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The concept of formation flight of multiple spacecraft offers many promising possibilities, both for space ex-
ploration and the associated technology development. Past studies on formation flight have focused primarily on
Earth-orbiting clusters. However, space-based observatory and interferometry missions, such as the proposed
Terrestrial Planet Finder and the Micro Arcsecond X-ray Imaging Mission, reflect plans for formation flight in
multibody regimes, particularly in the vicinity of the sun–Earth/moon libration points. Two specific tasks are
accomplished in this study. First, in a dynamically sensitive regime such as that near the libration points, baseline
propulsive requirements are established. A decentralized control strategy based on existing linear and nonlinear
control techniques is employed and the results are presented through a series of sample mission configurations. Note
that the control problem is formulated to facilitate future tradeoff studies in the libration point environment. The
analysis is presented within the context of both the circular restricted three-body problem and the more complete
ephemeris model. Once baseline costs are available, the second task is the introduction of potential constraints.
These constraints may affect not only the formation control strategies but also the conceptual design of the mission,
and their influence on the cost is evaluated.

Introduction

AMULTISPACECRAFT formation refers to a distributed mea-
surement system comprising two or more spacecraft. Forma-

tion flight, then, implies that each spacecraft is controlled to main-
tain a prespecified configuration relative to the other vehicles in the
formation. This may require that the individual vehicles maintain
a constant relative distance, and perhaps orientation, over a speci-
fied period of time. In addition, the formation-keeping goals may
also require multiple reorientations or reconfigurations during the
lifetime of a mission. In general, such constraints are not likely
to be consistent with the natural dynamics in either the two-body
problem (2BP) or a multibody regime; thus, a control strategy is
required. Much of the research to date refers to the control of con-
stellations, clusters, and formations for Earth-orbiting missions.1−17

In this case, the influence of other gravitational perturbations can
often be safely ignored as an initial approximation. However, re-
cent interest in formation flight near the sun–Earth/moon (SEM)
libration points requires an assessment of the effectiveness of the
more commonly implemented control techniques. The nature of the
dynamic force model in this region of space does not allow an an-
alytical solution for the reference. Although some approximations
are available, any analysis involving formation flight in multibody
systems is still strongly dependent on numerical methods.

In the two-body regime, optimal control techniques are those
most commonly encountered in the available literature on forma-
tion flight.1−10 Many of these references include the reasonable as-
sumption that the vehicle separations are relatively small. Hence, the
reference motion is modeled completely in terms of the linearized
dynamics, as described by the Clohessy–Wiltshire equations in the
2BP. The controller is then applied to the linear system, though its
effectiveness in the nonlinear model may not be explicitly demon-
strated. Impulsive control schemes are also often implemented but
are only applicable to formations that do not require precise track-
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ing of a reference solution.11−13 This approach is usually based on a
Keplerian formulation of the two-body dynamics. Nonlinear meth-
ods, such as Lyapunov-based control,14,15 combined with adaptive
control methods,16,17 are successfully applied to small formations
in the two-body regime. Among these researchers, only de Queiroz
et al.16 and Yan et al.17 develop their control strategies based solely
on the full nonlinear equations of motion.

Recent interest in formations that evolve near the vicinity of
the SEM libration points has inspired a growing number of stud-
ies regarding formation-keeping in the three-body problem. Among
these, Scheeres and Vinh18 identify a nontraditional yet innovative
control law that achieves bounded motion near the vicinity of a halo
orbit, as determined in Hill’s model. Although the latter approach is
not suitable for precise formation-keeping, nor is it necessarily the
optimal way to achieve boundedness, it does satisfy other goals that
may be important for certain types of missions. In particular, the
natural winding frequency of the spacecraft around the reference
halo orbit is significantly increased. This is consistent with one
of the stated requirements for the Terrestrial Planet Finder (TPF)
mission,19 where the formation is required to achieve a particular
rotation rate that is not consistent with the natural dynamics near
this region of space.

Formations modeled in the circular restricted three-body prob-
lem (CR3BP) represent a good starting point. However, ultimately,
any definitive formation-keeping studies must be performed in the
n-body ephemeris model. In this model, the time invariance prop-
erties of the CR3BP are lost and, consequently, precisely periodic
orbits do not exist near the libration points. Within the framework of
the ephemeris model, Hamilton20 and Folta et al.21 consider linear
optimal control for formation flight relative to Lissajous trajecto-
ries, as determined in the ephemeris model. However, the evolution
of the controlled formation is approximated from a linear dynamic
model relative to the integrated reference orbit.

Other formation control studies, associated with the ephemeris
model, are based on a dynamical systems approach. The initial focus
of these investigations is the determination of the natural formation
dynamics on the center manifold near the libration points. Initially,
Howell and Barden22−24 investigated formation flying in the per-
turbed SEM system. Later studies by Howell and Marchand25 further
explored the natural formation dynamics along the center manifold.
Howell and Barden use the system dynamics to capture a naturally
occurring six-satellite formation near L1 or L2. Further analyses
consider strategies to maintain a planar formation of the six vehi-
cles in an orbit about the sun–Earth L1 point,23,24 that is, controlling
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the deviations of each spacecraft relative to the initial formation
plane. A discrete station-keeping/control approach is devised to
force the orientation of the formation plane to remain fixed iner-
tially. An alternate approach is also implemented by Gómez et al.26

in a study of the deployment and station-keeping requirements for
the TPF nominal configuration. Their analysis is initially performed
in a simpler model but the simulation results are transitioned into
the ephemeris model. More recently, Howell and Marchand25 de-
veloped a Floquet-based approach to numerically identify natural
formations near the libration points, as well as the associated stable
manifolds for deployment.

In the present investigation, some baseline propulsive require-
ments are established for a wide variety of formation configura-
tions. Furthermore, linear quadratic regulator (LQR) and feedback
linearization methods are considered and successfully implemented,
first in the CR3BP and then in the ephemeris model. To illustrate
the effectiveness of these methods, four different nonnatural sam-
ple configurations are considered. Among these, enforcing a con-
stant relative distance and orientation between vehicles represents
the simplest example. This is accomplished using both LQR and
input-state feedback linearization. The advantages of the input-state
linearization approach over the standard LQR method, in this par-
ticular example, are noted. More complex configurations, such as
spherical and aspherical formations, are also investigated. In this par-
ticular case, input/output feedback linearization proves to be most
insightful and convenient as a preliminary analysis tool. Although
LQR and feedback linearization methods are mathematically effec-
tive for formation-keeping applications near the libration points, the
resulting control accelerations can be extremely small, depending
on the desired configuration. For instance, consider a formation in
which the dynamic evolution of a number of vehicles (deputies) is
controlled relative to one central spacecraft (chief). Formations that
require the deputy vehicle to remain at a constant distance and ori-
entation, relative to the chief spacecraft, may lead to thrust levels
on the order of nano-Newtons. With the increased interest in micro-
and nanosatellites, theoretical and experimental studies to further
develop propulsion technology continue and formation flight near
the libration points will certainly benefit.27−29

Background
Dynamic Model of a Two-Spacecraft Formation in the CR3BP

There are a variety of ways to formulate the dynamic model of
a spacecraft formation. In this study, the central (possibly virtual)
spacecraft is termed “chief” while all other vehicles in the formation
are denoted “deputies.” In the CR3BP, the motion of the chief space
craft is described in terms of rotating coordinates (R) relative to the
barycenter (B) of the system primaries (SEM system). In this frame,
the rotating x axis is directed from the sun toward the Earth–moon
barycenter, as illustrated in Fig. 1.

Fig. 1 Two-spacecraft (s/c) formation model in the SEM CR3BP.

The z axis is normal to the plane of motion of the primaries, and
the y axis completes the right-handed triad. Alternatively, in the
ephemeris model, the frame of reference is inertial (I ) and Earth-
centered (P2). In either formulation, equations of motion for a space-
craft (S), relative to an inertial reference point Q (B or P2), can be
expressed, in a general form, as

r̈QS = f (rQS, ṙQS) + u (1)

where rQS = rQS(t) represents the position vector from Q to S
and ṙQS = ṙQS(t) is the velocity of the spacecraft. The nonlinear
function f ( rQS, ṙQS) includes all gravitational forces in the model,
solar radiation pressure, as well as any kinematic terms associated
with the frame of differentiation. The vector u = u(t) models the
control input.

Let rc = rc(t) = rQc(t) denote the vector that locates the chief
spacecraft (c) relative to the reference point Q. Furthermore, let
r = r(t) locate a deputy vehicle (d) relative to the chief spacecraft
such that rd = rc + r and ṙd = ṙc + ṙ. Then the relative dynamics of
the deputy spacecraft, with respect to the chief vehicle, are governed
by

r̈ = f (rd , ṙd) − f (rc, ṙc) + ud − uc = �f (r, ṙ, rc, ṙc) + �u (2)

where �u = ud − uc and �f = f (rd , ṙd) − f (rc, ṙc). In the present
investigation, the chief spacecraft is assumed to evolve along
a naturally existing solution such that uc = uc(t) = 0; hence,
�u(t) = ud(t) = ud . Furthermore, it is assumed that Eq. (2) is
derived in terms of inertial frame coordinates and, as such,
�f (r, ṙ, rc, ṙc) = �f (r, rc). That is, �f represents only the exter-
nal differential forces acting on the vehicle, including gravitational
forces and solar radiation pressure (SRP).

Nominal Formations
As presently envisioned, formations that evolve near the libra-

tion points seek to satisfy one of two goals: track or observe either
a target that is inertially fixed or one that is fixed in the synodic
rotating frame. For example, the Micro Arcsecond X-ray Imaging
Mission (MAXIM) and TPF formations are to maintain an inertially
fixed orientation during the science collection phase. However, other
types of formations may seek a direct line of sight with the Earth,
the sun, or the triangular points L4/L5. In this case, a formation is
fixed in the rotating frame. In this investigation, both of these cate-
gories are investigated using a number of sample formations. Within
a formation, some missions may require that a fixed relative state
vector be enforced. Others, such as TPF, envision the vehicles as
evolving along some time-varying relative path where the vehicles
are allowed to rotate relative to a central point in the formation. In
this study, this last type of formation is modeled in the context of
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spherical and aspherical configurations. In that regard, the analysis
presented here is applicable regardless of the working frame, inertial
or rotating.

Control strategies that rely on the linearized dynamics, such as
LQR, require that a nominal formation-keeping cost ud(t)◦ be ini-
tially determined. Of course, in the end, the net control effort is the
sum of this nominal cost and the differential cost determined via the
LQR approach. One advantage of feedback linearization methods is
that the explicit determination of nominal costs is unnecessary be-
cause everything can be accomplished in one step. Regardless of the
control approach, a detailed study of the nominal formation-keeping
costs is necessary to establish baseline requirements to support the
design of the onboard propulsion system characteristics. In the case
of formation flight near the libration points, the results of this study
indicate that, depending on the dynamic constraints imposed by a
particular mission, the propulsive requirements may approach lower
limits that are challenging. These seemingly insignificant thrust lev-
els, however, are still essential for precision formation flight.

Fixed-State Formations Relative to the Rotating Frame
One possible type of formation corresponds to a configuration

such that the relative distance between the chief-spacecraft and the
deputy is constant and the relative orientation of the chief–deputy
line is fixed with respect to the rotating frame R. Suppose that differ-
ential equations (2) are associated with an inertial reference frame.
Furthermore, assume that the position and velocity state elements
are measured in terms of inertial coordinates. Let ρR represent a rel-
ative position vector, initially defined in terms of rotating frame co-
ordinates, such that rd = rc +ρR . If the nominal motion requires that
ρR be fixed in the rotating frame, then Rρ̇R = RdρR/dt = 0. In terms
of inertial coordinates, the nominal motion can then be expressed
as ρI = {I C R}ρR and I ρ̇I = {I C R}[IωR ×ρR], where IωR = θ̇ ẑ de-
scribes the rotation rate of frame R relative to frame I , and {I C R}
represents the associated 3 × 3 coordinate transformation matrix
between the inertial and rotating frames. Substitution of these con-
straints into Eq. (2), for uc(t) = 0, indicates that the nominal control
input required to enforce a constant distance and spatial orientation
in the rotating frame is evaluated as

ud(t)
◦ = {I C R}[I ω̇R × ρR + IωR × (

IωR × ρR

)] − �f (r◦, rc)

(3)

Note that, in the CR3BP, IωR is constant and, hence,
I ω̇R = RdIωR/dt = 0. However, in the ephemeris model, the nom-
inal control effort is defined as written in Eq. (3). The quantities

Fig. 2 Nominal formation-keeping cost associated with various 5000-km formations, fixed relative to the rotating frame (over 6 months); each surface
is associated with a particular L1 halo orbit (Az = 2 ×× 105, 7 ×× 105 , and 1.2 ×× 106 km).

IωR and I ω̇R are approximated directly from the available plane-
tary ephemeris.

To develop a general sense of the formation-keeping costs asso-
ciated with this type of nominal motion, first consider the problem
within the context of the CR3BP. In this model, the trajectory of the
chief spacecraft is assumed to evolve along a natural periodic halo
orbit and completes one revolution in approximately six months. A
single deputy spacecraft, then, is located at a specific distance (ρ)
and orientation (ξ, β) relative to the chief, as illustrated in Fig. 1.
This is defined as the baseline formation. Formation-keeping costs
can be assessed in a variety of ways. Often, cost is represented
as the integral �V of the norm of the applied control input over
the duration of the mission. In the present example, however, the
formation-keeping cost, illustrated in Fig. 2, is determined in terms
of the mean control acceleration over 180 days; that is, one rev-
olution along the path of the chief spacecraft. Three surfaces are
displayed in Fig. 2. The narrower green surface corresponds to a
halo orbit characterized by a 1.2 × 106 km maximum out-of-plane
amplitude (Az), the intermediate blue contour is associated with an
Az amplitude of 700,000 km, and the wider red outline represents
the results for an Az amplitude of 200,000 km. Each surface is asso-
ciated with a formation defined by a 5000-km separation (ρ). The
formation-keeping cost, then, is represented as a function of the az-
imuth (ξ ) and elevation (β) of the chief–deputy line, as defined in
Fig. 1.

The cost range in Fig. 2 indicates that, for a 1000-kg spacecraft,
thrust levels on the order of 0.5 to 2 mN are necessary to enforce
a 5000-km formation that is fixed in the rotating frame. This is
equivalent to 10 m/s < �V < 30 m/s, via continuous thrust, over
180 days. The specified thrust levels, for this particular example,
are certainly deliverable based on the propulsion systems available
today. However, the numerical evidence suggests that the relation
between the formation-keeping cost and the nominal relative sepa-
ration is roughly linear. That is, if the nominal separation decreases
by one order of magnitude then the cost also decreases by one or-
der of magnitude. Hence, if the nominal relative separations are on
the order of a few meters, then the required thrust levels can be on
the order of 10−9–10−12 N. Although these thrust levels may appear
negligible, if submillimeter tracking accuracy is required, these con-
trol inputs cannot be neglected. Even if technological developments
allow for thrust delivery in this range, the error levels may poten-
tially be on the same order of magnitude as the nominal thrust itself.
Given the dynamic sensitivities of this model, as well as all other
uncertainties present in a real system, precision formation-keeping,
in the submillimeter range, may be challenging.
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It is important to note that the cost trends in Fig. 2 are influenced
by the size of the reference orbit of the chief spacecraft. In fact, the
formation-keeping cost increases nonlinearly as the amplitude of
the reference orbit increases. It is also evident from Fig. 2 that for-
mations orthogonal to the SEM line result in the lowest formation-
keeping costs. The maximum cost, then, corresponds to a formation
that is always parallel to the SEM line. A thorough numerical anal-
ysis, over a large section of the L1 and L2 halo families, reveals that
this trend holds as long as Az < 1.55 × 106 km. Above this range,
the formation-keeping costs become prohibitive regardless of the
nominal configuration.

Fixed-State Formations Relative to the Inertial Frame
A formation that is fixed with respect to the inertial frame (I )

must satisfy rd(t) =ρI such that ρI is constant and I ρ̇I = I ρ̈I = 0.
Note that the subscript I implies that the measure numbers of ρI
are associated with the inertial frame. The nominal control input
necessary to enforce this particular configuration, as determined
from Eq. (2), is expressed as

ud(t)
◦ = −�f (r◦, rc) (4)

For a 5000-km nominal separation, a cost analysis, similar to that
performed in the preceding example, reveals that the formation-
keeping costs are not significantly affected by holding the formation
fixed relative to the inertial frame. Numerical evidence does indicate,
however, that the nominal orientations associated with the minimum
and maximum cost configurations, in this case, do change.

Formation Control
In this study, linear optimal control is compared to input-state

and input/output feedback linearization methods. The mathemat-
ical development, and subsequent computational implementation,
associated with feedback linearization methods is simpler than that
corresponding to an optimal control strategy. However, in contrast
to an LQR approach, the physical implementation of an onboard
nonlinear control law, such as that presented here, may introduce
additional issues, as discussed by Chen et al.30 This is particularly
true for highly nonlinear dynamics such as those associated with the
n-body problem. However, from a computational perspective, feed-
back linearization techniques are extremely useful as a preliminary
analysis tool when compared to optimal control methods. This al-
lows for more comprehensive studies over a wide variety of mission
scenarios while preserving the reliability of the results.

Input-State and Input/Output Feedback Linearization
Feedback linearization, as discussed by Slotine and Li,31 is a

nonlinear control strategy that allows the designer to prespecify the
desired response characteristics while achieving the tracking goals.
In input-state feedback linearization, here termed input feedback
linearization (IFL), this is accomplished first by applying an input
that cancels the nonlinear terms in the equations of motion. A second
term is subsequently added such that the desired error response char-
acteristics are satisfied. Although canceling the nonlinear terms may
generally lead to prohibitive control inputs, the dynamic sensitivity
characteristic of the region of space near the libration points creates
an environment well suited to this particular approach. Of course,
any form of feedback linearization requires full-state feedback, one
of the disadvantages of the approach. However, for formation flight,
if accurate relative state information is available, this method can
be a powerful tool at the preliminary design stage.

To illustrate the basic concept of IFL control, consider the equa-
tions of motion in Eq. (2). It is possible to select ud(t) such that
the state follows a critically damped error response that meets some
prescribed settling time requirement. For instance, let the response
be characterized by a natural frequency ωn . Then the following con-
trol law achieves the desired response characteristics and converges
onto the prescribed nominal path; that is,

ud(t) = r̈◦ − 2ωn(ṙ − ṙ◦) − ω2
n(r − r◦) − �f (5)

The last term in Eq. (5) effectively cancels the nonlinear terms due
to gravity and SRP; the first three terms force the response to follow

the desired error response and track the nominal path. An accept-
able response is arbitrarily selected as one that reaches the desired
solution within a day—assuming the position injection errors are
not unreasonably large. A nondimensional angular frequency (ωn)
of at least 1000 meets this requirement. It should be noted that de-
coupling the states is not necessarily the “optimal” solution; it is
simply a way to accomplish the task. Furthermore, this approach is
useful when the formation requires that both distance and orienta-
tion be completely specified in time. However, in formation flight
applications, it may not be necessary to track each state individu-
ally. If the formation only requires that relative distance, or some
other function of the state variables, be specified, then input/output
feedback linearization is better suited for the task.

Input/output feedback linearization, here termed output feedback
linearization (OFL), is similar in concept to the IFL approach. How-
ever, instead of designing a control law that tracks a specified state,
the control law is determined to track a nonlinear function of the
state variables. For instance, let H(r, ṙ) represent a nonlinear vec-
tor function that depends on the relative state of the deputy. Note
that this function does not depend explicitly on the control input
ud(t). The goal, then, is to identify ud(t) such that H(r, ṙ) → H◦,
where H◦ represents the nominal value of H(r, ṙ). To do this, the
function H(r, ṙ) is differentiated with respect to time until the con-
trol input appears explicitly in the resulting expression. Once the
input appears, it may be possible to identify at least one solution
that satisfies the tracking goal. The number of solutions available
depends on the dimension of the vector function H(r, ṙ) and the
number of available control inputs.

LQR and Feedback Linearization
In the n-body problem, an LQR—as derived for linear time-

varying systems—requires the solution of a two-point boundary-
value problem with mixed boundary conditions. More specifically,
the nominal trajectory must first be numerically integrated, because
no analytical solution is available, and then stored for the controller
gain matrix to be determined. The determination of the gain matrix
requires a second numerical integration that depends on the avail-
ability of the results from the first integration. Finally, the controller
can be applied to a perturbed trajectory, during a third integration,
by accessing or approximating the stored gain matrix elements as
necessary.

For systems that are invariant under time transformation, such as
the CR3BP, it is possible to reduce the optimal two-point boundary-
value problem to an initial-value problem, as demonstrated by
Howell and Marchand.32 Although this transformation simplifies
the implementation of the controller in the CR3BP, ultimately an
actual mission requires that this analysis be performed in the gen-
eral ephemeris model, with no assumptions about the motion of
the primaries. Unlike the CR3BP, the ephemeris model is not in-
variant under time transformation. Hence, implementing an LQR
in the ephemeris model, once again, requires the solution of a two-
point boundary-value problem. This can be a very computationally
intensive problem, especially when multiple deputy vehicles with
different nominal paths are considered.

As suggested by the results of the present investigation, it is pos-
sible to select the design parameters such that the IFL and LQR
controllers yield similar response characteristics at almost identi-
cal costs. However, as previously noted, the input-state feedback
approach is determined to be the most computationally efficient of
the two methods from a preliminary design perspective. In contrast
to the IFL approach, OFL allows for the greatest flexibility be-
cause it is possible to specify the error response for functions of the
state variables rather than the state variables themselves. Ultimately,
all of these methods are, of course, effective in accomplishing the
formation-keeping goals. The method selected is a matter of choice
and the stage of the analysis.

Application of Input/Output Feedback Linearization
to Spherical Formations

As previously mentioned, the OFL approach allows for the deter-
mination of a control law that forces a vector function of the state
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Table 1 OFL control of spherical formations

Formulation Control law

d2r

dt2
→ ud (t) =

{
r
[
−2ωnṙ − ω2

n(r − r◦)
]

+ ṙ2 − (ṙ · ṙ) − (�f · r)
}( r

r2

)

d2r

dt2
→ ud (t) =

{[
−2ωnṙ − ω2

n(r − r◦)
]

r
− (ṙ · ṙ)

r2

}
r +

(
ṙ

r

)
ṙ − �f

d2(r2)

dt2
→ ud (t) =

{
1

2

[
−4ωnrṙ − ω2

n

(
r2 − r◦2)]

r2
− ṙ · ṙ

r2

}
r − �f

d2(r−1)

dt2
→ ud (t) =

{
−r

[
2ωn

ṙ

r2
− ω2

n

(
1

r
− 1

r◦

)]
− ṙ · ṙ

r2

}
r + 3

(
ṙ

r

)
ṙ − �f

variables to track the desired nominal values. For instance, let r ◦

represent the nominal radial distance between the chief and deputy
spacecraft and let r denote the actual radial distance between the
vehicles. At any point in time, the actual radial distance may be
determined from the relative position vector r as

r =
√

rT r (6)

Consider the scalar functions r , r 2, and 1/r . Differentiating each
of these expressions, until ud(t) appears explicitly in the equations,
leads—in each case—to one scalar second-order differential equa-
tion that depends on three unknown control inputs: the elements of
ud(t). Clearly, there are an infinite number of control accelerations
that satisfy this scalar constraint. This indicates the existence of an
optimal solution, although that is not the subject of the present in-
vestigation. To develop an understanding of the controlled phase
space, Howell and Marchand25 identify four particular solutions;
the formation-keeping costs lead to a set of sample configurations.
These results are summarized in Table 1. The first entry corresponds
to a radial axis control law with zero transverse inputs. The remain-
ing three entries are all subject to three-axis control. If the nomi-
nal relative separation between the vehicles is small, Howell and
Marchand note that all four of these solutions appear to converge
onto the same plane orbiting the chief spacecraft. However, in fur-
ther studies33,34 only three out of the four controllers, namely the
three-axis control laws, are generally guaranteed to exhibit a planar
response.

In fact, it can be shown analytically34 that the plane of motion
of the deputy vehicle, subject to any of these three control laws, is
completely determined by the initial state of the vehicle at the time
the controller is activated. It is also evident that, for each of these
solutions, the controller forces the deputy vehicle to orbit the chief
with some predetermined rate of rotation. The rate of rotation is
determined by both the initial state and the controller formulation.
This induced rotation rate can lead to prohibitively large formation-
keeping costs, depending on the nominal relative separation between
the vehicles. As the nominal relative distance decreases, the induced
rotation rate increases and, thus, the associated formation-keeping
costs increase as well. Because the dynamics tend to induce this
rotation rate, the controller formulation is later extended, by Howell
and Marchand,33 to incorporate rotation rate control.

To illustrate the augmented controller formulation, note that the
radial distance r can be differentiated twice to yield a scalar differ-
ential equation of the form

r̈ = (ṙ · ṙ)/r + (r · r̈)/r − [(r · ṙ)/r 2]ṙ (7)

Furthermore, observe that the forcing term �f (r, rc) and the control
input ud(t) appear explicitly in this expression through the acceler-
ation term r̈ defined in Eq. (2). Equation (7) may subsequently be
reduced to the more compact form

r̈ − r θ̇ 2 = fr + ur (8)

where fr = �f (r, rc) · r̂, ur = ud(t) · r̂, and r̂ = r/r . The angular rate
θ̇ describes the rate of rotation corresponding to an instantaneous

orbit normal direction, ĥ = h/h, where h = r × ṙ represents the an-
gular momentum vector and h = |h| is its scalar magnitude. Let
θ̂= ĥ × r̂ such that r̂, θ̂, and ĥ define an orthonormal triad. The in-
stantaneous rotating coordinate system R̃, defined by r̂, θ̂, and ĥ,
is not related to the rotating frame of the primaries, R. In the R̃
rotating coordinate system, the angular momentum vector is known
to be of the form h = r 2θ̇ ĥ. Differentiating the angular momentum
vector with respect to time, as observed in the inertial frame, leads
to one equation of constraint, uh + fh = 0, where fh = �f (r) · ĥ and
uh = ud(t) · ĥ. This operation further leads to one additional equa-
tion of motion,

r θ̈ + 2ṙ θ̇ = fθ + uθ (9)

where fθ = �f (r, rc) · θ̂ and uθ = ud(t) · θ̂.
In this study, the nominal radial error dynamics are defined to

follow a critically damped response, of natural frequency ωn , such
that the nominal radial response, gr (r, ṙ), is determined as

r̈ = gr (r, ṙ) = r̈ ◦ − 2ωn(ṙ − ṙ ◦) − ω2
n(r − r ◦) (10)

The error dynamics for the rotation rate are then specified as a
decaying exponential: δθ̇ = δθ̇(0)e−kωn t . Subsequently, the nominal
response gθ (θ̇ ) is then determined as

θ̈ = gθ (θ̇ ) = θ̈◦ − kωn(θ̇ − θ̇ ◦) (11)

where k is an arbitrary scale factor and ωn is the same natural fre-
quency as in Eq. (10). Substitution of Eq. (11) into Eq. (9) and of
Eq. (10) into Eq. (8) leads to the following scalar control laws:

ur (t) = gr (r, ṙ) − fr − r θ̇ 2 (12)

uθ (t) = rgθ (θ̇ ) − fθ + 2ṙ θ̇ (13)

Constraint:

uh(t) = − fh (14)

The control input that is actually applied to the deputy equations of
motion, as listed in Eq. (2), is then determined by transforming the
input vector described by Eqs. (12–14) back into the inertial frame:

uDi = {I C E }[ur uθ uh]T (15)

where {I C E } = [r̂ θ̂ ĥ]

Application of Input/Output Feedback Linearization
to Aspherical Formations

Interferometry missions are often envisioned in terms of vehicle
arrangements that cannot be modeled as spherical. For instance, for
MAXIM, the nominal path of the free-flyer vehicles may follow
relative dynamics that are much different than that of the detec-
tor spacecraft, located thousands of kilometers aft of the free-flyer
formation. This type of formation may best be modeled from the
perspective of aspherical formation dynamics. To illustrate this con-
cept, consider a multispacecraft formation where the deputy vehicles
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Fig. 3 Parameterization of a paraboloid.

evolve along an aspherical surface relative to the chief spacecraft.
This surface is defined such that its orientation is inertially fixed. A
paraboloid is an example of an aspherical surface and it is used as
a proof of concept. In this particular example, the chief spacecraft
and the nadir of the paraboloid define the focal line of the formation.
Maintenance of a constant distance between the chief vehicle and
the nadir of the paraboloid is the first objective of the controller. The
second requirement is that the motion of all deputies, even during
reconfigurations, is constrained to evolve along the surface of the
paraboloid. To accomplish these goals, it is first necessary to define
a suitable parameterization for the formation surface. To that end,
consider the illustration in Fig. 3. The paraboloid in Fig. 3 is defined
in an inertial frame (E) described in terms of the unit vectors ê1, ê2,
and ê3.

The orientation of this frame, relative to the ephemeris inertial
frame (I ), is defined by the azimuth (α) and elevation (δ) of the
focal line relative to the inertial (I ) unit vectors X̂, Ŷ, and Ẑ. The
“height” of any given deputy vehicle along this surface, measured
relative to the nadir point, is defined by u p , where 0 ≤ u p ≤ h p and
h p denotes the maximum allowable height along the paraboloid.
The radius at the zenith of the paraboloid (u p = h p) is denoted by
the variable ap . The unit vector ê1, defined as ê1 = Ẑ × ê3/|Ẑ × ê3|,
is simply a reference direction for the measurement of the angu-
lar position (ν) along the surface in Fig. 3. Of course, ê2 = ê3 × ê1

completes the right-handed inertial triad. The variables ν and u p

completely specify the position of a deputy vehicle along the for-
mation surface in Fig. 3. The paraboloid itself is offset from the
chief vehicle by a distance q(t) along the ê3 axis.

A parabolic configuration requires the tracking of three variables:
u p(t), q(t), and ν̇(t). To illustrate how an OFL controller may be
applied to this type of configuration, it is necessary to establish a
set of expressions relating the state variables (and control inputs) to
the tracked quantities. For instance, recall that

ρE = {E C I }ρI = [x̃ ỹ z̃]T (16)

where the tilde above each variable indicates that the measure num-
bers are associated with the focal frame (E) of the paraboloid. These
measure numbers are related to the paraboloid parameters in Fig. 3
as follows:

x̃ = ap

√
u p/h p cos ν (17)

ỹ = ap

√
u p/h p sin ν (18)

z̃ = q + u p (19)

Note that it is possible to explicitly solve for u p , ν, and q by algebraic
manipulation of Eqs. (17–19). Consistent with the OFL approach,
the resulting expressions may be differentiated twice with respect
to time until the elements of the control acceleration vector appear
explicitly. Differentiation is straightforward and ultimately suggests
that

gu p (u p, u̇ p) − 2h p

a2
p

( ˙̃x2 + ˙̃y2 + x̃� f̃x + ỹ� f̃ y

)

= 2h p

a2
p

x̃ ũx + 2h p

a2
p

ỹũ y (20)

gq(q, q̇) + 2h p

a2
p

( ˙̃x2 + ˙̃y2 + x̃� f̃x + ỹ� f̃ y

) − � f̃z

= −2h p

a2
p

x̃ ũx − 2h p

a2
p

ỹũ y + ũz (21)

gν̇ (ν̇) + 2
(x̃ ˙̃x + ỹ ˙̃y)(x̃ ˙̃y − ỹ ˙̃x)

(x̃2 + ỹ2)2
+ (ỹ� f̃x − x̃� f̃ y)

(x̃2 + ỹ2)

= x̃

(x̃2 + ỹ2)
ũ y − ỹ

(x̃2 + ỹ2)
ũx (22)

In Eqs. (20–22), recall that the tilde represents quantities associ-
ated with the focal frame (E) of the paraboloid. Hence, ũx , ũ y ,
and ũz are the components of ũ = {E C I }u, the transformed con-
trol input vector. Similarly, � f̃x , � f̃ y , and � f̃z are the elements
of � f̃ = {E C I }�f (Di ). The scalar functions gu p (u p, u̇ p), gq(q, q̇),
and gν̇ (ν̇) reflect the desired dynamic response for the variables u p ,
q, and ν̇. As an example, critically damped error dynamics, of fre-
quency ωn , are desired for the distance elements u p and q whereas
an exponentially decaying error response is sought for ν̇.

An exact solution is available for Eqs. (20–22). To sim-
plify the form of the solution, let αx = 2h p x̃/a2

p , αy = 2h p ỹ/a2
p ,

βx = x̃/(x̃2 + ỹ2), and βy = ỹ/(x̃2 + ỹ2). Furthermore, let the left-
hand side of Eqs. (20–22) be summarized by Gu p , Gq , and G ν̇ ,
respectively. Then the commanded control input is expressed:

ũx =
(
βx Gu p − αy G ν̇

)

(αxβx + αyβy)
(23)

ũ y =
(
βy Gu p + αx G ν̇

)

(βxαx + βyαy)
(24)

ũz = Gu p + Gq (25)

Note that the preceding control law is singular if the deputy crosses
the focal line (ê3), x̃ = ỹ = 0. This does not present a significant
issue, however, because once the deputy is on the surface of the
paraboloid this condition is never met. This singularity can only
occur while the deputy is being driven onto the surface during the
injection phase. To circumvent this difficulty, it is only necessary
to allow the vehicle to coast away from this point before reacti-
vating the controller. For implementation of this approach in the
ephemeris model, the integration of each vehicle proceeds sepa-
rately in an Earth-centered inertial frame I . The relative state of
the deputy with respect to the chief is computed from these Earth-
centered states. These quantities are then transformed into the focal
frame (E) via r̃ = {E C I }r and ˙̃r = {E C I }ṙ. The results of this trans-
formation are substituted into Eqs. (17–19) and the values of u p , ν,
and q are subsequently determined. Finally, the necessary control
accelerations are computed from Eqs. (23–25).

Results
Recall that, throughout this study, the chief spacecraft is assumed

to evolve along an unstable orbit near the libration points. It is further
assumed that the desired baseline motion of the deputy vehicle does
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Fig. 4 Growth in nominal relative separation for a sample uncontrolled formation.

Fig. 5 Sample LQR vs IFL error response for deputy spacecraft in a 5000-km formation, fixed relative to the rotating frame (over 6 months), Near
a 200,000-km L1 halo orbit.

not correspond to a naturally occurring solution. Hence, if left un-
controlled, the deputy may quickly depart the vicinity of the chief
spacecraft as it evolves along its path. To illustrate this, suppose
that the chief spacecraft is known to evolve along a halo orbit with
out-of-plane amplitude Az of 200,000 km. Define a sample nominal
formation where the deputy spacecraft remains at a constant relative
distance from the chief vehicle. This nominal separation ranges be-
tween r ◦ = 50 m and r ◦ = 5 km. The nominal relative radial vector
is assumed to be of the form r◦(t) = r ◦ŷ. Thus, the orientation of
the chief–deputy radial line is fixed relative to the rotating frame,
R ṙ = 0 m/s. In the immediate vicinity of the reference halo orbit, the
relative position error, given by |r − r◦|, appears to grow quadrati-
cally with time, as evidenced from Fig. 4.

For a 50-m relative separation, and in the absence of control in-
puts, the natural response of the system places the deputy anywhere
above the 1-mm error mark within 6 h, 1 cm within 18 h, and 1 m
within 8 days. If, instead, the nominal separation is 5 km, the deputy
crosses the 1-mm error mark within 35 min, the 1-cm mark in just
under 2 h, and the 1-m mark in almost 20 h. This suggests that, if the
formation tolerances are not too constrained, a discrete control ap-
proach may be sufficient for small formations. However, if the con-
figuration constraints require submillimeter accuracy at all times,
nearly continuous control is necessary. For missions like MAXIM,

in which the detector spacecraft may be as far as 20,000 km away,
this is of great significance.

Fixed-State Formation Control: Comparison
of ILF and LQR Methodologies

LQR and input-state feedback linearization methods are applied
here to a 5000-km two-spacecraft formation fixed relative to the ro-
tating frame as defined in the CR3BP. Note that both methods can be
successfully applied to either the chief spacecraft orbit or the deputy
dynamics in either the CR3BP or the ephemeris model for any type
of formation. In this example, the line defining the formation is
commanded to track the rotating y axis at all times. Consistent with
Fig. 2, this type of formation represents the most cost effective base-
line configuration. Figure 5 illustrates the response to an injection
error defined by e(0) = (7, −5, 3.5) km and ė(0) = (1, −1, 1) m/s.
The top two plots in Fig. 5 illustrate the response of the error dynam-
ics in each state to the LQR controller, for a particular set of state
error and control input weighting matrices, Q and R. In contrast,
the two plots at the bottom of Fig. 5 illustrate the error response cor-
responding to each state for a controller based on the IFL approach,
as represented by Eq. (5), for ωn = 1250. Note that, in this example,
both controllers yield good tracking characteristics at essentially the
same cost, as illustrated in Fig. 6. The two time histories illustrated
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Fig. 6 LQR vs IFL control accelerations for deputy spacecraft in a 5000-km formation, fixed relative to the rotating frame (over 6 months), near a
200,000-km L1 halo orbit.

a) b)

Fig. 7 OFL control of radial distance plus rotation rate and associated thrust profile.

in this figure represent a close-up view of the converged control ac-
celeration components and of the associated net magnitude, beyond
the injection phase.

Observe that, for a 5000-km nominal separation and a 1000-kg
deputy vehicle, the thrust level required to enforce the desired con-
figuration is, roughly, between 0.5 and 1.0 mN. This is consistent
with the results previously presented in Fig. 2. Also, although the
results in Fig. 5 reflect only the response to initial injection errors,
the methodology is easily extended to formation reconfigurations
simply by redefining the nominal path appropriately at the desired
times.

In comparing the LQR and IFL results, the following information
is notable. Clearly, it is possible to identify error weighting matrices
such that the LQR and IFL responses are nearly identical. However,
the selection of the elements of these matrices is not necessarily
trivial. In fact, the selection itself can be envisioned as an optimiza-
tion problem. The goal of the preceding example is to obtain a very
specific set of response characteristics. In the IFL analysis, a crit-
ically damped response is sought. Matching the LQR response to
that of the IFL controller requires a very specific set of position and
velocity weights. The appropriate ratio between the position and
velocity weights is determined experimentally. The IFL approach
eliminates the need for this determination and, thus, is simpler for
the preliminary cost estimate.

Radial Distance and Rotation Rate Tracking
Consider a sample formation where the chief spacecraft evolves

along a Lissajous trajectory, as determined in the ephemeris model.
This quasi-periodic trajectory resembles the halo orbit used in the
two earlier examples. Let the nominal motion be defined by a rela-
tive separation of 5 km between the chief and deputy vehicles. To
illustrate the impact of the rotation rate on the formation-keeping
cost, consider two examples characterized by θ̇ = 1 revolutions/day
and θ̇ = 1 revolution/6 h. A sample implementation of the control
law in Eq. (15) is illustrated in Fig. 7 for a 700-kg spacecraft. In
Fig. 7a, the relative initial state is defined by r(0) = [12 −5 3] km
and ṙ(0) = [1 −1 1] m/s.

The equation of constraint in Eq. (14) guarantees that the plane of
motion is completely determined by the relative state of the deputy
before the controller is activated. From Fig. 8, it is also apparent that
the formation-keeping cost increases quadratically with rotation rate
and linearly with the separation that is commanded between the chief
and deputy vehicles. In this figure, cost is represented in terms of
the mean thrust level that is required to enforce the nominal solution
over the duration of the mission (180 days), assuming the vehicle
mass is 700 kg.

For a nominal separation of 50 m, commanding the deputy to spin
at one revolution per hour, about the chief spacecraft, requires over
100 mN of thrust for a 700-kg vehicle. The mean thrust drops to
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6.7 mN if the deputy vehicle is to nominally orbit the chief spacecraft
once every 4 h. The thrust levels continue to drop to 0.19 mN for one
revolution per day. If one revolution per day is required, a 500-m
separation raises the mean thrust to 18 mN.

Although the plane of motion is not affected by this type of con-
trol approach, activating the controller at the appropriate time, or
biasing the initial velocity, may be sufficient to achieve the desired
orbital plane. Overall, the control strategy is conceptually simple and
numerically efficient for implementation in the ephemeris model.
A more ambitious goal involving OFL control, then, is to target
aspherical formations.

Aspherical Formation Control
Consider a formation characterized by q = (10 km)ê3, h p =

500 m, and ap = 500 m. Let the focal line be oriented such that
α = 0 deg and δ = 45 deg. Each vehicle in the formation is to com-
plete one revolution along the surface once per day: ν̇ = 1 revo-
lution/day. The nominal motion of one of the vehicles is initially
described by u p = 200 m such that u̇ p = ü p = 0 and ν̈ = 0. After 5
days, the vehicle’s nominal path must be reconfigured, along the
paraboloid, such that ν̇ and u̇ p remain constant. The climb rate u̇ p is
specified such that, after 1 day, the vehicle has raised its “height” to
500 m relative to the nadir of the paraboloid, a 300-m climb relative
to the initial orbit. Let the initial relative state of the deputy ve-
hicle be defined such that r(0) = (4.6X̂ + 4.3Ŷ + 6.934Ẑ) km and
ṙ(0) = 0.05X̂ − 0.05Ŷ − 0.05Ẑ m/s. This particular initial state is

Fig. 8 Impact of commanded radial distance and spin rate on
formation-keeping costs.

Fig. 9 OFL controlled parabolic formation.

arbitrarily selected to facilitate the visualization process. For any
arbitrary initial state, the controller should first drive the vehicles
in the formation to the initial target configuration, then reconfigure
at the appropriate time. Once deployed, this evolution is to proceed
along the surface of the paraboloid. Application of this controller
results in the trajectory illustrated in Fig. 9.

The resulting path is divided into three segments. The segment
highlighted in orange represents the injection phase as well as the
initial orbit phase, for u p = 200 m. The green segment denotes the
reconfiguration phase, characterized by u̇ p = 300 m/day. The last
segment, in blue, is the final phase associated with u p = 500 m. The
thrust profile associated with this solution appears in Fig. 10.

According to Fig. 10, the thrust levels for a 700-kg deputy vehicle
range between 25 mN during injection to 1–2 mN for orbit mainte-
nance. The 1–2 mN represents the nominal formation-keeping cost
required to track the desired path. Note that the maximum thrust am-
plitude will vary according to the response frequency specified for
the variables u p , q, and ν̇. Also, although both the nominal and ac-
tual thrust profiles appear to converge onto constant segments, there
is an oscillation on the order of 0.003 mN during the orbit phase at
u p = 200 m (last part of phase 1) and u p = 500 m (phase 3), that is,
assuming the deputy mass is 700 kg.

Although the overall configurations may appear different, spheri-
cal and aspherical configurations share one thing in common: in both
cases, fuel expenditure is most heavily influenced by induced rel-
ative rotations rather than relative separation. Hence, for parabolic
formations, cost still increases quadratically with rotation rate along

Fig. 10 Thrust profile for OFL controlled parabolic formation.
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the surface and linearly with relative vehicle separation with respect
to the chief spacecraft.

Conclusions
In the present investigation, optimal control and feedback lin-

earization techniques are successfully applied to deploy, enforce,
and reconfigure a variety of formation configurations near the vicin-
ity of the libration points of the SEM system. Although the CR3BP
serves as an accurate initial guess for preliminary analysis, all
the control laws considered are ultimately implemented in the full
ephemeris model. The ephemeris model analysis can include solar
radiation pressure and any number of desired gravitational perturba-
tions. Depending on the constraints imposed on the formation, the
results presented in this study can require thrust levels anywhere on
the order of nano- to milli-Newtons, for a 700–1000-kg spacecraft.
In contrast, the deployment phase can require thrust levels in the
Newton range, depending on when the controller is activated. Even
if the formation constraints can be met, theoretically, the sensitivity
of these methods to modeling and thruster implementation errors
must be addressed. This is of particular importance for libration
point missions given the associated dynamic sensitivities to small
perturbations. Certainly, for any of the examples presented here,
discontinuing the thrust input at any time, or placing bounds on its
amplitude, leads to divergence from the desired nominal, especially
with the higher rates of rotation that induce higher tangential speeds.
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