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Numerical techniques for generating and refining solar sail trajectories
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Abstract

Like all applications in trajectory design, the design of solar sail trajectories requires a transition from analytical models to numer-
ically generated realizations of an orbit. In astrodynamics, three numerical strategies are often employed. Differential correctors (also
known as shooting methods) are perhaps the most common techniques. Finite-difference methods and collocation schemes are also
employed and are successful in generating trajectories with pseudo-continuous control histories. These three numerical techniques are
employed here to generate periodic trajectories displaced below the Moon in a circular restricted three-body system. All these approaches
reveal trajectory options within the design space for solar sail applications.
� 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Generating spacecraft trajectories in multi-body regimes
to meet mission requirements is not easy. Generating solar

sail trajectories in multi-body regimes is even more chal-
lenging. Trajectory design for any spacecraft mission appli-
cation typically involves either well-developed analytical
approximations or linearization relative to a known solu-
tion. These approximations are typically based on well-
understood dynamics. However, when two or more large
bodies (e.g., Earth and Moon, or Sun, Earth, and Moon)
are present, trajectories in a multi-body gravitational envi-
ronment can become chaotic. The problem is further com-
plicated when the additional force from a solar sail is
incorporated.

Various authors have recently demonstrated that a solar
sail spacecraft can potentially support a communications
architecture for an outpost at the lunar south pole (LSP)
(Ozimek et al., 2009, 2010; Wawrzyniak and Howell, in
press; Simo and McInnes, 2010). These analyses are usually
formulated within an Earth–Moon circular restricted three-

body (EM-CR3B) model. Working within this model (as
opposed to a Moon-centered, inertial model, for example)
has the advantages of (1) connecting solar sail orbits to
solutions associated with the five classical Lagrange points,
(2) including the two primary gravitational bodies that
affect a trajectory in view of the LSP, and (3) supplying
an easily understood geometry with respect to a “fixed”
Earth and Moon. Concerning the third purpose for an
Earth–Moon model, note that the Moon is tidally locked
to the Earth, and a base on the Moon is essentially station-
ary in an EM-CR3B system. Working within a frame fixed
to the Earth and the Moon, however, poses new challenges
for solar sail mission design because the Sun moves with
respect to a fixed Earth and Moon and the system dynam-
ics in a multi-body environment, and including a solar sail,
are complex. Current analytical tools are not sufficiently
developed to reveal more than a few desired, or even viable,
solutions.

Certainly, analytical perturbation approaches are avail-
able for solar sail trajectory design in two- and three-body
regimes, and in frames where the Sun is either stationary or
moving. However, recent work using numerical techniques
for solving boundary value problems (BVPs) shows
promise for uncovering solutions for spacecraft trajectory
design involving solar sails (Ozimek et al., 2009, 2010;
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Wawrzyniak and Howell, in press). Numerical strategies
for solving BVPs, such as shooting (or differential-correc-
tions processes), finite-difference methods, as well as collo-
cation, greatly expand the range of the available design
space for trajectories in unstable, nonlinear, or chaotic
dynamical systems. Shooting and collocation methods are
often incorporated into trajectory optimization schemes,
which are formulated as boundary value problems (Betts,
1998; Rao, 2009). Some numerical methods, such as collo-
cation and finite-difference methods, require little knowl-
edge of the complicated dynamical structure to initiate
the process. Furthermore, new mission opportunities,
options not deduced via analytical techniques, may emerge.

A brief description of the behavior of solar sail space-
craft in the EM system is first introduced. An overview
of the differential corrections processes for solar sail trajec-
tories is followed by a discussion of finite-difference meth-
ods, then collocation strategies. Other numerical tools for
generating orbits do exist, but are left for future investiga-
tions. While these numerical procedures may be employed
as part of an optimization scheme, optimization is not dis-
cussed here. Finally, some examples using the solution
from one technique to initialize a different strategy are
summarized.

2. Dynamical model

The vector equations of motion for an idealized solar
sail spacecraft in a CR3B system and located approxi-
mately one AU from the Sun are formulated in terms of
coordinates rotating relative an inertial frame and appear
as

€rþ 2x� _rþ $U � a0

a�
ð‘̂ðtÞ � uÞ2u ¼ 0 ð1Þ

where $U is the gradient of a pseudo-potential that
includes the centripetal acceleration and the gravity effects
of the two primaries.1 The final term in Eq. (1) represents
the acceleration of the sail, non-dimensionalized by the sys-
tem acceleration, a* (2.73 mm/s2 for the EM system); a0 is
the sail’s characteristic acceleration at one AU, ‘̂ðtÞ is the
sunlight direction, and u is the direction of the sailface nor-
mal. The angle between the sail normal and the sun-line is
commonly denoted a, and equals cos�1ð‘̂ðtÞ � uÞ. The Sun
moves about the EM system at a rate of X, that is, the ratio
of the synodic rate to the sidereal rate (approximately
0.925), and, thus,

‘̂ðtÞ ¼ cos Xtx̂� sin Xtŷþ 0ẑ ð2Þ

as expressed in the EM rotating frame. The EM-system
model is illustrated in Fig. 1. The Sun is assumed to be infi-
nitely far from the system such that solar gravity is negligi-
ble and the rays of sunlight are parallel. Note that while
solar gravity is not included in this model, neither is lu-

nar-orbit eccentricity, which may have a greater effect on
the accuracy of the solutions from the CR3B model. A
higher fidelity model will improve the accuracy of the solu-
tions. Regardless of whether the equations of motion de-
scribe a four-body model (Farquhar and Kamel, 1970;
Andreu, 1998; Guzmán, 2001) or an ephemeris model,
the numerical methods should be adaptable to the choice
of model. Ozimek et al. (2009) successfully adapt a colloca-
tion scheme for the LSP problem to an ephemeris model,
and Grebow et al. (2010) apply a collocation routine for
the LSP problem for a spacecraft that employs electric
propulsion.

In applications where the Sun and the Earth are the
primaries (e.g., SE-CR3B model, where a* = 5.93 mm/s2),
‘̂ is stationary within the reference frame and parallel to
the Sun–sail vector. Surfaces of stationary points, or equi-
librium surfaces, exist in the SE-CR3B system and supply a
large solution space from which orbits may be developed
using analytical techniques (McInnes et al., 1994). In the
EM system, instantaneous surfaces can be computed
because the Sun moves with respect to the frame and the
acceleration from the sail is time-variant (McInnes et al.,
1994). Equilibria do exist when a = 90� or a0 = 0; then,
the five classical Lagrange points are the equilibrium
points. Nevertheless, periodic orbits do exist in the EM sys-
tem and are examined in the following sections.

3. Differential correctors (shooting)

Shooting methods, often termed differential corrections
(DC) processes, are common tools for generating trajecto-
ries in astrodynamics. In general, some sort of approxima-
tion is developed via analytical techniques that incorporate
knowledge of the system dynamics. Often, a trajectory is
approximated via a linearization process relative to a
known reference solution to the nonlinear differential equa-
tions, such as an equilibrium point. States from this
approximation are used to initialize numerical integration
of the nonlinear equations of motion. A state transition
matrix (STM) is propagated along with a six-state (position
and velocity) trajectory and is used to linearly correct the
states and, thus, select the initial values of the elements.
Dynamical characteristics extracted from the STM are

1 Vectors are denoted in boldface. Unit vectors are denoted with hats
(e.g., “x̂”). Note that u � û.

Fig. 1. EM system model.
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effective at describing the consequences of small perturba-
tions and, as a result, DC is a popular tool for generating,
or updating, numerical representations of orbits. Shooting
methods are often described in terms of two types: (1) sin-
gle shooting and (2) multiple shooting. In single shooting, a
single arc is defined from an initial point to a final target.
Multiple shooting (Stoer and Bulirsch, 2002) and two-level
correctors (Howell and Pernicka, 1988) exploit short arc
segments, usually along non-periodic orbits, for a more sta-
ble numerical process; path constraints (e.g., elevation) and
continuity between arc segments are enforced at the end-
points along each segment. The sail attitude is generally
fixed along each arc segment (or the entire orbit if single
shooting is employed).

Nuss (1998) and McInnes (2000) both use single-shoot-
ing methods to generate halo orbits in the SE-CR3B
regime. Nuss begins with a third-order approximation for
a halo orbit in the vicinity of a collinear Lagrange point
(L1). Nuss uses shooting to deliver a nonlinear solution,
and then applies continuation based on a0 to extend the
nonlinear, solar sail halo orbits toward the Sun (Nuss,
1998). McInnes expands the approximation to include
solar sail effects and generates families near artificial
Lagrange points for various a0 (McInnes, 2000). In Waters
et al. (2007), a single-shooting DC process is employed to
correct Lindstedt–Poincaré approximations of periodic
orbits above the SE ecliptic plane. Likewise, Farrés et al.
(2010) employ multiple shooting as a tool to compute peri-
odic orbits near the Sun–Earth–Sail L1 point. In each of the
preceding examples, sail attitude is assumed to be fixed rel-
ative to the modeled frame.

As an example of the computation of a solar sail trajec-
tory using shooting in the EM problem, a linear approxi-
mation for elliptical orbits that are shifted, and remain,
below the Lagrange points and parallel to the EM orbit
plane is detailed in Simo and McInnes (2010). In these
orbits, the pitch angle, a, is fixed to supply a constant
out-of-plane force; based on the linearized equations of
motion, the pitch angle that supplies the maximum out-
of-plane force is 35.264�. The orbits in Simo and McInnes
(2010) are plotted directly from the approximation. To
compute orbits that are periodic solutions to the nonlinear

equations of motion, the Simo–McInnes approximation is
used to seed a DC scheme here.

The process is developed to determine a family of periodic
orbits in the nonlinear model. The initial state, as specified
on the xz plane, from a linear approximation corresponding
to an out-of-plane orbit in Simo and McInnes (2010) sup-
plies an initial guess for a nonlinear trajectory that is cor-
rected using the DC technique. An STM is constructed
based on the variations of r; _r, and a0 such that deviations
at the beginning of the arc, fdri d_ri dða0Þg, are linearly
mapped to some future time, fdrf d_rfg. Higher-order state
transition formulations are available (Julier et al., 1995;
Sengupta et al., 2007); however, STMs based on first-order
variations and linear mappings are typically used for most
trajectory-design applications. A deviation in r is computed

as dr = rd � ra, where rd is the desired value of r and ra is the
actual value. Given the characteristics of this dynamical sys-
tem, a periodic orbit is assumed to be symmetric across the
xz plane,2 thus, (1) the plane crossings are perpendicular,
(2) the value for tf can be set equal to the half-period, or
the second crossing of the xz plane, and (3) a reduced set
of variables is required for the DC process. These proposi-
tions suggest that fdyf d _xf d_zf g can deliver either
fdxi d _yi dða0Þg or fdzi d _yi dða0Þg, depending on the advan-
tages in fixing zi or xi, respectively, over a set of iterations
for a particular orbit. An updated state, fri _ri a0g, is then
used to re-initialize the trajectory. The characteristic acceler-
ation, a0, remains constant along the orbit. The process is
repeated until a convergence tolerance is met.

A family of orbits that is initialized by the linear approx-
imation in Simo and McInnes (2010) appears in Figs. 2–5.

2 The justification for this symmetry is described in the Appendix.

Fig. 2. A family of offset orbits in the vicinity of L2. The Moon is plotted
for scale.
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It is notable that the black orbits in Figs. 2–5 coincide with
bifurcations in the eigen-structure, and possibly indicate a
branching to another family of orbits. The color associated
with each orbit in the figures represents the characteristic
acceleration, a0, that is required to produce the correspond-
ing path. The final orbit of the family in Fig. 5, that is, the
one with the largest amplitude in the z direction, has a
characteristic acceleration of zero, indicating that it is a
natural orbit. A hodograph in Fig. 6 displays the maximum
z value of each orbit in the family and the corresponding x
and a0 values. Orbits corresponding to bifurcations are
indicated with a large black dot. Recall that a0 is not
time-dependent and is constant along an orbit. The
approximation from Simo and McInnes (2010) that is
employed to initialize the DC process is successful in pro-
ducing periodic orbits for initial out-of-plane distances
from zero to about 300 km below the EM orbit plane (an
ellipse 100 km in x and 1900 km in y). Thereafter, the con-
tinuation scheme is employed, using the initial states from
the previous orbits to predict the initial state for the current
orbit. At the second bifurcation (represented by the middle
black orbit in Fig. 3), the continuation procedure along the

family yields the orbit that require a maximum characteris-
tic acceleration level equal to 1.6 mm/s2. Other bifurcations
along this family are also observed, indicating potential
intersections with other families of solutions. The family
of nonlinear orbits represented in Fig. 2 clearly does not
produce trajectories with continuous communications cov-
erage at the LSP, but demonstrates the DC process.

The accuracy of a shooting method depends on the iter-
ation and integration tolerances, as well as the model itself.
The deviations at the end of a propagation sequence are
compared to iteration tolerances to determine the conver-
gence characteristics. The preceding example employed
MATLAB�’s ODE113 explicit integration routine to prop-
agate the orbits (The MathWorkse, Inc., 2010). Default
tolerances are employed, except that the relative and abso-
lute tolerances are set to 1e�13. Compared to the ODE45
propagator, which is a single-step solver based on an expli-
cit Runge–Kutta (4, 5) formula, the ODE113 routine is a
multiple-step solver based on the Adams–Bashforth–Moul-
ton strategy; it is also more efficient with stringent toler-
ances and, therefore, faster (The MathWorkse, Inc.,

Fig. 3. A continuation of the family of orbits from the Fig. 2.

Fig. 4. A continuation of the family of orbits from the Fig. 3.

G.G. Wawrzyniak, K.C. Howell / Advances in Space Research 48 (2011) 1848–1857 1851



Author's personal copy

2010). Similar to other MATLAB� propagators, the theo-
retical error associated with each propagated state for the
ODE113 propagator at a given step is compared to relative
and absolute integration tolerances to control the step size.
In reality, a propagated trajectory will diverge from a true
trajectory, but the amount of divergence is reduced with
tighter tolerances on the integration. Consequently, propa-
gated trajectories are often regarded as “truth” models in
mission design.

4. Finite-difference methods

Rather than computing variations relative to a reference
solution, finite-difference methods (FDMs) approach the
trajectory “as a whole” (Wawrzyniak and Howell, in
press). A very simple guess, such as a circle or a point, is
discretized into the set of vectors {r1, . . . , ri, . . . , rn} at n

node points (in the time domain) along the trajectory. Vec-
tor derivatives of the state vector are approximated by cen-
tral differences. These approximations substitute for the
true time derivatives in Eq. (1). If the initial guess for
the path does not satisfy the equations of motion (usually
the case), Eq. (1) will not equal zero. The goal is to force
finite differences at epochs along the trajectory to equal
the time derivatives in Eq. (1). Other constraints, such as
periodicity, the magnitude of the unitary control direction
(kuik = 1), and path constraints (elevation, altitude, etc.),
are formulated as equality constraints and are functions
of the discretized path coordinates (all ri), control vector
(all ui), and slack variables (all gi, which convert inequality
path constraints into equality constraints) at each node.
Converting inequality constraints to equality constraints
via slack variables is an effective, straightforward strategy
for dealing with inequality constraints and is adapted from
linear programming (Ozimek et al., 2009; Betts, 2001). A
Newton–Raphson iteration procedure is used to solve for
the complete set of ri, ui, and gi that satisfy Eq. (1).

The advantage of FDMs is their simplicity in terms of
understanding and implementation, especially with time-
dependent control profiles. The disadvantage is that the
local accuracy is limited to OðDt2Þ as Dt! 0, or the number
of nodes, n, grows. The number of equations to be solved
and the integration round-off error increase as n gets larger.
Sample FDM solutions appear in Fig. 7. These orbits are
generated with a minimum elevation constraint angle of
15� as viewed from the LSP. The Moon is to scale; L1,2

appear as black dots. In this frame, the Sun moves in a
clockwise fashion about the z axis. The initial time is
defined when the Sun is along the x axis on the L1 side
of the Moon (in the direction of the Earth). At the initial
time, the spacecraft are on the L2 side of the Moon in their
respective orbits, and also in the xz plane.

State vectors that are extracted at a specific epoch and
then simply propagated forward from these numerical solu-
tions eventually diverge, in part, because of dynamical and
numerical sensitivities, as well as the fact that the control his-
tory, u(t), and the initial state do not satisfy Eq. (1) exactly, in

Fig. 5. A continuation of the family of orbits from the Fig. 4.

Fig. 6. A hodograph of the orbits appearing Figs. 2–5.
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that solutions are accurate to OðDt2Þ. However, the trajec-
tory approximated with a FDM can potentially be used to
initialize a more accurate numerical technique. Another pos-
sibility is that an FDM solution is sufficiently accurate such
that small adjustments to the states and control can produce
a more accurate solution or small adjustments solely to the
control will allow tracking of a specified solution as a refer-
ence (Wawrzyniak and Howell, 2010). In any case, the design
space for this problem is not well understood, so a trajectory
that solves the equations of motion to within a small error is
meaningful. If the goal is a general understanding of the
design space, accomplished in a relatively quick analysis,
then results from a FDM approximation can stand alone
and be very insightful.

5. Collocation

Similar to FDMs, a collocation scheme also discretizes
both the trajectory and control, and then delivers a solu-
tion for the discretized states simultaneously. Collocation
involves minimization of the difference between the deriva-
tive of a continuous approximating polynomial and the
derivative from the equations of motion at an intermediate,
or defect, point (or points) on an arc between nodes along
the path. While the accuracy of FDMs is limited to the step
size between nodes, collocation offers more accuracy by
employing higher-degree polynomials (Herman and
Conway, 1996).

Because of their relative insensitivity to a poor initial
guess and relative accuracy when compared to other
approaches, collocation methods are increasingly common
for solving BVPs, including optimal control problems.
Optimization software packages such as DIDO (Ross and
Fahroo, 2002) and GPOPS (Rao et al., 2008, 2010), as well
as MATLAB�’s BVP*C functions (* = 4,5,6) (The Math-
Workse, Inc., 2010; Hale et al., 2008), rely on collocation.

The type of polynomial and the integration rules vary for dif-
ferent accuracies. Nassiri et al. (2005) employ a technique
that relies on a Hermite interpolating polynomial and Simp-
son quadrature rules (a.k.a., Hermite–Simpson collocation),
which possess a local accuracy of OðDt5Þ, to minimize the
time of flight along a solar sail interplanetary transfer.
Ozimek et al. (2009) demonstrate: (1) a Hermite–Simpson
collocation scheme for a solar sail in the EM system, and
(2) a highly accurate method for application in the same sys-
tem that is based on a seventh-degree polynomial subject to
Gauss–Lobatto integration constraints with a local accuracy
of OðDt12Þ; both methods in Ozimek et al. (2009) employ
equally spaced nodes. In Ozimek et al. (2010), mesh refine-
ment is employed in the seventh-degree Gauss–Lobatto pro-
cess, strategically redistributing and reducing the number of
nodes required for a solution of equal accuracy across all
nodes.

Employing the Hermite–Simpson collocation scheme3

described in Ozimek et al. (2009) and the same initial guesses
that are used to generate the orbits via finite-difference meth-
ods discussed previously, trajectories similar to those
appearing in Fig. 7 emerge. The orbits generated by the Her-
mite–Simpson collocation scheme appear in Fig. 8. The only
visible difference in the four periodic orbits is the shape of the
“twists” along the y axis in the blue trajectory. Near these
twists, the two blue orbits differ by approximately
10,000 km. Likewise, the gold orbits differ by approximately
1700 km, the green by approximately 2600 km, and the red
by almost 3000 km. These differences are small when one
considers that the initial guess for each pair of orbits is either
a luni-axial circle (for those orbits centered below the Moon)
or a stationary point (for the orbits offset below the
Lagrange points) and generally not similar to the resulting

3 With the exception of partial derivatives derived via central difference
approximations.
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Fig. 7. Three views of four sample orbits generated by FDMs.
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solutions. Nevertheless, both the FDM and the collocation
strategies result in orbits that nearly—that is, do not
exactly—solve the equations of motion.

Similar to FDMs, collocation returns the required con-
trol history, u(t), as well as a finite set of states along the
trajectory. Unlike the FDM, if a trajectory is developed
using a higher-accuracy collocation scheme, direct numeri-
cal integration process initiated by extracting a set of these
states, along with the specified control history, often results
in a solution that resembles the original collocation solu-
tion. However, this observation in no way implies that
solutions from one numerical approach are superior to
those emerging from another method. Each periodic orbit
generated here can serve as a reference trajectory for mis-
sion design, depending the phase of mission design as well
as on the necessary level of accuracy required from the gen-
erating numerical method and accuracy of the dynamical
model. Naturally, navigation and flight-path control must
be considered for an actual flight as model uncertainties
and mis-modeling result in an actual trajectory that
diverges from any reference.

6. Bootstrapping: sequential numerical methods

The orbits generated by the any of the numerical strate-
gies described in this summary nearly solve Eq. (1). These
reference orbits are of varying accuracy, and, if a sailcraft
is flown along one of these orbits, its actual path would
diverge from the reference path. Furthermore, an explicit
integration of position and velocity states, along with a
complete control history, from a solution generated by
any numerical procedure, especially a lower-accuracy
method like the FDM, will diverge from the reference path.
Mission designers can respond to these accuracy issues
using various options. One possibility is to simply design
a controller to maintain the reference path, either by incor-
porating an additional form of control (Simo and McInnes,

2010) or via small adjustments to the control profile
(Wawrzyniak and Howell, 2010); either control technique
may yield an infeasible trajectory without additional pro-
cessing, however. Another option is to improve the refer-
ence trajectory from a lower-accuracy method by using
that less-accurate solution to seed a higher-accuracy pro-
cess. This sequential procedure is not always successful,
and trajectories resulting from higher-accuracy solutions
still require controllers to maintain the reference path.
However, the new solutions may result in a better under-
standing of the design space.

One approach to improve a reference trajectory is to use
a solution generated by the FDM algorithm to seed a col-
location process. Each of the four sample FDM orbits
from Fig. 7 is used to initialize a Hermite–Simpson colloca-
tion scheme. The collocation process converges quickly on
new solutions with nearly identical control histories; the
maximum isochronous difference in position along the path
for each updated trajectory is approximately 100 km.

Another approach to refining a lower-accuracy FDM
solution is to use it to seed a multiple-shooting scheme.
In Fig. 9, the initial states from the blue orbit in Fig. 7
are corrected via a multiple-shooting algorithm. In multiple
shooting, the trajectory is decomposed into segments and
corrected such that the segment end points coincide. Devi-
ations at the end of the shorter arc segments in multiple-
shooting algorithms are generally smaller than if the trajec-
tory is propagated to the next plane crossing, as is the case
with single shooting. Smaller deviations are easier to cor-
rect, thus, multiple-shooting algorithms tend to be more
numerically stable than single-shooting processes. The
black path in Fig. 9 represents a trajectory propagated
from four points (represented by asterisks) along the
FDM reference orbit (in blue). Multiple shooting is
employed to enforce continuity at the end points of the
black subarcs. The red path is the propagated trajectory
that results after convergence given an initial guess from
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Fig. 8. Three views of four example orbits generated by a Hermite–Simpson collocation method.
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the FDM solution for the state vectors and control histo-
ries. In the figure, all motion is clockwise, originating near
the L2 point. The blue FDM path is periodic because a
periodicity constraint is imposed in the FDM algorithm.
The red path, generated via multiple shooting, is close to,
but not exactly, periodic, as its endpoints near L2 differ
in position by appoximately 100 km. Continuity is not
enforced at the end of the final arc and the beginning of
the first arc in the multiple-shooting approach because
the equations are not independent, leading to difficulties
in convergence of the solution. Additionally, the control
history, which is not corrected with the states, does not
accurately solve the EOMs. While not investigated here,
with additional complexity in the algorithm, shooting
might also be used to correct the control history.

7. Conclusions

The numerical methods described here are useful tools for
uncovering solar sail trajectories in complex dynamical
regimes and for correcting trajectories developed analyti-
cally. These techniques complement analytical approaches
and approximations. Lower-accuracy results may some-
times initialize higher-accuracy solutions. Additionally,
since the numerical solutions nearly solve the equations of
motion, some form of adjustment to the control might be
employed to complete a periodic solution or meet other tra-
jectory goals; future efforts will address this issue. Numerical
methods are important tools for solar sail mission designers.
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Appendix A. Symmetry in solar sail trajectories

It is well known that certain symmetries exist in the cir-
cular restricted three-body problem (CR3BP). One such
symmetry arises from the time-invariance, or reversibility,
of the equations of motion. The equations of motion for
the CR3BP are

€x� 2 _y � xþ ð1� lÞðxþ lÞ
r3

1

þ lðx� 1þ lÞ
r3

2

¼ 0 ðA:1Þ

€y þ 2 _x� y þ ð1� lÞy
r3

1

þ ly
r3

2

¼ 0 ðA:2Þ

€zþ ð1� lÞz
r3

1

þ lz
r3

2

¼ 0 ðA:3Þ

If trajectories are reversed across the xz plane, then

x! x; y ! �y; z! z; t! �t

The subsequent path derivatives are

dðxÞ
dð�tÞ ¼ � _x;

dð�yÞ
dð�tÞ ¼ _y;

dðzÞ
dð�tÞ ¼ �_z

dð� _xÞ
dð�tÞ ¼ €x;

dð _yÞ
dð�tÞ ¼ �€y;

dð�_zÞ
dð�tÞ ¼ €z

If these states are substituted into Eqs. (A.1)–(A.3), the
same equations of motion as those appearing in Eqs.
(A.1)–(A.3) are recovered. The advantage of this phenom-
enon is that a mirror configuration occurs at the crossing of
the xz plane or the y axis (Roy and Ovenden, 1955). Two
possible mirror configurations are possible: (P) when all
point masses (i.e., the primaries and the spacecraft) lie in
a plane and all velocity vectors are at right angles to that
plane and (A) when all point masses lie along an axis
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Fig. 9. A FDM-generated reference orbit (blue), four segments in a multiple-shooting scheme (black), and a continuous path resulting from multiple
shooting (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and all velocity vectors are at right angles to that axis, but
not necessarily parallel to each other. Orbits are periodic if,
at two separate epochs, a mirror configuration occurs (Roy
and Ovenden, 1955). An example of a periodic orbit with
two mirror configurations in an arbitrary CR3B system ap-
pears in Fig. A.1. Because of the mirror configurations, cer-
tain states can be assumed to be zero at the perpendicular
crossings of the symmetry plane (or axis). The implication
of these assumptions is that a trajectory only requires
numerical integration from one mirror configuration to
the subsequent mirror configuration, or one half-period,
to determine a symmetric periodic orbit.

For a solar sail in the Earth–Moon CR3B system, a sim-
ilar symmetry occurs in the time reversal of the equations
of motion. To begin, u from Eq. (1) is represented in terms
of a Sun-fixed frame (McInnes, 1999), that is,

u ¼ cos a‘̂1 þ sin a cos d‘̂2 þ sin a sin d‘̂3 ðA:4Þ

where f‘̂1; ‘̂2; ‘̂3g are the three components of the sunlight
vector. When expressed in the EM rotating frame, the
equations of motion for a solar sail spacecraft are

€x� 2 _y � xþ ð1� lÞðxþ lÞ
r3

1

þ lðx� 1þ lÞ
r3

2

¼ bðcXtc
3
a þ sXtsac2

asdÞ ðA:5Þ

€y þ 2 _x� y þ ð1� lÞy
r3

1

þ ly
r3

2

¼ bð�sXtc
3
a þ cXtsac2

asdÞ ðA:6Þ

€zþ ð1� lÞz
r3

1

þ lz
r3

2

¼ bðsac2
acdÞ ðA:7Þ

where c � cos, s � sin, and b = a0/a*. When these equa-
tions are time reversed, the following equations result

€x� 2 _y � xþ ð1� lÞðxþ lÞ
r3

1

þ lðx� 1þ lÞ
r3

2

¼ bðcXtc
3
a � sXtsac2

asdÞ ðA:8Þ

€y þ 2 _x� y þ ð1� lÞy
r3

1

þ ly
r3

2

¼ bð�sXtc
3
a � cXtsac2

asdÞ ðA:9Þ

€zþ ð1� lÞz
r3

1

þ lz
r3

2

¼ bðsac2
acdÞ ðA:10Þ

Note the sign differences in Eqs. (A.5) and (A.8) and
Eqs. (A.6) and (A.9). Time invariance is only possible
for solar sails in the EM system if d = 0,180� at the time
of the mirror configuration. This property is also ob-
served and employed by Farrés et al. (2010). While
Roy and Ovenden (1955) specify that the “n-point
masses are acted upon by their mutual gravitational
forces only” the Mirror Theorem still holds for the case
of a solar sail in the EM system because the Sun is in a
plane containing the Earth, Moon, and sailcraft at the
times of the sailcraft crossing of that plane. Although so-
lar gravity is not modeled, solar radiation pressure acts
in a manner similar to gravity, albeit repulsive, in this
system.
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