
(2014). Given an initial point with a known maneuver to transport to a target, ex-
ploration of the nearby phase space using Flow Control Segments (FCS) to shorten
transfer arc durations or reduce maneuver costs is considered in Section 5.1. Specif-
ically, application of FCS and a targeting strategy, introduced by Schroer and Ott
(1997) and further explored by Grebow (2010), are compared. A more generic ex-
ample using FCS is also useful. The principal result from this analysis, featured
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in Section 5.2, is a system-to-system transfer between two Uranian moons that
illustrates the extension of FCS to more complex, nonautonomous systems.

2 Stretching in the linear flow
2.1 Singular stretching directions and values

Techniques using dynamical systems theory to investigate behavior in the CRP
inherently rely on the iteration of a single map to assess the long-term dynamics,
typically a Poincaré map on a two-dimensional surface 3. In more complex gravi-
tational fields, there is generally no low-dimensional map for which iterations can
easily reflect the evolution of trajectories in the system. As an example, in the
restricted problem, a fixed point p of the Poincaré map is a periodic orbit, yet for
more complicated gravitational fields, points that satisfy ¢§Z+T(p) = p generally
will not represent a periodic orbit unless the gravitational field itself is periodic.
Even if the gravitational field is periodic in time in a certain frame, techniques to
search for periodic orbits and invariant manifolds are limited.

In the current analysis a fixed interval of time, T, is considered and the flow

map, iZJrT, is evolved over [to, to + 1| without iterating the map. The linear flow

from the State Transition Matrix (STM), D¢§3+T, yields a first-order approxima-
tion to trajectories near a reference path. Perturbations can exhibit dramatically
distinct patterns of divergence, compression or lack of either. The characterization
of such behavior is encoded in the singular values o; and the unit length singular
vectors €; and 6; of D¢>§Z+T satisfying,

D¢€Z+T€i =0i0;. (1)

The term singular reflects that o; are stationary values of the function,

to+T
Dotz |
o= ——-",
[3
with respect to changes in the direction §. The singular vectors &, are also eigenvec-

T
tors of the Cauchy—Green Strain Tensor (CGST), C§Z+T = (Dqﬁi’z"‘T) D¢§3+T

(2)

(Smith 1993), and the corresponding eigenvalues of Ci:"'T are \; = o7 (the nota-
tion ' indicates the matrix transpose). The largest singular value oy, corresponds
to the largest possible growth of a perturbation, with the growth exponent

FTLE L log L log VA (3)

= T On = 777 n
T T

defined as the finite-time Lyapunov exponent. The eigenvalues and eigenvectors of
CiZJrT are computed to implement the strategies in the following analysis.

Both the FTLE and the eigenvectors of the CGST are related to the recent no-
tion of Lagrangian Coherent Structures (LCS) in fluid dynamics. The LCS-based
methodology developed here extends previous work by introducing the notions of
Flow Control Segments (FCS; Section 2.2) and tensorlines in an astrodynamical
context (Section 2.3). These concepts appear in a number of examples and supply
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a framework for targeting and transfer problem analysis in nonautonomous multi-
body systems. In previous investigations, Anderson, Lo, and Born (2003) discuss
the application of FTLE over relatively short time spans, denoting the metric as
the Local Lyapunov Exponent (LLE), to identify sensitive regions along a trajec-
tory. Improved patch point placement for differential corrections strategies using
FTLE values is investigated by Harden (2013) and Harden et al. (2014). Various
authors, including Lara, Russell, and Villac (2007), Villac (2008), and Villac and
Broschart (2009), all apply the Fast Lyapunov Indicator (FLI), a metric similar in
form to FTLE, for preliminary spacecraft trajectory design and stability analyses
in multi-body environments. Detection of the Arnold web in phase space using
the FLI is offered by Froeschlé, Guzzo, and Lega (2001). In an application more
closely associated with this investigation, Gawlik et al. (2009) examine LCS in the
mixed position—velocity phase space of the planar elliptic restricted three-body
problem. Additional efforts to apply FTLE and LCS methods in the three-body
problem within the context of periapse mappings are offered by Short, Howell, and
Tricoche (2011). Pérez, Gémez, and Masdemont (2012) also examine the detection
of invariant manifolds from LCS in the circular restricted three-body problem. An
examination of the impact of increasing the fidelity of the multi-body model on
FTLE analysis and LCS-guided design is investigated by Short and Howell (2014).
Identification of linked orbits in the four-body problem using LCS is considered
by Oshima and Yanao (2014).

2.2 Flow control segments

The notion of control segments is introduced by Shinbrot, Ott, Grebogi, and Yorke
(1990) with further extensions by Schroer and Ott (1997). In Schroer and Ott, the
authors employ small lines or circles about specific points on a Poincaré map to
join two periodic orbits from different regions in the chaotic CRP phase space.
Working in the planar CRP, a map is defined in terms of position and velocity
(Cartesian x and ) states in the rotating frame. A strategy where a segment and
circle are simultaneously iterated forward from the vicinity of an initial orbit and
backward from a target orbit on the map is utilized. As the segments are advected
under the flow, their pre- or post-images grow until, after some (likely different)
number of forward and backward iterations, an intersection occurs. This process is
illustrated in Figure 1, reproduced from Schroer and Ott (1997) with permission.

Such an intersection is a connection in all components of the planar CRP
state and represents an end-to-end trajectory joining the orbits with small velocity
discontinuities at departure and insertion. In Grebow (2010), the example from
Schroer and Ott is revisited. Grebow observes that the natural stretching of the
target circle quickly collapses it to an arc. Thus, the process is equally well served
by employing segments for both forward and backward evolution.

In the present paper, similar Flow Control Segments (FCS) are constructed
along the eigenvector, §,,, associated with the largest eigenvalue of the Cauchy—
Green tensor (these FCS are, in fact, applied stretchlines of the tensor). Assuming
an appropriate time scale for calculating the CGST, stretching occurs in the phase
space along the eigenvector, £,, proportional to v/);, that is,

=Vil&l, (4)

Dot e,
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Fig. 1: Forward—Backward Method of Shinbrot et al. (1990) (Figure Reproduced
from Schroer and Ott (1997) with Publisher’s Permission)

thus, £, supplies the most-stretching direction in the flow, and represents the
optimal choice for divergent behavior. Consequently, the images resulting from
evolving &, -aligned segments intersect after fewer iterations yielding a shorter
time-duration transfer. This notion is illustrated in Figure 2, where the double-
headed red arrow represents £, and the double-headed blue arrow conveys the
remaining directions.
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Fig. 2: Stretching Associated with Eigenvectors of the Cauchy—Green Tensor

2.3 Tensorlines of the Cauchy—Green strain tensor

Curves tangent to direction fields associated with C§Z+T are tensorlines, and ten-
sorlines that are tangent to the direction of largest stretching are termed stretch-
lines. On the other hand, in two-dimensional flows, for example, curves tangent
to &, are orthogonal to the largest stretching direction £, and maximally re-
pel nearby trajectories at each point (Farazmand and Haller 2012)—these lines
are repelling strainlines. A generalization to three-dimensional flows is given in
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Blazevski and Haller (2014), where reduced repelling strainlines are computed
on two-dimensional restrictions of the initial conditions. The reduced strainlines
in Blazevski and Haller (2014) are obtained by seeking intersections of surfaces
orthogonal to the most stretching direction §5 with a 2D set of initial conditions.

A further generalization of the reduced field approach of Blazevski and Haller
(2014) is accomplished by similarly computing reduced strainlines on select 2D
surfaces of initial conditions. More specifically, given a two-dimensional set of ini-
tial conditions X, let n1 and n2 be two linearly independent vectors orthogonal
to X to produce a four-dimensional planar phase space. For any point p on X, the
unique direction é’ 4, orthogonal to n1, n2 and &4, is the intersection of repelling
Lagrangian coherent structures with the set ¥ (Haller 2011). The approach in
this work to compute intersections of three-dimensional surfaces orthogonal to £,
generalizes the method of Blazevski and Haller (2014) for computing analogous
intersections in 3D flows. For the spatial restricted problem, four linearly indepen-
dent directions normal to ¥ are required and, then, the unique direction orthogonal
to the four normal vectors and &g, EG, can be constructed.

2.4 Computing the CGST, FTLE and strainlines

Since strainlines are curves tangent to a direction field obtained from the eigen-
vectors of CGST, an accurate computation of the tensor is necessary. In line with
Farazmand and Haller (2012) as well as Blazevski and Haller (2014), the CGST
is computed on a grid X; of points using finite differencing. At each point, a
uniform A is used for the finite difference approximation, and A need not be the
distance between the grid cell |X; — X;| (it is generally several orders of magnitude
smaller for the examples in this paper). This approach is typically more accurate
and numerically robust than computing the CGST by integrating the equations
of variation. This additional numerical stability is a consequence of the fact that
the grid approach reflects the actual fate of each perturbation, while the entries
of the propagated STM can grow exponentially.

At each point X;, the FTLE is computed from CiZJrT using Equation (3).
Reduced strainlines are computed by integrating the reduced field é’ »; however, the
field is defined only up to a sign. An additional step is required to clarify the sign
ambiguity. As for the two- and three-dimensional phase-space flows (Farazmand
and Haller 2012; Blazevski and Haller 2014), the differential equation is solved for
parameterizations r of reduced strainlines,

Lr(s) =sign (&, (r(s = 2)) &, (c(5)))) &, (£ (5)). (5)

Thus, to compute curves tangent to é’n, the previous orientation of én is assessed
to accommodate a sign change in &, at the next time step if appropriate.
3 System models

The computation of the CGST is not contingent on any assumptions in the deriva-
tion of the system differential equations and, thus, can be applied to systems
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modeled with various levels of fidelity. Analysis based on the Cauchy—Green ten-
sor remains valid regardless of the complexity of the model. Flow control segments
are investigated in examples within the context of the circular restricted problem
as well as a bicircular four-body system in this paper. Selected results are transi-
tioned through various levels of fidelity and are ultimately validated in a partial
ephemeris model. Some necessary considerations for each model are summarized.

3.1 The restricted three-body model

Some key space environments involve multiple gravity fields. Therefore, it is often
necessary to incorporate as many of these gravity fields as possible into the gov-
erning models to ensure accurate simulation and to capture the essential features
of the dynamical interactions.

The CRP is the simplest model for the motion of a massless object in the
presence of two massive bodies. Though it offers no closed-form analytical solu-
tions (Diacu 1996), it has been thoroughly studied numerically, and has been of
significant practical importance in applications. For completeness, the definition
and parameters of the CRP are recalled. The two primary bodies that appear in
the model are designated as P; and P». Position variables, z, y, and z describe
the position of the third body, the spacecraft, with respect to the barycenter of
the primary system, which also serves as the origin of the rotating and inertial
reference frames. The system mass parameter is represented by u = ml"_ﬁnz, a
function of the masses of the primary bodies. Additionally, distances between the
third body and each of the two primaries are denoted 7;3. In a coordinate frame
that rotates coincident with the circular primary motion, a system of differential
equations that describes the motion of the third body incorporates the potential
function,

* 1— 1% o 1 2 2
U= —=+ 1+ (2> +¢%), 6
R R GRS (6)
and is written,
ou* ou* ou*
. 90 i — _9p 35—
YT Tor te, v Oy R (™)

where the first derivatives in « and y appear as a result of the Coriolis acceleration.

The equations of motion in the restricted problem are consistent with Szebehely
(1967) where they admit a single integral of the motion. This integral is termed
the Jacobi integral and is represented as C' in this analysis,

C=2U0" —v°, (8)

where v2 = #2492 +42, that is, the square of the magnitude of the relative velocity.
This integral allows for a reduction of order in the problem, and frequently serves in
an important role in the definition of maps. The Jacobi integral reveals boundaries
on the motion of the third body in the restricted problem. These boundaries
are defined when the velocity in Equation (8) is zero, separating regions of real
and imaginary velocities. An example of the Jacobi limiting boundaries, or Zero
Velocity Curves (ZVC) in the z—y plane (plotted in black), is depicted in Figure 3
along with the two libration points near the second primary (in this case, Saturn
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Fig. 3: Zero Velocity Curves in the P> Region

at 50x scale in the Sun—Saturn system). These types of boundaries on the motion
are intimately associated with the definitions of the maps employed here.

The restricted problem represents a model of sufficient complexity to exhibit
regions of both chaotic and ordered behavior. Generally, the focus of the analysis
in this model is understanding and exploiting any dynamical structures that are
associated with the chaotic regions to identify useful trajectory arcs. The CRP
model is frequently suitable to yield first-order mission design solutions, but useful
information is often difficult to isolate amidst the chaos.

3.2 The bicircular four-body model

A simplified four-body model, similar to the model utilized by Koon, Lo, Mars-
den, and Ross (2002) and further explored by Blazevski and Ocampo (2012), is
also employed here. This model incorporates the influence of a third massive body
simultaneously with the dynamical effects of the two primary bodies in the cir-
cular restricted problem. For a particular planet-moon example, Uranus, Titania,
Oberon and a spacecraft comprise the four-body system. A specific orientation of
the relative geometry in such a system, e.g., in a Uranus—Titania rotating frame,
appears in Figure 4. The orbital angle that defines the initial position of the fourth
body, measured counter-clockwise with respect to the rotating x axis, is denoted
0o (in the example figure, 6, = 7 radians, or 45°).

Under this model, all three massive primaries describe circular orbits about
the barycenter of the first and second primaries (Uranus, Titania). The additional
massive primary is designated Py (Oberon). Although the system is not coherent,
the Newtonian inverse-square gravity of Py acts on the spacecraft in addition to the
gravitational effects of the two CRP primaries. The third primary body does not
affect the circular orbits of the other primaries. The equations of motion remain
the same as Equations (7), but the potential function is now (Guzman 2001),

S e N N VN A B
Ur=—E 4+ 2 4+ B2 g - 17, 9
713 723 T43 2( v ©)

myq
my+mso”

where pg4 =
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Uranus Titania

Fig. 4: A Sample Configuration of the Bicircular Four-body Problem

The bicircular four-body model, while still incorporating significant simplifica-
tions, introduces an important transition. The presence of the perturbing fourth
body results in a nonautonomous system. The system is time-periodic and could
be made autonomous through a temporal or stroboscopic mapping, though this
mapping is at least four dimensional, nonintegrable and will typically not allow
any conserved quantities to reduce the dimension of the system. Thus, classical
techniques, e.g., locating fixed points of a two-dimensional Poincaré mapping, are
rather limited. Periodic orbits reminiscent of Lyapunov orbits may exist in the
full four-body example (e.g., Blazevski and Ocampo (2012)), but only isolated
cases are apparent and there is not yet a systematic procedure to detect families
of periodic orbits, if such a family exists. The goal of this analysis is to highlight
the applicability of LCS notions to nonautonomous systems, and this work yields
a understanding not obtainable through the use of any temporal stroboscopic
mappings. The transition in the nature of the system decreases or eliminates the
applicability of many of the dynamical systems tools that are available in the CRP.
A constant of the motion, and, consequently, a convenient expression for bounds
on the motion, is no longer available. Due to the time-dependent nature of the
underlying flow, the focus now shifts to the initial system geometry.

3.3 Partial ephemeris model

A partial ephemeris model is selected to be generally consistent with the previ-
ous models. This higher-fidelity model, similar to the model employed by Pavlak
and Howell (2012), is constructed to validate the solution obtained from simpler
models by incorporating position histories for the primary bodies supplied by JPL
ephemeris solutions. The model is designated a “partial” ephemeris model because
only the primary bodies of interest (as point masses), and no higher-order perturb-
ing effects, are included. The governing equations are then derived as the n-body
relative equations of motion,

n
.. 2b,s T M2b, Tsi  Tgj
Tgs = _H2bs T H2byg .3 K Lrgs + E H2b,5 ( 3] - g]> . (10)

qs j=1 Tsj Tqj

J#s,q
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Where psp is the familiar mass parameter from the two-body problem, nondimen-
sionalized as appropriate. The position vector, ry;, indicates the position of the
jth body with respect to the central body, ¢; the subscript s is associated with
the spacecraft. In this model, states defined in the restricted problem are transi-
tioned to body-centered J2000 states via an instantaneous rotating frame defined
by ephemerides.

This partial ephemeris model naturally involves six-dimensional state vectors
and trajectory propagation proceeds in all spatial dimensions. Additionally, com-
putation of the CGST employs “auxiliary grid” points about each state variable.
Thus, in this model, one CGST computation involves the propagation of 12 per-
turbations. Notwithstanding these spatial considerations, since the maps are tran-
sitioned from the planar lower-fidelity model, their domain remains the same.

These models illustrate the wide applicability of LCS analysis to different types
of systems. Ultimately, this extensibility indicates that this type of strategy can be
employed for a full-ephemeris design and analysis. Such capability is supported by
previous literature in other fields (Mathur et al. 2007; Peacock and Dabiri 2010),
which describe the Cauchy—Green tensor as a tool for directly analyzing empirical
flow results (when no underlying dynamical model is available).

4 Maps

Mapping analysis within the context of multi-body regimes has proven to effec-
tively reveal design options that are otherwise difficult to identify (see, for example,
Davis and Howell (2012)). Some advantages of a map-based approach include a
broader view of the design space as well as a cleaner visual that offers easier cate-
gorization of the behavior in a specific region. The maps employed in this analysis
generally employ relatively well-known mapping strategies. These maps offer a La-
grangian perspective and essentially reflect the fate of a grid of initial conditions
in terms of their FTLE values associated with some propagation time.

4.1 State-space maps

Analysis in many systems involves a classical Poincaré mapping to create a punc-
ture plot that facilitates the investigation. Such a map reveals salient information
by reducing the dimension of the system. Under this Poincaré mapping approach,
a hyperplane corresponding to some value of a single state variable is defined. A
grid supplies the relationship between two other state variables, and the fourth
state is constrained by a system integral (for a 4D phase space).

While there are many possible map representations available for observing the
behavior in a system, strategies frequently involve the investigation of position—
velocity phase spaces. For example, a map can be plotted in terms of a position
variable and its associated velocity component. Maps in the y—y and xz—& phase
spaces are both used in this investigation, the former employed for FTLE maps
and the latter for puncture plots.

4.2 Stroboscopic FTLE maps and associated strainlines

Traditional stroboscopic maps are constructed as Poincaré maps with a hyperplane
condition selected as a particular time, for example, the characteristic period of



Stretching Directions in Multi-Body Problems 11

a system. The time should not be arbitrarily defined, however, if the desire is to
iterate the map. Consider the map F' = ¢§:+T; then, FoF, two iterations of F', has
no physical meaning, unless the gravity field is periodic in the frame of integration.

Alternatively, composing F; = iZJrT and F> = ¢§DI%T does have meaning since

F1 o F» is physically meaningful, i.e., ¢t:+2T. In this case, though, fixed points of
F1 generally have no meaning or interest beyond ¢, + T'.

Rather than searching for periodic orbits and manifolds in systems with compli-
cated time-dependence, an alternate strategy of exploiting FTLE maps and asso-
ciated strainlines is employed here. One essential value of the FTLE for predicting
behavior is captured by examining large groupings of FTLE values in a region.
This approach leads directly to creating maps of FTLE values. Aspects from the
various types of mapping strategies can be combined to effectively illustrate the
flow in an astrodynamical model. The information that emerges from these maps
is then incorporated into different phases of mission design and analysis.

5 Applications

A few selected examples demonstrate potential strategies for utilizing insight from
the largest stretching direction. Targeting, or control, segments are developed as
a first example, both with and without the flow context provided from the CGST.
This comparison is followed by a generalized example of the implementation of
flow control segments. The main result of the paper highlights the extensions of
these schemes to nonautonomous systems.

5.1 FCS targeting

The forward and backward time-advection of small segments bracketing a control
point, denoted control segments, is investigated by Shinbrot et al. (1990), further
expanded by Schroer and Ott (1997) and revisited by Grebow (2010). These con-
trol segments are created as small segments along a particular velocity component
without consideration of the underlying flow behavior. This initialization approach
is a consequence of the desire to vary velocity only in a “feasible” direction while
restricting any variation in initial or final position to zero. However, small ad-
justments in the direction of the phase space that naturally leads toward greater
flow divergence augments the approach of joining forward and backward segments,
producing a trajectory that can subsequently be corrected with a differential cor-
rections scheme. Thus, control segments constructed exploiting the flow context
may yield a better result depending on the desired trajectory characteristics.

5.1.1 Comparing control segments with and without flow-based context.

Schroer and Ott produce an example to illustrate forward-time control segment
advection and backward-time target region advection to join two periodic orbits in
the Earth—-Moon circular restricted three-body problem. In the following example,
the mass-parameter and energy levels are consistent with Schroer and Ott (u =
0.0123, and C' = 3.17948). The initial and final periodic orbits are generated
numerically after observation of the trajectory characteristics as elaborated by
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Grebow. The following orbits and the associated map representations compare
closely with Grebow. The initial orbit, in this case, is a period-3 orbit and is
depicted in green in Figure 5(a), along with the final orbit about the Moon (red).
The initial points on both orbits are marked with black arrows near the = axis; the
forward time evolution from both points is in the positive y direction. Moreover,
the trajectories are subsequently represented as fixed points (both numbered as
iteration “0” for their propagations) on the z—i phase-space Poincaré map in
Figure 5(b). From the control points on the map, small segments (magnitude
1x 1074) are created along the map-space components of the eigenvector associated
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Fig. 5: Orbits and Control Segments

with the largest eigenvalue of the Cauchy—Green tensor, that is, along £,, in this
case. These segments are, in fact, stretchlines that are used as control segments,
and are termed Flow Control Segments (FCS) given their incorporation of the flow
behavior. The CGST is computed only with respect to the map via finite-difference
derivatives in « and & for this case. The integration time for the Cauchy—Green
tensor is generally selected as appropriate for the time scale of the application.
For this example, it is observed that the time to reach the first crossing of the
map is sufficient to yield predictive CG eigenvectors. The control segments are
evolved under the flow of the system backward and forward in time from the
lunar-proximal control point and triply-periodic control point, respectively. For
comparison with the previous investigations of this specific example, segments
along only % as well as a segment defined as a circle about the control point
near the Moon are also integrated. The images of each of these curve evolutions
corresponding to iterations of the map also appear in Figure 5(b). The curves are
colored based on their initial nature: green curves result from advection of purely
% segments, red and blue curves from the £,-aligned FCS and, in the case of the
circular target region, black points mark the associated curves. Observation of
the initial backward iterations of the circular target region reveals that it quickly
deforms to align with the flow control segment, a fact that is exploited to verify the
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CG integration time in this case—if the circular region deforms to conform with
images of &€,, the time scale is appropriate. Later iterations in both time directions
reflect longer curves associated with the flow-aligned control segments; the green
points resulting from the initial £ segments require additional iterations before
an intersection is observed. Also marked on Figure 5(b) are the map crossings
associated with trajectory arcs that intersect after 14 forward iterations from a
perturbation off the triply-periodic orbit and 8 backward iterations from the lunar
orbit step-off.

The trajectory arcs necessarily include discontinuities at the departure and
arrival points. Since perturbations are introduced along the eigendirection, these
discontinuities are in position as well as velocity. Moreover, rather than employ an
iterative scheme such as bisection to refine the intersection between the forward
and backward arcs, a slight discontinuity is allowed at this point as well. These
discontinuities are resolved by implementing a parallel shooting differential correc-
tions scheme as described by Pavlak (2013). Upon convergence of the corrections
process, the only remaining discontinuities are the requisite velocity changes to
render the transfer. Figure 6 includes views of the backward arc and the differen-
tially corrected CRP solution. The connection point is visible where the backward
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(a) Backward Trajectory Arc (b) Corrected CRP Solution

Fig. 6: Connected Forward and Backward Segments

propagation meets the z axis (x &= 100,000 km). The trajectory evolution in time is
reflected in color by a gradual transition from green to red. The maneuver require-
ment at departure is 1.99 =, while the Av upon arrival is 1.04 3 (total: 3.03 ).
These maneuver costs compare with one of the examples from Schroer and Ott at
0.62 % and 2.61 7, respectively, for a total of 3.23 7. They likewise compare with
figures reported by Grebow for a somewhat qualitatively different solution—0.39
= and 1.46 7 (total: 1.85 ). A significant difference, and potential advantage of
the FCS approach, is a shorter time-of-flight. Each example reported in previous
references requires more than 290 days; the sample transfer here is completed in
265 days. This shorter duration is a direct consequence of the FCS strategy with
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a path that reaches an intersection in fewer iterations given maximal stretching
from &,-aligned FCS.

The given solution can be validated in a more complete model. For a carefully
selected initial epoch, the CRP solution is transitioned into the higher-fidelity
ephemeris n-body model. In this case, only the ephemerides of the Earth and
Moon are included. Views of the transitioned solution appear in Figure 7; the states
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(a) Rotating View (b) Inertial View

Fig. 7: Corrected Ephemeris Solution

are numerically corrected for velocity and position continuity to within 3x1076 =
and 0.8 m, respectively. The ephemeris solution necessarily experiences fully three-
dimensional motion with maximum out-of-plane excursions greater than 2000 km.
The convergence of the solution in the higher-fidelity model lends support to the
process of seeking solutions by perturbing in position space as well as velocity
space. Not only can the relatively complex solution be corrected in the simplified
three-body model, but it can also be replicated in a system that mimics the actual
three-dimensional behavior of the primary bodies.

5.1.2 A more general case.

Before leaving the three-body problem as the primary model for analysis, another
example serves to further reinforce the extensibility and flexibility of the flow
control segment approach for identifying transfer trajectories. In this case, still
in the Earth-Moon CRP, the system energy level is increased as reflected by a
smaller Jacobi constant value of C' = 3.05. Given this energy value, both the
gateway allowing passage into the lunar region as well as the gateway offering exit
from the system are open. That is, trajectories can transit through both the L; and
Lo regions. Consequently, the chaoticity of the resulting map space is increased.
To illustrate the continued applicability of the control segment approach, two
map points are selected arbitrarily as control points for this example. These points
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are marked as “0” in Figure 8. In this case, there are no initial or terminal orbits,
but rather the situation reflects the general notion of a spacecraft currently at some
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Fig. 8: Generic Control Points and Advected Curves

arbitrary state while it is desirable for it to be elsewhere in the state space. Subse-
quent iterations from the initial states of the associated &, (1 x 10™*) segments are
also numbered in Figure 8. After 10 forward iterations (blue) and 7 backward iter-
ations (red) a near intersection is observed. The discontinuity at the intersection
point is significant, however, the end-to-end trajectory is otherwise well-behaved
and the differential corrections process converges upon a solution quickly. As seen
previously, this trajectory is transitioned to the higher-fidelity model. In this ex-
ample, since there are no revolutions about the Moon, the ephemeris solution more
closely resembles the CRP solution. The corrected CRP and ephemeris trajectories
appear (both in the rotating frame) in Figure 9. In the solution computed in the
restricted problem, a maneuver of magnitude 0.70 7 is required at the departure
point, while a 0.76 = maneuver is required upon arrival at the final state (total:
1.46 7 with a time-of-flight just under 372 days). This example further establishes
the stretchline/FCS targeting approach and demonstrates its application in more
generic situations.

5.2 System-to-system FCS example

The major focus in this investigation is illustrated by an example involving the
flow control segment approach for targeting trajectories in the bicircular four-body
problem. The motivating purpose behind this sample application is the possibility
afforded of identifying solutions directly in a complex, nonautonomous model, a
model that is not necessarily amenable to analysis methods that apply in sim-
pler problems. The solutions that are constructed with this flow-based method-
ology represent trajectories that, inherently and simultaneously, accommodate,
and thereby exploit, all gravitational forces available in the system. Leveraging
all available natural forces frequently leads to various fuel-efficient solutions, but
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Fig. 9: Connection of Arbitrarily Selected Map Points

may result in longer times of flight. However, without flow-based tools, other,
less-direct strategies must be utilized to determine solutions, and the associated
solution space is generally more restricted and potentially less transparent.

The bicircular four-body model is selected to provide a convenient context for
a system-to-system transfer and to explore its increased complexity as a nonau-
tonomous system. While the selected model is time-periodic and could be made au-
tonomous with a stroboscopic mapping, the goal is to highlight the applicability of
the present methodology to nonautonomous systems. The Uranus—Titania-Oberon
system is selected for its mass and distance characteristics. Titania and Oberon
are the same order of magnitude in mass, possessing two-body gravitational pa-
rameters of Gm = 228.2 k:zﬁ and Gm = 192.4 k;r213, respectively, while the mass
parameter of Uranus is equal to 5,793,939 (Jacobson (2007)). Moreover, the
moons’ orbits are relatively close to Uranus as well as each other with semimajor
axes of ~4.36x10° and ~5.83x10° kilometers with respect to Uranus. Finally, the
orbits of both Titania and Oberon about Uranus are relatively circular (eccentrici-
ties: 0.0011 and 0.0014, respectively) and have low inclinations with respect to the
Uranian equator (0.079° and 0.068°, respectively) (Laskar and Jacobson 1987).
Together, these considerations supply significant perturbing influences from the
third primary, i.e., Oberon, to the behavior from the perspective of the Uranus—
Titania (UT) system (as well as significant perturbations from Titania on motion
as observed in the Uranus—Oberon (UO) system). Koon et al. (2002) introduces
a similar system-to-system analysis using manifolds in the patched circular re-
stricted problems involving Jupiter—Europa and Jupiter—-Ganymede. Kakoi et al.
(2014) also invokes similar methodology in mixed three-body systems to achieve
transfers between orbits in various systems.

For an illustration of the present concept, both Uranian satellites are depicted
in Figure 10 in the Uranus-Titania rotating frame, along with artificial (in this
model and frame) zero-velocity curves for energy levels that supply the necessary
gateway dynamics in the CRP. Oberon’s circular orbital path also appears in gold.

km®
2
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The objective in the example is a trajectory that experiences a revolution about

Oberon

Titania

Fig. 10: System-to-System Transfer Illustration in Uranus—Titania (UT) Rotating
Frame; Inspired by Figure 1.1 of Koon et al. (2002)

Oberon and then departs toward Titania, ultimately concluding with a revolution
of Titania after following a transfer similar to the blue “path” sketched in Fig-
ure 10. Despite the inclusion of three-body zero-velocity curves for illustration in
Figure 10, there are no convenient bounds on energy like those available in the
restricted problem. Taken in turn, both Titania and Oberon are incorporated as
the “additional” body, thus, the third massive primary may circumscribe (or be
circumscribed by) the second. In Figure 10, Oberon is placed at an initial angle
of 7 radians with respect to 2 axis in the rotating Uranus-Titania frame (or,
viewed alternately, Titania is depicted at —7 radians in the Uranus-Oberon ro-
tating frame). For consistency, trajectory segments departing the Oberon region
and moving inward toward Titania and Uranus are phased such that Oberon ini-
tiates in the geometry depicted in Figure 10. Trajectories that depart the Titania
region outward toward Oberon (i.e., in reverse time) reflect the effects of Oberon
originating elsewhere than at 7 radians, barring coincidence.

The process blends together each of the flow-based concepts previously de-
tailed to identify transfer solutions. Maps of FTLE values enhanced with reduced
strainlines aid in the selection of candidate initial states while 4D stretchlines are
employed as flow control segments to identify intersecting trajectories. The general
transfer mechanism is described as follows:

1. Choose two-dimensional sections ;1 and Y2 near Oberon and Titania, and
compute the respective backward and forward FTLE maps and strainlines.

2. Use the previous result to determine two orbits, one going toward Titania in
forward time and the other directed to Oberon in backward time.

3. From the initial conditions in the previous step, compute the £, vectors for
forward and backward integration times and iterate the £, stretchlines (FCS)
from positions consistent with their respective sections (X1 and ¥2) to an
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intermediate section 3. In this step, the integration time for evaluating the
Cauchy—Green tensor and obtaining £, is selected consistent with the time
required for the initial conditions to evolve to the intermediate section in the
respective time directions.

A detailed description of the implementation of the above steps to obtain a transfer
from Oberon to Titania follows. To isolate the desired behavior near Oberon and
Titania, surfaces of section (generically, ) are constructed in the y—y phase space
just beyond the gateways near L1 and Lo, as illustrated in Figure 11. The sections
are defined consistent with —0.035 < y < 0.035 nondimensional units (nd) and
—0.03 < ¢ < 0.03 nd. These ranges translate to —1.55 x 10* < y < 1.55 x

2
-
O L T h ZU0 o, frame)
Titania D Oberon
-«
(a) 32: =1.03 nd; UT Rot. Frame (b) 21: 2=0.97 nd; UO Rot. Frame

Fig. 11: Surfaces of Section for FTLE Grids

10* km and —0.1094 < ¢ < 0.1094 X2 with ¥ : o ~ 4.49 x 10° km (1.03 nd) in
the Uranus—Titania system. In the Uranus—Oberon system, the section definition
dimensionalizes to —2.05 x 10* <y < 2.05x 10* km and —0.0945 < § < 0.0945 &=
with 31 : £ ~ 5.66 x 10° km (0.97 nd). In both cases, & is recovered from the CRP
Jacobi constant value consistent with the ZVC depicted in Figures 10 & 11 (in fact,
each value of C equals 3.004316 in its respective system). Specifically, the negative
root is selected in the evaluation of & for both maps. Consequently, & is directed
(for forward time evolution) “inward” toward Uranus as indicated by arrows in
Figure 11. As demonstrated by Short and Howell (2014), the associated initial
conditions (IC) can be transitioned and evolved in another model—in this case, the
IC are advected in the four-body model. Values of FTLE, resulting from forward
integration for 10 nondimensional time steps (~13.8 days) into the Titania region
as well as backward evolution toward Oberon (10 nd; ~21.4 days), appear colored
consistent with the color scales in Figure 12(a,b). The two states investigated in
this example are marked with black dots in Figure 12(a—d). When these states are
evolved away from their respective sections in the opposite time direction, they
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are integrated for longer time durations, namely, the time required to cross the
intermediate hyperplane. An area of particular numerical sensitivity is apparent
in Figure 12(a,c) as a solid white curve of FTLE values interior to the main lobe.
This white region, as well as the areas beyond the larger gray shape on both maps,
reflect FTLE values set to zero based on integration issues or exclusion by the CRP
zero-velocity bounds.

Reduced strainlines are projected onto the FTLE maps in Figure 12(c,d). These
strainlines help to characterize the flow originating from initial conditions and
highlight various regions in the map. In fact, the reduced strainlines are cross
sections of the strongest repelling hypersurfaces in the flow, and, as such, they
are expected to separate regions of different behavior. The calculation of reduced
strainlines results in 4D parameterizations of Lagrangian coherent structure cross
sections. Not only do the strainlines offer an immediate visual indication of differ-
ent, flow regions, useful in searching for potential trajectory options, but they can
also be directly harnessed in algorithms with precise calculated states. Given the
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Fig. 12: Maps of FTLE Values Near Titania and Oberon and Reduced Strainlines
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sensitive, chaotic nature of models for simulating astrodynamical systems, very
small inaccuracies (even on the order of double precision numerical truncation er-
rors) can be significant. Extracting an accurate solution for LCS states through
reduced strainlines enables additional numerical analysis within a region. The pro-
cess for producing the reduced strainlines is enumerated and elaborated:

1. Identify LCS candidate points based on high FTLE values, and refine these
points by seeking nearby maxima.

2. Calculate the Cauchy—Green tensor associated with the refined points and
extract the CG eigenvectors.

3. Using the eigenvector directions and two normals n1 and no to the state space,
calculate the unique direction orthogonal to n1, n2 and §,, which is the tangent
direction for reduced strainlines.

In general, if the state space is defined by scalar functions F; = ¢;, then VF;
are vectors orthogonal to the state space. In the following calculations, the state
space is defined by fixing an initial Jacobi constant value, C(x,y, ¢, y) = Co, and
T = Zo and the vectors n1 = VC and n2 = (1,0,0,0) are used as the normals
to the state space necessary to compute the reduced strainlines. The strainlines,
then, follow the resulting vectors under numerical propagation and outline distinct
regions characteristic of specific flow behavior. The parameterized strainlines can
be exploited to evolve the associated LCS, which supplies flow pathways through
the system. The curves also allow for a precise definition of region boundaries
making it possible to perform additional analysis within a region. The process for
constructing these strainlines is elaborated.

Identify and refine points. The initial effort of seeding points for strainlines re-
quires some care. Manually placing initial points for strainlines guided by the
features in an FTLE map may be a useful strategy. However, a more automated
possibility is available. Begin with a simple line search across the FTLE field iden-
tifying all local maxima along this line. In fact, the process for identifying the
initial points for the strainlines in Figure 12(c,d) is initiated from four such line
searches: a horizontal line centered vertically and running across the field, a ver-
tical line centered horizontally and running from the top to the bottom of the
field, and two diagonal lines joining opposing corners. This search strategy is de-
picted in Figure 13(a) where darker colors represent higher FTLE values—black
lines represent the search space and white dots illustrate potential maxima of the
underlying FTLE field. The FTLE profile along a particular line is noisy in some
regions leading to multiple local maxima in a small neighborhood and may benefit
from subsampling or culling. It is desirable to identify local FTLE maxima along
a line to sufficient numerical precision that the resulting CG eigenvectors are con-
sistent and usable. Given the several maximal points identified along a field-wide
line, a refinement to isolate a constrained maximum in their local neighborhoods
is performed. This refinement is illustrated in Figure 13(b) centered on a single
white point from one of the initial lines. Additional searches along much smaller
lines (in this case ~ 2 x 10™* nd, or about 300x smaller than the larger lines) in
the local neighborhood supply the maximum line-wise FTLE values (gray points
in the figure), from among which the overall maximum is selected (black marker)
as the refined point for further analysis. To accomplish arbitrary resolution (and
overcome truncation errors from finite-differencing) along any of the line searches,
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Fig. 13: Identifying and Refining LCS Candidate Points from Local FTLE Maxima

complex-step differentiation as described by Squire and Trapp (1998) is invoked to
evaluate the CGST. None of the line-wise refined points is necessarily the global
maximum in the neighborhood, but they are assumed to be crossings of a curve
of interest (also depicted in Figure 13(b)).

Calculate Cauchy—Green eigenvectors. The Cauchy—Green tensor is evaluated for
the points identified in the preceding step. The flow parameters are consistent with
the parameters defining the FTLE maps. Hence, the integration time associated
with the map is employed to calculate the CGST at each step. The CG eigenvectors
from the associated points are retained for the subsequent step.

Identify vectors and calculate strainlines. The FTLE maps in Figure 12 involve
guiding considerations. Namely, insight from the three-body Jacobi constant and
the related motion boundaries are employed to fully determine the map initial
conditions and selection of forward-time velocity directions consistent with Fig-
ure 11 are both invoked to produce the maps. These considerations translate to
constraints that prove useful for deriving vectors to construct strainlines. Begin-
ning with a seed point identified through refinement, a vector is calculated that
is simultaneously orthogonal to the CG eigenvector §,, the hyperplane and the
variation of Jacobi constant (i.e., the gradient of the Jacobi constant expression),
as described previously. This reduced vector is tangent to the desired strainline
and a single numerical integration step along the four-dimensional vector evolves
the strainline forward to a new point. The calculation of a new reduced vector is
accomplished by evaluating the CGST at the new point and again completing the
requisite vector operations. This process continues for each integration step until
some prescribed final integration time (i.e., a 4D arc length) is met.

The reduced repelling strainlines on the y—y FTLE maps are computed. In
general, the reduced strainlines represent potential structures that can signify a
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qualitative change in trajectory behavior. Particular regions are revealed where
trajectories enter the nearby Uranian moon’s neighborhood, and do not subse-
quently exit (for the duration of the simulation). These ideas are illustrated in
Figure 14. The three-body ZVC (dark gray) are included in Figure 14 for context
and the appropriate surface of section from Figures 10 and 11 is consistent with the
green line. The outermost strainline in the central pane represents a flow bound-
ary; states exterior to this boundary will not evolve into the Oberon region while
states inside the contour will evolve toward Oberon. This outermost strainline is
analogous to the boundaries reflected by the Jacobi limiting curves from the au-
tonomous CRP where, in that case, the curve would correspond to the map image
of a four-dimensional invariant manifold. In the nonautonomous four-body case
the structures emerge solely as a reflection of the flow behavior. While trajectory
behavior is generally consistent with the Jacobi limiting curves of the CRP, it does
not, in fact, strictly conform to the underlying energy preservation of the restricted
three-body problem (and the associated motion boundaries). In the left- and right-
most panes of Figure 14, the evolution of two states, one exterior (pane b.1) and
one interior (pane b.2) to the outermost reduced strainline, is depicted. This illus-
trates the notion of the observed flow separation associated with this particular
reduced strainline. Also depicted are two sets (panes a.1-3, and c.1-3) of three
trajectories each taken from two distinct regions. Both sets display qualitatively
similar behavior between their members and serve to illustrate the concept that
states within specific regions, identifiable by the underlying FTLE features and
the associated strainlines, display consistent characteristics while those belonging
to other regions differ. Not all of the displayed reduced strainlines correspond to a
drastic flow distinguishing feature like that associated with the outermost curve,
however, they do represent more subtle changes in the state space. A particular
strainline may signify a change in sign in a particular final state or a reversal in
the evolution of trajectory behavior. For example, observing states on the map as
they approach and cross strainlines may result in trajectories that display growth
in terms of the final value of an orbital element, reach a stationary point, and then
begin to reverse the previous growth. In general, the curves augment and enhance
the map and supply a parameterized set of points to aid in additional analysis.

Given the guiding tools available from the maps, end-segment trajectory arcs
can be identified. To help illustrate the FCS concept, segments are selected some-
what arbitrarily. That is, segments that evolve from the map and complete a few
revolutions about the associated primary without impacting are desirable, but
for the purposes of the ensuing example any, not necessarily the best, such arcs
will suffice. Many possible choices are available and, from among these, the arcs
consistent with the large black dots on the maps in Figure 12 are selected. In
the case of the associated Oberon segment, the selection is consistent with the
first ~1.5 revolutions of the trajectory depicted in pane a.l of Figure 14. Both
end-segment trajectories appear in Figure 15 colored from green to red with in-
creasing time. These initial segments and the corresponding FTLE maps are each
calculated with the associated primary acting as P» in the four-body system. For
example, the Oberon segment and map are calculated in the Uranus—Oberon ro-
tating frame with Titania orbiting counter-clockwise “interior” to Oberon. In this
case, Titania’s motion initiates at an angle of —7 radians with respect to the
Uranus—Oberon rotating x axis. Similarly, for the Titania segment, Oberon orbits
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Fig. 14: Selected Trajectories (10 nd) from a Strainline Enhanced FTLE Map

the system “exterior” to Titania. However, Oberon orbits in a clockwise direction
given a slower angular rate than Titania.

To simplify the analysis, the initial Oberon map state is transformed into the
Uranus—Titania rotating frame using transformation matrices similar to those in
Anderson (2005) and, subsequently, evolved backward in time to verify its consis-
tency under the alternate system. All additional analysis occurs in the Uranus—
Titania rotating frame. Next, the states from the two map points are evolved, for-
ward in time from the vicinity of Oberon and backward in time from the vicinity of
Titania. These propagations are terminated after successive intersections with the
negative z-axis segment colored magenta in Figure 16. This selection of the inter-
section region is inspired by Koon et al. (2002). The forward propagation from the
vicinity of Oberon always originates with Oberon at 7 rad in the Uranus—Titania
rotating frame. The first crossings of the forward and backward propagations are
displayed in Figure 16(a), and subsequent crossings in both forward and backward
time are displayed, for illustration, in Figure 16(b). The backward propagation of
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Fig. 15: Transfer “Bookends”: Originating Near Oberon, Terminating Near Titania
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Fig. 16: Negative x-axis Trajectory Crossings

the Oberon trajectory (from Figure 15(b)) in the Uranus—Titania—Oberon four-
body system appears at the top in both Figures 16(a,b), initially colored black and
evolving toward Oberon. Oberon’s circular path is represented in gold, while the
spacecraft trajectory segments are colored using a discrete, rotating color scheme
that increments with each full nondimensional time unit (~1.38 days) as a means
to aid in the time correlation. Forward and backward segments colored differently
upon intersection immediately reveal a timing mismatch.

For the backward propagation from Titania to be valid, the initial angular
position of Oberon must be adjusted. This adjustment is accomplished by summing
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the time required for the forward propagation from Oberon to the n'® crossing
with the length of time required for the backward propagations to meet the x
axis after m crossings. Given the total “inner” time duration (the forward time
from the Oberon section plus the backward time from the Titania section), the
angular position of Oberon is adjusted using its constant angular rate. However,
the adjusted initial position impacts the time for the backward propagations to
reach the z axis, so this adjustment procedure must be iterated until the timing
and the initial Oberon position agree. In some cases, close primary passages cause
this iterative process to diverge. Consequently, some combinations of forward and
backward crossings are not attainable. Finally, it must be verified that the Titania
end-segment (and, indirectly, the associated FTLE map) remains valid for the
adjusted Oberon positions. The proximity to Titania generally overwhelms the
perturbation from Oberon—its effects are still visible but, for each of the sampled
cases, the selected trajectory near Titania remains qualitatively consistent. Given
corrected timing and angular positions for Oberon, the Cauchy—Green tensor and
its eigenvalue/eigenvector sets can be computed.

The present analysis is restricted to perturbations in velocity space along the
associated eigenvector components and ultimately reveals solutions continuous in
position that require three distinct velocity-changing maneuvers. The maximum
perturbation associated with the segments is 1 x 10~2 or about 36 = to induce
sufficient stretching, i.e., the end points of the segments represent a 36 < change
in velocity. In Figure 17, the first forward crossing of the segment is depicted in
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Fig. 17: Initial FCS Images on X3 Hyperplane (on the Negative z Axis)

red, while the first backward crossing is colored blue. The images of the “central”
trajectories about which the FCS are taken are also depicted as black dots in
Figure 17. No intersections exist between the 36 = forward and backward FCS as
is apparent in the figure. Additional revolutions are observed to supply multiple
potential connections, however. A sampling of representative FCS images on the
hyperplane appears as Figure 18. While the forward images will remain the same
given their consistent initiating system geometry, the images of the backward
FCS will vary significantly depending on the particular intersecting states and the
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associated time of flight to reach the intersection. In Figure 18, the 15*-3¢ forward
crossings of the £,-velocity aligned segments from the Oberon region are marked
columnwise in red, respectively from left to right. At the same time, the associated
15¢-3" backward crossings proceed by rows with the 15 crossings depicted by
blue points in the first row, the 2°¢ crossings represented with green points on
the second row, and the 3" crossings marked by black dots in the final row. It
is apparent that the resulting backward FCS images are all different contingent
upon the associated forward time of flight.

Inspection of the resulting intersections in Figure 18 reveals multiple connec-
tions. However, the new “time-to-crossing” associated with the perturbed states
that should ultimately lead to an intersection must be incorporated. To do so,
a potential intersection is selected from map images associated with the timing
that is consistent with the “central” trajectories. Then, the times of flight asso-
ciated with these candidate arcs are employed to adjust the initial placement of
Oberon for the backward propagation from Titania (i.e., this state, in fact, repre-
sents the final position of Oberon once the trajectory arrives in the Titania region
after transferring from Oberon in forward time). The candidate intersection now
occurs elsewhere along the FCS, and, in cases of intersections near the edges of
the control segments or intermediate close primary passages, may no longer exist.
Frequently, the intersection is still apparent on the map and the new intersecting
states are subsequently employed to repeat the process, which continues itera-
tively until agreement in timing and system geometry occurs. One example of the
transfer initiating on the Oberon section and terminating at the Titania section
is displayed in Figure 19. This particular case is selected for display simply to
illustrate the result of the process.

Multiple solutions are tabulated in Table 1 where the total maneuver cost asso-
ciated with the Oberon section departure (i.e., the perturbation along the FCS),
the adjustment in ¢ required at the intermediate section, and the perturbation
along the control segment at the Titania section is listed. The transfer time of
flight is also included. Of particular note is the shortest time-duration transfer
(81.56 days) characteristic of two forward and one backward iterations as well as
the lowest (propellant) cost solution (123.43 %) from three forward and one back-
ward crossings—these minimal cases belong to different solutions. While the main
goal of this analysis is to highlight the ability of identifying solutions directly in
systems incorporating higher-fidelity gravity models, some comparison with times
of flight and maneuver costs associated with transfers in simpler models is use-
ful. A Hohmann transfer between the two sections depicted in Figures 11 and 15,
assuming the possibility of a 180° transfer angle, would require 5.46 days with a
maneuver cost of 391.53 7. The orbital anomalies of Oberon and Titania at de-
parture as well as that of Titania at arrival corresponding to the lowest propellant
consumption listed in Table 1 reflects a transfer angle of 260.17°. The solution in
the table attends multiple revolutions of Titania and Oberon but the initial and
final locations of the moons are consistent with a direct transfer experiencing less
than one inertial revolution consistent with a 260.17° transfer angle. A Lambert-
arc solution for the given geometry is accomplished in 6.29 days and requires
458.56 7 to match velocities at departure and arrival. Finally, comparisons of the
Jacobi constant values at the two sections computed in a common Uranus—Titania
three-body system indicate a minimum CRP change in velocity of 150.99 % that
is necessary to supply the requisite energy change. While the solutions identified
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(a) Forward Crossings: 1 (b) Forward Crossings: 2 (¢) Forward Crossings: 3
Backward (t-b): 1, 2, 3 Backward (t-b): 1, 2, 3 Backward (t-b): 1, 2, 3

Fig. 18: Crossing Combinations: The 15°-3'¢ forward crossings of the & 4-velocity
aligned segments from the Oberon region are marked in red from left to right.
Representative 150-3"4 backward crossings are marked with blue, green and black
points from top to bottom. The grid lines in each panel are consistent with the
axis ticks in Figure 17.

from the FCS analysis involve significantly longer times of flight than simple com-
parisons from the two- and three-body models, they are obtained directly in the
higher-fidelity model incorporating the gravities of all relevant bodies. As a con-
sequence, they reflect lower costs as well as potential initial guess solutions for
differential corrections which may further reduce propellant requirements.
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Initial
~._ Oberon

Uranus

Titania

Final
Oberon

(a) Three Forward Crossings

(b) Three Backward Crossings

Uranus

———_Initial
~._ Oberon

Titania

(c) Complete Transfer Trajectory

Fig. 19: FCS Identified System-to-system Transfer

Table 1: Transfer Data: Maneuver Costs and Times of Flight

| [m/s], [days] | [m/s] [days] | [m/s], [days]
BWD | FWD — | 1 \ 2 \ 3

173.93, 116.41

1 No 182.97, 81.56 179.46, 125.81
Intersections 123.43, 119.31

163.93, 111.23

133.74, 160.73

2 168.39, 91.23 142.71, 126.09 | 181.23, 186.53

219.77, 138.94

167.90, 181.32
164.77, 180.81
195.42, 172.95

161.20, 134.90
3 153.86, 143.18
180.54, 142.90

126.82, 178.13
144.94, 177.99
206.28, 190.69
209.84, 190.51
208.14, 190.14

125.45, 204.55
170.13, 212.14
160.14, 247.18
182.08, 241.87
130.89, 232.53
179.08, 224.29
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6 Concluding Remarks

The ability to identify flow regions that are generally advantageous to mission
goals in complex astrodynamical systems expedites the search for viable options in
a wide range of design scenarios. The principles of a flow-based methodology imply
potential application regardless of the complexity of the underlying system, and
the four-body example, in its nonautonomous form, reinforces this implication. The
information supplied by the CGST augments and generalizes well-known strategies
that employ the state transition matrix for trajectory design and analysis. In the
case of maneuvers, knowledge of the flow behavior offers the opportunity to save
propellant and time when compared to solutions that do not directly exploit the
full four-body dynamics.

Since employing maneuvers in phase-space regions reflecting large stretching
behavior produces larger effects downstream for smaller expense, FTLE ridges
and the associated structures identify advantageous choices for maneuver place-
ment. Specifically, control segments informed by the system flow supply excellent
candidates for optimal maneuver options. Lagrangian coherent structures, their
underlying theory, and the related mathematical tools characterize the flow in a
system and offer valuable context.
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