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ẍ, ÿ, z̈ E-M nondimensional spacecraft acceleration coordinates, E-M rotating frame

x, y, z Sun-B1 nondimensional spacecraft position coordinates, Sun-B1 rotating frame
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ABSTRACT

Many opportunities for frequent transit between the lunar vicinity and the heliocentric

region will arise in the near future, including servicing missions to space telescopes and

proposed missions to various asteroids and other destinations in the solar system. The

overarching goal of this investigation is the development a framework for periodic and transit

options in the Earth-Moon-Sun system. Rather than overlapping different dynamical models

to capture the dynamics of the cislunar and heliocentric region, this analysis leverages a

four-body dynamical model, the Bicircular Restricted Four-Body Problem (BCR4BP), that

includes the dynamical structures that exist due to the combined influences of the Earth,

the Moon, and the Sun. The BCR4BP is an intermediate step in fidelity between the

CR3BP and the higher-fidelity ephemeris model. The results demonstrate that dynamical

structures from the Earth-Moon-Sun BCR4BP provide valuable information on the flow

between cislunar and heliocentric spaces.

Dynamical structures associated with periodic and bounded motion within the BCR4BP

are successfully employed to construct transfers between the 9:2 NRHO and locations of

interest in heliocentric space. The framework developed in this analysis is effective for transit

between any cislunar orbit and the Sun-Earth libration point regions; a current important

use case for this capability involves departures from the NRHOs, orbits that possess complex

dynamics and near-stable properties. Leveraging this methodology, one-way trajectories from

the lunar vicinity to a destination orbit in heliocentric space are constructed, as well as round-

trip trajectories that returns to the NRHO after completion of the objectives in heliocentric

space. The challenges of such trajectory design include the phasing of the trajectory with

respect to the Earth, the Moon, the Sun, on both the outbound and inbound legs of the

trajectory. Applications for this trajectory include servicing missions to a space telescope in

heliocentric space, where the initial and final locations of the mission is the Gateway near

the Moon. Lastly, the results of this analysis demonstrate that the properties and geometry

of the periodic orbits, bounded motion, and transfers that are delivered from the BCR4BP

are maintained when the trajectories are transitioned to the higher-fidelity ephemeris model.
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1. INTRODUCTION
1.1 Motivation

As evidenced by the Global Exploration Roadmap [ 1 ], international interest exists in a

new era of human exploration of the solar system. Such an effort is commencing with the

examination of options for maintaining a facility—at times crewed—in an orbit near the

Moon. The proposed Gateway concept is the current framework for the NASA development

of this space facility. From a baseline trajectory in a Near Rectilinear Halo Orbit (NRHO),

the Gateway is intended to serve as a proving ground for deep space technologies and as a

staging location for missions beyond low Earth orbit. While the NRHOs are identified in cis-

lunar space in terms of the Earth-Moon Circular Restricted Three-Body Problem (CR3BP),

the impact of the solar gravity generally cannot be ignored when considering departure from

the Earth-Moon region.

Many opportunities for frequent transit between the lunar vicinity and the heliocentric

region will arise in the near future. Servicing missions from the Gateway to space telescopes

and observatories in Sun-Earth L1 and L2 libration point orbits, including NASA’s James

Webb Space Telescope (JWST) [ 2 ], successfully launched earlier this year, and the Nancy

Roman Space Telescope (NRST) [ 3 ], scheduled to launch in 2027, as well as ESA’s Euclid

telescope [ 4 ] and ISRO’s Aditya-L1 solar observatory [ 5 ], may occur during their operational

lifetimes. Other opportunities include departure of spacecraft and probes to destinations

beyond the Earth-Moon vicinity, and the safe disposal of various objects from the proposed

Gateway facility. A common characteristic for these diverse mission scenarios is that the

combined gravitational influences of the Earth, the Moon, and the Sun are considered at

some stage of the trajectory design process. Transit trajectories between the Gateway orbit

in cislunar space and these Sun-Earth libration point orbits present many advantages; the

time of flight and the ∆V budget are generally lower than those associated with transfers

initiated in Low-Earth Orbit (LEO). Note that part of this cost is often assumed by the

launch vehicle. However, regular access to heliocentric space need not rely on such expensive

departure scenarios.
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Preliminary designs for trajectories in the Earth-Moon-Sun system often rely on ap-

proaches that overlap different dynamical models. A model describing the Earth-Moon

system, often the Earth-Moon CR3BP, is leveraged to describe the dynamics close to these

two primaries. A second model, for instance, the Sun-Earth CR3BP, is employed to rep-

resent the dynamics when the Sun’s gravitational influence is significant. One of the main

challenges of this approach is appropriate selection of the transition point between the two

models. Additionally, overlapping models inherently lack the framework to describe dynam-

ical structures that exist due to the combined influences of the Earth, the Moon, and the

Sun. Thus, a dynamical model that includes the gravitational influences of all three bodies of

interest on an object is useful to design trajectories in such complex dynamical environment.

By furthering the understanding of dynamical structures of the Earth-Moon-Sun system in

a unified model, periodic orbits and transit trajectories that leverage the dynamical flow are

constructed.

1.2 Previous Contributions

Multi-body dynamical models have been available for centuries to predict the motion of

celestial bodies and, more recently, design trajectories for manufactured objects. In partic-

ular, three-body models attempt to model dynamical systems where Keplerian mechanics

are limited or inadequate. The Circular Restricted Three-Body Problem (CR3BP) [ 6 ] is a

common model to design trajectories in the Sun-Earth and Earth-Moon systems. In the

Sun-Earth system, missions like SOHO [ 7 ] in 1995, GENESIS [ 8 ] in 2001 or Gaia [  9 ] in 2013

have successfully flown trajectories leveraging structures from the CR3BP. In the Earth-

Moon system, the spacecraft ARTEMIS P-1 as part of the THEMIS mission [  10 ] was the

first spacecraft to fly between Earth-Moon libration points orbits in 2011. As of January

2022, the satellite Queqiao, part of the Chinese Chang’e-4 mission [  11 ], is the only spacecraft

orbiting an Earth-Moon libration point.

Four-body dynamical models are currently an active area of research. In 1960, Huang

[ 12 ] derived the equations of motion in a problem now termed the Bicircular Restricted Four-

Body Problem (BCR4BP), and published them in a technical note titled The Very Restricted
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Four-Body Problem. Since then, four-body models have been defined and investigated by

a number of researchers. Examples of such work include the development by Scheeres [ 13 ]

and Olikara[ 14 ] of the restricted Hill four-body problem, which was employed to explore the

motion near the Sun-perturbed L4 and L5 equilibrium points of the Earth-Moon system.

Additionally, coherent four-body models, i.e., models where the Moon’s motion is a solution

of the Sun-Earth CR3BP, have been developed. Andreu [ 15 ] developed a Sun-perturbed,

coherent bicircular four-body model, denoted the quasi-bicircular problem, to investigate

the phase space in the vicinity of the L1 and L2 points. Another coherent four-body model

describing a Moon-perturbed Sun-Earth system was derived by Guzmàn [ 16 ] and employed

to construct transfers to Sun-Earth libration point orbits leveraging lunar gravity assists.

Comparisons between non-coherent and coherent bicircular four-body models have been

discussed extensively [ 17 ]–[ 19 ]. The four-body model that is employed in this investigation

is the BCR4BP [ 20 ], [ 21 ]. Periodic and quasi-periodic motion associated with the phase space

near the collinear[ 22 ] and triangular [  20 ], [  23 ] Earth-Moon equilibrium points are an active

field of research. Note that four-body models are not restricted to the Sun-planet-moon-

spacecraft configurations described in the previous contributions; Scheeres and Bellerose [ 24 ]

describe the motion of a spacecraft under the influence of a sun and a binary system of

asteroids. Lower-fidelity models capture behaviors from the ephemeris model; the numerous

four-body models mentioned in the previous contributions each capture various aspects of

this higher-fidelity model.

Four-body models have been successfully employed for trajectory design in recent years.

One preeminent problem that is examined within the context of the four-body dynamical

models is the design of low-energy transfers [ 25 ]–[ 28 ] from the Earth to the Moon leveraging

the gravitational influence of the Sun. An exhaustive list of optimal two-impulse Earth-Moon

transfers computed in the BCR4BP is provided by Topputo [ 29 ]. Three-impulse transfers

that include Lunar Gravity Assists (LGA) are constructed within the context of the bicircular

restricted four-body problem [ 30 ], [ 31 ] and the bielliptic restricted four-body problem [ 32 ].

Recent contributions [  33 ]–[ 35 ] have explored the design of low-energy lunar transfers with

low-thrust propulsion methods.
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This investigation leverages the Earth-Moon NRHOs as the hub orbit in cislunar space.

The NRHOs are a subset of the halo family of orbits and are defined within the context of

the CR3BP. Previous contributions demonstrate that an infinity of periodic orbits exists in

the CR3BP [ 36 ], [ 37 ]. Howell [ 36 ] demonstrated the existence of the halo family of periodic

orbits. Zimovan et al. [ 38 ] employed the linear stability properties of the Earth-Moon halo

orbits to define the boundaries of the NRHO subsets. An NRHO baseline is available as a

SPICE SPK-type [  39 ] file on the JPL website [ 40 ]. The baseline spans 15 years from January

2020 to February 2035 and possesses small discontinuities in velocity near apolune that allow

the orbit to be maintained [  41 ]. Additionally, Zimovan-Spreen [ 42 ], [ 43 ] identified multiple

related families of periodic orbits in the close vicinity of the L2 NRHOs. Previous authors

also investigated the transition of the NRHOs to higher-fidelity dynamical models, including

Boudad et al. [ 44 ] in the BCR4BP and Vutukuri [  45 ] in the ephemeris force model.

1.3 Research Objectives and Document Overview

The overarching goal of this investigation is the development of a framework for periodic

and transit options in the Earth-Moon-Sun system. To enable frequent transit between the

cislunar and the heliocentric region, further understanding of the fundamental dynamical

structures in the Earth-Moon-Sun system is necessary. Expanding the understanding of

this complex dynamical environment increases the number of options for a mission scenario

and facilitates the trajectory design process. Rather than relying on an overlapping models

approach, the current investigation employs a four-body model, the Bicircular Restricted

Four-Body Problem (BCR4BP). The proposed framework is articulated in terms of the

following objectives:

1. Develop a catalog of dynamical structures in an Earth-Moon-Sun multi-body model

Dynamical structures, such as equilibrium solutions, periodic orbits and their associ-

ated manifolds, as well as forbidden regions are investigated within the context of the

BCR4BP. The relationships between these dynamical structures and the lower-fidelity

natural flows existing in the CR3BP are explored.
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2. Develop a framework for transfer design in the Earth-Moon-Sun system that employs

the dynamical structures and techniques from dynamical system theory

The dynamical structures explored in the BCR4BP are the foundations of this transfer

design framework. Tools from dynamical system theory, such as mapping techniques,

differential corrections, and continuation schemes are employed such that the natural

flow and low-energy pathways emerge between the structures in the cislunar space and

the heliocentric region.

3. Demonstrate the use of dynamical structures and tools to design end-to-end transfers

between the cislunar and heliocentric regions

The applicability of the proposed framework to practical trajectory design scenarios

is verified. The proposed framework is employed to design end-to-end trajectories for

two sample mission scenarios. End-to-end transfers between the Gateway in an Earth-

Moon NRHO and a Sun-Earth halo orbit are constructed. Two types of transfers are

constructed: one-way transfers to heliocentric space as well as round-trip trajectories

that return to the lunar orbit after completion of the objectives in heliocentric space.

The trajectory design is then validated in the full ephemeris model.

The present investigation is focused on trajectory design in the Earth-Moon-Sun system,

with the Gateway orbit as the orbit of interest in the cislunar region. However, the proposed

framework is applicable to other planet-moon-sun systems, and other orbits in cislunar space.

The document is organized as follow:

 Chapter 2 - Dynamical Models The three dynamical models employed in this inves-

tigation are presented. The Circular Restricted Three-Body Problem (CR3BP) is

an autonomous model approximating the Earth-Moon dynamics. The Bicircular Re-

stricted Four-Body Problem (BCR4BP) is a time-dependent, periodic model describing

the motion of a spacecraft in the Earth-Moon-Sun regime. Two formulations of the

BCR4BP are leveraged. The first formulation is defined in the Earth-Moon rotating

frame and corresponds to a Sun-perturbed Earth-Moon CR3BP. The second formu-

lation describes a Moon-perturbed Sun-Earth CR3BP and is defined in the Sun-B1
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rotating frame, where B1 is the Earth-Moon barycenter. The BCR4BP is an inter-

mediate step between the CR3BP and a high-fidelity, time-dependent, non-periodic

ephemeris model. This N -body model based on ephemeris data provides high-fidelity

analysis for particular mission scenarios.

 Chapter 3 - Trajectory Building and Numerical Schemes  Nonlinear dynamical sys-

tems, such as models developed in the first chapter, are complex and challenging to

analyze. Methods from dynamical systems theory facilitate the investigation of these

complex systems. In contrast to linear systems, nonlinear systems cannot be decom-

posed into parts, solved separately and recombined to deliver a final assessment; the

superposition principle does not apply to nonlinear systems. Thus, the goal of any

application of dynamical systems theory is not to supply a solution to this complex,

nonlinear problem, but to offer insight concerning the dynamical space in the vicinity

of a specific trajectory. First, linear behavior characteristics are obtained through the

state-transition matrix. Differential corrections schemes then leverage this information

to adjust the characteristics of a certain trajectory. Continuation strategies then ex-

pand these solutions into a family of trajectories sharing similar features. Finally, the

algorithms employed to numerically integrate the differential equations of motion, as

well as the trajectory design tools employed for verification of these integrations, are

introduced.

 Chapter 4 - Dynamical Structures in the BCR4BP In this chapter, various dynami-

cal structures that exist within the context of the BCR4BP are defined. Instantaneous

equilibrium solutions exist in the BCR4BP, as non-autonomous counterparts of the

time-invariant Lagrange points in the CR3BP. Instantaneous, or pulsating, zero ve-

locity surfaces (ZVSs) appear in the BCR4BP to add perspective for the dynamical

behavior. The ZVSs enclose forbidden regions that limit the motion of an object in

space and are defined as a function of the energy along a trajectory. Two energy-like

quantities are defined within the BCR4BP: the Earth-Moon energy-like value and the

Sun-B1 energy-like value. Energy-like plots offer a binary check to record possible tran-

sit into and out of cislunar space at a certain epoch along a path. Precisely periodic

30



orbits that possess orbital periods in resonance with the Earth-Moon-Sun period, i.e.,

the synodic period, are accessible in both the Earth-Moon and the Sun-B1 rotating

frames. Bounded motion is also available and constructed for transitioning orbits that

do not possess a resonance with the synodic period. Lastly, invariant manifolds pro-

vide a useful approximation to the nonlinear dynamical behavior in the vicinity of a

reference solution. Strategies to compute global invariant manifolds associated with

periodic orbits and bounded motion are introduced.

 Chapter 5 - Cislunar-to-Heliocentric Transfers  A comprehensive knowledge of the dy-

namical structures identified in the BCR4BP simplifies the preliminary design process

for transfers between the Earth-Moon system and the Sun-B1 system. The transfer

framework between cislunar and heliocentric space is described. Natural motion to and

from the lunar vicinity is explored using an approximate manifold from the BCR4BP

halo orbits. Perilune transfer families are then constructed to extend the pool of avail-

able initial guesses for the end-to-end transfer between the Earth-Moon NRHO and

the Sun-B1 LPO and are summarized in perilune transfer maps. Various methods

to select an initial guess among the collection of available arcs for a transfer to/from

the 9:2 synodic resonant L2 NRHO, given certain desired transfer characteristics, are

introduced. The selected initial guess is then corrected using a differential corrections

scheme, resulting in a continuous end-to-end trajectory. To illustrate the trajectory de-

sign framework, multiple families of round-trip transfers between the Earth-Moon 9:2

synodic resonant BCR4BP NRHO and L1/L2 halo LPOs are constructed. The trans-

fers represent a range of departure and arrival epochs along the Earth-Moon NRHO, as

well as a variety of the geometries near the Moon and in heliocentric space. Finally, the

trajectories constructed in the BCR4BP are validated in the higher-fidelity ephemeris

model. To facilitate the transition between dynamical models, a novel transforma-

tion strategy is developed to transition an end-to-end transfer from the BCR4BP to a

suitable initial guess for a transfer in the ephemeris model.

 Chapter 6 - Concluding Remarks A summary of the results is presented and recom-

mendations for future work are offered.
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Portions of this work have been presented at various conferences and published elsewhere

prior to incorporation into this document. The original papers are available in References

[ 21 ], [  44 ], [  46 ]–[ 52 ].
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2. DYNAMICAL MODELS

Three dynamical models are employed in this investigation. The Circular Restricted Three-

Body Problem (CR3BP) is an autonomous model approximating the Earth-Moon dynam-

ics. The Bicircular Restricted Four-Body Problem (BCR4BP) is a time-dependent, periodic

model describing the motion of a spacecraft in the Earth-Moon-Sun regime. Two formu-

lations of the BCR4BP are leveraged. The first formulation is defined in the Earth-Moon

rotating frame and corresponds to a Sun-perturbed Earth-Moon CR3BP. The second formu-

lation describes a Moon-perturbed Sun-Earth CR3BP and is defined in the Sun-B1 rotating

frame, where B1 is the Earth-Moon barycenter. The BCR4BP is an intermediate step be-

tween the CR3BP and a high-fidelity, time-dependent, non-periodic ephemeris model. This

N -body model based on ephemeris data provides high-fidelity analysis for particular mission

scenarios. Note that these three lower-fidelity dynamical models are specific cases of the

general N -body problem 

1
 .

2.1 The Circular Restricted Three-Body Problem

The first lower-fidelity model employed in this analysis is the CR3BP. In the CR3BP,

the motion of a massless spacecraft is subject to the influence of two primary gravitational

bodies, for example, the Earth and the Moon or the Sun and the Earth. The model assumes

that the two primaries are point masses in circular orbits about their common center of mass;

this assumption yields an autonomous dynamical system. The motion of the spacecraft un-

der the influence of the two primaries is described relative to a rotating frame moving at

a fixed rate consistent with the circular rotation of the primaries. By convention, the dif-

ferential equations governing the CR3BP are nondimensional. The characteristic quantities

include: (i) the distance between the primaries; (ii) the sum of the primary masses; (iii)
1

 ↑ See Appendix  A for a discussion on the N -body problem.
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a characteristic time such that the nondimensional gravitational constant G̃ equals unity 

2
 .

The nondimensional equations of motion are then

ẍ = 2ẏ + ∂U∗

∂x
, ÿ = −2ẋ+ ∂U∗

∂y
, z̈ = ∂U∗

∂z
(2.1)

where x, y, z (respectively, ẋ, ẏ, ż) are the position (respectively, the velocity) components of

the spacecraft expressed in the Earth-Moon rotating coordinates and derivatives as viewed

by an observer in the rotating frame. The associated pseudo-potential function U∗ is defined

for the Earth-Moon CR3BP as

U∗ = 1
2(x2 + y2) + µ

re-sc
+ 1− µ

rm-sc
(2.2)

The quantities re-sc and rm-sc are the distances between the spacecraft and the primaries,

and µ = mm/(me+mm) is the mass parameter for the Earth-Moon CR3BP system.

The equations of motion in the CR3BP do not admit a closed-form solution. However,

five equilibrium solutions, the libration points, exist and are denoted L1 through L5. The

CR3BP allows a single integral of the motion, the Jacobi constant, evaluated as

C = 2U∗ −
(
ẋ2 + ẏ2 + ż2

)
(2.3)

This energy-like quantity limits the motion of the spacecraft to regions where the magnitude

of the rotating velocity is real and not a complex quantity. These regions are bounded by

Zero Velocity Surfaces (ZVSs). Detailed derivation of the equations of motion, equilibrium

points, and ZVSs of the CR3BP are available in Boudad, 2018 [ 21 ].

2.2 The Bicircular Restricted Four-Body Problem

In scenarios where the gravitational influence of the Sun is non-negligible, a higher-fidelity

model is necessary to accurately describe the spacecraft behavior. The BCR4BP incorporates

the gravitational effect of three massive bodies, for instance, the Earth, the Moon and the
2

 ↑ See Appendix  B for the characteristic quantities associated with various CR3BP systems.
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Sun, on the motion of a spacecraft [ 17 ], [  20 ], [  21 ]. The mass of the spacecraft is assumed to

be negligible in comparison to the masses of the other bodies.

2.2.1 Earth-Moon Frame Formulation

In this model, the Earth and the Moon are assumed to move in circular orbits around

their common barycenter, denoted B1, while the Sun and B1 move in circular orbits with

respect to the Earth-Moon-Sun barycenter, labeled B2. Note that this adaptation of the

BCR4BP assumes the Sun moves in the Earth-Moon plane of motion. While versions of

BCR4BP with different orbital planes for the primaries exist [ 21 ], the coplanar assumption

is adequate for the variety of applications considered in this analysis. The BCR4BP is not a

coherent model: the perturbing acceleration from the Sun does not influence the motion of

the Earth and the Moon, thus, the motion of the Moon is not a solution to the Sun-Earth

CR3BP. When viewed in the Earth-Moon rotating frame, the Sun moves in a circular orbit

around the Earth-Moon barycenter B1, as apparent in Figure  2.1 . The period of the orbit

of the Sun in this frame is equal to the synodic month, that is, approximately 29.5 days.

The equations of the motion for the Earth-Moon CR3BP, in Equation ( 2.1 ), are extended

to include the solar gravitational influence as follows 

3
 ,

ẍ = 2ẏ + ∂Υ∗

∂x
, ÿ = −2ẋ+ ∂Υ∗

∂y
, z̈ = ∂Υ∗

∂z
(2.4)

where Υ∗ is the pseudo-potential function in the BCR4BP

Υ∗ = U∗ + µs

rs-sc
− µs

a3
s
(xs x+ ys y + zs z) (2.5)

Then, µs = ms
me+mm

is the nondimensional mass of the Sun and as = rs
re-m

is the nondimensional

distance between the Earth-Moon barycenter and the Sun. The variables xs, ys, zs are the
3

 ↑ A detailed derivation of the equations of motion is available in Appendix  C.1 .
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position components of the Sun, originating at B1, and expressed in terms of the Earth-Moon

rotating frame, 
xs

ys

zs

 = as


cos(θ)

sin(θ)

0

 =


cos(ω t+ θ0)

sin(ω t+ θ0)

0

 (2.6)

where the Sun angle θ is measured from the rotating x̂ axis to the Sun position vector as

defined in Figure  2.1 , and ω = −0.9253 is the nondimensional angular velocity of the Sun as

viewed in the Earth-Moon rotating frame. This angular velocity is computed as the difference

between the nondimensional mean motion of the Sun in the inertial frame centered at the

Earth-Moon barycenter, that is, ns =
√

(1+µs)/a3
s , and the nondimensional mean motion of

the Earth-Moon system with respect to the same observer, n, that is, the value one. Since

the nondimensional mean motion of the Sun is less than nondimensional mean motion of the

Earth-Moon system, ω is negative and the Sun appears to move clockwise in the Earth-Moon

rotating frame.

Observe that the independent time variable, t, expressed in Earth-Moon nondimensional

units, explicitly appears in the BCR4BP pseudo-potential expression through the terms that

include the position of the Sun. Therefore, the BCR4BP is time-dependent and does not

x̂

ŷ

θ

x̂

ŷ
ẑ

Earth

Moon
B1

B2

r̄e

r̄m

r̄sc

r̄s

Sun

spacecraft

Figure 2.1. BCR4BP in the Earth-Moon rotating frame
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admit an integral of the motion. However, an energy-like function is defined to be consistent

with the Jacobi constant in the CR3BP, i.e.,

H(θ) = 2Υ∗ −
(
ẋ2 + ẏ2 + ż2

)
(2.7)

Similar to the Jacobi constant, this energy-like quantity instantaneously limits the motion

of the spacecraft to regions where the magnitude of the rotating velocity is real and not a

complex quantity. Note that this energy-like function, H, is defined as a scaled multiple of

the Hamiltonian function [ 6 ], [ 53 ] in the BCR4BP as formulated in the Earth-Moon rotating

frame, H, such that H = −2H.

2.2.2 Sun-B1 Frame Formulation

In scenarios where the spacecraft departs the Earth-Moon vicinity, its trajectory may be

more insightful when represented in the Sun-B1 rotating frame. The BCR4BP equations of

motion are, therefore, also derived in this frame. In the B2-centered Sun-B1 rotating frame,

the Sun and B1 are fixed, while the Earth and the Moon are in circular orbits about their

common barycenter B1, as illustrated Figure  2.2 . The positions of the Earth and the Moon

are uniquely described by the Moon angle, θ, defined as the angle between the rotating x̂

axis and the position vector from B1 to Moon, labeled r̄B1m. Note that underlined variables

denote quantities in the Sun-B1 rotating frame, while non-underlined variables describe

quantities in the Earth-Moon rotating frame. The equations of motion for the BCR4BP in

the Sun-B1 rotating frame are 

4
 ,

ẍ = 2ẏ + ∂Υ∗

∂x
, ÿ = −2ẋ+ ∂Υ∗

∂y
, z̈ = ∂Υ∗

∂z
(2.8)

where Υ∗ is the pseudo-potential function defined in the Sun-B1 rotating frame,

Υ∗ = 1
2(x2 + y2) +

1− 1
µs+1

rs-sc
+

1−µ
µs+1

r̄e-sc
+

µ
µs+1

rm-sc
(2.9)

4
 ↑ A detailed derivation of the equations of motion is available in Appendix  C.2 .
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The equations of motion in the BCR4BP, as formulated in the Sun-B1 rotating frame in

Equation ( 2.8 ) represent the same dynamics as the equations of motion for the BCR4BP in

the Earth-Moon rotating frame in Equation ( 2.4 ). Consistent with the equations of motion in

the CR3BP and the equations of motion for the BCR4BP as formulated in the Earth-Moon

rotating frame, the equations of motion describing the BCR4BP dynamics in the Sun-B1

rotating frame are nondimensional. The characteristic quantities include: (i) the Sun-B1

distance; (ii) the sum of the Sun, Earth and Moon masses; (iii) a characteristic time such

that the nondimensional gravitational constant G̃ equals unity  

5
 . The position vectors of the

Earth and the Moon with respect to the system barycenter, B2, are then defined as,

r̄e = r̄B1 + r̄B1e =


1− 1

µs+1

1− 1
µs+1

0

+


− µ
as

cos(θ)

− µ
as

sin(θ)

0



r̄m = r̄B1 + r̄B1m =


1− 1

µs+1

1− 1
µs+1+

0

+


1−µ
as

cos(θ)
1−µ
as

sin(θ)

0



(2.10)

5
 ↑ See Appendix  B for the characteristic quantities associated with the Sun-B1 CR3BP.

x̂

ŷ

θ

B2

x̂

ŷ
ẑ

B1

Earth

Moon

spacecraft

Sun

Figure 2.2. BCR4BP in the Sun-B1 rotating frame.
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where θ = π−θ = ω t+θ0 is the Moon angle, and ω = |ω|
1−|ω| is the nondimensional angular rate

of the Earth and the Moon in their motion around their common barycenter B1. Note that

t is the independent time variable expressed in terms of Sun-B1 nondimensional quantities.

Alignment of the Sun, Earth, and Moon occurs every synodic period, that is, approximately

29.5 days. Similar to the BCR4BP formulated in the Earth-Moon rotating frame, the Sun-B1

BCR4BP is a non-autonomous, periodic system.

An energy-like quantity is defined in the Sun-B1 frame formulation of the BCR4BP.

Recall that the BCR4BP is a time-dependent system. In the Earth-Moon rotating frame,

the independent time variable, t explicitly appears in the BCR4BP pseudo potential in

Equation ( 2.9 ) through the positions of the Earth and the Moon, defined in Equation (  2.10 ).

Thus, the BCR4BP does not admit an integral of the motion. However, a scaled version

of the Hamiltonian function in the BCR4BP is defined to be consistent with the Jacobi

constant in the CR3BP. In the Sun-B1 rotating frame, this energy-like value is

H(θ) = 2Υ∗ −
√

(ẋ2 + ẏ2 + ż2) (2.11)

Equations ( 2.11 ) relate nondimensional position and velocity states. Thus, similar to the

Jacobi constant in the CR3BP, the H value, is a nondimensional energy-like metric.

2.2.3 Transformation Between the Two Formulations

The equations of motion for the BCR4BP as viewed in the Earth-Moon frame in Equa-

tion ( 2.4 ), and the formulation in the Sun-B1 rotating frame in Equation (  2.8 ), describe the

same dynamical system. A combination of scaling and rotating transformations is employed

to transition states from one formulation to the other. First, the transformation from the

Earth-Moon frame formulation to the Sun-B1 frame is described in terms of the following

steps:

1. Compute the epoch in the Sun-B1 formulation, Moon angle θ from the epoch in the

Earth-Moon rotating frame, i.e., the Sun angle θ
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2. Rotate each state from the Earth-Moon rotating frame to the Sun-B1 rotating frame

using the Moon angle θ

3. Dimensionalize the state components using the Earth-Moon characteristic quantities

4. Nondimensionalize the resulting state components using the Sun-B1 characteristic

quantities

5. Shift the origin of the position components 

6
 of the state vector from B1 to B2

The relationship between the Sun angle and the Moon angle is

θ = π− θ (2.12)

Thus, a Sun-Earth-Moon configuration occurs at θ = 180◦, or equivalently, θ = 0◦ and from

the perspective of the Earth, a full Moon is observed. Conversely, for θ = 0◦ or θ = 180◦,

an Earth-Moon-Sun configuration occurs, and a new Moon is observed from Earth. Steps 2

through 5 of the transformation are summarized in two equations as

[
x y z

]
= 1
as

([
x y z

]
· C
)

+
[
1− 1

µs+1 0 0
]

[
ẋ ẏ ż

]
=
√

as

µs + 1

([
ẋ ẏ ż

]
· C +

[
x y z

]
· Ċ
) (2.13)

where the direction cosine matrix from the Earth-Moon rotating frame to the Sun-B1 rotating

frame and its first derivative with respect to time are

C =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , Ċ = ω


− sin θ cos θ 0

− cos θ − sin θ 0

0 0 0

 , (2.14)

6
 ↑ The relative velocity of B1 with respect to B2 is zero. Thus, the velocity components of the state vector
do not need to be shifted.
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To transform states from the Sun-B1 frame formulation to the Earth-Moon formulation,

steps 2 to 5 are simply accomplished in reverse order. The corresponding operations are

summarized in the following equations

[
x y z

]
= as

([
x y z

]
−
[
1− 1

µs+1 0 0
])
· CT[

ẋ ẏ ż

]
=
√
µs + 1
as

([
ẋ ẏ ż

]
· C +

[
x y z

]
· ĊT

) (2.15)

where the X T operator denotes the transpose of the matrix X . The transformations in

Equations ( 2.13 )–( 2.15 ) offer a useful way to transition states from one formulation of the

BCR4BP to the other and eliminate the need to numerically integrate both sets of differential

equations in Equations ( 2.4 ) and ( 2.8 ).

2.3 The N-Body Ephemeris Model

For applications in mission scenarios where high-fidelity modeling accuracy is required,

the N -Body differential equations and planetary ephemerides are employed. The N -body

dynamics describe the motion of a particle of interest (e.g., a spacecraft), labeled Pi, subject

to the gravitational influence of a central body, Pc, and N perturbing bodies P1, P2, . . . , PN ,

all assumed to be modeled as particles. The position state vector, ρ̄ , for each of the bodies

is expressed in inertial coordinates relative to the central body Pc, as denoted in Figure  2.3 .

The equations of motion for the body of interest are

¨̄ρci = −G
(
mi +mc

‖ρ̄ci‖3

)
ρ̄ci +G

N∑
k=1
k 6=i,c

mk

(
ρ̄ck − ρ̄ci
‖ρ̄ck − ρ̄ci‖3 −

ρ̄ck
‖ρ̄ck‖3

)
(2.16)

where G is the gravitational constant and mγ is the mass of the Pγ body. Note that the

state vector for the Pk perturbing body with respect to the central body Pc, that is, ρ̄ck,

is accessed using the Jet Propulsion Laboratory DE430 ephemerides via the SPICE toolkit

[ 39 ], [ 54 ]. The ephemeris formulation in the current investigation includes the Earth, the

Moon, the Sun, and Jupiter. The equilibrium points derived in the lower-fidelity models,

such as the Li libration points in the CR3BP, do not exist in the ephemeris model. However,

41



quasi-periodic motion in the vicinity of these points remains available in the higher-fidelity

ephemeris model.

X̂

ˆ

Ŷ
X̂

Ẑ

ρ̄ ci

ρ̄c1

ρ̄
c2

ρ̄
c3

ρ̄
cN

Pc

Pi (spacecraft)

P1

P2

P3

PN

Figure 2.3. N -Body ephemeris model as defined in the Pc-centered inertial frame.
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3. TRAJECTORY BUILDING AND NUMERICAL SCHEMES

Nonlinear dynamical systems, such as the CR3BP or the BCR4BP, are complex and analy-

sis can be challenging. Methods from dynamical systems theory facilitate the investigation

of these complex systems. In contrast to linear systems, nonlinear systems cannot be de-

composed into parts, solved separately and recombined to deliver a final assessment; the

superposition principle does not apply to nonlinear systems [ 55 ]. Thus, the goal of any ap-

plication of dynamical systems theory is not to supply a solution to this complex, nonlinear

problem, but to offer insight concerning the dynamical space in the vicinity of a specific

trajectory. First, linear behavior characteristics are obtained through the state-transition

matrix. Differential corrections schemes then leverage this information to adjust the char-

acteristics of a certain trajectory. Continuation strategies then expand these solutions into

a family of trajectories sharing similar features. Finally, the algorithms employed to numer-

ically integrate the differential equations of motion, as well as the trajectory design tools

employed for verification of these integrations, are introduced.

3.1 State-Transition Matrix

The equations of motion for the CR3BP in Equation ( 2.1 ), for the BCR4BP in Equa-

tions ( 2.4 ) and (  2.8 ), and the N -body ephemeris models in Equation ( 2.16 ) are nonlinear.

Nonlinear systems of equations are expressed in terms of a vector differential equation in the

form
˙̄X (T ) = F̄

(
X̄ (T )

)
(3.1)

where X̄ , the state vector and F̄ , the vector of nonlinear functions depend on the time T .
The perturbation along a given trajectory, δX̄ (T ), is defined

δX̄ (T ) = X̄ (T )− X̄R(T ) (3.2)
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where X̄R(T ) is the reference state and X̄ (T ) is the actual state at any time along the path.

Using the perturbation defined in Equation ( 3.2 ), Equation ( 3.1 ) is rewritten as a function

of a reference state X̄R(T ) and a perturbation δX̄ (T ).

˙̄XR(T ) + δ ˙̄X (T ) = F̄
(
X̄R(T ) + δX̄ (T )

)
(3.3)

Then, a first-order Taylor series expansion yields

˙̄XR(T ) + δ ˙̄X (T ) ≈ F̄
(
X̄R(T )

)
+ ∂F̄
∂X̄

∣∣∣∣∣
X̄R(T )

δX̄ (T ) + H.O.T. (3.4)

The terms of order 2 or higher are denoted as Higher Order Terms, or H.O.T. Equation (  3.4 )

is reduced to a linear relationship between δ ˙̄x(t) and δX̄ (T ) by recognizing that ˙̄XR(T ) =

F̄
(
X̄R(T )

)
and ignoring the H.O.T. Thus, Equation ( 3.4 ) is reduced to

δ ˙̄X (T ) ≈ ∂F̄
∂X̄

∣∣∣∣∣
X̄R(T )

δX̄ (T ) = A(T ) δX̄ (T ) (3.5)

The A(T ) matrix is the Jacobian matrix for the vector differential equation F̄ evaluated on

X̄R(T ). For instance, by defining δX̄ =
[
δx δy δz δẋ δẏ δż

]T
, the linear variational

equations of motion for the BCR4BP as defined in the Earth-Moon rotating frame are



δẋ

δẏ

δż

δẍ

δÿ

δz̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Υ∗xx Υ∗xy Υ∗xz 0 2 0

Υ∗yx Υ∗yy Υ∗yz −2 0 0

Υ∗zx Υ∗zy Υ∗zz 0 0 0





δx

δy

δz

δẋ

δẏ

δż


(3.6)

where Υ∗ is the pseudo-potential function for the BCR4BP in the Earth-Moon rotating

frame, as defined in Equation ( 2.5 ). Similarly, the linear variational equations of motion
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for the BCR4BP as defined in the Sun-B1 rotating frame are obtained by denoting δX̄ =[
δx δy δz δẋ δẏ δż

]T
and appear in the form



δẋ

δẏ

δż

δẍ

δÿ

δz̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Υ∗xx Υ∗xy Υ∗xz 0 2 0

Υ∗yx Υ∗yy Υ∗yz −2 0 0

Υ∗zx Υ∗zy Υ∗zz 0 0 0





δx

δy

δz

δẋ

δẏ

δż


(3.7)

where Υ∗ is the pseudo-potential function for the BCR4BP in the Earth-Moon rotating

frame, as defined in Equation ( 2.9 ). Linear variational equations for the BCR4BP are derived

employing a first-order Taylor series approximation.

A general solution of the linear variational equations is produced by integrating Equa-

tion ( 3.5 ) from time T0 to time T . Recall that the A matrix relates the time derivative of

the variational vector, ˙̄X (T ) to the variational vector itself, and is generally a function of

time. Thus, a general solution of the linear variational vector equation is

δX̄ (T ) = Φ(T , T0) δX̄ (T0) (3.8)

where Φ(T , T0) is the State-Transition Matrix (STM) such that

Φ(T , T0) = exp (A(T − T 0))

= ∂X̄ (T )
∂X̄ (T 0)

(3.9)

The State-Transition Matrix or sensitivity matrix relates perturbations in an initial state

X̄ (T 0) to the perturbations in a state downstream X̄ (T ). This matrix is essentially a linear
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map between the initial perturbation δX̄ (T 0) and the perturbation at a later time X̄ (T 0).

The STM possesses many useful properties, including

Φ(T0, T0) = I (3.10)

Φ(T2, T0) = Φ(T2, T1) Φ(T1, T0) (3.11)

Φ(T0, T1) = Φ−1(T1, T0) (3.12)

Substituting the general solution from Equation (  3.8 ) into the differential equation in Equa-

tion ( 3.5 ) yields the following system of differential equations, here presented in matrix form,

for Φ(t, t0):

Φ̇(T , T0) = A Φ(T , T0) (3.13)

This system of differential equations is numerically integrated along with the equations of

the motion, where Equation ( 3.10 ) identifies the initial conditions, i.e., Φ(T0, T0). In regimes

that admit no closed-form solution, such as the CR3BP or the BCR4BP, the sensitivity

information from the STM offers useful predictions (in the linear sense) of the dynamical

behavior.

3.2 Differential Corrections Schemes

The goal of the differential corrections process is the determination of a set of variables,

collected into the design variable vector X̄, such that a collection of scalars and/or constraints,

in a constraint vector F̄, is satisfied. The n elements in the design variable vector, X̄, can

be states, angles (for instance, Sun angle or Moon angle), time-of-flight or another variable

of interest. The design variable vector is then formed as

X̄ =
[
X1 X2 . . . Xn

]T
(3.14)
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Since the role of X̄ is essentially to ‘control’ the values in the constraint vector, X̄ is also

termed the control variables vector. Them elements of the constraint vector, F̄, are functions

of one or more variables

F̄ =
[
F1 F2 . . . Fm

]T
(3.15)

The constraints are satisfied when a desired final state is computed such that the two-norm of

the constraint vector evaluated at the design variable vector X̄∗ is below a specified numerical

tolerance e,

‖F̄(X̄∗)‖2 =< e (3.16)

The elements of the design variable vector are not independent. Thus, a relationship be-

tween them exists and the determination of X̄∗ is an iterative process. A multi-dimensional

Newton-Raphson scheme [ 56 ] is the basis for the update equation due to its versatility and

straightforward implementation. Let X̄c be a design variable vector close to X̄∗. The con-

straint vector, F̄(X̄∗), is expanded about X̄∗ in a first-order Taylor series such that

F̄(X̄∗) = F̄(X̄c) + DF̄(X̄c)
(
X̄∗ − X̄c

)
(3.17)

where DF̄(X̄c) is the m × n Jacobian matrix such that the term in the ith row and the jth

column is defined as ∂Fi
∂Xj

and evaluated at X̄c. For speed and efficiency, the higher-order

terms are ignored. Recognizing that X̄∗ satisfies the constraints, Equation ( 3.17 ) is rewritten

as

F̄(X̄c) + DF̄(X̄c)
(
X̄∗ − X̄c

)
= 0̄ (3.18)

For nonlinear problems, an iterative process is required to solve for X̄∗. When replacing X̄∗

by the design variables vector at the current iteration, i.e., X̄i, and X̄c by the design variables

vector at the previous iteration, that is, X̄c, Equation ( 3.18 ) becomes

F̄(X̄i−1) + DF̄(X̄i−1)
(
X̄i − X̄i−1

)
= 0̄ (3.19)

The change in the control variable vector, δX̄ = X̄i − X̄i−1, is produced by inverting and

rearranging Equation ( 3.19 ). When the number of design variables n is equal to the number
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of constraints m, the Jacobian matrix DF̄ is square. If DF̄ is nonsingular, the change in the

design variables is evaluated as

δX̄ = −
(
DF̄(X̄i−1)

)−1
F̄(X̄i−1) (3.20)

If the number of design variables exceeds the number of constraints (n > m), an infinite

number of solutions X̄i to Equation ( 3.16 ) exists. From among many options, the approach

in this work identifies an update closest to the reference X̄i−1, and leverages the minimum-

norm solution via the update equation

δX̄ = −
(
DF̄(X̄i−1)

)T (
DF̄(X̄i−1)

(
DF̄(X̄i−1)

)T)−1

F̄(X̄i−1) (3.21)

In Equation ( 3.21 ), the Jacobian matrix is a non-square matrix. The higher-order terms

are ignored in the Taylor expansion, and the update equations are approximations. Thus, a

solution X̄i is computed by iterating on Equation ( 3.20 ) or on Equation ( 3.21 ), until reaching

a selected tolerance. If the number of constraints exceeds the number of control variables

(n < m), the system is said to be ‘overdetermined’ and, in general, admits no solution  

1
 . In

this scenario, an approximate solution is selected that minimizes the square of the error for

each scalar constraint using the method of least squares [ 57 ].

A note on the convergence rate is relevant. The rate of convergence for the Newton-

Raphson algorithm is quadratic. The proof for the one-dimensional Newton-Raphson rate

of convergence follows; it is extendable to the multi-dimensional case as well [ 58 ]. For any

scalar function F(X̄) with a continuous second derivative, the second-order Taylor expansion

about the point X̄ near a root X̄r of F(x) yields

F(X̄r) = F(X̄) + F′(X̄)(X̄r − X̄) + 1
2F
′′(X̄r)(X̄− X̄r)2 (3.22)

1
 ↑ Overdetermined systems do offer solutions if some of the constraints are linear functions of the others.
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Recall that, since X̄r is a root, F(X̄r) = 0 and rearranging the terms, yields

F(X̄)
F′(X̄)

+ (X̄r − X̄) = −F′′(X̄r)
2F′(X̄)

(X̄r − X̄)2 (3.23)

Thus, the update equation for a one-dimensional Newton-Raphson method is

X̄i = X̄i−1 −
F(X̄i−1)
F′(X̄i−1)

(3.24)

Combining Equations (  3.22 ) and ( 3.24 ) yields:

X̄r − X̄i = − F′′(X̄r)
2F′(X̄i−1)

(X̄r − X̄i)2

ςi = − F′′(X̄r)
2F′(X̄i)

(ςi−1)2
(3.25)

where ςj is the error at iteration j. It is apparent from Equation ( 3.25 ) that the error decreases

quadratically when X̄ is in the vicinity of X̄r.

3.2.1 Single Shooting

A straightforward application of a Newton-Raphson procedure involves path planning and

targeting. The simplest implementation for targeting is a single shooting scheme. Consider

a particle in the BCR4BP as defined in the Earth-Moon rotating frame, with a state at t0
equal to x̄0 = [ x0 y0 z0 ẋ0 ẏ0 ż0 ]T . Additionally, the epoch associated with the initial state is

θ0. After propagation for a given time, T , the final state x̄f = [ xf yf zf ẋf ẏf żf ]T is achieved

at epoch θf = θ0 + ω T . Assume a scenario where the target is a predetermined position,

defined as r̄t = [ xt yt zt ]T that is different from the position components for x̄f . Assume that,

in this scenario, the initial position is fixed but the velocity components are to be modified

in both magnitude and direction. This scenario corresponds to a spacecraft at an initial

location in space that would instantaneously implement a ∆V̄ maneuver at t0 to modify its

final position at t0 + T . Thus, the design variable vector is

X̄ =
[
ẋ0 ẏ0 ż0

]T
(3.26)
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The constraints include position components, and the variations are all equal to zero when

the final state matches the desired final position. Then, the constraint vector is

F̄(X̄) =
[
xf − xt yf − yt zf − zt

]T
(3.27)

In this example, the time of flight is not a design variable. In the BCR4BP, note that the

Sun angle at the final state, θf , is linearly related to the epoch associated with the initial

state, θ0, and the time-of-flight, T . The time-of-flight and/or the Sun angle associated with

the initial state may be incorporated into the design variables vector to allow a shift in final

epoch. The Jacobian matrix DF̄ relating the change in the initial values of the position

design variables to the desired change in final states is evaluated such that,

DF̄(X̄) = ∂F̄(X̄)
∂X̄

=


∂(xf−xt)
∂ẋ0

∂(xf−xt)
∂ẏ0

∂(xf−xt)
∂ẋ0

∂(yf−yt)
∂ẋ0

∂(yf−yt)
∂ẏ0

∂(yf−yt)
∂ż0

∂(zf−zt)
∂ẋ0

∂(zf−zt)
∂ẏ0

∂(zf−zt)
∂ż0



=


∂xf
∂ẋ0
− ∂xt

∂ẋ0

∂xf
∂ẏ0
− ∂xt

∂ẏ0

∂xf
∂ż0
− ∂xt

∂ż0
∂yf
∂ẋ0
− ∂yt

∂ẋ0

∂yf
∂ẏ0
− ∂yt

∂ẏ0

∂yf
∂ż0
− ∂yt

∂ż0
∂zf
∂ẋ0
− ∂zt

∂ẋ0

∂zf
∂ẏ0
− ∂zt

∂ẏ0

∂zf
∂ż0
− ∂zt

∂ż0



(3.28)

Since the target states r̄t = [ xt yt zt ]T are not an explicit function of the initial velocity

v̄0 = [ ẋ0 ẏ0 ż0 ]T , all the partial derivatives corresponding to the target state with respect to

the initial velocity components are equal to zero. Thus, Equation ( 3.28 ) simplifies to

DF̄(X̄) = ∂F̄(X̄)
∂X̄

=


∂(xf )
∂ẋ0

∂(xf )
∂ẏ0

∂(xf )
∂ẋ0

∂(yf )
∂ẋ0

∂(yf )
∂ẏ0

∂(yf )
∂ż0

∂(zf )
∂ẋ0

∂(zf )
∂ẏ0

∂(zf )
∂ż0

 =


Φ41 Φ42 Φ43

Φ51 Φ52 Φ53

Φ61 Φ62 Φ63

 (3.29)

where Φij is the element on the ith row and the jth column of the state transition matrix

Φ(tf , t0), as defined in Equation (  3.9 ). The Jacobian matrix DF̄(X̄) is square, therefore,

a unique solution to this targeting problem exists. The initial velocity is updated using
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Equation ( 3.20 ) until the final state position matches the target position to the required

tolerance, i.e., until Equation ( 3.16 ) is satisfied.

3.2.2 Multiple Shooting

The single shooting approach to targeting is powerful. However, for more complex path

planning applications, e.g., an array of nonlinear constraints or, simply, a longer time interval,

a more sophisticated targeting concept is warranted. For example, correcting trajectories in

the vicinity of the primaries is generally challenging. Terms in the equations of motion, in

the CR3BP, the BCR4BP, or the N -body ephemeris model, are inversely proportional to

the distance from the primaries or celestial bodies. Whenever the spacecraft is close to a

primary, these terms grow extremely large. Thus, the sensitivities in the region near the

primaries are high; slight changes in the initial state result in large differences in the final,

propagated state. A single shooting algorithm, based on the linear variational equations

of motion, can struggle to converge in this regime. To mitigate these convergence issues,

extending the single shooting strategy to a multiple shooting scheme is often successful. In

a multiple shooting strategy, the trajectory is decomposed into segments, or discretized, as

illustrated schematically in Figure  3.1(a) . The initial state along the segment k at time

tk, x̄k,i, is propagated for a time Tk, and the final time at tk + Tk is defined as x̄k,f . A

differential corrections scheme corrects the discontinuities in position, velocity and time

between consecutive segments, as apparent in Figure  3.1(b) .

As an illustration, a multiple shooting scheme enforcing continuity between consecutive

arcs is derived for the BCR4BP, Earth-Moon frame formulation  

2
 . First, note that the design

variable vector, X̄, may be defined in many different ways. A patch point is a break point

between two consecutive segments along the trajectory. In the schematic representation in

Figure  3.1 , the patch points are x̄1,i, x̄2,i, . . . , x̄β−1,i, x̄β,i, where β is the number of patch

points. In this example, the design variable vector is defined as the collection of the states
2

 ↑ This scheme is extendable to the Sun-B1 formulation of the BCR4BP, or to other dynamical models such
as the CR3BP or the N -body ephemeris model.
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(a) Discretized segments before the correction
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∗
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(b) Discretized segments after the correction

Figure 3.1. Definition of the segments in the multiple shooting algorithm

associated with the patch points, X̄pv, and the epoch associated with each consecutive patch

points, X̄θ, as follows

X̄ =
[
X̄pv X̄θ

]T
=
[
x̄1,i x̄2,i . . . x̄β,i . . . θ1,i θ2,i . . . θβ,i

]T (3.30)

The minimum number of constraints to produce a continuous trajectory between x̄1,i and

x̄β,i is 7β. Each propagated arc endpoint, x̄k,f , must be continuous with the consecutive

patch point state x̄k+1,i in the three position components and the three velocity components.

Thus, the 6(β × 1) position and velocity constraint vector is

F̄pv(X̄) =



x̄2,i − x̄1,f

x̄3,i − x̄2,f
...

x̄β,i − x̄β−1,f


(3.31)
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In the BCR4BP, the continuity in epoch must also be maintained. Thus, for a continuous

trajectory, the Sun angle at the end of a propagated arc is equal to the Sun angle associated

with the next patch point. The (β × 1) epoch constraint vector is defined as

F̄θ(X̄) =



θ2,i − θ1,f

θ3,i − θ2,f
...

θβ,i − θβ−1,f


(3.32)

The complete constraint vector is then expressed as

F̄(X̄) =

F̄pv

F̄θ

 (3.33)

In this application, both the design variable vector and the constraint vector possess 7β

elements. Thus, the Jacobian matrix is a square (7β × 7β) matrix that is decomposed into

the following submatrices

DF̄(X̄) =

DF̄pv,pv DF̄pv,θ

DF̄θ,pv DF̄θ,θ

 (3.34)

The first submatrix, DF̄pv,pv is defined by the partial derivatives of the position and velocity

constraints with respect to the initial position and velocity variables

DF̄pv,pv =



∂(x̄2,i−x̄1,f )
∂x̄1,i

∂(x̄2,i−x̄1,f )
∂x̄2,i

. . .
∂(x̄2,i−x̄1,f )
∂x̄β−1,i

∂(x̄3,i−x̄2,f )
∂x̄1,i

∂(x̄3,i−x̄2,f )
∂x̄2,i

. . .
∂(x̄3,i−x̄2,f )
∂x̄β−1,i... ... . . . ...

∂(x̄β,i−x̄β−1,f )
∂x̄1,i

∂(x̄β,i−x̄β−1,f )
∂x̄2,i

. . .
∂(x̄β,i−x̄β−1,f )

∂x̄β−1,i


(3.35)
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Recognizing that the final state x̄k,f is only a function of the initial state x̄k,i associated with

the same patch point, and that ∂x̄k,i
∂x̄k,i

is equal to the (6×6) identity matrix I, Equation ( 3.35 )

simplifies to the following form

DF̄pv,pv =



−Φ1(θ2, θ1) I 0 0 0

0 −Φ2(θ3, θ2) I 0 0
... ... . . . ... ...

0 0 0 −Φβ−1(θβ, θβ−1) I


(3.36)

Note that the STM elements in Equation ( 3.36 ) are written as function of Sun angles rather

than times as in Equation ( 3.9 ). The DF̄θ,θ submatrix, which relates the epoch continuity

constraints to the initial epoch design variables is defined as

DF̄θ,θ =



∂(θ2,i−θ1,f )
∂θ1,i

∂(θ2,i−θ1,f )
∂θ2,i

. . .
∂(θ2,i−θ1,f )

∂θβ,i
∂(θ3,i−θ2,f )

∂θ1,i

∂(θ3,i−θ2,f )
∂θ2,i

. . .
∂(θ3,i−θ2,f )

∂θβ,i... ... . . . ...
∂(θβ,i−θβ−1,f )

∂θ1,i

∂(θβ,i−θβ−1,f )
∂θ2,i

. . .
∂(θβ,i−θβ−1,f )

∂θβ,i


(3.37)

Since there is a linear relationship between Sun angle and time, the final epoch along a

propagated arc is written as a function of the initial epoch and the propagation time Tk

θk,f = θk,i + ωTk (3.38)

where k is the index of the patch point. Leveraging this relationship, Equation ( 3.37 ) becomes

DF̄θ,θ =



−1 1 0 . . . 0

0 −1 1 . . . 0
... ... ... . . . ...

0 0 . . . −1 1


(3.39)

The DF̄pv,θ submatrix includes the dependencies of the propagated position and velocity

states with respect to the initial epoch design variables. The elements of this matrix are
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estimated using a finite difference scheme [ 59 ], or by integrating additional terms for the

state/epoch dependencies 

3
 along with the equations of motion. Finally, the DF̄θ,pv submatrix

is equal to a (β × 6β) matrix of zeros, since the epoch constraints do not depend on the

position and velocity design variables. The design variable vector is iteratively updated

using Newton’s method and Equation ( 3.20 ), until the norm of the total constraint vector

falls below a specified tolerance. The multiple shooting method is a powerful approach for

targeting trajectories with long times-of-flight and/or close approaches to the primaries.

3.3 Continuation Schemes

Once a trajectory is constructed, a continuation scheme delivers a set, or family, of trajec-

tories or arcs that reflect the solutions over the variation of some system parameter. Families

of periodic orbits, quasi-periodic orbits, trajectories, or equilibrium solutions can all be con-

structed using a continuation scheme. Although many types of continuation approaches are

available, two specific continuation schemes are employed in this analysis. Natural parame-

ter continuation (NPC) steps along a physical parameter to produce new arcs or orbits. As

an alternative, pseudo-arclength continuation (PALC), steps along a nonphysical parame-

ter. Natural parameter continuation is very insightful to clarify the impact of a change in a

physical parameter. Pseudo-arclength can evolve a family when physical insight is lacking.

3.3.1 Natural Parameter Continuation

Natural parameter continuation is a scheme where a variation in a physical parameter

is employed to step along a family of solutions. This physical parameter is, for instance, a

position, a velocity, a time-of-flight, an energy level or a mass parameter. First, a reference

solution is converged using a single shooting or multiple shooting algorithm. Then, the

variation in some physical parameter is introduced. This perturbed state does not satisfy

the set of constraints or characteristics as defined for the reference solution. However, if the

variation in a physical parameter is sufficiently small, a new solution is obtained by correcting

the perturbed solution. This new converged solution satisfies the constraints/characteristics
3

 ↑ See Appendix  D for a derivation of the state/epoch dependencies in the BCR4BP.
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requirements and is, therefore, a viable option and a member of the family of solutions. The

same process is repeated by perturbing the latest member of the family.

3.3.2 Pseudo-arclength continuation

Natural parameter continuation is simple to implement and is an efficient continuation

scheme for many problems. However, limitations do exist. At fold points that occur during

the continuation scheme, a Newton-Raphson process does not consistently converge [ 60 ].

Difficulties in convergence can also occur if the physical parameter or the step size is poorly

selected, for example. To mitigate such convergence issues, prior knowledge of the family

evolution is often required. Thus, a more robust continuation scheme under such conditions

is required for certain applications.

The pseudo-arclength continuation (PALC) strategy employs steps along a nonphysical

direction to construct a family. This scheme requires no prior knowledge of the family

evolution and is more flexible for complex continuation paths. The illustration in Figure  3.2 ,

adapted from Bosanac [ 61 ], schematically demonstrates the difference between the NPC and

PALC algorithms. Figure  3.2(a) represents the natural parameter continuation process in

p − X̄ space, with p as the continuation parameter and X̄ in its role as the design variable

vector (a scalar in this schematic). The blue line is X̄∗, the design variable vector for

p∗ p∗ + δp

δp
Initial Guess

Actual Solution

p

X̄

X̄∗

(a) NPC

p∗ p∗ + δp

δs

Initial Guess

Actual Solution

p

X̄

X̄∗

(b) PALC, adapted from [ 61 ]

Figure 3.2. Comparison between (a) the natural parameter continuation and
(b) the pseudo-arclength continuation in p− X̄ space
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the members of the family over the range of the continuation parameter. From an initial,

converged family member at p∗, a step of size δp is introduced, resulting in an initial guess for

the continuation p∗ + δp, marked by a red dot. The quality of the initial guess is a function

of the step size, δp, and the slope of X̄∗ at the previous family member.

In the pseudo-arclength continuation scheme, the continuation parameter is not a physical

parameter associated with the system. Rather, the step δs leverages the tangent slope at p∗,

as apparent in Figure  3.2(b) . Thus, for some applications, the quality of the step is generally

better than the initial guess supplied by a step in a natural parameter. The tangential

direction to X̄ at p∗ is the nullspace of the DF̄ matrix. Since this family is evolving along

one degree of freedom, p, the nullspace must be one-dimensional. Thus, the DF̄ matrix must

possess one more column than rows, i.e., if there are n design variables, there must be n− 1

constraints. A PALC algorithm typically proceeds using the following procedure:

1. Compute the first family member. Its design variable vector is X̄∗0.

2. Compute the nullspace ∆X̄∗0 of the matrix DF̄ evaluated at X̄∗0.

3. The initial guess for the next member of the family, X̄k, is constructed by stepping in

the direction of ∆X̄∗k

X̄k = X̄∗k−1 + s ∆X̄∗k−1 (3.40)

where s is a scaling term that determines the size of the step along the nullspace.

4. Differentially correct this initial guess:

(a) To ensure that the update for the design variable vector projects onto the nullspace

direction, an additional constraint is added. The augmented constraint vector is

Ḡ(X̄k) =

 F̄(X̄k)(
X̄k − X̄∗k−1

)T
∆X̄∗k−1 − s

 (3.41)

where F̄(X̄k) is the n−1 constraint vector that includes the constraints necessary

for the design variable vector to be defined as a member of the family.

57



(b) The augmented Jacobian matrix DḠ(X̄k) is evaluated at X̄k. The partial derivative

of the additional constraint with respect to X̄k simplifies to the nullspace vector,

∆X̄∗k−1, that is

DḠ(X̄k) =

 DF̄(X̄k)(
∆X̄∗k−1

)T
 (3.42)

The Jacobian matrix, DF̄, is an (n − 1 × n) matrix. With the additional row,

∆X̄∗k−1, with n elements, the augmented Jacobian matrix DḠ(X̄k) is a square

(n×n) matrix. Thus, Equation (  3.20 ) for square matrices is applied to update the

design variable vector, using the augmented constraint vector and the augmented

Jacobian matrix.

δX̄k = −
(
DḠ(X̄k)

)−1
Ḡ(X̄k) (3.43)

(c) Iterations on Equation (  3.43 ) are repeated until the constraints are satisfied, i.e.,

until ‖Ḡ(X̄k)‖ < e, where e is the specified tolerance.

5. The new member of the family is characterized by a design variables vector X̄∗k. The

nullspace ∆X̄∗k of the (non-augmented) Jacobian matrix DF̄ is evaluated at X̄∗k. To

compute the next family member, the process is restarted at step 3.

Pseudo-arclength continuation is a robust continuation process that steps in a nonphysical

direction to move along a family of solutions. While comparatively more versatile than

the natural parameter scheme, its implementation is not as straightforward as the NPC

implementation, and the nonphysical step direction is not usually as insightful as a physical

step. Thus, the pseudo-arclength continuation is a powerful alternative for problems where

the natural parameter continuation process struggles.

3.4 Transition between Dynamical Models

Methods for transitioning solutions, including periodic orbits and trajectories, between

the CR3BP and the BCR4BP are introduced. First, a scheme that transitions trajectories

between the Earth-Moon CR3BP and the BCR4BP is implemented by artificially scaling

the mass of the Sun. Second, a method for evolving a solution from the Sun-B1 CR3BP to
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the BCR4BP. For this method, a parameter is employed to scale the orbital radii associated

wit the Earth and Moon when represented in the Sun-B1 rotating frame. Both methods

are successfully employed in this analysis to construct precisely periodic orbits in the Earth-

Moon-Sun BCR4BP.

3.4.1 Earth-Moon CR3BP to/from BCR4BP

To construct a BCR4BP trajectory from a CR3BP solution, the most successful strategy

employs a natural parameter continuation process. One effective continuation parameter

is a coefficient that scales the mass of the Sun [ 20 ]. This coefficient is varied between

zero, corresponding to the Earth-Moon CR3BP, and unity, reflecting the Earth-Moon-Sun

BCR4BP. To transition between the models, the pseudo-potential Υ∗ from Equation (  2.5 ) is

rewritten as

Υ∗(ε, θ) = U∗ + ε µs

(
1

rs-sc(θ)
− 1
as3 (xs(θ)x+ ys(θ)y + zs(θ)z)

)
(3.44)

such that ε is the coefficient that scales the mass of the Sun, i.e., µs. Note that for ε = 0,

the updated pseudo-potential Υ∗ is equivalent to the CR3BP pseudo-potential, introduced

in Equation ( 2.2 ). Conversely, for ε = 1, Equation ( 3.44 ) is equivalent to the BCR4BP

pseudo-potential, in Equation ( 2.5 ).

This transition method is employed to transition periodic orbits from the CR3BP to the

BCR4BP. Transition of the periodic orbit between the models is achieved using one step in ε,

i.e., one jump from zero to one, or by decomposing the continuation procedure into multiple

steps. The results from an example of the latter strategy appear in Figure  3.3 . In this

example, the initial orbit is the 3:1 synodic resonant NRHO in the CR3BP, and it appears

in light blue in Figure  3.3 . Its orbital period is exactly one third of the synodic period.

Therefore, the orbital period of the BCR4BP periodic solution is a single synodic period. To

transition a trajectory from the CR3BP to a higher-fidelity model involves a straightforward

targeting scheme. Three revolutions of the 3:1 synodic resonant NRHO in the CR3BP

are stacked to form the initial guess. (Note that more sophisticated targeting strategies

that accommodate constraints and alternative goals are also available. But the simplified
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approach is sufficient in this example). The solution is then discretized into patch points

to facilitate the convergence process. While a single-shooting algorithm is an acceptable

alternative, the BCR4BP periodic orbits typically possess longer periods and more ‘loops’

than their CR3BP counterparts. Thus, a parallel-shooting scheme [ 56 ] is typically more

robust for this type of scenario. At each step, represented by the evolving value of the mass

parameter, ε, the solution is propagated and corrected for continuity between consecutive

patch points as well as for periodicity. Once a solution for a given ε value is computed, it is

employed as the initial guess for the next step in the continuation procedure. For the example

in Figure  3.3(a) , 25 equally-spaced steps between ε = 0 and ε = 1 are introduced, and the

converged, periodic solution for each step is plotted. The solution corresponding to ε = 1,

colored in purple in Figure  3.3(b) , reflects the Earth-Moon-Sun BCR4BP periodic solution.

In this investigation, each BCR4BP periodic orbit is constructed using this method, in which

a synodic resonant CR3BP orbit serves as the initial guess for a continuation process with

the Sun’s mass as the continuation parameter. A modified pseudo-potential function and a

natural parameter continuation in nondimensional Sun mass are employed to transition a

trajectory from the CR3BP to the BCR4BP.

(a) (b)

Figure 3.3. Continuation orbits between the CR3BP 3:1 resonant NRHO and
its BCR4BP periodic counterpart (a). The initial orbit in the CR3BP, in blue,
and the final orbit in the BCR4BP, in pink (b).
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3.4.2 Sun-B1 CR3BP to/from BCR4BP

A continuation process between the Sun-B1 CR3BP and the BCR4BP as formulated

in the Sun-B1 rotating frame is introduced. Recall that the Sun-B1 CR3BP is also the

representation of a CR3BP where the second body is a fictitious body located at the Earth-

Moon barycenter and with mass equal to the sum of the masses of the Earth and the Moon

[ 62 ]. To transition between the Sun-B1 CR3BP and the BCR4BP as formulated in the Sun-

B1 rotating frame, the relative positions of the Earth and the Moon with respect to their

common barycenter B1 is varied in the equations of motion in Equations (  2.8 ) and ( 2.9 ).

The continuation parameter, γ, is introduced and Equation (  2.10 ) is rewritten as,

r̄e(γ, θ) = r̄B1 + γ r̄B1e(θ) =


1− 1

µs+1

1− 1
µs+1

0

+ γ


− µ
as

cos(θ)

− µ
as

sin(θ)

0



r̄m(γ, θ) = r̄B1 + γ r̄B1m(θ) =


1− 1

µs+1

1− 1
µs+1

0

+ γ


1−µ
as

cos(θ)
1−µ
as

sin(θ)

0



(3.45)

When γ is equal to zero, r̄e(0, θ) = r̄m(θ) = r̄B1(θ), i.e., the Earth and the Moon are

located at B1, creating a fictitious body of mass equal to the sum of the masses of the

Earth and the Moon. This case corresponds to the Sun-B1 CR3BP. When γ is equal to one,

Equation ( 2.10 ) and Equation ( 3.45 ) are identical, and the BCR4BP, as expressed in the

Sun-B1 rotating frame, emerges. For instance, consider the transition of the 2:17 L2 synodic

resonant Lyapunov orbit from the CR3BP to the BCR4BP in Figure  3.4 . The minimal

period of the 2:17 resonant Lyapunov orbit in the CR3BP is 17/2, or 8.5 synodic periods.

However, the period associated with periodic solutions in the BCR4BP must be equal to

an integer multiple of the synodic period[ 20 ]. Thus, two revolutions of the CR3BP orbit

are stacked to form the initial guess for the BCR4BP periodic orbit. The transition process

to an orbit in the BCR4BP includes a targeting scheme[ 44 ]. The trajectory is discretized

into patch points, and a parallel-shooting scheme[ 56 ] is employed to mitigate the potential
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convergence issues arising from the long period of the orbit. At each step, represented by the

evolving value of the continuation parameter, γ, the solution is propagated and corrected

for continuity between consecutive patch points as well as for periodicity. Once a solution

for a given γ value is computed, it is employed as the initial guess for the next step in the

continuation procedure. For the example in Figure  3.4(a) , 50 equally-spaced steps between

(a) (b)

Figure 3.4. Continuation orbits between the Sun-B1 CR3BP 2:17 Lyapunov
and its BCR4BP periodic counterpart (a). The initial orbit in the CR3BP, in
yellow, and the final orbit in the BCR4BP, in black (b).

γ = 0 and γ = 1 are introduced, and the converged, periodic solution for each step is plotted.

The solution corresponding to γ = 1, colored in black in Figure  3.4(b) , reflects the Earth-

Moon-Sun BCR4BP periodic solution. In this investigation, each BCR4BP periodic orbit is

constructed using this method, in which a synodic resonant Sun-B1 CR3BP orbit serves as

the initial guess for a continuation process with the relative distance of the Earth and the

Moon as the continuation parameter.

3.5 Numerical Integration and Trajectory Design Tools

Numerical integration is employed to evaluate the nonlinear equations of motion and

differential equations governing the STM for the CR3BP (Equation ( 2.1 )), the BCR4BP
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(Equations ( 2.4 ) and ( 2.8 )), or the N -body ephemeris model (Equation ( 2.16 )). Throughout

this investigation, trajectories are propagated using the Boost C++ library [  63 ], version

1.68.0. Specifically, the numerical integration scheme (or ‘stepper’ in Boost) that is employed

is a Runge-Kutta Fehlberg 78. The details of this method are available from the Boost

documentation [ 64 ]:

“The Runge-Kutta Fehlberg 78 method is a standard method for high-precision

applications. The method is explicit and fulfills the Error Stepper concept. Step

size control is provided but continuous output is not available for this method.”

To minimize numerical error along the integration, the absolute and relative tolerances are

both set to 10−12. This value is equivalent in the Earth-Moon system to a tolerance of

approximately 4 · 10−4 meters in position and 1 · 10−9 m/s in velocity.

The remainder of the analysis (aside from the integration) is performed in MATLAB [ 65 ].

The numerical integration from C++ is included, or ‘mexxed’ in MATLAB using MEX file

functions [  66 ]. From the MATLAB documentation [ 66 ]:

“A MEX file is a function, created in MATLAB, that calls a C/C++ program

or a Fortran subroutine. A MEX function behaves just like a MATLAB script

or function.”

A MEX file allows the user to combine the benefits of both the C++ language and MAT-

LAB. For this investigation, C++ is employed for the propagation as it typically runs faster

than the MATLAB integration implementation. For instance, consider Figure  3.5 . The inte-

gration times between the Runge-Kutta Fehlberg 78 method in C++ and a similar method

in MATLAB, i.e., ode78, are compared for 600 periodic orbits in the Earth-Moon CR3BP

.The absolute and relative tolerances are set to 10−12 in both languages. The numerical inte-

gration in C++ using the Boost library takes on average 0.0004 seconds, while 0.04 seconds

are required on average to numerically integrate in MATLAB. Thus, the numerical integra-

tion in C++ is approximately 100 times faster than the integration in MATLAB for this

illustration. While the performance improvement varies from application to application, the

integration in C++ is generally at least an order of magnitude faster than the integration

in MATLAB.

63



Figure 3.5. Comparison between the MATLAB and C++ integration of 600
members of L1 Lyapunov family of periodic orbits in Earth-Moon CR3BP.

Two trajectory design software packages are employed to verify the results and the tra-

jectories constructed in this investigation. An open-source software system, GMAT [ 67 ],

for space mission design, optimization, and navigation, is employed to verify the numerical

propagation of trajectories in theN -body ephemeris model. Additionally, the differential cor-

rections schemes employed in the N -body ephemeris model are compared to the corrections

schemes available in the Adaptive Trajectory Design (ATD) software. Adaptive Trajectory

Design (ATD) is a multi-body trajectory design tool [ 68 ] developed at Purdue University and

NASA Goddard Space Flight Center. In this investigation, the atd-core Java library from

ATD v2 [ 69 ] is employed to verify the propagation and corrections in the N -body ephemeris

model. The results of this investigation are generated using integration and analysis scripts

written by the author; the results are then verified using the two off-the-shelf trajectory

design software packages.
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4. DYNAMICAL STRUCTURES IN THE BCR4BP

Various dynamical structures that exist within the context of the BCR4BP are defined. In-

stantaneous equilibrium solutions exist in the BCR4BP, as non-autonomous counterparts of

the time-invariant Lagrange points in the CR3BP. Instantaneous, or pulsating, zero velocity

surfaces (ZVSs) appear in the BCR4BP to add perspective for the dynamical behavior. The

ZVSs enclose forbidden regions that limit the motion of an object in space and are defined as

a function of the energy along a trajectory. Two energy-like quantities are defined within the

BCR4BP: the Earth-Moon energy-like value and the Sun-B1 energy-like value. Energy-like

plots offer a binary check to record possible transit into and out of cislunar space at a certain

epoch along a path. Precisely periodic orbits that possess orbital periods in resonance with

the Earth-Moon-Sun period, i.e., the synodic period, are accessible in both the Earth-Moon

and the Sun-B1 rotating frames. Bounded motion is also available and constructed for tran-

sitioning orbits that do not possess a resonance with the synodic period. Lastly, invariant

manifolds provide a useful approximation to the nonlinear dynamical behavior in the vicin-

ity of a reference solution. Strategies to compute global invariant manifolds associated with

periodic orbits and bounded motion are introduced.

4.1 Instantaneous Equilibrium Points

Due to the time-dependent nature of the model, the equations of motion for the BCR4BP,

in Equations ( 2.4 ) and ( 2.8 ) do not admit invariant equilibrium solutions. However, instan-

taneous equilibrium solutions may exist for a given epoch, that is, for a given Sun angle in

the Earth-Moon rotating frame or a given Moon angle in the Sun-B1 rotating frame. These

instantaneous equilibrium points are related to the concept of Artificial Equilibrium Points

(AEPs). Under the presence of a perturbing force, AEPs extend the discrete Lagrange points

to a continuum of points that form level surfaces parametrized by the perturbing force. The

AEPs are straightforwardly employed within the context of solar sail [ 70 ] as well as low-thrust

[ 69 ], [ 71 ] trajectory design. The instantaneous equilibrium points in this analysis exist due

to the addition of the gravitational action of the Sun, rather than the acceleration due to

thrust or solar radiation pressure.
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The relationship between the epoch-dependent instantaneous, equilibrium points in the

BCR4BP and the autonomous libration point solutions from the CR3BP is explored. The

locations of the five Earth-Moon CR3BP Lagrange points, labeled L1 through L5, and the

five Sun-B1 CR3BP equilibrium points, labeled L1 through L5, appear in Figure  4.1 . The

instantaneous equilibrium points of the BCR4BP, as formulated in the Earth-Moon rotating

frame, correspond to the Li points perturbed by the gravitational influence of the Sun.

Conversely, the instantaneous equilibrium solutions of the BCR4BP, as formulated in the

Sun-B1 rotating frame, correspond to the Lagrange points of the Sun-B1 CR3BP, i.e., Li,

under the perturbations due to the individual motions of the Earth and the Moon along

their orbits.

Earth-Moon vicini
ty

Heliocentric space

x̂

ŷ

//

x̂
ŷ

L1 L2L3

L4

L5

L1

L2

L3

L4

L5

Sun

Earth

Moon
B1B2 θ

Figure 4.1. Locations of the equilibrium points of the Sun-B1 CR3BP (purple
diamonds) and the Earth-Moon CR3BP (green diamonds), not to scale

4.1.1 Derivation

The derivation of the algorithms employed to compute the instantaneous equilibrium

points is detailed. For conciseness, only the derivation for the instantaneous equilibrium

points in the Earth-Moon frame formulation of the BCR4BP is offered here. The derivation
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for the equilibrium points in the Sun-B1 frame formulation of the BCR4BP is produced

by substituting the appropriate variables and functions. By definition, the velocity and

acceleration associated with an equilibrium point are equal to zero. Setting the velocity and

acceleration in the equations of motion in Equation ( 2.4 ) yields, for a given Sun angle θ,

∂Υ∗

∂x
= 0, ∂Υ∗

∂y
= 0, ∂Υ∗

∂z
= 0 (4.1)

that is rewritten as the vector expression

∇̄r̄Υ∗(r̄, θ) = 0̄ (4.2)

where ∇̄r̄ denotes the gradient with respect to the vector r̄ = [ x y z ]T . The point or collection

of points that satisfy Equation ( 4.2 ) are denoted the instantaneous equilibrium points in the

BCR4BP. For clarity, the notation introduced by Cox [ 69 ], [ 71 ] is adapted to label these

points. From this point forward, Ej
i(θ) denotes the BCR4BP instantaneous equilibrium

point, where

• The subscript i refers to the corresponding Lagrange point Li.

• The argument θ is the epoch corresponding to this instantaneous equilibrium point.

• The superscript j is introduced when multiple equilibrium solutions exist at certain

epochs. When multiple solutions exist, they are numbered from lowest energy (highest

H) to highest energy (lowest H).

For instance, E1(45◦) reflects the instantaneous equilibrium point in the BCR4BP for a

Sun angle of 45◦corresponding to the first Lagrange point in the Earth-Moon CR3BP. The

notation Ei denotes the Zero Acceleration Contour (ZAC) [ 69 ], that is, the collection of

equilibrium points over a synodic month.

A differential corrections scheme is implemented to solve for the position of the instanta-

neous equilibrium point for a given epoch. The design variables are the position components

of the equilibrium point

X̄ =
[
x y z

]T
(4.3)
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and the constraints vector variable as given by Equation (  4.2 ), i.e.,

F̄ (r̄, θ) = ∇̄r̄Υ∗(r̄, θ) (4.4)

Then, the Jacobian matrix DF̄ is expressed as

DF̄
(
X̄, θ

)
= ∂F̄

∂X̄
=


∂2Υ∗

∂2x
∂2Υ∗

∂x∂y
∂2Υ∗

∂x∂z

∂2Υ∗

∂y∂x
∂2Υ∗

∂2y
∂2Υ∗

∂y∂z

∂2Υ∗

∂z∂x
∂2Υ∗

∂z∂y
∂2Υ∗

∂2z

 (4.5)

Since the matrix is square, i.e., there are three design variables and three independent con-

straints, a unique solution is numerically produced iteratively using the update expression

from Equation ( 3.20 ). The initial guess is selected as the position of the closest Lagrange

point in the Earth-Moon CR3BP. For instance, to compute E2(θ), the design variable vector

is initially set to X̄ = [ xL1 0 0 ]T . A straightforward differential corrections scheme is then

employed to solve for the position of the instantaneous equilibrium points in the BCR4BP.

Once the first instantaneous equilibrium point is computed, a natural parameter con-

tinuation scheme is employed to construct the BCR4BP ZAC corresponding to each of the

Lagrange points of the Earth-Moon CR3BP. The parameter selected for the continuation

parameter is the Sun angle θ. The design variable for the first converged equilibrium point is

X̄∗1; the associated equilibrium point corresponds to the epoch θ1. The epoch associated with

the second point on the ZAC is θ2 = θ2 + ∆θ, where ∆θ is the natural parameter step. The

constraints are generally not satisfied for the combination (X̄∗1, θ2). Thus, the differential

corrections scheme described in Equations ( 4.3 )–( 4.5 ) is repeated, for the epoch θ2 and with

X̄∗1 as the initial guess, until X̄∗2 is obtained. The process is repeated until the complete ZAC

is obtained, that is, until equilibrium points are obtained for each epoch between 0 and 2π.

A natural parameter continuation scheme stepping in Sun angle is an option to construct the

BCR4BP ZACs corresponding to each of the Lagrange points of the Earth-Moon CR3BP.

Pseudo-arclength continuation is a second option to construct the BCR4BP ZACs. While

the natural parameter continuation scheme delivers the majority of the instantaneous equilib-

rium points, it fails to produce the complete E3 ZAC for the Earth-Moon frame formulation
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of the BCR4BP. Fold points exist along the E3 continuation evolution„ that impede the

convergence along the natural parameter continuation scheme. Thus, an alternative strat-

egy to compute the ZAC in the BCR4BP is introduced. The design variables vector from

Equation ( 4.3 ) is augmented with the Sun angle:

X̄
′ =

[
x y z θ

]T
(4.6)

Thus, in this formulation of the continuation scheme, the Sun angle is a free variable rather

than a continuation parameter. The constraints vector is the same as the one defined in

Equation ( 4.4 ), that is, F̄ (r̄, θ) = ∇̄r̄Υ∗(r̄, θ). Then, the Jacobian matrix of the constraint

vector is,

DF̄
(
X̄′
)

= ∂F̄

∂X̄′
=


∂2Υ∗

∂2x
∂2Υ∗

∂x∂y
∂2Υ∗

∂x∂z
∂2Υ∗

∂x∂θ

∂2Υ∗

∂y∂x
∂2Υ∗

∂2y
∂2Υ∗

∂z∂z
∂2Υ∗

∂y∂θ

∂2Υ∗

∂z∂x
∂2Υ∗

∂z∂y
∂2Υ∗

∂2z
∂2Υ∗

∂z∂θ

 (4.7)

Note that the matrix is no longer square: there are more design variables than constraints.

The first point along the ZAC is computed using Equations ( 4.4 ), ( 4.6 ) and ( 4.7 ) along with

the minimum norm update from Equation ( 3.21 ). Similar to the natural parameter contin-

uation scheme, the pseudo-arclength continuation process is initialized with the position of

the closest CR3BP Lagrange point and a specified epoch. Let X̄′∗0 be the first converged

point along the ZAC. In the pseudo-arclength continuation method, the initial guess for the

second point along the ZAC is represented as

X̄′1 = X̄′∗0 + s∆X̄′∗0 (4.8)

where ∆X̄′∗0 is the null space of the DF̄ matrix evaluated at X̄′∗0 . Additionally, s is the

nondimensional parameter defining the arclength of the step along the null space direction.

As defined in Equation (  3.41 ), an additional scalar constraint ensures that the solution is
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perpendicular to the projection of the null space direction. Thus, the constraint vector is

augmented as follows

Ḡ(X̄′1) =

 F̄(X̄′1)(
X̄′1 − X̄′∗0

)T
∆X̄′∗0 − s

 (4.9)

and the Jacobian of the augmented constraint vector is then

DḠ(X̄′1) =

DF̄(X̄′1)(
∆X̄′∗0

)T
 (4.10)

The augmented problem (X̄′1, Ḡ(X̄′1)) yields a square matrix. The update is, thus, computed

using Equation ( 3.20 ) along with Equations ( 4.9 ) and ( 4.10 ). After a second solution that

satisfies the constraints is obtained, i.e., X̄′∗1 , the initial guess for the third result is generated

using the null space of the DF̄ matrix evaluated at X̄′∗1 . The process is repeated until the

complete ZAC is constructed, that is, until a set of instantaneous equilibrium points is

produced between epochs 0 and 2π. A note on the direction of the computed null space is

relevant here. The vectors ∆X̄′∗k and −∆X̄′∗k are both kernels associated with the DF̄ matrix

at the converged solution X̄∗k. Therefore, an additional step is generally required to ensure

that consecutive steps along the continuation process are in the same direction, preventing

the continuation scheme to simply oscillate back and forth between two solutions. For a

sufficiently small step size s, the dot product between two consecutive null space vectors is

positive. Thus, Equation ( 4.8 ) is generalized for the steps k > 1

X̄′k+1 = X̄′∗k + s sgn
(
∆X̄′∗k ·∆X̄′∗k−1

)
∆X̄′∗k (4.11)

where sgn is the sign function. The pseudo-arclength continuation scheme, as detailed in

Equations ( 4.6 )–( 4.11 ), successfully delivers all of the instantaneous equilibrium points in

the BCR4BP, including the complete E3 ZAC for the Earth-Moon frame formulation.
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4.1.2 Stability

The linear stability of a solution is evaluated consistent with the Lyapunov definition. The

Lyapunov stability, in the linear sense, of a solution leverages the roots of the characteristic

equation, or eigenvalues, of the A matrix. Recall, from Equation ( 3.5 ), that the A matrix is

the Jacobian matrix of the equations of the motion of the system. For a constant equilibrium

solution, the A matrix is constant. The stability properties, in the linear sense, for the

equilibrium points are defined as follows

• If the eigenvalues of A are real, the equilibrium solution is stable if all the roots are

negative. If any root is positive, the equilibrium point is unstable. Note that this is

valid even if certain roots are repeated.

• If the eigenvalues of A are purely imaginary, the equilibrium point is stable and os-

cillatory motion in its vicinity exists. However, if any of the eigenvalues is repeated,

the linearized motion in the vicinity of the equilibrium point has periodic and secular

terms, and the equilibrium solution is unstable.

• If the eigenvalues are complex, the stability is a function of the sign of the real part of

the root.

– If all the eigenvalues possess negative real parts, the equilibrium solution is stable.

– If one or more eigenvalues has a positive real part, the equilibrium solution is

determined to be unstable.

Note that for the complex eigenvalues, these statements are still valid if any of the

roots is repeated.

These properties are employed to determine the stability (in the linear sense) of the instan-

taneous equilibrium points of the BCR4BP.

The eigenvalue equation associated with the A matrix possesses real coefficients; the

eigenvalues thus occur in complex conjugate pairs [ 72 ]. In the CR3BP and the BCR4BP, the

three pairs of eigenvalues determine the three linear modes. The modes are characterized as

follows:
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• If a pair of eigenvalues is real, i.e., Im λi = 0, the associated mode is a saddle mode. In

the linearized model, perturbations along the unstable and the stable directions grow

exponentially in positive and negative time, respectively.

• If a pair of eigenvalues is purely imaginary, i.e., oscillatory motion exists in the vicinity

of the equilibrium point, the associated mode is a center mode.

• If a pair of eigenvalues is complex and Reλi 6= 0, Im λi 6= 0, a mixed mode is as-

sociated with the equilibrium point. This mode involves both the oscillatory and the

exponentially growing motions in the vicinity of the equilibrium point, in the linearized

model.

Following Cox’s naming convention [ 69 ], each equilibrium point is described by a string

Sns × Cnc ×Mnm , where S, C, and M denote a saddle mode, a center mode, and a mixed

mode, respectively. The superscripts ns, nc, and nm denote the dimensions of the subspaces

associated with each mode. The sum of the dimensions is equal to the dimensions of the

phase space, which is six for both the CR3BP and the BCR4BP. For instance, S2 × C4

denotes an equilibrium point with a two-dimensional saddle mode and a four-dimensional

center mode. In addition to the binary stable/unstable property, an equilibrium point is

described by its associated modes.

4.1.3 Earth-Moon Instantaneous Equilibrium Points

In the Earth-Moon vicinity, the instantaneous equilibrium solutions correspond to the

perturbed, or oscillating, counterparts from the Earth-Moon CR3BP, and are denoted E1

through E5. The collections of these instantaneous equilibrium points over a synodic month

form the Zero Acceleration Contours (ZACs), which are labeled E1 through E2. The E1 and

E2 ZACs are plotted in the Earth-Moon rotating frame in Figure  4.2 . The distance between

the CR3BP L1 equilibrium point and the BCR4BP instantaneous equilibrium E1 ranges

from 200 km to 650 km in Figure  4.2(a) , while the range from L2 to E2 in Figure  4.2(b) 

varies between 400 km and 1700 km. Note that the set of instantaneous equilibrium points,

72



Ei, as plotted in Figure  4.2 are not trajectories; rather, they are a collection of points that

instantaneously possess zero velocity and zero acceleration.

(a) E1 (b) E2

Figure 4.2. E1 and E2 ZACs in the Earth-Moon frame. The Earth-Moon
CR3BP equilibrium points are denoted by black asterisks.

The ZACs encircle the Earth-Moon Lagrange points twice: the two cycles are indis-

tinguishable at the scale of Figure  4.2 . To visualize the two cycles, the instantaneous

equilibrium points are plotted for half of a synodic month and colored by Sun angle in

Figure  4.3 . The instantaneous points are collinear with the Earth-Moon rotating x̂ axis

for θ = kπ/2, k = 1, . . . , 4. For all other epochs, the instantaneous equilibrium points are

located off the rotating x̂ axis; the maximum excursions from the Earth-Moon line occur for

θ = (2k+1)π/4, k = 1, . . . , 4. The relative geometry of the Earth, Moon, and Sun, evaluated

by the Sun angle θ determines the orientation and distance of the instantaneous equilibrium

points with respect to their CR3BP counterpart.

The Zero Acceleration Contour is a subset of the Zero Acceleration Surfaces (ZASs).

The ZASs are parametrized by the Sun angle and the Sun distance as. Thus, the ZACs

correspond to ‘slices’ of the ZASs for a particular Sun distances as  

1
 . While the value of

as is evaluated as constant in the BCR4BP, it is actually a function of time. Thus, the

selection of as value impacts the dynamics of the Earth-Moon-Sun BCR4BP. (The evolution
1

 ↑ An analogous framework relates the Zero Velocity Contours (ZVCs) to the Zero Velocity Surfaces (ZVSs).
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(a) E1(θ), 0 ≤ θ < π (b) E2(θ), 0 ≤ θ < π

(c) E1(θ), π ≤ θ < 2π (d) E2(θ), π ≤ θ < 2π

Figure 4.3. E1(θ) and E2(θ) instantaneous equilibrium solutions in the
BCR4BP, Earth-Moon frame formulation. The Earth-Moon CR3BP equilib-
rium point is denoted by black asterisks.

of the Sun nondimensional distance obtained from the ephemerides [ 39 ] for the years 2022

through 2024 is presented in Appendix  B ). The ZASs corresponding to E1 and E2 appear in

Figure  4.4 . The surface is colored as a function of the value of as; lighter shades correspond

to large values of the nondimensional distance while dark shades values reflected small as

values. The ‘slices’ of the ZVS corresponding to the mean value of as that is employed in

this analysis are plotted in white. As expected, the distance of the ZACs relative to their

corresponding Lagrange points is inversely proportional to the Sun distance. At the limit
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as → ∞, the BCR4BP simplifies into the Earth-Moon CR3BP and the ZACs collapses to

the Lagrange points. Note that the nondimensional Sun distance is a function of both the

(a) E1 (b) E2

Figure 4.4. Zero Acceleration Surfaces (ZASs) associated with E1 and E2
in the BCR4BP, Earth-Moon frame formulation, colored as a function of the
nondimensional Sun distance. The Zero Acceleration Contours (ZACs) for
as = 389.1725 ndim value are plotted in white. The Earth-Moon CR3BP
equilibrium points are denoted by black asterisks.

Earth-Moon and the Sun-B1 distances. For instance, increasing the value of as correlates to

a decrease in the Earth-Moon distance and/or an increase in the Sun-B1 distance. For the

purposes of Figure  4.4(a) , the Earth-Moon distance is assumed constant and the variations

of as only correspond to the changes in Sun-B1 distances. The one-dimensional (Sun angle)

ZACs are a subset of the two-dimensional ZASs (Sun angle, Sun distance).

The stability of the instantaneous equilibrium solutions is assessed from the eigenvalues

of the A matrix. The eigenvalues are evaluated at each instantaneous E1 and E2 equilibrium

point. The range of values for these eigenvalues over the set of equilibrium solutions as well

as the eigenvalues corresponding to the L1 and L2 points, are summarized in Table  4.1 . Note

that the eigenvalues corresponding to the BCR4BP equilibrium points are not constant

and, thus, the minimum and maximum values along the set of instantaneous equilibrium

points are included in Table  4.1 . The BCR4BP instantaneous equilibrium points near the

Moon, that is, E1 and E2, present stability characteristics similar to the CR3BP equilibrium
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Table 4.1. Eigenvalues associated with the first and second equilibrium points
in the Earth-Moon CR3BP and in the BCR4BP, Earth-Moon formulation

Point λi in the CR3BP λi range in the BCR4BP

L1/E1(θ)
±2.932
±2.334 i
±2.269 i

±2.916 −±2.940
±2.324 i−±2.337 i
±2.258 i−±2.276 i

L2/E2(θ)
±2.159
±1.863 i
±1.786 i

±2.137 −±2.200
±1.847 i−±1.887 i
±1.776 i−±1.811 i

points: one saddle mode, described by the real pair of eigenvalues, and two center modes,

characterized by the two pairs of complex eigenvalues. Note that remains true for the range

of Sun distances examined in Figure  4.4 . The E1 and E2 ZACs of the BCR4BP in the

Earth-Moon frame formulation remain in the vicinity of L1 and L2.

The BCR4BP instantaneous equilibrium points, corresponding to the Earth-Moon L3

Lagrange point, are similarly explored. In contrast to E1 and E2, the ZAC in the vicinity of

L3 does not remain in close proximity of the Lagrange point, as evident from Figure  4.5(a) .

The insert in the figure highlights the contour formed by the collection of equilibrium points,

which is not apparent at the scale of Figure  4.5(a) . The distance between the instantaneous

equilibrium and the underlying Lagrange point is plotted as a function of epoch in Fig-

ure  4.5(b) . The distance ranges from approximately 800 to 371,000 kilometers. From Fig-

ure  4.5(b) , it is also apparent that multiple solutions exist for certain Sun angle values. For

epochs where multiple instantaneous equilibrium solutions exist, these solutions are labelled

E3
j, where j ranges from 1 to 3. The numbering follows the increasing energy (decreasing

H) direction. The instantaneous equilibrium points corresponding to L3 are not unique for

certain Sun angle values.

The stability (in the linear sense) of the E3 collection of points is investigated. Since

multiple equilibrium solutions exist at certain epochs, a direct comparison between the eigen-

values of E3 and L3 is not compelling. Thus, the more relevant dimensions of the subspaces

associated with each equilibrium point are compared. The Earth-Moon L3 libration point

possesses one real and two purely imaginary pairs of eigenvalues. Thus, a two-dimensional
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saddle and a four-dimensional center mode emerges for L3 and is denoted S2×C4. The linear

stability properties for E3 are presented in Figure  4.6 . Each instantaneous equilibrium point

is colored as function of the characteristics of its subspaces: red point corresponds with sim-

ilar eigenstructure to L3 (two-dimensional saddle and four-dimensional center) while green

points possess a six-dimensional center. In the plot in configuration space in Figure  4.6(a) ,

(a) (b)

Figure 4.5. E3 in the BCR4BP, Earth-Moon formulation (a). Distance be-
tween the instantaneous equilibrium points and L3 as a function of epoch (b).

(a) (b)

Figure 4.6. E3 in the BCR4BP, Earth-Moon formulation, as colored by the
linear stability properties of the equilibrium instantaneous points. Red points
denote S2 × C4 points, while green points correspond to center C6 points.
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the points are close to indistinguishable due to the large dimensions of E3. However, note

that the instantaneous equilibrium points with the C6 characteristics compose the ‘outer’

part of the contour (furthest from the Earth) while the S2×C4 points form the ‘inner’ part

of the contour. Reading Figure  4.6(b) from left to right offers insight into the dynamical

evolution of E3. From θ = 0 to θ = 1.286 rad = 73◦, only one E3 instantaneous equilibrium

point exists. At θ = 1.286 rad = 73◦, a degenerate [ 73 ] instantaneous equilibrium point ap-

pears. A saddle-node bifurcation [ 72 ] occurs and the instantaneous equilibrium points evolve

in two directions: the S2 × C4 equilibrium point plotted in red in Figure  4.6(b) and the C6

equilibrium plotted in green. Between θ = 1.286 rad = 73◦ and θ = 1.849 rad = 106◦, three

equilibrium solutions exist. Note that at θ = π/2, the two S2 × C4 equilibrium points are

equidistant from L3, at a distance of approximately 340,000 km, while the C6 equilibrium

point is located along the x̂ axis, 800 km away from L3. At θ = 1.849 rad = 106◦, the

two additional equilibrium points collapse into the degenerate equilibrium point. Between

θ = 1.849 rad = 106◦ and θ = π, the unique instantaneous equilibrium point possesses the

same eigenstructure as L3. A mirrored evolution of the equilibrium points occurs between

θ = π and θ = 2π. The linear stability properties of E3 differ significantly from the properties

associated with the Earth-Moon L3 Lagrange point.

Finally, the ZACs associated with the L4 and L5 points are examined in the Earth-Moon

formulation of the BCR4BP. The two ZACs are plotted in the Earth-Moon rotating frame

in Figure  4.7 . The distance between the CR3BP L4 equilibrium point and the BCR4BP

instantaneous equilibrium E4 ranges from 700 to 233,000 km. Note that the shape of E5 is

the mirror of E4 across the Earth-Moon rotating x̂ axis. Similar to the E1 and E2 ZACs,

E4 and E5 encircle their associated Lagrange point twice. The two cycles are visualized by

plotting the instantaneous equilibrium points for half of the synodic month, as in Figure  4.8 .

While the shape of the ZACs is mirrored across the rotating x̂ axis, such is not the case for

the evolution of the individual instantaneous equilibrium points. For a given epoch θ, the

E5(θ) equilibrium point is generally not the mirror image of E5(θ). From Figure  4.8 and

the symmetry properties of the Earth-Moon-Sun frame, the two points mirror of each other

when θ = kπ, k = 1, 2. The relative geometry of the Earth, Moon, and Sun, evaluated
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by the Sun angle θ determines the orientations of the E4 and E5 instantaneous equilibrium

points.

The stability of the instantaneous equilibrium points associated with E4 and E5 is straight-

forwardly assessed. The eigenvalues associated with L4/L5 and the corresponding ranges in

the associated eigenvalues in the BCR4BP are presented in Table  4.2 . The L4/L5 points

in the CR3BP are linearly stable, i.e., they possess a six-dimensional center mode. Their

instantaneous counterparts in the BCR4BP are also stable, as apparent by the purely imagi-

nary ranges of the eigenvalues in the second column of Table  4.2 . However, note the different

variations in the range of eigenvalues; the eigenvalues associated with the long-period mo-

tion [ 74 ], i.e., the eigenvalues with the smallest magnitude, reflect a larger variation than the

eigenvalues associated with the short-period motion and the unit eigenvalues. The eigen-

(a) E4 (b) E5

Figure 4.7. E4 and E5 ZACs in the Earth-Moon frame. The Earth-Moon
CR3BP equilibrium points are denoted by black asterisks.

Table 4.2. Eigenvalues associated with the fourth and five equilibrium points
in the Earth-Moon CR3BP and in the BCR4BP, Earth-Moon formulation

λi in the CR3BP λi range in the BCR4BP
±0.298 i
±0.955 i
±1.000 i

±0.019 i−±0.460 i
±0.881 i−±0.994 i
±1.000 i−±1.010 i
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(a) E4(θ), 0 ≤ θ < π (b) E5(θ), 0 ≤ θ < π

(c) E4(θ), π ≤ θ < 2π (d) E5(θ), π ≤ θ < 2π

Figure 4.8. E4(θ) and E5(θ) instantaneous equilibrium solutions in the
BCR4BP, Earth-Moon frame formulation. The Earth-Moon CR3BP equilib-
rium points are denoted by black asterisks.

structure of the E3 equilibrium points is analogous to that associated with the Earth-Moon

L3 Lagrange point.

The ZASs associated with E3, E4, and E5 are examined. Recall that the ZAS is the

collection of ZACs for a range of nondimensional Sun distances as. The ZASs associated

with E3, E4, and E5 appear in Figure  4.9 . Points colored in the darker shades of the color

map correspond to a large nondimensional Sun distance as. Since the gravitational action

from the Sun is inversely proportional to the nondimensional Sun distance, these points are
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less influenced by the acceleration due the Sun than points colored in lighter shades. For

nondimensional Sun distances greater than 381 ndim, three distinct ZACs exist, as evidenced

by the purple-to-dark islands around L3, L4, L5 in Figure  4.9 . Conversely, the three ZACs

merge for nondimensional Sun distances equal to or less than 381 ndim. The ‘merged’ ZACs

form a horseshoe-shaped surface that encloses L3, L4, and L4. For the average nondimensional

Sun distance employed through this analysis, as = 389.1725 ndim, three distinct ZACs exist.

However, this selected value is not far from the critical value that results in merged ZASs;

from the ephemerides data in Appendix  B , epochs with nondimensional Sun distances below

the critical Sun distance occur commonly throughout the 2022-2025 period. Merged and

separated sets of ZACs are observed when examining the ZASs associated with E3, E4, and

E5.

The stability properties (in the linear sense) associated with E3, E4, and E5 are a function

of the nondimensional Sun distance. For each set of instantaneous equilibrium point, the

real and imaginary parts of the eigenvalues associated with A, that is, the Jacobian matrix

Figure 4.9. ZASs associated with E3, E4, and E5. The contours merge for
as < 381 ndim. The Earth-Moon CR3BP equilibrium points are denoted by
gray asterisks.
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in Equation (  2.4 ), are plotted as a function of Sun angle in Figure  4.10 . Each point is

colored as a function of the nondimensional Sun distance; darker shades denote larger as

values (Sun further away from B1) while lighter shades represent smaller values of as (Sun

closer to B1). The real part and the imaginary part of the eigenvalues of A are plotted on

the left column and right column of Figure  4.10 , respectively. Since all of the eigenvalues

are either purely real or purely imaginary, i.e., there are no mixed modes, the left column

represents the saddle modes for the instantaneous equilibrium points while the center modes

are described in the right column. First, consider the stability characteristics associated

with E3 in Figures  4.10(a) and  4.10(b) . For descending values of as between 450 and 441

ndim (black and dark purple points), there exist only one instantaneous equilibrium point

for all epochs. Similar to the Earth-Moon L3, these instantaneous equilibrium points are all

associated with a two-dimensional saddle and a four-dimensional center. For as less than

441 ndim, three distinct equilibrium solutions exist for a range of epochs, as observed in

Figures  4.5 and  4.6 . The range of epochs for which multiple counterparts to L3 exist is a

function of the Sun distance; the closer the Sun, the larger this range, as apparent from the

concentric orange curves near θ = π/2, π in Figure  4.10(a) . The type of modes associated

with the instantaneous equilibrium solutions is also a function of the Sun distance. For

nondimensional Sun distances between 441 and 382, a S2×C4 equilibrium point exists at all

epochs. Additionally, a second S2 × C4 equilibrium point and a C6 point exists for certain

epochs. Note that the average Sun distance employed in this investigation is within this

range of as; the stability properties associated with the ZACs at as = 389.1725 ndim are

plotted in as a blue curve in Figures  4.10(a) and  4.10(b) over the darker hues. Finally,

for nondimensional Sun distances between 350 and 382, two equilibrium points with a six-

dimensional center mode exist for certain epochs, in addition to the S2 × C4 equilibrium

points that exist for all Sun angle values. A similar analysis is conducted for the ZASs

corresponding to E4 and E5; the real and imaginary parts of the eigenvalues associated with

the Jacobian matrix are plotted as functions of Sun angle and Sun distance in Figures  4.10(c) 

and  4.10(d) . Similar to E3, the stability characteristics of E4 and E5 vary as a function of the

Sun distance. For values of as greater than 388 nondim, all of the instantaneous equilibrium

points along the E4 and E5 ZACs present the same C6 structure as the Earth-Moon L4 and
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(a) E3 (b) E3

(c) E4, E5 (d) E4, E5

Figure 4.10. Linear stability properties associated with the E3, E4, and E5
ZACs colored as a function of the nondimensional Sun distance. Blue lines
denote the stability properties for the average nondimensional Sun distance
employed in this analysis, as = 389.1725 ndim.

L5, i.e., the equilibrium points are stable in the linear sense. Note that this range includes

the average as value employed in this analysis; the eigenvalues associated with the ZAS

at this Sun distance are again plotted in blue in Figures  4.10(c) and  4.10(d) . For values

of as between 388 and 381, the instantaneous equilibrium points present a six-dimensional

center mode over the majority of the synodic month, except for a small range of epochs for

which the equilibrium points possess S2 × C4 characteristics. These epochs are identifiable

in Figure  4.10(c) by the small vertical lines colored in dark orange near θ = 1, 2, 4, 5 rad.
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Finally, for as less than 381 ndim, the ZACs associated with E3, E4, and E5 merge. The

E3 set retrieves its C6 characteristics. Note the similarity of the orange-to-yellow curves

between Figures  4.10(a) and  4.10(c) , and between Figures  4.10(b) and  4.10(d) ; for these Sun

distance values, the ZACs are merged. Various linear stability properties are observed as the

two parameters (Sun angle, Sun distance) associated with the ZASs evolve.

4.1.4 Sun-B1 Instantaneous Equilibrium Points

Time-dependent, or instantaneous equilibrium solutions also exist in the Sun-B1 rotating

frame. They are denoted E1(θ) through E5(θ) and correspond to the Sun-B1 equilibrium

solutions instantaneously perturbed by the motions of the Earth and the Moon along their

respective orbits. The ZACs for the E1(θ) and E2(θ) instantaneous equilibrium points are

plotted in Figure  4.11 . The distance Sun-B1 from the CR3BP equilibrium point to the

BCR4BP instantaneous equilibrium points range from 600 to 2500 km for both E1(θ) and

E2(θ). Recall that the set of instantaneous equilibrium points, Ei, are not trajectories; rather,

they are a collection of points that instantaneously possess zero velocity and zero acceleration

in the appropriate equations of motion. The points in Figures  4.11(a) and  4.11(b) are colored

as a function of the epoch, i.e., the Moon angle θ for which they satisfy these conditions.

For reference, the orbits of the Earth and the Moon are plotted in Figure  4.11(c) . Note that

the radius of the Earth’s orbit has been scaled by a factor of 10 for visualizations purposes.

The ZACs encircle the Earth-Moon Lagrange points twice. The shape of the cycle, and

its distance from the Sun-B1 Lagrange point, are determined by the location of the Moon

and the Earth along their respective orbits. The distance between Ei and Li, as well as the

rotating ŷ component associated with Ei are plotted for a synodic month in Figure  4.12 .

For instance, at θ = 0 and θ = π, the Sun, the Earth, B1, and the Moon are aligned (not

in the same order). As a consequence, the points on the E1 and E2 curves for these two

epochs are also located on the Sun-B1 rotating x̂ axis, i.e., their associated y component is

equal to 0, as apparent in Figure  4.12(a) . Furthermore, the instantaneous equilibrium points

are also located on the rotating ŷ axis for an epoch shortly before or after π/2 and 3π/2, as

denoted by the black arrows in Figure  4.12(a) . Figure  4.12(b) includes the distance from Ei

84



to Li, i.e., the distance between the equilibrium points perturbed by the individual motions

of the Earth and the Moon and the points unperturbed (Earth and Moon fixed at B1). The

minimum distances of Ei relative to Li occur near θ = π/2 and θ = 3π/2, when the Earth-Moon

line is nearly perpendicular to the rotating x̂ axis. The E1 and E2 behaviors are influenced

by the relative position of the Earth and the Moon along their respective orbits.

(a) E1 (b) E2

(c)

Figure 4.11. E1 and E2 ZACs in the Sun-B1 frame, colored as a function of
the epoch (a, b). The Sun-B1 CR3BP equilibrium points are denoted by black
asterisks. Moon and Earth orbits colored as a function of the epoch (c). Note
that the radius of the Earth’s orbit is at ×10 scale.
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The stability of the instantaneous equilibrium solutions is assessed from the eigenvalues

of the A matrix in Equation (  3.7 ). The eigenvalues are evaluated at each instantaneous

E1 and E2 equilibrium point. The range of these eigenvalues over the set of equilibrium

solutions as well as the eigenvalues corresponding to the L1 and L2 points, are summarized

in Table  4.3 . Both L1 and L2, as computed in the Sun-B1 CR3BP, possess a two-dimensional

saddle and a four-dimensional center, as evidenced by the real pair and two imaginary pairs

of eigenvalues associated with Lagrange point. The instantaneous equilibrium points for

the Sun-B1 formulation of the BCR4BP possess the same eigenstructure as the CR3BP

equilibrium points. The magnitude of the eigenvalues associated with E1 and E2 vary as a

(a)

(b)

Figure 4.12. Distance between the Ei instantaneous equilibrium and the Li
Lagrange point (a). Sun-B1 rotating x̂ component associated with the instan-
taneous equilibrium points (b).
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function of the epoch. However, the variations are limited, as apparent in the second column

in Table  4.3 .

Table 4.3. Eigenvalues associated with the first and second equilibrium points
in the Sun-B1 CR3BP and in the BCR4BP, Sun-B1 formulation

Point λi in the CR3BP λi range in the BCR4BP

L1 /E1(θ)
±2.533
±2.087 i
±2.015 i

±2.531 −±2.538
±2.084 i−±2.090 i
±2.015 i−±2.018 i

L2 /E2(θ)
±2.484
±2.057 i
±1.985 i

±2.483 −±2.489
±2.055 i−±2.060 i
±1.985 i−±1.988 i

Recall that a Zero Acceleration Contour is a subset of the Zero Acceleration Surfaces

(ZASs). The ZASs are parametrized by the Moon angle θ and the nondimensional Earth-

Moon distance. Since the nondimensional parameter as represents the ratio of the Sun-B1

distance and the Earth-Moon distance, 1/as yields the nondimensional Earth-Moon distance.

Assumed constant in the Earth-Moon CR3BP and the BCR4BP, this distance actually varies

due to the eccentricity associated with the Moon’s orbit around the Earth. Additionally,

varying the nondimensional Earth-Moon distance is achieved by adjusting the dimensional

Earth-Moon distance and maintaining the dimensional Sun-B1 distance constant. The ZASs

associated with E1 and E2 appear in Figure  4.13 . The nondimensional Earth-Moon distance
1/as is varied between 0.0022 and 0.0029, corresponding to a range in the value of as from

450 to 350 ndim. From Figure  4.13 , the distance between Li and Ei is a function of the

nondimensional Earth-distance. For larger 1/as values, or equivalently, darker shades of

the surfaces, the instantaneous equilibrium points are furthest from their Lagrange point

counterpart. Conversely, for smaller Earth-Moon distances, the perturbations due to the

motions of the Earth and the Moon are less significant, and the distances between Li and Ei

are smaller. Note that the limiting case is 1/as → 0, for which the Earth and the Moon are

located at B1, and the model is reduced to the Sun-B1 CR3BP. The stability properties of E1

and E2 are maintained for the range of nondimensional Earth-Moon distance in Figure  4.13 ;

all the points on the ZAS present a two-dimensional saddle mode and a four-dimensional
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(a) E1 (b) E2

Figure 4.13. Zero Acceleration Surfaces (ZASs) associated with E1 and E2 in
the BCR4BP, Sun-B1 frame formulation, colored as a function of the nondi-
mensional Earth-Moon distance. The Zero Acceleration Contours (ZACs) for
as = 389.1725 ndim value are plotted in white. The Sun-B1 CR3BP equilib-
rium points are denoted by black asterisks.

center mode. The Zero Acceleration Surfaces associated with E1 and E2 are parametrized

by the nondimensional Earth-Moon distance.

The Sun-B1 L3, L4, and L5 equilibrium points are not significantly affected by the motions

of the Earth and the Moon along their respective orbits. Recall from Figure  4.1 that,

while the Sun influences the locations of all of the Earth-Moon Li Lagrange points, the

perturbations due to the Earth and Moon motions primarily influence the Sun-B1 L1 and

L2 points. The distances from the Sun-B1 Lagrange points to the Earth-Moon barycenter

in terms of the Earth-Moon distance l∗ are summarized in Table  4.4 . The first and second

Lagrange points are located less than 4l∗ from the Earth-Moon barycenter; these two points

are significantly perturbed by the motions of the Earth and the Moon, as evidenced in

Figure  4.11 . The L3 and L4/L5 Lagrange points are located 778.34 l∗ = 2AU and 389.17 l∗ =

1AU from the Earth-Moon barycenter B1, respectively. At these distances, the motion of

the Earth and Moon along their orbits can be ignored, and the Ei is well approximated by

the Sun-B1 CR3BP, and Ei = Li, for i = 3, 4, 5.
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Table 4.4. Distances of the Sun-B1 Lagrange points from the Earth-Moon
barycenter B1 in terms of the Earth-Moon distance l∗.

L1 L2 L3 L4/L5
Li to B1 distance [l∗] 3.8960 3.9222 778.3442 389.1725

4.2 Instantaneous Zero Velocity Contours

In the CR3BP, some boundaries on the motion of the spacecraft are obtained from

the Jacobi constant. The Jacobi constant expression from Equation ( 2.3 ) is rewritten as

ẋ2 + ẏ2 + ż2 = 2U∗−C. Since the velocity cannot be imaginary, the inequality 2U∗−C ≥ 0

defines boundaries on the motion. All the locations that do not satisfy this inequality and,

therefore, yield an imaginary velocity, are labeled as part of the forbidden region. The

collection of points satisfying the equality 2U∗ = C form a surface, and therefore, yield

a velocity relative to the rotating frame that is equal to zero, is labeled the set of zero

velocity surfaces. The zero velocity surfaces offer great insight into the possible motion of

the spacecraft, given a certain energy level. Cross sections of the ZASs at a given values of

the out-of-plane z-component are denoted the Zero Velocity Contours (ZVCs). Illustrations

and a discussion of the ZVSs and ZVCs as computed in the Earth-Moon CR3BP are included

in Boudad [ 21 ].

Pulsating, or instantaneous, Zero Velocity Contours (ZVCs) exist in the BCR4BP [ 21 ].

Recall that for a given energy-like quantity, the ZVCs bound the regions of space where all

the rotating velocity components are real numbers. In the CR3BP, the energy-like quantity,

i.e., the Jacobi constant, remains at its constant value along a trajectory. However, in the

BCR4BP, the energy-like quantity does not remain constant. Therefore, the ZVCs evolve,

or pulsate, along the trajectory as a function of the states and the position of the Earth,

the Moon, and the Sun. For example, consider the planar trajectory in Figure  4.14 . This

trajectory is propagated for 27 days using the BCR4BP equations of motion as formulated in

the Earth-Moon rotating frame in Equation (  2.4 ). The black circles represent the Earth and

the Moon, and the black arrow originating at B1 is consistently directed toward the Sun.

The instantaneous equilibrium points are denoted by green squares. At the initial time,
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(a) t = 0 days, θ = 0◦
Hsc(θ) < H(E1(θ)), H(E2(θ)) (b) t = 9.2 days, θ = −113.3◦

H(E2(θ)) < Hsc(θ) < H(E1(θ))

(c) t = 15.6 days, θ = −190.8◦
Hsc(θ) < H(E1(θ)), H(E2(θ)) (d) t = 21.6 days, θ = −263.9◦

H(E2(θ)) < Hsc(θ) < H(E1(θ))

(e)

Figure 4.14. Instantaneous ZVCs over a planar BCR4BP trajectory as viewed
in the Earth-Moon rotating frame (a)-(d). Earth-Moon energy-like value along
the trajectory (e).
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the spacecraft, identified by a maroon diamond, is located near the Moon, as apparent in

Figure  4.14(a) . The ZVCs are the black lines bounding the gray regions, i.e., the forbidden

regions. Note that in Figure  4.14(a) , the portals at E1 and E2 are open; the Earth, Moon,

and the exterior region are connected. As the spacecraft departs the Moon vicinity, in

Figure  4.14(b) , the portal at E2 closes and the exterior region is no longer accessible as the

exterior and the Earth and Moon regions are no longer connected. As the trajectory evolves

in time, the ZVCs continue pulsating; the E2 portal opens, in Figure  4.14(c) , and closes

again, in Figure  4.14(d) . While plotting the ZVCs at each time step along the trajectory

offers valuable insight, it is not necessarily the most convenient representation of the flow

information. Therefore, plots of the energy-like value, H, are introduced. In Figure  4.14(e) ,

the Earth-Moon energy-like value is plotted against the time along the trajectory. For

reference, the Earth-Moon energy-like values associated with the E1 and E2 instantaneous

equilibrium points are also plotted as dashed lines. For energy-like values above the dashed

line associated with the E1 ZAC, the pulsating ZVCs form two closed regions around the

Earth and the Moon. For energy-like values between the two dashed lines, the E1 portal is

open and transit between the Earth and the Moon is possible. Finally, for energy-like values

below the values associated with E2, the E2 portal is also open, and the Earth, the Moon,

and the exterior region are connected. Note that epoch, i.e., the Sun angle, along the ZAC

and the trajectory must be consistent for appropriate comparisons of the energy-like values.

The flow information described by the ZVCs in Figures  4.14(a) – 4.14(d) is summarized in

Figure  4.14(e) . The diamonds labeled (a) and (c) in Figure  4.14(e) correspond to the plots

in Figures  4.14(a) and  4.14(c) ; both portals near the Moon are open. Conversely, the E2

portal is closed in Figures  4.14(b) and  4.14(d) , as indicated by locations of the diamonds

labeled (b) and (d) in Figure  4.14(e) . The energy-like quantity H plots are useful to assess

the Ei portal access, i.e., a binary check to record whether a portal is open at a certain time

along the trajectory.

Similar to the BCR4BP as modeled in the Earth-Moon rotating frame, instantaneous

Zero Velocity Contours exist in the BCR4BP as formulated in the Sun-B1 rotating frame.

Consider the planar trajectory presented in Figure  4.15 . This trajectory is propagated for

27 days using the BCR4BP equations of motion as formulated in the Earth-Moon rotating
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frame in Equation ( 2.8 ). The blue and the gray circles represent the Earth’s orbit and

the Moon’s orbit, respectively. At the initial time, the spacecraft, identified by a magenta

circle, is located near the Moon, as apparent in Figure  4.15(a) . The ZVCs are the black lines

bounding the gray regions, i.e., the forbidden regions. At the initial time along the trajectory,

the portals at E1 and E2 are closed; the Earth-Moon region and the exterior regions are not

connected as apparent in Figure  4.15(a) . Additionally, the boundaries on the allowable flow

are also apparent from the Sun-B1 energy-like value plot in Figure  4.15(e) , where the energy-

like quantity, H, as defined in Equation ( 2.11 ) associated with the spacecraft is initially above

the ones associated with the Sun-B1 portals. (Note that the energy-like values associated

with the Sun-B1 portals, i.e., the dashed lines in Figure  4.15(e) , vary as a function of time,

but their variations are indistinguishable at this scale.) As the spacecraft evolves along its

trajectory, the energy-like quantity associated decreases, until it crosses the instantaneous

value associated with the E1 equilibrium point. Thus, the portal at E1 open approximately

3.3 days after the initial time along the trajectory, as apparent in Figure  4.15(b) . The

portal at E2 opens approximately 2 hours later. As the value of the energy-like quantity

continues to decrease, the ZVCs continue to recede and the portal open further, as apparent

in Figure  4.15(c) . Approximately 20 days after the initial time, the energy-like quantity

along the trajectory reaches a plateau near H = 3.00051, a value for which the instantaneous

ZVCs do not exist in the vicinity of the Earth-Moon region. This plateau occurs when the

spacecraft reaches a certain distance from the Earth-Moon system; as the distance to the

Moon increases, the influence of the last term in Equation (  2.9 ) becomes marginal and the

dynamics of the system become well approximated by the Sun-Earth CR3BP. Energy-like

quantity plots are useful to assess the Ei portal access, i.e., a binary check to record whether

a portal is open at a certain time along the trajectory.

4.3 Periodic Orbits

A periodic orbit is an oscillatory solution that precisely repeat. Unlike periodic orbits

generated in the Keplerian Two-Body model, periodic orbits constructed in multi-body mod-

els such as the CR3BP or the BCR4BP do not necessarily revolve around a celestial bodies.
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(a) t = 0 days, θ = 180◦
Hsc(θ) < H(E1(θ)), H(E2(θ)) (b) t = 3.3 days, θ = 220.6◦

H(E2(θ)) < Hsc(θ) < H(E1(θ))

(c) t = 6 days, θ = 253.2◦
Hsc(θ) < H(E1(θ)), H(E2(θ)) (d) t = 20 days, θ = 64.3◦

Hsc(θ) < H(E1(θ)), H(E2(θ))

(e)

Figure 4.15. Instantaneous ZVCs over a planar BCR4BP trajectory as viewed
in the Sun-B1 rotating frame (a)-(d). Sun-B1 energy-like value along the tra-
jectory (e).

Periodic orbits are an essential component of the mission design process; they are used for

departure, arrival, and/or intermediate stages of trajectories. This section focuses on the

construction of periodic orbits within the context of the Earth-Moon-Sun BCR4BP.
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4.3.1 Existence and Stability

Periodic orbits in the CR3BP are solutions that precisely repeat in all six position and

velocity states (x, y, z, ẋ, ẏ and ż) over every period. Previous contributions demonstrate

that an infinity of periodic orbits exist in the CR3BP [ 37 ], [  75 ]. Various numerical approaches

to construct CR3BP periodic solutions include linearizing the equations of motion in the

vicinity of the equilibrium points and then leveraging the symmetry properties in the system

with the mirror theorem [ 53 ] and a targeting scheme.

The BCR4BP is formulated to represent a time-dependent, periodic system. Therefore,

only isolated periodic orbits with specific periods exist rather than families with continuously

varying periods [ 76 ]. While periodic solutions in the CR3BP only require periodicity in 6

states, periodic solutions in the BCR4BP require an additional condition, i.e., the epoch

parameter, the Sun angle θ or the Moon angle θ must also be commensurate with the

periodic cycle over which the states repeat [ 20 ]. Thus, the period for any periodic orbit in

the BCR4BP is a multiple of the Earth-Moon-Sun period, that is, approximately 29.5 days.

As a consequence, all periodic solutions in the BCR4BP are isolated synodic resonant orbits.

Initial guess generation for periodic solutions in the BCR4BP is achieved by leveraging

the synodic resonant orbits in the CR3BP. Across a family of orbits, the ratio of the orbital

period to the synodic period, that is, Porbital/Psynodic is computed. Synodic resonant orbits

are characterized by a rational quotient, denoted the resonance ratio. This ratio is repre-

sented as P :Q, where P is the number of orbital periods and Q is equal to the number of

lunar synodic periods. Plotting the ratio across a family against another parameter, such

as the perilune radius, uncovers the resonant family members. Sample resonance plots for

the L1 and the L2 Earth-Moon CR3BP Lyapunov families of periodic orbits appear in Fig-

ure  4.16(a) . Horizontal dashed lines indicate resonance ratios; intersections between these

lines and the curve associated with the family of periodic orbits denote the existence of

synodic resonant orbits. The synodic resonant 1:1 Lyapunov orbits, i.e., the Lyapunov or-

bits with orbital orbit precisely equal to the synodic period are highlighted by the circles in

Figure  4.16(a) . The corresponding orbits are plotted in thick lines along the representative

members of the Lyapunov families of orbits in the Earth-Moon in Figure  4.16(b) .
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The BCR4BP is equivalently defined in both the Earth-Moon frame and the Sun-B1 ro-

tating frame. The equations of motion in the Earth-Moon rotating frame, in Equation ( 2.4 ),

and in the Sun-B1 rotating frame, in Equation (  2.8 ) both describe a time-dependent, peri-

odic system. Therefore, a periodic solution generated in one formulation is periodic in the

alternative formulation. As an illustration, resonant Lyapunov orbits in the BCR4BP are

explored. The Lyapunov orbits are families of periodic orbits in the CR3BP that evolve from

investigation of the linear variational motion in the vicinity of the collinear equilibrium points

[ 6 ]. Representative members from the Earth-Moon CR3BP L1 and L2 Lyapunov families are

plotted in Figure  4.16(b) . Recall that periodic orbits in the BCR4BP are in resonance with

the lunar synodic period, that is, 29.5 days. Thus, the ratio of the synodic to orbital period

across the Earth-Moon L1 and L2 Lyapunov families appears in Figure  4.16(a) to facilitate

the identification of synodic resonant orbits. Dashed lines in Figure  4.16(a) highlight sample

resonance ratios. For this example, the 1:1 synodic resonant L1 and L2 Lyapunov orbits are

selected; they are identified by thick lines in Figure  4.16(b) . These orbits possess an orbital

period precisely equal to the synodic orbital period. Both orbits are transitioned from the

Earth-Moon CR3BP to the Earth-Moon BCR4BP. The resulting orbits in the BCR4BP,

plotted as viewed in the Earth-Moon rotating frame, appear in Figure  4.17(a) , with the

(a) (b)

Figure 4.16. Subset of the CR3BP Earth-Moon L1 and L2 Lyapunov families
(a). Synodic resonance plot across the two families (b). The 1:1 resonant
member of each family is denoted by thicker lines in (a) and by colored circles
in (b).
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initial guesses, that is, the periodic orbits in the CR3BP, denoted by dashed lines. The solar

gravitational attraction tends to shift the L1 and L2 1:1 synodic resonant Lyapunov orbits

towards the libration points. The initial conditions for the periodic orbits in the Earth-

Moon rotating frame are then rotated to the Sun-B1 rotating frame, and the equations of

the motion for the BCR4BP in this frame, Equation ( 2.8 ), are numerically propagated. The

L1 and L2 1:1 synodic resonant Lyapunov orbits as observed in the Sun-B1 rotating frame

are plotted in Figure  4.17(b) , with the Earth and the Moon orbits indicated for reference.

Although the orbits appear to intersect the lunar orbit multiple times, the phasing with the

Moon is also significant. A single lunar flyby occurs along each periodic solution on the

far-right side of the Earth orbit in Figure  4.17(b) . Since both formulations of the BCR4BP

in the Earth-Moon-Sun system share the same period, that is, the synodic period, periodic

solutions remain periodic when rotated from one frame to the other.

Lagrange points from the Earth-Moon CR3BP are also employed as initial guesses for

constructing periodic orbits in the BCR4BP. In the CR3BP, the Lagrange points are fixed

points. Thus, the equilibrium points may also be considered periodic with an arbitrary

period. Gómez [ 20 ] employed this method with an orbital period set to the synodic period

to compute the BCR4BP periodic orbits corresponding to the triangular equilibrium points of

(a) (b)

Figure 4.17. 1:1 L1 and L2 Lyapunov orbits in the BCR4BP (solid) and in
the CR3BP (dashed), as seen in the Earth-Moon rotating frame (a). 1:1 L1
and L2 Lyapunov orbits in the BCR4BP, as observed in the Sun-B1 rotating
frame. The Moon and Earth orbits are indicated for reference.
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the Earth-Moon CR3BP. The relationship between the dynamical structures of the BCR4BP

and Earth-Moon and Sun-B1 CR3BP are presented in Figure  4.18 . The Lagrange points are

transitioned to the Zero Acceleration Contours, as demonstrated in Section  4.1 , or to periodic

orbits, as detailed in Section  4.3.2 . Periodic orbits in the BCR4BP are constructed from the

synodic resonant periodic orbits or the Lagrange points of the Earth-Moon CR3BP.

Lagrange Points Li/Li
Synodic Resonant
Periodic Orbits

ZACs Ei/Ei Periodic Orbits

CR3BP

BCR4BP

Figure 4.18. Relationship between the dynamical structures of the CR3BP
and the BCR4BP

To evaluate the stability of a periodic solution, the state transition matrix, Φ(t, t0), is

evaluated stroboscopically, after the precise period of the orbit. For a solution of period P, the

state-transition matrix after one revolution, Φ(t0 + P, t0), is labeled the monodromy matrix.

The requirement for the stability of the solution is summarized as follows[ 77 ]: A periodic

solution is stable in the linear sense if and only if all the eigenvalues of the monodromy

matrix have a magnitude smaller or equal to one. From Lyapunov’s theorem [ 78 ], if λi is

an eigenvalue of the monodromy matrix Φ(t0 + P, t0), then λ−1
i is also an eigenvalue. Thus,

the real eigenvalues occur in reciprocal pairs, and the complex and purely imaginary occur

in conjugate pairs. The stability requirement is rephrased as: A periodic solution is stable

in the linear sense if and only if all the eigenvalues of the monodromy matrix lie on the unit

circle in the complex plane. The stability of a periodic orbit is, thus, determined by the

location of the eigenvalues of the monodromy matrix, Φ(t0 + P, t0) in the complex plane.

Rather than examining the eigenvalues, the Lyapunov exponents associated with the

monodromy matrix are employed to assess the stability of a periodic solution. Note that

metrics are available to determine stability, such as the stability index [  79 ] or the Broucke

stability diagram [ 76 ], [ 80 ]. The Lyapunov exponent is a convenient metric to assess the

stability of a periodic solution and is directly obtained through the state-transition matrix
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elements along the solution. The Lyapunov exponent is labeled φi, and is defined as the real

part of the Floquet exponent, that is,

φi = Re
(

ln λi

P

)
(4.12)

where P is the period of the orbit and λi is the i-th eigenvalue of the monodromy matrix

associated with the periodic solution. Thus, the stability characteristics, i.e., the eigenvalues,

are scaled by the orbital period for the Lyapunov exponents. The phase space in the CR3BP

is six-dimensional, thus, the monodromy matrix corresponding to a periodic solution admits

six eigenvalues, labeled λ1 through λ6. Recall, from the Lyapunov theorem [  78 ], that eigen-

values occur in reciprocal pairs if they are real or in conjugate pairs if they are complex. A

periodic solution in the CR3BP possesses a pair of eigenvalues equal to one due to the Jacobi

constant and the time-autonomous nature of the CR3BP [  6 ], [ 81 ]. These unit eigenvalues

correspond to an absence of divergence if a perturbation is introduced along the direction of

the periodic orbit. Thus, two of the Lyapunov exponents are equal to zero. They correspond

to the absence of expansion (quantified by positive Lyapunov exponents), or contraction

(quantified by negative Lyapunov exponents) when a perturbation is introduced along the

direction of the trajectory. The sign of the remaining Lyapunov indices determines the stabil-

ity (in the linear sense) of the periodic solution. The necessary condition for linear stability

of a periodic orbit is that all the Lyapunov exponents must be equal to zero [ 6 ]. Similar to

the equilibrium points, the three pairs of eigenvalues of the monodromy determine the three

linear modes in the CR3BP and the BCR4BP. The modes are identified by the relationship

between the eigenvalues of the monodromy matrix and the unit circle in the complex plane

[ 73 ]. The modes are characterized as follows:

• If a pair of eigenvalues is real and not on the unit circle, i.e., Im λi = 0 and ‖λi‖ 6=
1, the associated mode is a hyperbolic, or saddle, mode. In the linearized model,

perturbations along the unstable subspace (‖λi‖ > 1) and the stable subspace (‖λi‖ <
1) grow exponentially in positive and negative time, respectively.
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• If a pair of eigenvalues is on the unit circle (‖λi‖ = 1) oscillatory motion exists in the

vicinity of the periodic orbit and the associated mode is a center mode.

• If a pair of eigenvalues is not on the unit axis or the real axis Reλi 6= 0, ‖λi‖ 6= 1,

a mixed mode is associated with the periodic orbit. This mode involves both the

oscillatory and the exponentially growing motions in the vicinity of the periodic orbit,

in the linearized model.

Following Cox’s naming convention [  69 ], each periodic orbit is described by a string Sns ×
Cnc ×Mnm , where S, C, and M denote a saddle mode, a center mode, and a mixed mode,

respectively. The superscripts ns, nc, and nm denote the dimensions of the subspaces asso-

ciated with each mode. The sum of the dimensions is equal to the dimensions of the phase

space, which is 6 for both the CR3BP and the BCR4BP. For instance, S2 × C4 denotes an

unstable periodic orbit with a two-dimensional saddle mode and a four-dimensional center

mode. In addition to the binary stable/unstable property, a periodic orbit is described by

its associated modes.

4.3.2 Earth-Moon Lagrange Orbits

The Earth-Moon Lagrange orbits are the dynamical counterparts in the BCR4BP of the

Earth-Moon Lagrange points. While the Ei instantaneous equilibrium points offer insight

in the allowable motion through their relationship with the ZVCs, the dynamical evolution

of the CR3BP libration points as the gravitational influence of the Sun is introduced is

described by the Lagrange orbits. Lagrange orbits associated with L1, L3, and L4/L5as

constructed in the BCR4BP are explored. The non-existence of the L2 Lagrange orbit in the

Earth-Moon-Sun BCR4BP is discussed.

L1, L3, and L4/L5 Orbits

Lagrange orbits associated with L1, L3, and L4/L5 exist within the context of the BCR4BP.

Recall that these synodic resonant periodic orbits are constructed using the CR3BP libra-

tion points as the initial guess of the natural parameter continuation scheme in Sun mass
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described in Section  3.4.1 . The results of the continuation schemes for L1, L3, L4, and L5

are plotted in Figures  4.19(a) ,  4.20(a) ,  4.21(a) and  4.21(c) , respectively. Each curve is a

periodic orbit represented in the Earth-Moon rotating frame. The curves are colored as a

function the nondimensional Sun mass parameter, ε which scales in the nondimensional mass

of the Sun in Equation (  3.44 ). Thus, each periodic orbit in the continuation scheme is a

periodic in a BCR4BP with an artificial Sun mass that is generally not equal to the Sun

mass employed in the Earth-Moon-Sun BCR4BP; these periodic orbits are used as steps

along the continuation process between ε = 0, i.e., the Earth-Moon CR3BP and ε = 1, that

is, the Earth-Moon-Sun BCR4BP. Recall that the property of symmetry with respect to the

ŷ axis is maintained in the BCR4BP. Thus, the L4 and L5 sets of orbits in Figures  4.21(a) 

and  4.21(c) are geometrically mirror of each other. As intuitively expected, the size of the

periodic orbit increases as more Sun mass is introduced. While there appears to be a linear

relationship between the size of the periodic orbit and the Sun mass for L1 and L3 in Fig-

ures  4.19(a) and  4.20(a) , respectively, such is not the case for the continuation of the L4 and

L5 libration points. As apparent from the insets in Figures  4.21(a) and  4.21(d) , the periodic

orbits remain relatively close to the Lagrange point for ε comprised between and 0 and 0.8.

However, the size of the orbits grows significantly for ε between 0.8 and 1 as evidenced by

the dark purple to black curves in Figures  4.21(a) and  4.21(c) . A continuation scheme in

Sun mass is employed to construct in the BCR4BP the Lagrange orbits corresponding the

Earth-Moon L1, L3, and L4/L5 libration points.

Lagrange orbits associated with the Earth-Moon L1, L3, and L4/L5 libration points are

obtained for ε = 1. The resulting orbits are colored in blue in the Earth-Moon rotating

frame in Figures  4.19(b) ,  4.20(b) ,  4.21(b) and  4.21(d) . The orbital periods of these orbits

are precisely equal to one synodic period. For reference, the CR3BP Lagrange points are

indicated by the gray asterisks and the BCR4BP ZACs are denoted by the black contours.

Note the different configurations between the Lagrange orbit and the ZACs. For instance,

the E1 ZAC is enclosed within the L1 periodic orbit in Figure  4.19(b) . Conversely, the

BCR4BP periodic orbit associated with L3 has a much smaller size than the E3 ZAC plotted

in Figure  4.5(a) ; a subset of the ZAC in the vicinity of the periodic orbit is included in

Figure  4.20(b) . The L4/L5 Lagrange orbits in Figures  4.21(b) and  4.21(d) have comparable
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(a) (b)

Figure 4.19. Continuation in Sun mass parameter ε of the Earth-Moon L1
Lagrange point (a). Lagrange orbit associated with L1, in blue, and E1 instan-
taneous equilibrium solutions, in black (b).

(a) (b)

Figure 4.20. Continuation in Sun mass parameter ε of the Earth-Moon L2
Lagrange point (a). Lagrange orbit associated with L2, in blue, and E1 instan-
taneous equilibrium solutions, in black (b).
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(a) (b)

(c) (d)

Figure 4.21. Continuation in Sun mass parameter ε of the Earth-Moon L4/L5
Lagrange point (a, c). Lagrange orbit associated with L4/L5, in blue, and
E4/E5 instantaneous equilibrium solutions, in black (b, d).

dimensions with their associated ZACs. Unlike the Zero Acceleration Contours, the Lagrange

periodic orbits are trajectories, that is, they satisfy the differential equations of motion in

Equation ( 2.4 ).

The Lagrange periodic orbits instantaneously have a higher energy, or equivalently, a

lower H value, than the instantaneous equilibrium solution. For instance, consider the L1 La-
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grange periodic orbit and the E1 zero acceleration contours in Figure  4.22 . In Figures  4.22(a) 

(a) ZVCs associated with E1(π

3) (b) ZVCs associated with the L1 PO at θ = π

3

(c)

Figure 4.22. Forbidden regions (gray surfaces) bounded by the ZVCs (in
black) for energy levels associated with the L1 periodic orbit (in blue) and the
E1 (in gray) at θ = π

3 (a,b). Difference in associated energy-like quantity H
between the Lagrange periodic orbit and the E1 ZAC.

and  4.22(b) , the periodic orbit and the ZAC are plotted in blue and gray, respectively. Cyan

and black dots denote the points corresponding to the θ = π

3 epoch along each structure.

The ZACs are evaluated for each of this point; the ZACs corresponding the instantaneous

equilibrium point E1(π

3) are plotted in Figure  4.22(a) while the ZACs corresponding the state

along the periodic orbit at the same epoch are plotted in Figure  4.22(b) . As apparent in

Figure  4.22(a) , and consistently with the discussion in Section  4.2 , the ZVCs associated with

103



the instantaneous equilibrium points act boundaries between various region of space. For an

energy-like value consistent with the E1, the ZVCs between the Earth and the Moon regions

are always closed and the point where the upper and lower parts of the ZACs meet traces

the Zero Acceleration Contour, plotted in gray in Figure  4.22(a) (note that ZACs cannot

violate the forbidden regions, as they are not solutions of the equations of motion). Now,

consider the ZVCs associated with the Lagrange periodic orbit for θ = π

3 , plotted as the

cyan marker in Figure  4.22(b) . The associated H value is lower or, equivalently, the energy

along the orbit is higher than the one associated with the instantaneous equilibrium point.

Thus, motion between the Earth and lunar region is possible. Note that the periodic orbit

does not violate the forbidden regions, although the blue curve seems to be inside the gray

region for negative y values in Figure  4.22(b) . Recall that the instantaneous ZVCs pulsate,

or oscillate, as a function of epoch; as the cyan dot moves along the periodic orbit, the ZVCs

recede. Another evidence of that the periodic orbit does not violate the forbidden region is

available by the examining the energy-like quantity along the periodic orbit and the ZACs.

The difference between the two energy-like quantities is plotted as a function of epoch in

Figure  4.22(c) ; the θ = π

3 epoch is denoted by a black dot. The difference is negative for

all Sun angle values, i.e., the energy along the periodic orbit is always higher than the en-

ergy associated with the instantaneous equilibrium solutions. The Lagrange periodic orbits

constructed in the BCR4BP do not violate the instantaneous Zero Velocity Curves.

The linear stability properties associated with the Lagrange point orbits are examined.

Recall that the stability properties of periodic orbits by the relative position of the eigen-

values of the monodromy matrix with respect to the unit circle in the complex plane. The

stability properties associated with the periodic orbits from Figures  4.19(a) ,  4.20(a) ,  4.21(a) 

and  4.21(c) are plotted in Figure  4.23 . The horizontal axes represent the maximum distance

from the Lagrange point along the periodic orbit (note the different scales for each plot);

the vertical axis represent the nondimensional mass continuation parameter ε employed to

construct each periodic orbit. The curves are colored as a function of the modes associated

with the periodic orbits. For the L1 and L3 periodic orbits in Figures  4.23(a) and  4.23(b) , the

S2×C4 characteristics of the CR3BP Lagrange points are preserved along the continuation

scheme. Similarly, the six-dimensional center associated with the L4/L5 Lagrange points is
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(a) L1 periodic orbit from Figure  4.19(a) 

(b) L3 periodic orbits from Figure  4.20(a) 

(c) L4/L5 periodic orbits from Figures  4.21(a) and  4.21(c) 

Figure 4.23. Stability characteristics associated with the periodic orbits along
the continuation in Sun mass parameter of the Earth-Moon L1, L3, and L4/L5
Lagrange points. Red points denote periodic orbits with S2×C4 modes, while
green points correspond to periodic orbits with C6 modes. Note the different
scales for the horizontal axes.
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maintained along the continuation from the CR3BP to the BCR4BP. However, while the

relationship between the maximum distance between the periodic orbit and the Lagrange

point is linear in Figures  4.23(a) and  4.23(b) , such is not the case for the L3 Lagrange orbit.

From Figure  4.23(c) , the maximum distance between the periodic orbits and the libration

point increases at a fast rate for the mass parameter continuation ε between 0.8 and 1,

which consistent with Figure  4.21(a) . Additionally, bifurcations with no stability change

occur along the continuation of the L4/L5 Lagrange points; see Gómez [ 20 ] for an analysis of

the bifurcations associated with L4/L5 along the continuation in Sun mass. The L1, L3 and

L4/L5 Lagrange periodic orbits in the BCR4BP possess the same stability characteristics as

their respective underlying libration points.

The L2 Case

A Lagrange periodic orbit corresponding to the L2 libration point does not exist in the

Earth-Moon-Sun BCR4BP. Jorba-Cuscó et al. [ 17 ] demonstrate that a turning point occurs

along the continuation in Sun mass of the L2 point between the CR3BP and BCR4BP; an

extension of this result is presented in this section. Consider the family of periodic solutions

plotted in Figure  4.24(a) . The horizontal and vertical axes represent the maximum distance

from L2 along the periodic orbit and the continuation parameter ε, respectively. Each point

along the curve is colored as a function of the linear stability properties; periodic orbits with

two-dimensional saddle and four-dimensional center modes are colored in red while periodic

solution with four-dimensional saddle and two-dimensional center are plotted in blue. It is

apparent from Figure  4.24(a) that the evolution of the family is not monotonic; the Sun

mass continuation parameter first decreases then increases. Thus, the natural parameter

for the continuation scheme is updated to be the x component of a ŷ-axis crossing along

the periodic orbit  

2
 . Employing this natural parameter continuation scheme, the family

first evolves in the direction of negative ε values. Recall this parameter scales the mass

of the Sun in the pseudo-potential in Equation ( 3.44 ); while not possessing any physical

meaning, a negative Sun mass yields a mathematically correct pseudo-potential function. A
2

 ↑ Alternatively, a pseudo-arclength continuation scheme may be employed.
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(a) Stability characteristics

(b) x− y view (c) Isometric view

Figure 4.24. Stability characteristics associated with the periodic orbits along
the continuation in Sun mass parameter of the Earth-Moon L2 Lagrange points
(a). Selected periodic orbits as viewed in the Earth-Moon rotating frame (b,
c).

minimum in Sun mass is then reached for ε ≈ −0.06. The µ reaches the 0 value again, at the

location identified by an olive marker in Figure  4.24(a) . The corresponding solution is the

2:1 synodic resonant L2 Lyapunov orbit as computed in the Earth-Moon CR3BP. This orbit

is then continued to ε = 1, i.e., to the 2:1 L2 Lyapunov orbit as computed in the BCR4BP,

denoted by the black marker in Figure  4.24(a) . Note that this orbit is not the dynamical
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counterpart in the BCR4BP of the Earth-Moon L2 Lagrange point. The 2:1 Lyapunov orbits

computed in the CR3BP and BCR4BP are plotted as viewed in the Earth-Moon rotating

frame in Figures  4.24(b) and  4.24(c) . Due to a turning point along the continuation process,

a Lagrange orbit corresponding to the L2 Lagrange point is not obtained in the Earth-Moon

CR3BP.

The changes in stability along the continuation in Sun mass of the L2 Lagrange point are

explored. Recall that each point in Figure  4.24(a) is colored as a function of the linear modes

associated with the periodic orbit. Red points correspond to periodic with a two-dimensional

hyperbolic manifold and a four-dimensional center; blue points represent periodic solution

with a four-dimensional saddle mode and a two-dimensional center. Transitions from blue to

red (or vice versa) denote a tangent bifurcation [  73 ], [ 82 ] where the order of stability changes;

both types correspond to unstable orbits but have different dimensions for the hyperbolic

manifold. The first bifurcation along the family of periodic solutions in the direction of

increasing maximum distance to L2 is indicated by the purple arrow in Figure  4.24(a) .

This tangent bifurcation, which occurs at the turning point in Sun mass, is a cyclic-fold

bifurcation. At cyclic-fold bifurcations, only the order of stability changes and no new

periodic solutions emerge. Note that the location is of this cyclic-fold bifurcation is consistent

with the evolution of the family as plotted in Figure  4.24(a) , as single-parameter families

exhibit a cyclic-fold bifurcation at the extremum of the varied parameter [ 83 ]. The second

bifurcation along the family is a pitchfork bifurcation and is indicated by the green arrow

in Figure  4.24(a) . Following this bifurcation yields a new family of periodic solution; in

one direction, the 2:1 L2 halo orbit as computed in the Earth-Moon CR3BP is obtained .

This orbit, denoted by the pink dot in Figure  4.24(a) is also a bifurcating orbit; following

this bifurcation leads to the 2:1 L2 halo orbit as computed in the Earth-Moon-Sun BCR4BP,

represented by a brown dot. The periodic orbits constructed in the Earth-Moon CR3BP and

the Earth-Moon-Sun BCR4BP are presented in Figures  4.24(b) and  4.24(c) . The dynamics

in the vicinity of the Earth-Moon L2 point as the Sun mass is varied are complex, and a

variety of bifurcations are available.
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4.3.3 Earth-Moon Near Rectilinear Halo Orbits 

3
 

The proposed Gateway concept is the current framework for the NASA development of

a space facility near the Moon with an option to return to the lunar surface [ 84 ], [ 85 ]. From

a baseline trajectory in a Near Rectilinear Halo Orbit (NRHO), the Gateway is intended to

serve as a proving ground for deep space technologies and as a staging location for missions

beyond low Earth orbit. The NRHOs in the lunar vicinity are members of the L1 or L2

halo orbit families as defined within the context of the Circular Restricted Three-Body

Problem (CR3BP), representing the Earth-Moon system. The NRHO subset of the halo

family is characterized by favorable stability properties and relatively close approaches to

the Moon. The NRHOs are defined as precisely periodic orbits in the CR3BP. However, when

considering arrival and departure from the Earth-Moon region, the impact of solar gravity

is significant. The Sun and its location in the Earth-Moon frame are also relevant when

exploring the orbits for characteristics that translate to the higher-fidelity ephemeris model.

The perturbing effects of the Sun on an orbit as it expands out from the lunar vicinity are

crucial to any baseline trajectory. Thus, in this investigation, the Sun’s gravitational impact

is assessed in the Bicircular Restricted Four-Body Problem (BCR4BP) that incorporates

solar gravity, reasonably represents the full range of starting epochs, and supports eventual

transition to an ephemeris model. To successfully construct trajectories in this regime and

offer meaningful analysis, the ability to translate the characteristics to higher-fidelity models

is critical. This examination of potential baseline trajectories in the BCR4BP adds insight

to the design process.

Definition in the CR3BP

The halo family and its subset, the Near Rectilinear Halo Orbits (NRHOs), are comprised

of three-dimensional precisely periodic orbits as defined in the CR3BP. The halo family

bifurcates from each family of planar Lyapunov orbits associated with the collinear libration

points. For the L1 and the L2 equilibrium points in the Earth-Moon system, the halo family
3

 ↑ This chapter was published in Advances in Space Research, Vol 66, Boudad, Howell, Davis, Dynamics of
Synodic Resonant Near Rectilinear Halo orbits in the Bicircular Four-Body Problem, Pages 2194-2214, ©
COSPAR (2020) [ 44 ].

109



originates in the x-y plane from the bifurcation orbit in the Lyapunov family and evolves out

of plane as the family of orbits approaches the Moon. Note that the halo family is mirrored

across the x-y plane: the northern family members possess a positive z component over

the majority of their orbit, while the southern family members are defined by a negative

z component. Representative southern L1 and L2 halo orbits in the Earth-Moon system

appear in Figure  4.25 .

Zimovan [ 38 ] define bounds on the NRHO subset for the L1 and L2 halo families by their

linear stability properties. Recall that the Lyapunov exponents are the (linear) stability met-

ric employed for periodic orbits in this analysis. The Lyapunov exponents along a portion of

the L1 and L2 halo families are plotted as functions of the perilune distance in Figure  4.26 .

Zimovan [ 38 ] define the NRHO subset of the L1 halo family as the orbits between the first

and fourth stability changes along the family, in the direction of increasing perilune radius,

(a) (b)

Figure 4.25. 3D view of the CR3BP Earth-Moon L1 (a) and L2 (b) halo
families. Members of the NRHO subset as defined in this investigation are
colored in orange. The NRHO+ subset, which only exists in the L2 halo
family, is colored in green.
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as presented in Figure  4.26(a) . Similarly, the NRHO subset of the L2 halo family is defined

as the group of orbits between the first and the third stability change, as plotted in Fig-

ure  4.26(b) . The orbits on the left of the first stability change along the L1 halo family, in

Figure  4.26(a) , present a rapidly increasing unstable mode as the perilune radius decreases.

However, the orbits on the left of the first stability change along the L2 halo family, colored

in green in Figure  4.26(b) , are stable (in the linear sense). The geometry associated with

these orbits, also colored in green in Figure  4.25(b) , is similar to geometry of the NRHOs.

Therefore, this subset of stable, rectilinear orbits beyond the bounds of the L2 NRHO region

along the L2 halo orbits is labeled the NRHO+ region. This subset only exists in the L2

halo family. Note that the first stability change that serves as the original NRHO boundary

occurs in an orbit with perilune above the lunar radius, as apparent in Figure  4.27 . Recall

that the Earth and the Moon are considered point masses in the CR3BP, thus, the model is

unaware of the radius of the primaries. Some members of the NRHO+ subset also possess

a perilune above the lunar surface. Members of the NRHO and the NRHO+ subsets of the

L2 halo family are considered in this investigation.

(a) (b)

Figure 4.26. Lyapunov exponents across a portion of the L1 (a) and L2 (b)
halo families. Members of the NRHO subset as defined in this investigation are
colored in orange. Stability changes are denoted by arrows and numbered. The
NRHO+ subset, which only exists in the L2 halo family, is colored in green.
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Figure 4.27. Close-up of the Lyapunov exponent along the L2 halo family
around the first stability change, as a function of the perilune radius.

Synodic resonant NRHOs in the Earth-Moon CR3BP are selected as initial guesses for

constructing periodic orbits in the BCR4BP. Sample resonance plots for the L1 and the L2

Earth-Moon CR3BP halo families appear in Figure  4.28 . Members of the NRHO subset

along the halo family are colored in orange, and members of the NRHO+ subset are colored

in green. Note that the evolution of the period is not monotonic for the L1 family, in

Figure  4.28(a) . Thus, multiple orbits with the same resonance ratio may exist along the

L1 family; for instance, there are two 7:2 resonant L1 NRHOs in the CR3BP Earth-Moon

system. On the L2 side, the orbital period monotonically decreases along the halo family as

the perilune radius decreases, as apparent in Figure  4.28(b) . Recall that the resonance ratio

is inversely proportional to the orbital period. A larger range of period values exists in the

L2 NRHO subset as compared with L1 NRHO subset, thus, more rational-quotient resonant

members are observed in the L2 halo family. However, note that the resonant orbits identified

in Figures  4.28(a) and  4.28(b) comprise only a sample of the resonant NRHOs. Orbits

possessing more complex resonance ratios, for instance, 61:17, are also synodic resonant

orbits, although less obviously useful. While there is an infinity of synodic resonant NRHOs,

this investigation generally focuses on NRHOs with simple resonant ratios. These synodic

resonant NRHOs computed in the CR3BP serve as initial guesses for the generation of

periodic NRHOs in the BCR4BP.
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(a) L1 (b) L2

Figure 4.28. Synodic resonance across the CR3BP Earth-Moon L1 (a) and
L2 (b) halo families. Members of the NRHO subset are colored in orange.
NRHO+ orbits (in the L2 halo family) are colored in green.

Analogs in the BCR4BP

Four synodic resonant NRHOs from the CR3BP are transitioned to the BCR4BP using

the updated pseudo-potential function in Equation ( 3.44 ) and a natural parameter contin-

uation scheme. The four previous synodic resonant NRHOs and NRHO+ in the CR3BP

are plotted together in Figure  4.29(a)  

4
 . Recall that they are selected for their periods: all

four orbits are synodic resonant orbits with simple resonance ratios from the L2 halo family.

The four periodic orbits in Figure  4.29(a) are the basis for the construction of the solution

in the BCR4BP via the continuation/corrections procedure, and the results appear in Fig-

ure  4.29(b) . The N :1 synodic orbits are continued to Tsyn-periodic orbits in the BCR4BP,

and the 9:2 synodic NRHO is continued to a 2Tsyn-periodic orbit. The geometry and the apse

distances to the Moon are maintained during the continuation procedure. The perturbing

gravity from the Sun tends to stretch the NRHOs, mostly along the rotating x̂ direction.

The selected BCR4BP NRHOs and NRHO+ are also periodic in the Sun-B1 rotating

frame, since they are Tsyn-periodic orbits. The orbits are rotated from the Earth-Moon

rotating frame to the Sun-B1 rotating frame and appear in Figure  4.30 , colored according to

the scheme employed previously in Figure  4.29 . The lunar and Earth orbits are represented

by gray lines. When viewed in this particular frame, the BCR4BP synodic resonant NRHOs

appear to wrap around the lunar orbit. Note that the crossings above the lunar orbit
4

 ↑ Initial conditions for these orbits are produced in Appendix  E.1 .
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(a) (b)

Figure 4.29. Four synodic resonant NRHOs as viewed in the Earth-Moon
rotating frame, computed in the Earth-Moon CR3BP (a) and in the Earth-
Moon-Sun BCR4BP (b).

plane correspond to the perilunes along the periodic orbits. For instance, the BCR4BP

periodic orbit corresponding to the 3:1 synodic, plotted in yellow in Figure  4.30 , possesses

three crossings above the lunar radius; these crossings correspond to the three perilunes

of the BCR4BP periodic orbit, as seen in Figure  4.29(b) . For the 2 Tsyn-periodic orbit

depicted in blue, the nine perilunes occur over two revolutions of Moon along its orbit. The

BCR4BP NRHOs maintain their periodicity and characteristics when represented in the

Sun-B1 rotating frame.

Eclipse-Avoidance Properties

Synodic resonant orbits may present favorable eclipse-avoidance properties. Recall that

the orbital period for synodic resonant orbits is commensurate with the lunar synodic period,

that is, the time between two consecutive alignments of the Sun, the Earth, and the Moon.

Thus, the geometry of synodic resonant orbits repeats itself for a given Sun-Earth-Moon

configuration, and long-term eclipse-avoidance is possible. For instance, consider the 9:2

NRHO. This synodic resonant orbit is a candidate location for the proposed Gateway facility
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Figure 4.30. Four synodic resonant NRHOs as viewed in the Sun-B1 rotating frame.

in cislunar space [ 38 ], [ 41 ], [ 86 ]. A 9:2 synodic resonant orbit computed in the BCR4BP that

presents favorable Earth eclipse-avoidance properties is plotted in Figure  4.31(a) . Recall

that the Sun is seen as moving in the Earth-Moon frame. Thus, Earth eclipses are easier to

identify in the Sun-B1 rotating frame since the Sun is fixed and the motion of the Earth is

fixed in that frame. The 9:2 NRHO in the BCR4BP is plotted in Figure  4.31(b) , with the

Earth penumbra cone [  87 ] identified by the black cone. It is apparent that the penumbra cone

does not intersect the trajectory in any location, thus, the trajectory is Earth eclipse-free.

Two spacecraft can fly concurrently in this eclipse-free synodic orbit. The synodic res-

onant 9:2 NRHO as computed in the BCR4BP is periodic over 2 synodic periods of the

Moon, that is, two revolutions (4 π) in Moon angle θ as presented in Figure  2.2 . Thus, two

spacecraft separated by a phase angle of 2π in θ are flying in the NRHO simultaneously. To

illustrate this concept of phasing along the orbit, consider two spacecraft: A, plotted as a

red dot and B, plotted as a blue dot in Figure  4.31 . It is apparent in Figure  4.31(c) that

the two spacecraft are located at the same Moon angle, approximately equal to 120◦. Recall

that the BCR4BP is a non-autonomous model where the Sun angle and the Moon angle are

linear functions of the independent time variable. While spacecraft A is approaching per-

ilune, spacecraft B is getting closer to apolune, as apparent in Figures  4.31(a) and  4.31(b) .
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(a) (b)

(c)

Figure 4.31. Synodic resonant 9:2 NRHO in the BCR4BP, as seen in the
Earth-Moon rotating frame (a) and in the Sun-B1 rotating frame (b). Evolu-
tion of the z coordinate as a function of the Moon angle θ (c). Spacecraft A is
denoted by the red dot, spacecraft B by the blue dot.

Note that the orbit does not intersect itself as Figures  4.31(b) and  4.31(c) might suggest.

The ‘intersection’ point corresponds to the closest approach between spacecraft A and B:

the two spacecraft are then located at the same z coordinate, but on different sides of the

Earth-Moon rotating x axis in Figure  4.31(a) . Spacecraft A and B are contemporaneously

flying in the Earth eclipse-free synodic resonant 9:2 NRHO as computed in the BCR4BP,

without encountering each other.
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Energy Properties

An examination of the energy along the P:Q synodic resonant NRHOs is also insightful.

In the CR3BP, the quantity evaluated for an energy-like assessment is the Jacobi constant

C, defined in Eq. ( 2.3 ). A plot of Jacobi constant values is presented in Figure  4.32(a) . The

vertical axis is the Jacobi constant value and, since the CR3BP is time-autonomous and the

Jacobi constant is conserved along natural arcs, the horizontal axis demonstrates that the

C value is constant against any other orbital parameter. Thus, the Jacobi constant value

associated with each synodic resonant NRHO in the CR3BP is denoted by horizontal lines

in Figure  4.32(a) . The gray horizontal stripes represent the Jacobi constant range between

each of the collinear libration points in the CR3BP: L1, L2 and L3. Information about the

flow is offered by the Jacobi constant values at the Lagrange points. Note that a decrease

in the Jacobi constant value corresponds to an increase in energy. Thus, for Jacobi constant

values above the one associated with L1, no openings exist between the Earth and the Moon,

that is, no path naturally passes near both primaries at such an energy level. A gateway,

or portal, linking regions surrounding the two primaries opens when the energy is evaluated

such that C < C(L1). As the energy increases, two more gateways open: first at L2 when

C < C(L2), then at L3 when C < C(L3).

The L2 halo family of orbits and its subsets, the NRHOs and the NRHO+s, are defined

in the vicinity of the L2 libration point. Therefore, the L2 gateway is open, and the Jacobi

constant associated with each of the synodic resonant NRHOs is below the value associated

with L2, that is, C < C(L2). The Jacobi constant associated with resonant NRHOs are

linked to the perilune radius: the higher the perilune, the higher the energy along the orbit.

Note that, in contrast to the orbital period, the evolution of the Jacobi constant across the L2

halo family is not monotonic, as demonstrated in Figure  4.33 . As the L2 halo family evolves

out-of-plane from the bifurcating, planar Lyapunov orbit, the energy along the family first

increases and, correspondingly, the Jacobi constant decreases. A minimum value in Jacobi

constant occurs as the Jacobi constant reaches the NRHO subset. Then, the energy increases

as the perilune radius continues to decrease. The synodic resonant NRHOs in the CR3BP
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possess relatively low Jacobi constant values, and the energy is inversely proportional to the

perilune altitude.

(a) (b)

Figure 4.32. Energy-like quantity along the synodic resonant NRHOs: Jacobi
constant in the CR3BP (a) and Hamiltonian value in the BCR4BP (b).

Figure 4.33. Jacobi constant across the CR3BP L2 halo family. Members
of the NRHO subset are colored in orange and NRHO+ orbits are colored in
green. Synodic resonant orbits of interest are denoted by colored dots.

A similar analysis for the synodic-periodic NRHOs and NRHO+ in the BCR4BP yields

further insight. Recall that the BCR4BP is time-dependent and does not possess an integral

of the motion. The Hamiltonian value, defined in Eq. (  2.7 ), is a function of the position

of the Sun as viewed in the Earth-Moon rotating frame and, thus, is a function of time. A
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Hamiltonian time history is plotted in Figure  4.32(b) . The horizontal axis represents the Sun

angle, i.e., θ, which is a linear function of the independent time variable: θ = −ω t+θ0. The

vertical axis corresponds to the Hamiltonian value. The Hamiltonian values associated with

the instantaneous libration points E1(θ) through E3(θ) are also indicated. Since the libration

points are oscillating, their associated Hamiltonian values are also time-varying. However,

the Hamiltonian values cycle over one synodic period, as do the instantaneous equilibrium

points in the BCR4BP. Note that the order of the openings of the gateways in the BCR4BP

is consistent with the order of opening in the CR3BP: the Zero-Velocity Curves (ZVCs) in

the Earth-Moon-Sun BCR4BP are not degenerated [ 12 ]. The Hamiltonian values along one

period of each of the periodic orbits in the BCR4BP are denoted by colored lines. The

order of the lines is consistent with the order of the Jacobi constant values in Figure  4.32(a) .

The Hamiltonian value along the Tsyn-periodic orbit in the BCR4BP continued from the 3:1

CR3BP NRHO, i.e., the yellow line in Figure  4.32(b) , dips below the line associated with

the Hamiltonian value of E3(θ) for certain values of θ. Since the E3(θ) equilibrium is located

on the opposite side of the Earth from the Moon, the opening or closing of E3(θ) does not

notably modify the flow in the vicinity of the 3:1 synodic resonant NRHO orbit.

Linear Stability Properties

The NRHO subset of the halo family is defined by its stability properties. The Lyapunov

exponent, defined in Eq. ( 4.12 ), is a convenient metric to assess the stability of a periodic

solution. Recall that a periodic orbit in the CR3BP possesses six Lyapunov exponents,

including two always equal to zero. An orbit is stable in the linear sense if all six Lyapunov

exponents are equal to zero, otherwise, the periodic solution is unstable. The Lyapunov

exponents along a portion of the CR3BP L2 halo family are plotted in Figure  4.34 . The

NRHO subset is highlighted in orange, the NRHO+ subset in green, and the previously

investigated synodic resonant orbits are indicated by colored dots. The NRHO subset is

comprised of orbits with perilune radii between 1, 800 and 17, 300 km. Halo orbits with

perilune radii lesser than 1, 800 km are labeled NRHO+ orbits. Note that the Lyapunov

exponent corresponding to the unstable mode for the unstable part of the NRHO subset
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ranges from 0 to 0.62. Thus, the instability, in the linear sense, of the members in this part

of the family is quite limited. Two of the synodic orbits constructed previously in the CR3BP

are linearly stable: the 5:1 synodic resonant NRHO+ and the 3:1 synodic resonant NRHO.

The other two, the 4:1 and the 9:2 synodic resonant NRHOs, are linearly unstable. However,

as observed previously, the magnitude of the eigenvalue associated with the unstable mode

is very low for the unstable NRHOs.

Figure 4.34. Lyapunov exponents across a subset of the CR3BP L2 halo
family. Members of the NRHO subset are colored in orange and NRHO+
orbits are colored in green. Synodic resonant orbits of interest are denoted by
colored dots.

Given the stability properties from the CR3BP, the stability of the periodic solutions in

the BCR4BP is explored. The six eigenvalues associated with the position and velocity states

for a periodic orbit in the BCR4BP occur in pairs, as the Lyapunov theorem still applies in

this model. The Lyapunov exponents associated with the resonant NRHOs in the CR3BP

and the BCR4BP are presented in Table  4.5 . One advantage of the Lyapunov exponents,

as defined in Eq. ( 4.12 ), is that they are not influenced by the orbital period. Thus, a

comparison of the stability characteristics between orbits with very different orbital periods,

for instance the 9:2 NRHO in the CR3BP and its BCR4BP counterpart, is immediately

available.

The stability characteristics for the synodic resonant 4:1 NRHO and the 9:2 NRHO

are generally consistent between the CR3BP and the BCR4BP. Both orbits are linearly
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Table 4.5. Lyapunov exponents for the sampled synodic resonant NRHOs as
computed in the CR3BP and the BCR4BP

Orbit CR3BP, 1 period BCR4BP, 1 period

3:1 NRHO
0
0
0

0
0

±0.6223

4:1 NRHO
0
0

±0.6277

0
0

±0.6364

9:2 NRHO
0
0

±0.5157

0
±0.0013
±0.5208

5:1 NRHO
0
0
0

0
0

±0.0322

unstable, but the magnitude of the Lyapunov exponent associated with the unstable mode

is small. For the 4:1 NRHO, the Lyapunov exponent associated with the unstable mode

is equal to 0.6277 when computed in the CR3BP, and equal to 0.6364 in the BCR4BP.

Similarly, the Lyapunov exponents for the synodic resonant 9:2 NRHO is consistent between

the CR3BP and the BCR4BP. As noted previously, the pair of unit eigenvalues associated

with the autonomous nature of the CR3BP is not conserved in the BCR4BP. However, the

corresponding eigenvalues for the BCR4BP periodic orbit are located on the unit circle in

the complex plane, i.e., the norm of each eigenvalue is equal to unity, or on the real axis in

the immediate vicinity of one. Either case yields two Lyapunov exponents equal to zero or

very close to zero. The stability properties of the synodic resonant 4:1 and 9:2 NRHOs are

apparently maintained when the orbits are transitioned to the BCR4BP.

Some differences in the stability characteristics between the CR3BP and the BCR4BP

models are present for the 3:1 and the 5:1 NRHOs. Both synodic resonant orbits are linearly

stable in the CR3BP, and linearly unstable in the BCR4BP. In Table  4.5 , the magnitude of

the Lyapunov exponent associated with the unstable mode along the 5:1 BCR4BP NRHO

is very close to zero (0.0322). Thus, perturbed motion in the vicinity of the 5:1 NRHO+

remains close to the periodic orbit for an extensive length of time, despite the linearly
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unstable nature of the solution, as expected for such a low magnitude of the Lyapunov

exponent, since the associated time constant for the unstable mode is large. The stability

characteristics vary more significantly between models for the synodic resonant 3:1 NRHO.

In the CR3BP, the periodic orbit is stable, in the linear sense. The solution constructed

in the BCR4BP from this periodic, linearly stable initial guess is unstable. The Lyapunov

exponent associated with the unstable mode is equal to 0.6223. The stability differences

for certain synodic resonant periodic orbits signal a need for further verification that the

BCR4BP periodic solutions are the true analogs of the CR3BP synodic NRHOs.

Recall that construction of the periodic orbits in the BCR4BP requires a continuation

process. The Lyapunov exponents along the NRHO continuation in solar mass are investi-

gated. Discontinuities as the Lyapunov exponents evolve suggest that the type of solutions,

in terms of the stability characteristics, might have also shifted during the corrections and

continuation process and that the periodic orbit is not the true counterpart of the CR3BP

orbit. If no discontinuity is observed but the stability properties for the periodic orbits are

different between the CR3BP and BCR4BP, a bifurcation occurs along the evolution of the

family in Sun mass. To explore this possibility, the Lyapunov exponents along the continu-

ation process for the four synodic resonant NRHOs and NRHO+ are plotted in Figure  4.35 .

In all four plots, the horizontal axis reflects the value of the Lyapunov exponents, that is, φi,

and the vertical axis describes the percentage of the Sun mass that is assumed at each step

in the continuation process. Thus, when the assumed mass of the Sun is 0% of the actual

solar mass, the Lyapunov exponents correspond to the values for the Earth-Moon CR3BP

NRHOs and with an assumed mass equal to 100% of the true solar mass, they correspond to

the Lyapunov exponents for the synodic resonant orbits in the BCR4BP. Note that the inter-

mediate steps in assumed mass between 0% and 100% possess periodic solutions that satisfy

the equations of the motion for the BCR4BP at the specified given assumed mass of the Sun.

However, the BCR4BP systems for these intermediate values of the solar mass do not have

any physical meaning and only serve to facilitate the transition between the CR3BP and the

BCR4BP. Six colored lines are plotted on each plot in Figure  4.35 —one for each Lyapunov

exponent. Recall that eigenvalues associated with linear stability yield Lyapunov exponents

equal to zero. The evolution of the Lyapunov exponents along the continuation in assumed
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(a) CR3BP 3:1 to BCR4BP Tsyn-periodic (b) CR3BP 4:1 to BCR4BP Tsyn-periodic

(c) CR3BP 9:2 to BCR4BP 2 Tsyn-periodic (d) CR3BP 5:1 to BCR4BP Tsyn-periodic

Figure 4.35. Lyapunov exponents values for synodic resonant NRHOs along
the continuation from CR3BP to BCR4BP.

solar mass for the Earth-Moon CR3BP 3:1 NRHO is plotted in Figure  4.35(a) . Four of the

six Lyapunov exponents remain equal to zero. The remaining two lines originate at a value

of φ corresponding to the linear stability bounds—recall that all six Lyapunov exponents for

the 3:1 NRHO in the CR3BP are such that φ = 0. With increasing solar mass, the curves

cross the linear stability boundary when assumed mass is near 15% of the true mass of the

Sun and grow larger in magnitude. The curves representing the evolving Lyapunov exponent

values correspond to the ‘mismatch’ in stability observed between the CR3BP 3:1 synodic
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resonant NRHO and the corresponding BCR4BP Tsyn-periodic orbit. However, there is no

discontinuity in the stability index lines in Figure  4.35(a) . Thus, a bifurcation occurs in the

continuation process when the assumed mass is approximately 15% of the true solar mass,

and the Tsyn-periodic in the BCR4BP that corresponds to the 3:1 NRHO in the CR3BP is

unstable in the linear sense. This difference in stability is likely one aspect that contributes

to the numerical challenges in transitioning the 3:1 NRHO in the CR3BP to the higher-

fidelity, ephemeris model [ 88 ]. Similarly, the ‘mismatch’ in stability for the synodic periodic

orbit corresponding to the 5:1 resonant orbit is explored in Figure  4.35(d) . Four of the Lya-

punov exponents in Figure  4.35(d) remain along the φ = 0 linear stability line throughout

the continuation in assumed mass, while the remaining two lines both reflect nonzero values

of φ and leave the stability boundary when the assumed mass is approximately equal to

90% of the Sun’s true mass. Since the evolution of all six Lyapunov exponents are smooth,

it is deduced that a bifurcation occurs at an assumed mass around 90% of the Sun’s true

mass along the continuation process. The Tsyn-periodic solution in the BCR4BP introduces

a small unstable mode, while the 5:1 synodic resonant orbit in the CR3BP is stable in the

linear sense. The Lyapunov exponents for the synodic resonant solutions corresponding to

the 4:1 and the 9:2 NRHOs are consistent in both models, as apparent in Table  4.5 . There-

fore, it is not surprising that the Lyapunov exponent evolutions in Figures (b) and (c) are

nearly vertical lines. By examination of the evolution of the Lyapunov exponents over the

continuation in Sun mass, it is determined that the NRHOs, as constructed in the BCR4BP,

are the counterparts of the CR3BP orbits, but the linear stability characteristics are not

necessarily the same in both models.

Epoch Considerations

Periodic orbits in the BCR4BP model are defined for a specific epoch. In this investiga-

tion, the initial epoch is specified by the Sun angle at perilune. Recall that the Tsyn-periodic

and 2Tsyn-periodic orbits in the BCR4BP include multiple revolutions around the Moon

and, thus, multiple perilunes are recorded. During the continuation of a synodic periodic

orbit from the CR3BP, an autonomous model, to the BCR4BP, a periodic time-dependent
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model, an initial epoch is introduced. To explore the impact of this initial epoch selection

on the final BCR4BP synodic resonant orbit, solar mass exclusion plots are exploited. So-

lar mass exclusion plots relate the initial epoch to the convergence of a BCR4BP periodic

orbit. For instance, consider the solar mass exclusion plot associated with the 3:1 NRHO in

Figure  4.36 . The horizontal axis represents the Sun angle at each perilune from 0◦ to 360◦,

while the vertical axis identifies the percentage of the assumed solar mass. The continua-

tion process from the CR3BP periodic orbit to its BCR4BP counterpart is initialized for a

perilune occurring over a range of Sun angles from 0◦ to 360◦, as illustrated by the blue and

red dots at 0% in Figure  4.36 . Each set of initial conditions is continued in solar mass, and

the intermediate steps are recorded as the assumed solar mass is increased from 0 to 100%

of the true solar mass. The dots in Figure  4.36 are colored according to the outcome of

the continuation process: blue dots corresponds to initial conditions that reach 100% of the

actual solar mass, that is, initial conditions that successfully yield a periodic solution in the

Earth-Moon-Sun BCR4BP. Red dots correspond to solutions that only converge for assumed

masses smaller than 100% of the true solar mass; that is, red dots are associated with initial

Sun angles that do not produce a periodic solution in the Earth-Moon-Sun BCR4BP. Three

nearly vertical blue lines are apparent in Figure  4.36 . These blue lines reflect to the range of

initial conditions that yield an Earth-Moon-Sun BCR4BP periodic orbit. Note that the three

lines, associated with Sun angles approximately equal to 0◦, 120◦ and 240◦, all correspond

to the same orbit. The Tsyn-periodic orbit in the BCR4BP corresponding to the 3:1 NRHO

in the CR3BP includes three lobes around the Moon, and, thus, three distinct perilunes,

as plotted in Figure  4.29(b) . Each vertical line thus corresponds to the Sun angle at one

perilune passage. Note that the lines are separated by approximately 120◦, or, equivalently,

approximately one third of the synodic period. The three lobes along the BCR4BP orbit in

Figure  4.29(b) have slightly different sizes, and thus, slightly different revolution times.

The unicity of BCR4BP counterparts to a synodic resonant orbit in the CR3BP is ex-

plored with the solar mass exclusion plots. It is apparent in Figure  4.36 that the continuous

range of initial Sun angles in the CR3BP all converge to one of two solutions as the assumed

solar mass is increased. Most of the initial conditions, marked in blue, immediately converge

to the BCR4BP periodic orbit when the Sun is introduced, i.e., for an assumed mass greater
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Figure 4.36. Solar mass exclusion plot for the synodic resonant 3:1 NRHO
continuation from the CR3BP to the BCR4BP. The BCR4BP counterpart A
is denoted by a black dot, and the BCR4BP counterpart B by a gray dot.

than or equal to 1% of the actual solar mass. Two counterparts, or analogs, of the 3:1

NRHOs are obtained in the BCR4BP. The counterpart denoted ’A’ corresponds to the three

black dots in Figure  4.36 ; the three perilunes have an associated Sun angle of approximately

0◦, 120◦, and 240◦. The remaining initial conditions yield a periodic orbit offset by 60◦ de-

noted by gray dots in Figure  4.36 . This second analog 

5
 to the CR3BP 3:1 NRHO possesses

perilunes for Sun angles approximately equal to 60◦, 180◦, and 300◦. The CR3BP synodic

resonant 3:1 NRHO has thus two BCR4BP counterparts, identified by the black and gray

dots in Figure  4.36 . The periodic solutions corresponding to the two configurations overlap

when the orbits are plotted in the Earth-Moon rotating frames; both solutions coincide with

the orbit plotted in black in Figure  4.37(a) . The differences between the two counterparts

becomes apparent when the two orbits are plotted as viewed in the Sun-B1 rotating frame

in Figure  4.37(b) . The lunar orbit is represented by the dashed black line, and perilune and

apolunes are denoted by triangles and inverted triangles, respectively. Due to the symmetric

nature of the BCR4BP, the apolune associated with the center lobe (C), colored in gray,

is located along the Sun-B1 rotating x̂ direction for each analog. However, in the Sun-B1

rotating frame, the apolune C is located on the right of the Earth for counterpart A, and
5

 ↑ The author incorrectly states in [ 44 ] convergence for assumed solar mass greater than 17% is not achieved.
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(a) Earth-Moon rotating
frame, looking toward the
Earth

(b) Sun-B1 rotating frame

Figure 4.37. Geometry of the 3:1 NRHO computed in the BCR4BP, as viewed
in the Earth-Moon rotating frame (a) and in the Sun-B1 rotating frame (b).
Perilunes are denoted by a triangle, apolunes are denoted by an upside-down
triangle. For the BCR4BP orbit, the apolunes are colored according to their
lobe: ‘L’ in light gray, ‘C’ in gray, ‘R’ in dark gray. Two spacecraft, identified
by the cyan and red circles in Figures  4.37(a) and  4.37(b) are concurrently
flying in the BCR4BP 3:1 NRHO, one in each configuration.

on the left of the Earth for counterpart B. The apolunes associated with the remaining two

lobes are colored in dark gray for the right (R) lobe and light gray for the left (L) lobe in

Figure  4.37(b) . From the view in the Sun-B1 rotating frame, it is apparent that the solu-

tions from the two different configurations are rotated from each other by 180◦ around the

rotating ẑ axis. Note that two spacecraft can fly concurrently in the BCR4BP 3:1 NRHO:

one spacecraft along the orbit associated with configuration 1, and the other along the orbit

given configuration 2. As an illustration, consider the red and cyan circles in Figures  4.37(a) 

and  4.37(b) . The red circle represents a spacecraft flying in the 3:1 NRHO in configuration

1 while the blue circle represents a spacecraft flying in the 3:1 NRHO in configuration 2

at the same instant in time. While the spacecraft denoted by the red circle is approaching

apolune along the R lobe, the blue dot spacecraft is approaching perilune along the L lobe, as

apparent in Figure  4.37(a) . Note that the two 3:1 NRHOs at different configurations do not
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intersect when viewed in the Sun-B1 rotating frame, as Figure  4.37(b) might suggest. The

‘intersection’ point corresponds to the closest approach between the gray and black curves in

Figure  4.37(b) : the two spacecraft are then located at the same z coordinate, but on different

sides of the Earth-Moon rotating x̂ axis in Figure  4.37(a) . The 3:1 NRHO as computed in

the BCR4BP exists at two different epochs; two spacecraft can contemporaneously fly along

the 3:1 NRHO without encountering each other

Now consider the solar mass exclusion plot for the 4:1 synodic resonant NRHO, pre-

sented in Figure  4.38 . The Tsyn-periodic orbit in the BCR4BP corresponding to the 4:1

NRHO possess four lobes, and, thus, four perilunes. Therefore, Sun angles corresponding

to four perilunes are associated with this orbit, separated by approximately by a phase of

90◦. However, 8 blue lines, separated by approximately 45◦, are apparent in Figure  4.38 .

Thus, two Tsyn-periodic counterparts in the BCR4BP of the 4:1 synodic resonant CR3BP

NRHO are obtained. One counterpart, labeled orbit A and denoted by a green dot in Fig-

ure  4.38 , presents the following Sun angle at perilune combination: 45◦, 135◦, 225◦ and

315◦. The second analog’s apolunes occur for Sun angles equal to 0◦, 90◦, 180◦ and 270◦,

and is indicated by the purple dot in Figure  4.38 . The resulting counterparts in the Earth-

Figure 4.38. Solar mass exclusion plot for the synodic resonant 4:1 NRHO
continuation from the CR3BP to the BCR4BP. The BCR4BP counterpart A
is denoted by a green dot, and the BCR4BP counterpart B by a purple dot.

Moon-Sun BCR4BP appear in Figure  4.39 . The two orbits are plotted in the Earth-Moon
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rotating frame in Figure  4.39(a) . Recall that the Tsyn-periodic orbit corresponding to the

4:1 NRHO includes four lobes around the Moon grouped in pairs. The difference in geom-

etry between counterpart A (green) and the counterpart B (purple) is small, but noticeable

in Figure  4.39(a) . The four perilunes associated with orbit A lie approximately the same

distance from the Moon at a distance of 5, 940 km. The perilunes of orbit B exist in two

groups: a lower pair of perilunes with radii approximately equal to 4, 970 km and a higher

pair with radii about 7, 100 km from the center of the Moon. Note the difference in the

spread of lobes in Figure  4.39(a) . The four apolunes associated with orbit A, marked with

green asterisks, lie along y = 0 axis with a pair of two distinct x values. In contrast, the

four apolunes of orbit B, denoted with purple asterisks, share a single x coordinate and are

offset in two symmetric pairs about y = 0. The differences in geometry between the two

counterparts become clear when the orbits are viewed in the Sun-B1 rotating frame, as in

Figure  4.39(b) . The phase shift of 45◦ in Sun angle at perilune, revealed in the solar mass

exclusion plot in Figure  4.38 , is apparent in Figure  4.39(b) . Note the consistency in the

placement of apsides within the Sun-B1 quadrants. The perilunes associated with orbit A,

marked by green dots, lie in the middle of each quadrant, while the apolunes, marked by

green asterisks, are located at the edge between adjoining quadrants. Plotted in purple,

orbit B demonstrates the reverse configuration. Note the difference between Figure  4.31(b) ,

where two spacecraft phased differently fly simultaneously in a single periodic orbit in the

BCR4BP, and Figure  4.39(b) , in which two different periodic orbits in the BCR4BP are

plotted.

The number of BCR4BP counterparts to a synodic resonant CR3BP orbit is not limited

to two. Consider the solar mass exclusion plot for the 9:2 synodic resonant NRHO in Fig-

ure  4.40 . Many lines are apparent, and the information is difficult to extract from this plot.

First, recall that the BCR4BP counterpart to the CR3BP 9:2 NRHO presents nine lobes

around the Moon, thus, nine Sun angle values at perilune are expected (the BCR4BP is a

2 Tsyn-periodic orbit, but the Sun angles range from 0 to 360◦ in the solar mass exclusion

plots). Secondly, notice the repeating vertical pattern every 40◦ or so. Two consecutive

perilunes along a 2 Tsyn-periodic orbit in the BCR4BP lie approximately 80◦ apart. How-

ever, since the nine perilunes along the BCR4BP counterpart to the 9:2 NRHO occur along
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(a) (b)

Figure 4.39. BCR4BP counterpart A (in green) and counterpart B (in purple)
of the synodic resonant 4:1 NRHO, as seen in Earth-Moon rotating frame (a)
and in the Sun-B1 rotating frame (b). Perilunes are denoted by colored dots
and apolunes by colored asterisks.

Figure 4.40. Solar mass exclusion plot for the synodic resonant 9:2 NRHO
continuation from the CR3BP to the BCR4BP..
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two synodic periods, i.e., two revolutions of the Sun, the smallest angle difference between

two non-consecutive perilunes is 40◦. Therefore, a zoomed version of Figure  4.40 between

the Sun angles of 0◦ and 40◦ appears in Figure  4.41 . Further insights are apparent at this

Figure 4.41. Zoom between 0 and 40◦ in the solar mass exclusion plot for the
synodic resonant 9:2 NRHO continuation from the CR3BP to the BCR4BP.
Selected Earth-Moon-Sun BCR4BP initial conditions are denoted by colored
dots.

scale. First, note the shift in the Sun angle at perilune as the assumed mass of the Sun is

increased. Some perilunes are shifted toward smaller Sun angles while others are shifted to

larger Sun angles, creating the woven pattern in Figure  4.41 . Secondly, note the orange and

red lines that experience similar evolution to the blue lines as the assumed mass of the Sun

is increased, but do not reach 100% of the true solar mass. Further experience is required to

establish whether adjustments to the numerical corrections and continuation scheme could

extend the convergence or whether these sets of initial conditions do not yield a periodic or-

bit in the Earth-Moon-Sun BCR4BP. Four converged Earth-Moon-Sun BCR4BP orbits are

denoted by colored dots in Figure  4.41 and plotted in Figure  4.42 . The different orientations

of the nine lobes along each orbit are apparent when plotted in the Earth-Moon rotating

frame, in Figure  4.42(a) . The differences in phasing are more apparent when the orbits are
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plotted in the Sun-B1 rotating frame, in Figure  4.42(b) . This range of possibilities for the

Sun angle at perilune, and thus this range in possible epochs, may contribute to the ease

of transitioning the synodic resonant 9:2 orbit from the CR3BP to the higher-fidelity, time-

dependent ephemeris model. Numerous counterparts of the CR3BP 9:2 NRHO are available

in the BCR4BP.

(a) (b)

Figure 4.42. Selected Earth-Moon-Sun BCR4BP counterparts of the 9:2
synodic resonant NRHO, as viewed in the Earth-Moon rotating frame (a) and
in the Sun-B1 rotating frame (b).

4.3.4 Sun-B1 Lagrange Orbits

The Sun-B1 Lagrange orbits are the dynamical counterparts in the BCR4BP of the Sun-

B1 Lagrange points. Recall from Table  4.4 that only the L1 and L2 libration are distinctly

affected by the motions of the Earth and Moon along their respective orbits; the other points

are too far. Thus, the Lagrange periodic orbits corresponding to the L1 and L2 points are

explored in the BCR4BP. Recall that these synodic resonant periodic orbits are constructed

using the CR3BP Lagrange point as the initial guess for the natural parameter continuation

in Earth-Moon distance described in Section  3.4.2 . The results of the continuation scheme for

L1 and L2 are presented in Figure  4.43 . Each curve is a periodic orbit as viewed in the Sun-B1

rotating frame, constructed in a BCR4BP with an artificial Earth-Moon distance that is gen-

erally not equal to Earth-Moon distance employed in the Earth-Moon-Sun BCR4BP; these
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(a) L1

(b) L2

Figure 4.43. Continuation in Earth-Moon radius parameter γ of the Sun-
B1 L1 (a) and L2 Lagrange points. The Lagrange points are denoted by gray
asterisks.

periodic orbits are used as steps along the continuation process between the Sun-B1 CR3BP,

i.e., γ = 0, and the Earth-Moon-Sun BCR4BP, i.e., γ = 1. As intuitively expected, the size

of the periodic orbit increases as the Earth-Moon distance is increased. However, unlike the

Earth-Moon Lagrange orbits presented in Figures  4.19(a) ,  4.20(a) ,  4.21(a) and  4.21(c) , the

Lagrange point from the Sun-B1 CR3BP is not the center of the curvature of the periodic

orbits. For the L1 periodic orbits, the centers of the curvature of the periodic orbits evolve in
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the negative x̂ direction as the continuation parameter γ increases. Conversely, the centers

of the curvature of the periodic orbits associated with L2 evolves in the positive x̂ along the

family of solution parametrized by γ. A continuation scheme in the Earth-Moon distance is

employed to construct the Lagrange orbits in the BCR4BP corresponding to the Sun-B1 L1

and L2 libration points.

Lagrange orbits associated with the Sun-B1 L1 and L2 libration points are obtained for

γ = 1, i.e., for the l∗ value that is consistent with the Sun-Earth-Moon BCR4BP. The

resulting orbits appear as the blue curves in Figure  4.44 . The Zero Acceleration Contours

(a) (b)

Figure 4.44. BCR4BP Lagrange periodic orbit, in blue, and instantaneous
equilibrium solutions, in black, associated with the L1 (a) and L2 (b) Lagrange
points.

(ZACs) are plotted in black, and the libration points in the Sun-B1 CR3BP are denoted

by the gray asterisks. Note the difference in sizes between the ZACs and the Lagrange

periodic orbits; while the dimensions of the periodic orbits are in the order of kilometers,

the ZACs associated with L1 and L2 span thousands of kilometers. Thus, both the CR3BP

libration point and its associated Lagrange periodic orbit in the BCR4BP are encircled

by their corresponding ZACs, as apparent from Figure  4.44 . However, unlike the Zero

Acceleration Contours, the Lagrange periodic orbits are trajectories, that is, they satisfy the

differential equations of motion in Equation ( 2.8 ). The L1 and L2 Lagrange periodic orbits in
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the BCR4BP possess small dimensions relatively to the characteristic length of the Sun-B1

system.

The linear stability properties associated with the Lagrange periodic orbits are explored.

Similar to the Earth-Moon libration points, the L1 and L2 Lagrange points in the Sun-B1

possess a two-dimensional saddle mode and a four-dimensional center mode. The dimensions

of these linear modes are examined as the γ continuation parameter evolves from 0 to 1, the

results are plotted in Figure  4.45 . The horizontal axes represent the maximum distance

from the Lagrange point along the periodic orbit (note the different scales for each plot);

the vertical axis represent the nondimensional mass continuation parameter γ employed to

construct each periodic orbit. The curves are colored as a function of the modes associated

with the periodic orbits. For the L1 and L2 periodic orbits in Figure  4.43 , the S2 × C4

characteristics of the CR3BP Lagrange points are preserved along the continuation scheme.

Note that the curves in Figures  4.45(a) and  4.45(b) are not identical; the differences are

indistinguishable at this scale. The L1 and L2 Lagrange periodic possess the same stability

properties (in the linear sense) as their respective underlying libration points.

4.3.5 Sun-B1 Halo Orbits

Similar to the Earth-Moon halo orbits, the L1, L2, and L3 halo families are comprised

of three-dimensional periodic orbits in the Sun-B1 CR3BP [ 36 ]. The halo family of orbits

bifurcates from each family of planar Lyapunov orbits associated with the collinear libration

points. The halo orbits are mirrored across the x-y plane; a northern family member possesses

a positive z component over the majority of each orbit, while the southern family members

are defined by a negative z component. For instance, consider the L2 halo family in the

Sun-B1 CR3BP, as plotted in the Sun-B1 rotating frame in Figure  4.46(a) . The color scale

denotes the orbital period, and the darker shades of gray represent the orbits with larger

periods. The halo family originates in the x-y plane from the bifurcating orbit in the planar

Lyapunov family and evolves out of plane as the family of orbits approaches the secondary

body. Recall that in the Sun-B1 CR3BP, the smaller primary is a fictitious body with mass

equal to the sum of the masses of the Earth and the Moon. Thus, the position of the Earth
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(a) L1 periodic orbit from Figure  4.43(a) 

(b) L2 periodic orbits from Figure  4.43(b) 

Figure 4.45. Stability characteristics associated with the periodic orbits along
the continuation in Earth-Moon radius parameter of the Sun-B1 L1 (a) and L2
Lagrange points. Red points denote periodic orbits with S2 × C4 modes.

and the orbit of the Moon are indicated for reference in Figure  4.46(a) . Synodic resonant L2

halo orbits are selected in the Sun-B1 CR3BP using a resonance plot[ 38 ], [ 46 ]. A resonance

plot, as in Figure  4.47 , represents the ratio of the orbital period to the synodic period versus

another parameter, such as the maximum z excursion, across a family of periodic orbits.

Simple resonance ratios, for instance 1:3 or 2:11 are easily identified in the resonance plot in

Figure  4.47 . However, less intuitive ratios, such as 12:73, also yield valid synodic resonant

orbits and are identifiable from a resonance plot. The resonance quotients identified in

Figure  4.47 are colored as functions of the type of resonance; 1:α resonances are colored in

orange, 2:α resonances in blue, 4:α resonances in green, and other types of resonance, such

as 12:73, in purple. Synodic resonant periodic orbits are selected in the Sun-B1 CR3BP
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and are then employed as initial guess for the computation of the periodic solutions in the

BCR4BP.

The synodic resonant L2 halo orbits that are selected from Figure  4.47 are transitioned

from the Sun-B1 CR3BP to the BCR4BP as formulated in the Sun-B1 rotating frame  

6
 . The

resulting orbits are plotted along with their CR3BP counterparts in Figure  4.46(b) . Orbits

near the L2 equilibrium point, for instance the 1:6 or the 12:73 synodic resonant orbits are

not significantly perturbed by the actual Earth and the Moon on their respective planetary

orbits. In contrast, the L2 resonant orbits that pass closer to the Earth and the Moon orbits,

such as the 1:3 or the 2:7 synodic resonant halos, visibly differ from the periodic orbits as

computed in the Sun-B1 CR3BP. Note the multiple lobes that are apparent on some of the

orbits as computed in the BCR4BP, e.g., the 4:15 synodic resonant halo, plotted in green in

Figure  4.46(b) . Each lobe corresponds to 15/4 = 3.75 synodic periods, or equivalently 3.75

revolutions of the Moon around the Earth-Moon barycenter, B1. The 12:73 synodic resonant

halo orbit includes 12 lobes, but they are indistinguishable at this scale.

4.3.6 Non-Synodic Resonant Orbits and Bounded Motion

The requirement of synodic resonance considerably restricts the availability of periodic

orbits in the BCR4BP. For instance, consider the resonance ratio plots for the CR3BP

Earth-Moon L2 NRHOs in Figure  4.28(b) and the Sun-B1 L2 halo family of periodic orbits

in Figure  4.47 . The majority of the available orbits have an irrational resonance ratio, or

possess rational but non-intuitive synodic resonance ratios, such as 776:127. Thus, a different

approach is employed to construct quasi-periodic, or bounded motion in the BCR4BP.

Definition

A strategy is developed to transition orbits that do not present a simple resonance ratio

with the synodic period. Periodic orbits in the CR3BP are transitioned to reflect simply

bounded motion, rather than periodic motion, in the BCR4BP. Multiple revolutions of pe-

riodic orbits from the CR3BP are ‘stacked’, discretized, and corrected for continuity in the
6

 ↑ Initial conditions for some of these orbits are produced in Appendix  E.2 .
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(a)

(b)

Figure 4.46. Representative L2 halo orbits, as seen in the Sun-B1 rotating
frame. Selected synodic resonant members are plotted in color. (a) Selected
synodic resonant members as computed in the CR3BP, in dashed lines, and in
the BCR4BP, in solid lines (b).
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Figure 4.47. Synodic resonance across a representative subset of the CR3BP
Sun-B1 L2 halo family. The z amplitude corresponds to the dimension of the
orbit when represented in the Sun-B1 rotating frame.

BCR4BP using a differential corrections scheme a continuation method. However, periodic-

ity is not enforced: the initial and final states along the corrected trajectory in the BCR4BP

do not necessarily match. The differences between the methods for constructing periodic

orbits and bounded methods in the BCR4BP are presented in Figure  4.48 . When multiple

revolutions from the same orbit are stacked together, the strategy is labeled a ‘homogeneous

stacking’ method. This strategy is employed for constructing either periodic orbits (when

the orbits stacked are synodic resonant) or quasi-periodic orbits. Previous contributions offer

details for the development of ‘non-homogeneous stacking’ strategies, where different orbits

from the CR3BP are stacked to create the initial guess in the higher-fidelity model, that is,

to adjust certain characteristics of the converged final orbit, such as the perilune epoch [ 45 ]

or the perilune radius [ 21 ]. This approach is typically more suitable to construct bounded

motion. Bounded motion is successfully produced in the BCR4BP for both Earth-Moon and

Sun-B1 structures.
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. . .

CR3BP stack:
P revs of P :Q synodic resonant orbit

Transition

BCR4BP solution:
Q-Tsynodic periodic orbit

. . .

CR3BP stack:
K revs of periodic orbits

Transition

BCR4BP solution:
K revs of bounded motion

Figure 4.48. Methodology for constructing periodic orbits (top) and bounded
motion (b) in the BCR4BP, employing a stack of orbits from the CR3BP as
the initial guess

Examples of Bounded Motions

Two illustrations of bounded motion as constructed in the BCR4BP are presented. First,

an NRHO-like bounded motion is produced in the Earth-Moon rotating frame leveraging

a non-homogeneous stacking strategy. In this investigation, a non-homogeneous stack is

used to maintain the perilune radius within a specified range over multiple revolutions. An

example of non-homogeneous stacking delivers the required characteristics. The goal is to
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construct three revolutions of NRHO-like motion in the BCR4BP, with each perilune altitude

within the 3, 250 to 3, 575 kilometers range. The periodicity of the solution is not strictly

required in this scenario. Three orbits in the vicinity of the 9:2 synodic resonant NRHO,

are selected from the CR3BP NRHOs subset, as viewed in Figure  4.49(a) . The process to

select the NRHOs is very dependent on the initial Sun angle. For instance, for the epoch

considered, that is, θ = 0 at the first apolune, the gravitational influence from the Sun tends

to decrease the altitude of the next perilune. Thus, to counterbalance this effect, the second

NRHO in the stack is selected such that its periapse altitude is higher than the altitude of

the first orbit in the stack. The process is repeated for the subsequent orbits in the stack.

The three selected orbits are then discretized, and each arc is propagated in the BCR4BP,

as apparent in Figure  4.49(b) . Note that the propagated trajectory is discontinuous, as

expected in the BCR4BP. A differential correction process reduces position and velocity

discontinuities between consecutive arcs to within an acceptable tolerance. The resulting,

converged trajectory is plotted in Figure  4.50 . The initial and end points along the trajectory

are not co-incident, since the periodicity is not constrained. The evolution of the perilune

radius along the converged solution is presented in Figure  4.51 . The acceptable perilune

radius region, colored in blue, is defined by the range of periapse radii from 3, 250 and

(a) CR3BP propagation (b) BCR4BP propagation

Figure 4.49. Stack of three orbits of an NRHO in the CR3BP (a) and the BCR4BP (b).
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3, 575 kilometers. Then, the perilune distances along each solution are denoted by markers

in Figure  4.51 . Using a homogeneous stack, i.e., a stack of three identical NRHOs with

perilune radius equal to 3, 400 km, results in lunar periapsis radii outside of the acceptable

region, as in Figure  4.51(a) . However, this information is useful to help select the NRHOs

in the non-homogeneous stack. The converged solution, using the non-homogeneous stack,

results in three periapses within the acceptable region, as seen in Figure  4.51(b) . Non-

homogeneous stacking is, thus, a convenient method to produce NRHO-like motion with

specific characteristics in the BCR4BP.

Figure 4.50. Converged trajectory in the Earth-Moon-Sun BCR4BP for θ0 = 0◦

(a) Homogeneous stacking (b) Non-homogeneous stacking

Figure 4.51. Radius from the Moon for the periapses of the converged tra-
jectory using a homogeneous stacking method (a) and a non-homogeneous
stacking method (b).
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The second example of a quasi-periodic orbit constructed in the BCR4BP consists of

bounded motion in the vicinity of Sun-B1 L2 halo orbits. For instance, potential orbits

for upcoming space telescopes include a subset of L2 Sun-B1 halo orbits with maximum z

amplitudes less than 250,000 km. From Figure  4.47 , the resonance ratio along this portion

of the family is approximately equal to 6.11; no simple resonance ratio exists in this subset

of the L2 family of periodic orbits. Bounded motion in the BCR4BP is constructed using a

homogeneous stack of thirty revolutions of a CR3BP L2 halo orbit of maximum z amplitude

equal to 125, 000. The resulting bounded motion spans approximately 15 years and is plotted

in Figure  4.52 . Note that this bounded motion may be leveraging structures from a BCR4BP

periodic orbit at a higher resonance ratio or from a BCR4BP quasiperiodic orbit [ 19 ], [  89 ].

The L2 equilibrium point and the E2 ZAC in the BCR4BP are denoted by red dots and are

indistinguishable at this scale. Non-synodic resonant periodic orbits from the CR3BP are

successfully transitioned as bounded motion to the BCR4BP.

(a) (b)

Figure 4.52. Isometric (a) and side (b) views of the bounded BCR4BP motion
(in orange) in the vicinity of the L2 CR3BP halo orbit (in black) with max. z
amplitude equal to 125,000 km

4.4 Hyperbolic Manifolds

Invariant manifolds provide a useful approximation to the nonlinear dynamical behavior

in the vicinity of a reference solution. Specifically, the stable and unstable invariant manifolds

associated with a periodic orbit are employed to determine flow toward and away from a
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reference solution. The existence of these invariant manifolds is examined, and strategies to

compute global invariant manifolds associated with periodic orbits and bounded motion are

introduced.

4.4.1 Existence

Fixed points, i.e., equilibrium solutions or periodic orbits when examined on a strobo-

scopic map, possess hyperbolic manifolds of dimension equal to the dimension of the saddle

mode [  90 ]. The hyperbolic manifold includes that asymptotically approach and depart from

the fixed point. The unstable manifold represents motion that departs from the fixed point

in forward time, while the stable manifold reflects motion that departs from the fixed point

in negative time. Flow that asymptotically departs from and arrives at a periodic orbit is

available for saddle points.

While the eigenvalues associated with the matrix A for an equilibrium point or the

monodromy matrix Φ(t0 + P, t0) for a periodic orbit of period P reflect the linear stability

properties of the structure in question, the eigenvectors of A or Φ(t0 + P, t0) span the

subspace of each mode. However, the span of the eigenvectors defines local manifolds, as

they are computed for the linearized dynamics with respect to the fixed point. While the local

manifolds provide a useful approximation of the motion near a fixed point, they may only

be representative of the nonlinear dynamical flow in a small region around the fixed point.

Thus, the linear solutions are ‘globalized’, i.e., transitioned to the nonlinear regime. As

an illustration, consider the local and global manifolds associated with the L1 equilibrium

point of the Earth-Moon CR3BP in Figure  4.53 . A frame centered at L1 is defined in

position space in Figure  4.53(a) and in velocity space in Figure  4.53(b) ; the fixed point is

located at the origin and is denoted by the grey asterisk. The local manifolds, Wloc, are

computed using the A matrix associated with L1, and are denoted by the thin arrows in

Figure  4.53 . A superscript indicates whether the stable manifold s, or the unstable manifold

u is considered, as well as the side of the manifold  

7
 : + for flow on the positive x side

and − for flow on the negative x side. The global manifolds W are also considered; an
7

 ↑ If ν̄ is an eigenvector of the A matrix, then (−ν̄) is also an eigenvector.
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initial state is first computed along the local manifold close to the equilibrium point and

propagated using the nonlinear dynamics. The resulting trajectories along the global red

manifold, W u− and Wu+, and along the stable manifold, Ws− and Ws+, appear as the

thick red and blue lines, respectively, in Figure  4.53 . The local and global manifolds are

than at the equilibrium point in both position space in Figure  4.53(a) and velocity space

in Figure  4.53(b) . However, as the distance to the equilibrium point along the trajectories

increases, the global and local manifolds begin to diverge. This divergence is expected, as

the approximation of the dynamical flow provided by the linearized dynamics tends to break

away from the linearization point. Global manifolds in the nonlinear dynamical model are

straightforwardly transitioned from the local manifolds provided by the linearization of the

dynamics about a fixed point.

(a) Position space (b) Velocity space

Figure 4.53. Local and global manifolds associated with a fixed point of the
CR3BP in position (a) and velocity (b) spaces. Red lines correspond to the
unstable manifold and forward time propagation. Blue lines correspond to the
stable manifold and backward time propagation.

The evolution of the global manifolds is explored within the context of a time-dependent

dynamical model, the BCR4BP. Recall that the Lagrange points of the CR3BP are transi-

tioned to either instantaneous equilibrium solutions or periodic orbits in the BCR4BP. The

global manifolds associated with the collection of E1(θ) instantaneous equilibrium points are
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investigated in Figure  4.54 . The ZAC is discretized into a set of points and the hyperbolic

local manifolds are computed using the A matrix at each point. Initial states relative to

the set of discretized equilibrium point are generated along these local manifolds and are

propagated using the nonlinear equations of motion from Equation ( 2.4 ). The resulting

trajectories appear in Figure  4.54(a) ; trajectories along the stable manifold are colored in

blue while trajectories along the unstable manifold are plotted in red. Thick lines denote

the global stable and unstable manifold associated with the L2 equilibrium point in the

Earth-Moon CR3BP. Note that the local manifolds at computed at snapshot in time; the

computation of each manifold includes information about the location of the Sun, but not

its motion within the Earth-Moon rotating frame. The perturbing effects of the motion of

the Sun becomes apparent when comparing Figure  4.54(a) with the Figure  4.54(b) . In the

Figure  4.54(b) , the Sun angle is maintained constant along each propagated arc, that is, a

fictitious and time-independent version BCR4BP where the Sun is fixed within the Earth-

Moon rotating frame is created for each instantaneous equilibrium point along the ZAC.

Using this fictitious dynamical model, the boundedness of each of the manifold ‘tubes’ is ap-

parent in Figure  4.54(b) . By comparison, the trajectories along the manifolds computed in

the BCR4BP accounting for the motion of the Sun are visibly more disturbed, as apparent in

Figure  4.54(a) . Note that such distortion does not appear for the global manifold associated

with periodic orbit. While the dynamics of local manifolds associated equilibrium points are

described by the constant A matrix from Equations ( 3.6 ) and ( 3.7 ), the local manifolds of

periodic orbits are computed using the Φ(t0 + P, t0) monodromy matrix. The monodromy

matrix a linearization of the dynamical flow that maps perturbation in the initial state to

perturbation after one period P of the orbit. Since this map includes first-order informa-

tion about the motion of the Sun in the Earth-Moon frame, the global manifolds are not

significantly distorted (although they do diverge from the local manifolds at a certain dis-

tance from the periodic orbits). Figure  4.54 illustrates some particularities associated with

the computation of global manifolds for certain structures in the time-dependent, periodic

BCR4BP.
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(a) BCR4BP

(b) BCR4BP, fixing the Sun at t = 0 in the Earth-Moon rotating frame.

Figure 4.54. Stable and unstable manifold associated with the E2 ZAC in
the BCR4BP (a), and in the BCR4BP with the Sun fixed in the Earth-Moon
rotating frame (b). The thick lines denote the global manifolds associated with
L2 in the Earth-Moon CR3BP.

4.4.2 Computation for Periodic Orbits

A method to compute trajectories along the global manifolds of periodic orbits in the

BCR4BP is presented. The stable and unstable manifolds associated with a periodic orbit

form surfaces that asymptotically approach and depart every point along the period orbit,

respectively. Thus, a ‘mesh’ of trajectories along each of the manifolds is typically computed
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to approximate this surface. The following steps are employed to create the mesh of trajec-

tories along the manifold. First, the linearly unstable periodic orbit is discretized into a set

of points. The monodromy matrix, Φ(t0 + P, t0), is computed for each of these points, and

the eigenvectors, ν̄s and ν̄u, associated with the stable and unstable subspaces are identified.

Then, for each state q̄∗ along the discretized periodic orbit, an initial guess along the local

stable manifold, q̄, is computed as

q̄ = q̄∗ + κ
ν̄s
‖ν̄s‖

(4.13)

where κ is a scaling factor, or ‘step’ size. The size of κ must be chose appropriately; a value

too large results in a state q̄ for which the assumption of tangency between the local and

global manifolds is not true. However, a value too small of κ yields a state q̄ that is departs

(or arrives, for backward time propagations) the fixed point after a large propagation time;

for such cases, the numerical error buildup needs to be considered as well. In this analysis, a

value of κ = 10−7 is employed to compute trajectories along the manifolds of Sun-B1 orbits,

and a value of κ = 10−4 for the manifolds associated with Earth-Moon orbits. Note that

the value of κ depends on the system, as the characteristic length and mass ratios affect

the scaling. For each point along the discretized periodic orbit, the initial state along the

local stable manifold computed in Equation ( 4.13 ) is propagated in negative time using the

nonlinear set of equations of motion in Equation ( 2.4 ) or Equation ( 2.8 ), yielding a trajectory

along the global manifold. Similar, the unstable manifold is globalized by computing an initial

step along discretized local manifold,

q̄ = q̄∗ + κ
ν̄u
‖ν̄u‖

(4.14)

and propagated using the nonlinear equations of motion in Equation (  2.4 ) or Equation ( 2.8 ).

Additionally, recall that if ν̄ is an eigenvector of an eigenvalue problem, then any vector

c ν̄, where c is a scalar, is also an eigenvector. Selecting c = −1, the other ‘side’ of the

manifold surface is obtained. The global manifolds associated with a periodic solution are
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approximated using a discrete set of initial conditions along the local manifolds, as well as

numerical integrations of the nonlinear equations of motion.

To illustrate this method, the stable and unstable manifolds associated with the 2:1 syn-

odic resonant L2 Lyapunov orbit in the BCR4BP are constructed. Trajectories along the

global manifolds are computed for a discrete set of points along the periodic orbits. The

resulting trajectories are plotted as viewed in configuration space in the Earth-Moon rotating

frame in Figure  4.55(a) . Trajectories along the stable and unstable manifolds are plotted in

shades of blue and red, respectively; the underlying periodic orbit appears in black. The tra-

jectories are propagated until they intercept one of two defined hypersurfaces. Trajectories

along the global manifold on the ‘left’ side, i.e., arriving from or departing toward the Earth,

are propagated until they intercept a hyperplane located at x = 0.7 ndim; this hyperplane

appears as a vertical line in configuration space in Figure  4.55(a) . Trajectories along this

half-manifold are colored in dark blue and red. The second hypersurface is defined for the
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Figure 4.55. Stable (blue hues) and unstable (red hues) manifolds associated
with the L2 2:1 synodic resonant Lyapunov orbit in the BCR4BP. The man-
ifolds are propagated to two arbitrary hypersurfaces located at x = 0.7 ndim
and
√
ẋ2 + ẏ2 = 0.5 ndim.
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trajectories along the manifolds on the ‘right’ side of the periodic orbit, i.e., the manifolds

flowing towards or away from the Moon. This hypersurface is defined as
√
ẋ2 + ẏ2 = 0.5,

i.e., the trajectories along the global manifolds are propagated in backward and forward time

until the magnitude of their rotating velocity reaches the value of 0.5. In Figure  4.55(a) ,

trajectories on the right side of the periodic orbit, colored in cyan and pink, all appear to

intercept an ellipse around the Moon. The dimensions of this ellipse are determined by the

energy-like relationship in Equation ( 2.7 ). However, the defined hypersphere is directly visi-

ble when the motion is represented in the rotating velocity space, as in Figure  4.55(b) . The

periodic orbit is denoted by the thick black curve, and the trajectories along the stable and

unstable manifold are colored in cyan and pink, respectively. The trajectories are propagated

until they intercept the hypersphere, which appears as a circle centered at the origin with

radius equal 0.5 ndim in velocity space. The ‘mesh’ approximation of the manifold surfaces

is apparent in Figure  4.55 . When selecting a larger set of points along the periodic orbit,

the resulting trajectories fill the space between the existing trajectories in Figures  4.55(a) 

and  4.55(b) ; as the number of point tends to infinity, the manifold complete surface is ob-

tained. An approximation of the manifold surfaces is constructed by computing trajectories

along the global manifolds for a range of states along the periodic orbit.

4.4.3 Computation for Bounded Motion

A method for computing the global manifolds associated with unstable bounded motion

as constructed in Section  4.3.6 is introduced. First, note that the concepts of linear stability,

and thus, of local and global manifolds, are defined in this document within the context

of precisely periodic orbits. The monodromy matrix, that is, the state transition matrix

for one orbital period, is not defined for bounded motions as the period is undefined too.

However, for bounded motion in the vicinity of a precisely periodic, each revolution along

the quasi-periodic orbit may be approximated as periodic. Thus, an approximate state

transition is computed, approximate manifolds are constructed to estimate the flow arriving

and departing from the bounded motion.
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The computation of the local approximate manifold directions, i.e., the eigenvectors

associated with the approximate monodromy matrix, differs from the computation performed

for periodic orbits. For a periodic orbit of period P, as the blue orbit in Figure  4.56(a) , the

monodromy matrix is defined as the state-transition Φ between the initial time, t0, and one

orbital period downstream, t0 + P. The directions of the local manifolds are then evaluated

as the right eigenvectors associated with the monodromy matrix, that is, ν̄S and ν̄U .

A different method is employed for computing the approximate manifolds associated with

K revolutions of bounded motion, as in Figure  4.56(b) . First, the bounded is divided into

multiple arcs that may be approximated as periodic. This partition is typically accomplish-

ing by using the orbital period of the underlying orbit employed for the homogeneous stack to

separate the trajectories into arcs. (Note that this process is extendable to bounded motions

constructed with a non-homogeneous stacking method; rather than a unique value, a range of

periods is considered for the partition.) In Figure  4.56(b) , the converged bounded motion is

divided into revolutions of different colors. For each of these non-periodic revolution, an ap-

proximate monodromy matrix Φ̃i(ti, ti−1) is computed. Assuming that a homogeneous stack

of the underlying P-periodic orbit, represented by the black dashed line in Figure  4.56(b) , is

employed, the propagation time for the approximate monodromy matrix is ti−ti−1 = P. The

local manifolds are then approximated by computing the eigenvectors ˜̄νS and ˜̄νU associated

Φ(t0 + P, t0), ν̄U , ν̄S

(a) Periodic orbit

Rev 1: Φ̃1(t1, t0), ˜̄ν1U , ˜̄ν1S
Rev 2: Φ̃2(t2, t1), ˜̄ν2U , ˜̄ν2S

.

.

.

Rev K: Φ̃K(tK , tK−1), ˜̄νKU , ˜̄νKS

(b) K revolutions of bounded motion

Figure 4.56. Differences between the computation of the monodromy matrix
Φ and eigenvectors ν̄ for a periodic orbit of period P (a), and the computation
of the approximate monodromy matrices Φ̃ and approximate eigenvectors ˜̄ν
for a K revolutions of bounded motion.
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with the Φ(ti, ti−1) matrix. The departing and arriving flow into bounded motion associated

with unstable periodic orbits is approximated on a revolution-to-revolution, employed the

orbital period of the underlying periodic orbit to perform the partition.
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5. CISLUNAR-TO-HELIOCENTRIC TRANSFERS
5.1 Problem Formulation

A comprehensive knowledge of the dynamical structures identified in the BCR4BP sim-

plifies the preliminary design process for transfers between the Earth-Moon system and the

Sun-B1 system. To illustrate the use of the dynamical structures from the BCR4BP to

design transfers, consider a servicing mission from the 9:2 synodic resonant L2 NRHO to

various L1 and L2 halo orbits. With the recently launched James Webb Space Telescope [ 91 ]

and the upcoming Nancy Roman Space Telescope [ 92 ], opportunities for missions between

cislunar space and heliocentric space will arise in the near future. In this investigation, the

round-trip servicing trajectories are required to originate and end in the Earth-Moon 9:2

NRHO. Recall that the 9:2 synodic resonant L2 NRHO is the candidate baseline orbit for

the Gateway facility [  41 ] and is intended to serve as a stepping location to destinations be-

yond the Earth-Moon vicinity. The intermediate destination for the round-trip trajectory is

a L1 or L2 Sun-B1 halo orbit. A flowchart detailing the phases of the trajectory construction

procedure appears in Figure  5.1 . The trajectory arc from the Earth-Moon NRHO to the

Sun-B1 halo orbit is denoted the ‘outbound leg’, while the arc from the heliocentric halo to

the 9:2 synodic resonant L2 NRHO is labeled the ‘inbound leg’.

The parameters along each phase of the transfer are detailed. The phasing of the cislunar

orbit, that is, the 9:2 synodic resonant L2 NRHO, is fixed for both the outbound and inbound

parts of the transfer. Consistent with the baseline NRHO for the Gateway facility, the phase

of the 9:2 NRHO is selected such that the distance to the Earth shadow is maximized,

providing an entirely Earth eclipse-free trajectory. By fixing the phase of the NRHO for both

the outbound and inbound legs, returning to the same phase as the Gateway vehicle facilitates

an eventual rendezvous after arrival. The departure and arrival locations along the NRHO

are free variables in the design process. However, it is necessary that certain regions likely are

excluded, such as the region near perilune due to the high relative velocity magnitudes with

respect to the Moon. The phasing of the Sun-B1 halo orbit is free in the initial development

of the design process. Allowing the phasing and thus, the epoch, of the heliocentric orbit to

vary increases the number of potential connections between heliocentric arcs and the lunar
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Cislunar Orbit:
Earth-Moon 9:2 NRHO

Fixed epoch
Departure parameters:

• Free departure location
• Departure maneuver allowed

Heliocentric Orbit:
Sun-B1 bounded halo

Free epoch
Arrival parameters:

• Free arrival location
• Arrival maneuver allowed

Departure parameters:
• Free departure location
• Departure maneuver allowed

Cislunar Orbit:
Earth-Moon 9:2 NRHO

Fixed epoch
Departure parameters:

• Free arrival location
• Arrival maneuver allowed

Outbound leg (stable manifold)

Inbound leg (unstable manifold)

Figure 5.1. Flowchart for the round-trip trajectory design framework. Fixed
and free parameters along each of part of the transfer are labeled. The under-
lying natural motion for each leg is identified in gray.

vicinity. The phasing of the heliocentric orbit may eventually be constrained if the objective

is a rendezvous with an object, for instance, a specific solar observatory or space telescope in

orbit. Similar to the cislunar orbit, the departure and arrival locations are free. The options

for the maneuvers are noted in Figure  5.1 : maneuvers are allowed for departure and arrival

along both the cislunar and heliocentric orbits. Finally, the grey dashed arrows in the figure

detail the underlying natural motions that are leveraged for the initial guess generation.
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5.2 Reference Orbits

Reference motions are defined in the cislunar and heliocentric spaces. In the lunar vicinity,

the 9:2 synodic resonant L2 NRHO that is consistent with the candidate orbit for Gateway

[ 41 ], is identified as the baseline cislunar orbit. In heliocentric space, ranges of Sun-B1 L1

and L2 halo orbits are selected consistently with space telescope [  2 ]–[ 4 ] and observatories

[ 5 ]. While the 9:2 synodic resonant L2 NRHO exists as a precisely periodic in the BCR4BP,

most of the Sun-B1 CR3BP halo orbits considered are not synodic resonant; they are thus

transitioned as bounded or quasi-periodic motion in the BCR4BP.

5.2.1 Cislunar Orbit

The selected cislunar orbit in this investigation is the Earth-Moon 9:2 synodic resonant

L2 NRHO as computed in the BCR4BP. The 9:2 synodic resonant L2 NRHO is a potential

candidate baseline trajectory for a long-term facility near the Moon due its favorable eclipse-

avoidance and stability properties[  41 ]. The 9:2 synodic resonant L2 NRHO as computed in

the CR3BP, plotted in black in Figure  5.2 , is transitioned to the BCR4BP using continuation

in the Sun mass parameter described in Section  4.3.3 .

Multiple 9:2 NRHOs exist in the BCR4BP [ 44 ]; the orbit selected in this investigation is

the NRHO that allows the largest relative distance with respect to the Earth shadow and

is colored in blue in Figure  5.2 . The position of the NRHO relative to the Earth’s shadow

is apparent when the motion is plotted in the Sun-B1 rotating frame, in Figure  5.2(b) . The

period of the 9:2 synodic resonant L2 NRHO in the BCR4BP is equal to exactly two synodic

periods, or 9 orbital periods along the 9:2 synodic resonant L2 NRHO in the CR3BP. The

radius ranges corresponding to its nine perilunes (between 3,100 and 3,900 km) and apolunes

(between 69,900 and 71,700 km) are consistent with the values of the CR3BP 9:2 synodic

resonant L2 NRHO. The Jacobi constant value remains constant along a periodic orbit in the

CR3BP. Its counterpart in the BCR4BP, the Hamiltonian value, varies due to the variation

of the Sun angle. For a periodic orbit in the BCR4BP, the Hamiltonian value returns to

its initial value after precisely one orbital period. As a potential staging location to various
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(a) (b)

Figure 5.2. 9:2 synodic resonant L2 as constructed in the BCR4BP in the
Earth-Moon rotating frame (a) and the Sun-B1 rotating frame (b). The 9:2
NRHO as computed in the Earth-Moon CR3BP is plotted in black in (b). The
Earth’s shadow is denoted by the gray cone in (b).

destinations from the lunar vicinity, the 9:2 NRHO as computed in the BCR4BP is selected

as the reference cislunar orbit in this investigation.

Locations along the 9:2 synodic resonant L2 NRHO are defined in terms of the osculating

True Anomaly (TA) with respect to the Moon, as plotted in Figure  5.3(a) . The osculating

true anomaly is an intuitive and geometric approach in the Earth-Moon rotating frame: a

true anomaly of 0◦ corresponds to perilune, 90◦and 270◦are the locations where the orbit

crosses the x-y plane, and 180◦corresponds to apolune. As a comparison, the 9:2 NRHO

colored in terms of time along the orbit is plotted in Figure  5.3(b) . The time along the

orbit is not an intuitive metric to determine a location in the NRHO due to the significant

variations in velocity. The velocity is much larger near perilune than apolune. Zimovan-

Spreen [  43 ] demonstrate that visibility of the north pole of the Moon is achieved for 1.52

hours per revolution, that is, per 6.5 days. The osculating true anomaly is the metric

leveraged in this investigation to identify locations along the NRHO.
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(a) (b)

Figure 5.3. Osculating true anomaly (a) and time (b) along the Earth-Moon
CR3BP 9:2 NRHO, as viewed in the Earth-Moon rotating frame.

5.2.2 Heliocentric Orbits

Two subsets of the Sun-Earth L1 and L2 halo orbit families serve as the baseline Sun-B1

libration point orbits (LPOs) for this analysis. This investigation focuses on transit to and

from Sun-B1 northern halo orbits that reflect a limited range of z component magnitudes, as

plotted in Figure  5.4 . In addition to a higher associated value of an energy-like quantity, i.e.,

a lower Jacobi constant in the CR3BP or a lower Hamiltonian value in the BCR4BP, halo

orbits with a larger maximum z component magnitude possess a higher inclination relative

to the Sun-Earth-Moon plane and are, thus, more challenging to access from the Earth-Moon

vicinity.

Representative orbits from each of the subsets defined in Figure  5.4 are transitioned from

the CR3BP to the BCR4BP. An infinite number of periodic solutions, i.e., solutions that

precisely repeat in all six position and velocity states over every revolution, exist in the

CR3BP[ 75 ]. The BCR4BP is formulated to represent a time-dependent, periodic system.

Therefore, only isolated periodic orbits with specific orbital periods equal to a multiple of the

lunar synodic period exist rather than families with continuously varying periods[ 76 ]. Gómez

et al.[ 20 ] and Boudad[ 44 ] use a continuation method to transition synodic resonant orbits
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from the CR3BP to the BCR4BP. While this approach offers many advantages, it greatly

restricts the number of periodic orbits available. Consider the resonance plot in Figure  5.5 .

The horizontal axis represents the maximum z component magnitudes for two subsets of

Figure 5.4. Representative L1 and L2 halo orbits as computed in the CR3BP
with maximum z amplitude values between 0 and 250,000 km, colored as a
function of the Jacobi constant value

the Sun-B1 L1 and L2 halo families. The vertical axis reflects the synodic resonance ratio,

that is, the ratio between the orbital period and the synodic period. The low-amplitude

halo orbits of interest for this investigation are highlighted by the green box, and the dashed

line identifies the resonance ratio, i.e., one orbital period per six synodic periods. Thus, the

halo orbits selected in this investigation evidently do not possess a simple resonance ratio.

Note that less intuitive resonance ratios, such as 1699/278, may be available, but the orbits

associated with such resonance ratios usually possess a large number of revolutions and

are, therefore, numerically challenging to converge. In the BCR4BP, only isolated, synodic

resonant orbits are exactly periodic. To overcome a lack of sufficient synodic resonant orbits

in the region of interest, the alternative approach described in Section  4.3.6 is employed

to leverage non-synodic resonant periodic halo orbits. Leveraging this strategy, baseline

bounded motions representative of the range of orbits described in Figures  5.4 and  5.5 are

successfully constructed for various epochs. Note that the halo orbits leveraged in this
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investigation are linearly unstable[ 49 ], thus, discretization of the trajectory and a numerical

corrections scheme are necessary to produce these long, bounded trajectories.

0 1 2 3 4 5 6 7 8 9 10

Max z amplitude [km] #105

5.9

5.95

6

6.05

6.1

P
er
io
d
=T

sy
n
o
d
ic

L1 halos
L2 halos

Range of interest

1:6 synodic
resonance

Figure 5.5. Synodic resonance ratio plots for a subset of the Sun-B1 L1 and
L2 halo families as computed in the CR3BP

5.2.3 Challenges

Two challenges emerge from the selection of reference motions. The first challenge is

associated with the nearly stable nature of the 9:2 synodic resonant L2 NRHO. Periodic

orbits that exhibit one or multiple saddle mode possess invariant manifolds that offer low-

cost transfers options to and from the periodic solutions. However, the stable and unstable

manifolds associated with the orbits are not suitable for examining the flow into and out of

the NRHO. The second challenge is associated with the absence of simple resonance ratios

between the cislunar and heliocentric reference trajectories. Recurring, predictable transfers

between two periodic orbits exists when the ratio of their orbital periods is an intuitive

rational number. Since the cislunar 9:2 synodic resonant L2 NRHO and the range of Sun-B1

halo orbits are not in orbital resonance, a variety of paths must be constructed to allow

regular transfers between the selected cislunar and heliocentric orbits with specific phases.
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Departure and Arrival Dynamics from the Earth-Moon NRHO

The departure dynamics from the 9:2 synodic resonant L2 NRHO are investigated using

tools from dynamical systems theory in the CR3BP and the BCR4BP. Although described as

a ‘nearly stable orbit’, the 9:2 synodic resonant L2 NRHO possesses a saddle mode and, thus,

stable and unstable eigenvectors. A saddle mode exists for each non-zero Lyapunov exponent

associated with the monodromy matrix of a precisely periodic orbit or, equivalently, for each

pair of eigenvalues with terms that possess a magnitude other than one. The Lyapunov

exponents and the pairs of eigenvalues associated with the 9:2 synodic resonant L2 NRHO

in the CR3BP and the BCR4BP are presented in Table  5.1 . The NRHOs in both models

present a saddle mode with associated Lyapunov exponents equal to approximately ±0.5.

This saddle mode is unique in the CR3BP. Recall that this pair of unit eigenvalues in the

CR3BP corresponds to the time-autonomous nature of the model [  6 ]. In the BCR4BP, there

is no pair of unit eigenvalues; for the 9:2 NRHO, a second pair of eigenvalues off the unit

circle exists, as evident in Table  5.1 . Thus, there is a second saddle mode associated with the

9:2 synodic resonant L2 NRHO in the BCR4BP. However, the magnitude of the Lyapunov

exponent associated with this saddle mode is very small (approximately 0.001). Thus, this

saddle mode is neglected in this analysis, and the saddle mode with the larger magnitude of

the corresponding Lyapunov exponent is labeled the dominant saddle mode.

Table 5.1. Lyapunov exponents and pairs of eigenvalues associated with the
9:2 synodic resonant L2 NRHO in the CR3BP and the BCR4BP. Values cor-
responding to the dominant saddle mode are marked in bold.

CR3BP BCR4BP

Lyapunov exponents
0
0

±0.5157

0
±0.0013
±0.5208

Eigenvalue pairs

0.6846 + i 0.7289
0.6846− i 0.7289

1.0000
1.0000
−2.1774
−0.4593

0.3581 + i 0.9337
0.3581− i 0.9337

1.0183
0.9820
−1178.9
−0.0008
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The relationship between the dynamical flow near the Moon and the eigenvectors associ-

ated with the dominant saddle mode of the 9:2 synodic resonant L2 NRHO is explored. The

eigenvectors offer insights into the dynamical flow in the local vicinity under the assump-

tions of the linearized motion. The six-dimensional angle between the stable and unstable

eigenvector is computed as

αs/u = cos−1 (x̄s · x̄u) (5.1)

where x̄s and x̄u are respectively the stable and unstable unit vector associated with the

9:2 synodic resonant L2 NRHO. Recall that while the eigenvalues associated with the mon-

odromy matrix of a periodic orbit are constant, the eigenvector directions are a function of

the location along the orbit at which the monodromy matrix is evaluated. Thus, this six-

dimensional angle is computed along the 9:2 synodic resonant L2 NRHO in the CR3BP and

the BCR4BP and is plotted in Figure  5.6 as a function of the true anomaly. Near apolune,

i.e., TA = 180◦, the eigenvectors are oriented in distinct directions, and the angle reaches

a maximum value of approximately 55 degrees. Close to the Moon, however, the angle be-

tween the stable and unstable eigenvectors is small, with a minimum value of less than 4

degrees at perilune, that is, TA = 0. The small angle indicates that the eigenvectors (and,

thus, manifolds) are not well defined near perilune; for example, a numerical step along the

Figure 5.6. Six-dimensional angle between the stable and the unstable eigen-
vectors as a function of osculating true anomaly.
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unstable eigenvector can result in a propagated step close to the unstable manifold, a step

near the stable manifold, or a combination of both modes. The proximity of the eigenvector

spaces represents an additional challenge in the near vicinity of the Moon, along with strong

nonlinear effects and numerical challenges in both the CR3BP and the BCR4BP. Invariant

manifolds associated with 9:2 synodic resonant L2 NRHO do not reliably yield flow into and

out of the orbit, and are, thus, not employed in the trajectory design process.

Non-Resonance between the Selected Cislunar and Heliocentric Orbits

Recurring transfers between the cislunar and heliocentric space are sought in this analysis.

In general, predictable, recurring transfers between two spacecraft along their respective

orbits are available when the orbits are in orbital resonance, i.e., when there exists an

intuitive ratio between their orbital periods. Consider the example in Figure  5.7 . In each of

the schematics, a transfer with time-of-flight T, is colored in blue and connects two periodic

orbits colored in black. In Figures  5.7(a) and  5.7(b) , the two orbits are assumed to be in K/L

orbital resonance with each other; the period of final orbit is (K/L)A, where A is the orbital

period of the initial orbit. The phase associated with each orbit is also considered. Thus,

transfers between a green spacecraft A, for instance, the Gateway in cislunar space, and a

red spacecraft B, the James Webb Space Telescope for example, are depicted in Figure  5.7 .

An initial transfer is constructed, departing the green spacecraft in the initial orbit at t0 and

arriving at the red spacecraft in the final orbit at t0 + T. This transfer is plotted in blue

in Figures  5.7(a) and  5.7(c) . When the initial and final orbits are in K/L orbital resonance,

transfers between spacecraft A and B are then available at every LA interval, as apparent

in Figure  5.7(b) . However, when the initial and final orbits are not in orbital resonance,

subsequent transfers, for instance at each revolution of the initial orbits, do not allow the

spacecraft to rendezvous with spacecraft B on the destination orbit, as in Figure  5.7(d) .

The subsequent transfers in Figure  5.7(d) connect the initial and final orbits at different

phases. For the spacecraft to transit between A and B, a new transfer arc must be generated

for each subsequent transfer or, alternatively, or an additional transfer must be constructed

along the arrival orbit to allow rendezvous with spacecraft B after insertion into the final
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orbit. The ratio between the orbital periodic of two orbits provides insight into the existence

of repeatable, recurring transfers.

A (t0)

B (t0 + T)

P = A

P = K
LA

s/c

(a) First transfer

A (t0 + kLA)

B (t0 + kLA+ T)

P = A

P = K
LA

s/c

(b) Subsequent transfers, for k = 1, 2, . . .

A (t0)

B (t0 + T)

P = A

P 6= K
LA

s/c

(c) First transfer

A (t0 + kA)

P = A

P 6= K
LA

s/c

B (t0 + kA+ T)

(d) Subsequent transfers, for k = 1, 2, . . .

Figure 5.7. Transfers between two orbits that are in orbital resonance with
each other (a, b) and between two orbits that are not (c, d). Predictable,
recurring transfers between objects A and B are available for when the two
orbits are in orbital resonance with each other.

The orbital resonance ratio between the 9:2 synodic resonant L2 NRHO and the selected

range of Sun-B1 halo orbits is investigated. Recall that the orbital period of the 9:2 NRHO as

constructed in the BCR4BP is equal to two synodic months or, equivalently, nine revolutions

of the 9:2 NRHO as computed in the Earth-Moon CR3BP. Conversely, the orbital period

for the L1 and L2 halo orbits as computed in the Sun-B1 CR3BP ranges from 80 to 180

days. The ratio between the orbital periods of the 9:2 NRHO and the Sun-B1 halo orbits
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is presented as a function of the maximum z amplitude along the families of halo orbits in

Figure  5.8 . This ratio ranges from approximately 1.5 to 3; the horizontal dashed lines in

Figure  5.8(a) indicate the 2-resonance and the 3-resonance, that is, the Sun-B1 halo orbits

that present an orbital period equal to precisely four and six synodic months, respectively.

Note that only a small subset of Sun-B1 halo orbits is considered in this investigation: the

subset of halo orbits with maximum z less than or equal to 250, 000 km. This subset is

highlighted by the green box in Figure  5.8(a) ; the orbital resonance ratio computed for this

range of orbits appear in Figure  5.8(b) . The ratio between the periods of the selected Sun-B1

halo orbits and the 9:2 NRHO as computed in the BCR4BP is approximately equal to 3.02

for the L1 orbits and 3.06 for the L2 orbits. Thus, there are no intuitive resonance ratios

between the selected cislunar and heliocentric orbits; constructed trajectories are generally

not extended to recurring, repeatable transfers between two orbits at specified phases.

The geometry of the Sun-B1 halo orbits that present a simple orbital resonance with the

Earth-Moon 9:2 NRHO is explored. The L1 and L2 halo orbits that cross the 2-resonance

and 3-resonance dashed lines in Figure  5.8(a) are plotted in configuration space in Figure  5.9 .
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Figure 5.8. Resonance ratio between the Sun-B1 halo orbits and the Earth-
Moon 9:2 synodic resonant L2 NRHO, as a function of the maximum z ampli-
tude of the Sun-B1 halo orbits (a). Zoomed view of the region of interest, i.e.,
Sun-B1 halo orbits with maximum z amplitude less than or equal to 250,000
km (b).
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The 9:2 synodic resonant L2 NRHO as constructed in the BCR4BP and the lunar orbit are

plotted in blue and grey, respectively. The ranges of Sun-B1 halo orbits considered in this

analysis are included and colored as a function of the color scheme in Figure  5.4 . The Sun-B1

orbits that present a 2-resonance, i.e., an orbital period precisely equal to synodic month

are plotted in black in Figure  5.9 . Their maximum z amplitude is approximately equal to

one million kilometers, which is four times the maximum z amplitude considered for the

heliocentric orbits in this analysis. The orbits with a period precisely equal to six synodic

months, that is, the halo orbits presenting a 3-resonance with the Earth-Moon NRHOs

are plotted in red in Figure  5.9 . The maximum z component magnitude associated with

these orbits is approximately equal to 1.75 million kilometers. Additionally, these two orbits

interest with the rotating x-y plane inside the lunar orbit, denoted by the grey circle in

Figure  5.9 . Note that these orbits are constructed in the Sun-B1 CR3BP, in which the Moon

is not included as a celestial body moving along its orbital path. The existence and geometry

of these large L1 and L2 halo orbits require further analysis. The Sun-B1 halo orbits that

possess a 2- or a 3-resonance with the Earth-Moon 9:2 NRHO possess dimensions that are

beyond the range considered in this investigation.

5.3 Initial Guess Generation

Initial guesses for transfers between the cislunar and heliocentric regions are generated

employing the invariant manifolds on Sun-B1 halo orbits as computed in the BCR4BP.

Trajectories along the manifolds are propagated and perilunes within a specified to the

Moon are recorded. Families of transfers from a perilune state to a specified Sun-B1 halo

orbits are then constructed for various parameters, such as time-of-flight and perilune radius.

Perilune maps are employed to visually compile these transfers and the trajectories along

the manifold. Lastly, multiple methods are introduced to select an initial guess among the

collection of available arcs for a transfer to/from the 9:2 synodic resonant L2 NRHO, given

certain desired transfer characteristics.
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Figure 5.9. L1 and L2 halo orbits as constructed in the Sun-B1 CR3BP that
present a 2-resonance (in black) and a 3-resonance (in red) with the 9:2 NHRO
(in blue), as viewed in the Sun-B1 rotating frame. The range of halo orbits
considered for transfers are colored following the color scheme in Figure  5.4 .

5.3.1 Manifolds

Transfers leveraging the natural dynamics to and from the heliocentric orbits are sought.

Thus, manifolds associated with the Sun-B1 halo orbits are incorporated. Manifolds reflect

the local ballistic flow approaching and departing an unstable periodic orbit and are fre-

quently exploited for transfer design [  27 ], [ 93 ]. The stability information of the range of

Sun-B1 halo orbits plotted in Figure  5.4 . Recall that one or more nonzero Lyapunov ex-

ponents associated with a periodic solution denote instability and, thus, the existence of

approaching and departing flows with respect to the orbit. All the orbits across both subsets

as seen in Figure  5.4 possess one unstable mode; the range of the Lyapunov exponents for

each unstable mode is summarized in Table  5.2 . Note the similar range for the Lyapunov

166



exponents in the two subsets. Thus, approaching and departing flows from the selected

orbits possess similar arrival and departure rates.

Table 5.2. Stability information associated with the Sun-B1 CR3BP L1 and
L2 halo orbits with maximum z component magnitude between 0 and 250,000
km

Subset Unstable mode(s) Range of φi for the unstable mode(s)
L1 halo 1 ±2.4207 – ±2.4431
L2 halo 1 ±2.3757 – ±2.3961

The bounded motions in the BCR4BP corresponding to the non-synodic resonant CR3BP

orbits are, by definition, not periodic. Thus, there is no monodromy matrix associated with

a bounded motion, and the Lyapunov exponent for the entire time-of-flight associated with a

multi-revolution baseline may not be an insightful metric. However, subsequent revolutions

along a bounded BCR4BP solution tend to remain close to each other, as apparent in Fig-

ure  4.52 . Thus, an approximate monodromy matrix is computed for each quasi-revolution

along the bounded motion, and approximate unstable and stable directions are produced.

These approximate manifold directions provide adequate estimates for departing and ap-

proaching the heliocentric halo orbits for the purpose of this investigation. Note that di-

rections other than the (approximate) unstable and stable directions, such as the maximum

stretching and restoring directions [ 94 ], may offer alternative directions for the flow departing

and approaching the heliocentric orbit. Approximate stable and unstable manifold directions

are employed in this investigation for leveraging the natural arcs to and from the Sun-B1

halo orbits.

Consider the process for the generation of an initial guess for the outbound leg, that is,

the Earth-Moon NRHO to Sun-B1 halo orbit transfer as defined in Figure  5.1 . This process

leverages the stable manifold of the Sun-B1 orbit and backwards propagation. A similar

strategy is employed for generating an initial guess for the inbound leg but employs the

unstable manifold of the heliocentric orbit and forward propagation. The BCR4BP bounded

motions, corresponding to representative Sun-B1 CR3BP halo orbits from Figure  5.4 , are
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discretized and trajectories along the approximate stable manifold path are propagated.

As these trajectories evolve toward the Earth (when propagated in negative time), a small

subset of the arcs encounters the Moon. A sample of these trajectories for the heliocentric

orbits on the L1 side appears in Figure  5.10 . A perilune within 30,000 km of the Moon,

denoted by a colored dot in Figure  5.10 , occurs along each of these trajectories. The color

of the lines denotes the z component magnitude of a destination orbit from among the

subset of options; the out-of-plane nature of these trajectories is apparent in Figure  5.10(b) .

In general, multiple geometries for transfer trajectories between heliocentric orbits and the

lunar vicinity are efficiently produced from back- or forward-propagation of the manifolds

associated with the Sun-B1 halo orbit.

Trajectories approximating the stable manifolds of the Sun-B1 halo orbits offer a variety of

geometries both in the heliocentric space and in the vicinity of the Moon. Sample trajectories

of different geometries from the manifolds of a quasi-periodic orbit associated with a Sun-

B1 L1 halo orbit are plotted in Figure  5.11 . Three types of geometry are identified. The

first type of geometry, colored in orange in Figure  5.11 , encounters an Earth flyby before

departing the Earth-Moon system. Note that the Earth flyby helps accomplish part of the

inclination change required to reach the Sun-B1 destination orbit. The second geometry,

maroon in Figure  5.11 , corresponds to transfers that exit the Earth-Moon system through

the Earth-Moon L2 gateway. Finally, trajectories plotted in green in Figure  5.11 encounter

a lunar flyby before leaving cislunar space through the Earth-Moon L2 portal. In general,

multiple geometries for transfer trajectories from cislunar space to the Sun-B1 BCR4BP

periodic orbit are efficiently produced from back-propagation of the manifolds associated

with the destination orbit.

Initial guesses for transfers with a close lunar encounter are of particular interest. Dy-

namical structures that naturally link the vicinity of the 9:2 synodic resonant L2 NRHO to

the selected destination orbits are explored within the context of the BCR4BP. A sample

stable manifold arc connecting a lunar flyby with the destination orbit is plotted in Fig-

ure  5.12 . The 9:2 synodic resonant NRHO is transitioned from the Earth-Moon CR3BP

to the BCR4BP as formulated in the Earth-Moon frame[ 44 ], [ 46 ] and is plotted in black.

Proximity (in position space) between the manifold arc and the NRHO orbit is apparent.
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(a)

(b)

Figure 5.10. Trajectories along the approximate stable manifold for a various
range of Sun-B1 L1 halo bounded motion, as computed in the BCR4BP. All the
trajectories encounter a perilune within 30,000 km of the Moon; the perilunes
are denoted by colored dots.
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(a) (b)

Figure 5.11. Various geometries of sample manifold trajectories from the
lunar vicinity to a L1 halo bounded motion, as viewed in the Sun-B1 rotating
frame (a). Zoomed-in view of the departure from the lunar vicinity, as observed
in the Earth-Moon rotating frame (b).

Additionally, the geometry of the trajectory in Figure  5.12 is consistent with departure flow

previously observed in the 9:2 NRHO [  48 ]. Manifold arcs from the Sun-B1 halo destination

orbit, as computed in the BCR4BP, encounter the 9:2 synodic resonant NRHO and offer

transfer opportunities.

Figure 5.12. Stable manifold trajectory from the BCR4BP Sun-B1 halo des-
tination orbit that encounters the BCR4BP Earth-Moon NRHO, as seen in
the Earth-Moon rotating frame.
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5.3.2 Perilune Maps

Maps are generated to explore the dynamical flow between the selected range of Sun-B1

orbits and the lunar vicinity. Recall that the bounded baseline motions are not precisely

periodic orbits. However, they are nearly periodic when considering only a single revolution

along the orbit at a time. Thus, the stable manifold directions are approximated (for flow

toward the Sun-B1 halo orbits) and representative trajectories are computed along each

revolution. Trajectories (propagated backwards in time) that possess a perilune distance

within 30,000 km of the Moon are recorded. Additional filtering of the remaining trajectories

is then applied: trajectories that present a H value, i.e., the energy-like quantity in the

BCR4BP, that is below the block of Earth-Moon energy-like values corresponding to the E4/5

equilibrium points are excluded. This additional filter removes trajectories with a high energy

value in comparison to orbits in the lunar vicinity. Representative perilunes from trajectories

corresponding to both the iso-amplitude L1 subset and the L2 subset are plotted as viewed

in the Sun-B1 rotating frame in Figure  5.13(a) , and colored as a function of their associated

Earth-Moon energy-like values, H. Darker colors denote higher energy (lower H) values

and lighter colors indicate perilunes with lower energy (higher H) values. Circle markers

denote perilunes for trajectories leading to a Sun-B1 L2 orbit while diamond markers denote

perilunes along transfers to a L1 orbit. Recall that the diamond and circle markers denote

state vectors along trajectories propagated backwards in time from the Sun-B1 destination

orbits; each point is both a perilune state and within a sphere of 30,000 km radius around

the Moon. The lunar orbit is denoted by a black circle in Figure  5.13 . A set of quadrants,

centered at B1 in the Sun-B1 rotating frame and labeled in Figure  5.13 , is defined in a

counterclockwise manner to facilitate the investigation of the net perturbing acceleration

due to the Sun, or tidal acceleration [ 95 ]. The majority of the perilunes associated with

trajectories leading to the L1 halo orbits are located in the right half-plane (i.e., quadrants

I and IV). Transfers that present a lower energy (higher H value) at perilune correspond

to the diamonds markers colored in light shades of green and blue, highlighted by the red

dashed circle in Figure  5.13(a) and are located close to the rotating Sun-B1 +x axis. A

cluster of perilunes possessing higher energy (lower H value) is apparent near the rotating
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Figure 5.13. Perilune maps of trajectories leading to iso-amplitude Sun-B1 L1
(diamond marker) and L2 halo orbits (circle marker), as viewed in the Sun-B1
rotating frame. The color of the marker denotes the Earth-Moon energy-like
value H in (a) and the minimum isochronous ∆H with the 9:2 NRHO in (b).
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+y axis, and are highlighted by the black dashed circle. In contrast, the majority of the

perilunes for natural arcs that lead to the selected range of Sun-B1 L2 halo orbits are located

in the left half-plane, that is, quadrants II and III. Similar to the transfers reaching the L1

side, low-energy transfers, denoted by light green and light blue circles in Figure  5.13(a) , are

located near the rotating −x axis, and are highlighted by the purple dashed circle. However,

the higher energy transfers to the L2 halo orbits are located near the rotating −y axis

(dashed green circle). The perilune map in Figure  5.13(a) indicates the perilune locations

for trajectories flowing toward the L1 and L2 destination orbits as oriented in the Sun-B1

rotating frame (i.e., the phasing of the trajectory with respect to the Earth, the Moon, and

the Sun), and the values of their associated energy-like quantities.

A map that incorporates both the energy and the phasing differences for the arcs de-

parting the lunar vicinity with respect to the departure orbit, the 9:2 synodic resonant L2

NRHO, as computed in the BCR4BP, is constructed and plotted in Figure  5.13(b) . To pro-

duce this map, the minimum energy difference at a specific Sun angle, ∆Hmin(θ), between

the departure NRHO and the perilune states that represent the departure arcs is introduced.

Recall that the 9:2 synodic resonant L2 NRHO as constructed in the BCR4BP possesses an

orbital period equal to 2 synodic periods. Thus, for each Sun angle θi, there are two distinct

states along this NRHO: one at θi, and one at θi + 2π, that occur at the same Earth-Moon-

Sun configuration. However, the two states are not isochronous: they occur one synodic

month (or approximately 29.5 days) apart along the periodic orbit. Consider the Earth-

Moon energy-like value, H, along the 9:2 synodic resonant L2 NRHO, plotted as a function

of the Sun angle, θ, in Figure  5.14 . The Sun angle associated with each state along the 9:2

synodic resonant L2 NRHO are wrapped between 0 and 2π. Thus, two separate blue curves

are plotted in Figure  5.14 : one line corresponds to the states along the NRHO that occur

during the first synodic period (0 ≤ θ ≤ 2π), and the other blue curve corresponds to the

states that occur during the second synodic period (2π ≤ θ ≤ 4π, wrapped between 0 and

2π). The perilunes and apolunes along the 9:2 synodic resonant L2 NRHO orbit are denoted

by red triangles and inverted red triangles, respectively. Recall that the 9:2 synodic reso-

nant L2 NRHO as computed in the BCR4BP consists of 9 individual revolutions around the

Moon. Apses occur at the same Earth-Moon-Sun orientation states along the orbit: i.e., for

173



each perilune, an apolune with the same Sun angle occurs 29.5 days apart. To compare the

relative energy between the NRHO and the manifold trajectories departing from the Sun-B1

halo orbits, three perilunes associated with the manifolds are selected from Figure  5.13(a) 

and are plotted with diamond markers in Figure  5.14 . The minimum energy difference for a

given Sun angle, ∆Hmin, is computed as

∆Hmin(θ∗) = sgn
(
H∗(θ∗)−H9:2(θ∗)

)
min

∣∣∣H∗(θ∗)−H9:2(θ∗)
∣∣∣ (5.2)

where the ∗ subscript denotes quantities associated with the perilunes along the departure

trajectories, i.e., the points on the map in Figure  5.13 , and sgn(·) is the signum function.

The ∆Hmin values associated with the three selected perilunes are represented by the vertical

lines in Figure  5.14 . Note that this minimum energy difference quantity is signed: ∆Hmin,1

is positive, while ∆Hmin,2 and ∆Hmin,3 are negative. The sign of ∆Hmin determines whether

energy must be gained or lost in order to connect the 9:2 synodic resonant L2 NRHO and the

departure arc for this specific Sun angle. Positive ∆Hmin (H∗(θ∗) > H9:2(θ∗)) implies that

the perilune along the departure trajectory has a lower energy than the 9:2 synodic resonant

L2 NRHO state at the same Sun angle. Note the small magnitude of ∆Hmin,2: its associated

line in Figure  5.14 is indistinguishable at this scale. The minimum energy difference is a

useful metric to measure the energy differences between departure arcs and the 9:2 synodic

resonant L2 NRHO, while considering their relative phasing.

The minimum energy difference for a given Sun angle is computed for all perilunes plotted

in Figure  5.13(a) . The perilunes are plotted in the Sun-B1 rotating frame and colored as a

function of the ∆Hmin, as apparent in Figure  5.13(b) . Markers colored in shades of white

correspond to the perilunes for transfers with an associated small magnitude for the quantity

∆Hmin. Trajectories with an associated energy higher than the value along the NRHO at

the same Earth-Moon-Sun configuration, i.e., at the same Sun angle, are colored in shades of

pink, while trajectories with a lower associated ∆Hmin value are colored in shades of green.

Clusters are identified as previously apparent. Perilunes presenting a low energy difference

with the 9:2 NRHO states at the same Sun angle are predominantly located near the Sun-B1

rotating ±x axis (purple and red dashed circles). Perilunes with a higher associated energy
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Figure 5.14. Earth-Moon energy-like value as a function of the Sun angle.

are primarily located off the Sun-B1 rotating ±y axis, as denoted by the pink markers in

Figure  5.13(b) and are highlighted by the black and green dashed circles. Perilunes presenting

a lower energy than the departure orbit state at the same Sun angle are sparser and mainly

correspond to transfers to the L1 halo orbits, as evidenced by the green diamond markers

in Figure  5.13(b) . The perilune maps in Figure  5.13 inform the general structure of the

natural flow from the lunar vicinity to the Sun-B1 L1 and L2 halo orbits; these are leveraged

to construct initial guesses for transfers between lunar and heliocentric spaces.

Families of transfers from the lunar vicinity to the Sun-B1 libration point region are

constructed using favorable stable manifolds from the Sun-B1 destination halo orbit in the

BCR4BP. For each member of the family, the departure state is constrained as a perilune,

and an insertion maneuver into the Sun-B1 arrival orbit is initially allowed. Employing a

continuation process, families are then produced in two continuation parameters: departure

perilune radius and time-of-flight. Maps of the resulting transfers appear in Figure  5.15 . The

horizontal axis represents the time of flight between the departure state at perilune and the

insertion maneuver at the Sun-B1 orbit. The vertical axis corresponds to the radius from

the Moon to the perilune departure state. Each dot corresponds to a converged transfer

and is colored by the insertion ∆V cost, using a perceptually uniform color scale [ 96 ]. The
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initial guess from the stable manifold arc associated with the destination halo orbit is plotted

as a green dot. Two steps are employed to continue this transfer into families of transfers.

First, the time of flight is held constant while the family of transfers is continued in terms of

perilune radius. This first family of transfers corresponds to the vertical dark line in Figure

 5.15 . Then, families of transfers are continued off this first family. For various selected

(a)

(b)

Figure 5.15. Map of transfers from perilune states to the Sun-B1 L2 halo
bounded motion with maximum z amplitude equal to 225,000 km (a) and
600,000 km (b) , colored by the magnitude of the insertion maneuver ∆V .
The initial guess from the manifold arc is denoted by a green dot.
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perilune radii, the corresponding converged transfers in the first family are continued in

time of flight, corresponding to the horizontal lines in Figure  5.15 . Using this two-step

continuation process, transfers are produced between perilune states and two Sun-B1 L1

halo bounded motion are construct. The maximum z component associated with the quasi-

periodic orbit in Figure  5.15(a) is 225,000 km, while the maximum z amplitude associated

with the destination orbit for the transfers in Figure  5.15(b) is approximately equal to

600,000 km. Note that this bounded motion is outside of the range of interest defined in

Figures  5.4 and  5.5 ; perilune transfers to this orbit are constructed for comparison purposes.

The perilune distances associated with the transfers in Figure  5.15(a) range from 3,000 km

to 30,000 km, and from 3,000 km and 40,000 km in Figures  5.15(a) and  5.15(b) , respectively.

The times of flight range from approximately 248 to 254 days for transfers to the smaller

halo orbit, and from 265 to 270 days for transfers to the larger halo orbit. Note the different

scales along the color bars in Figure  5.15 . Most of the transfers to the smaller Sun-B1 halo

orbit require an insertion ∆V maneuver of less than 20 m/s. Transfers to the larger Sun-B1

halo with relatively low insertion maneuver cost, i.e., less than 50 m/s, are available for all

the sampled perilune radii and for times of flight between 248 and 251 days. These transfers

correspond to the points colored in the dark purple shades in Figure  5.15(a) and correspond

to transfers that follow closely the flow into the synodic resonant orbit. As the time of flight

increases, the insertion ∆V cost increases as well, as denoted by the lighter colored points

between 252 and 254 days. Transfers from the lunar vicinity to the Sun-B1 destination orbit

are obtained for relatively low-cost insertion maneuvers.

Sample transfers are selected from the map in Figure  5.15 . First, a family of perilune

transfers with fixed time-of-flight equal to 266 days is selected; this collection of transfers

corresponds to the vertical green line in Figure  5.16 . Second, the horizontal blue line in

Figure  5.16 corresponds to the family of perilune transfers with fixed initial perilune distance

equal to 10,000 km. The two families are plotted in the Earth-Moon rotating frame and the

Sun-B1 rotating frame in Figures  5.17 and  5.18 , with the remaining transfers from Figure  5.16 

plotted as gray lines. Each family is colored as a function of the varying parameter; for

instance, the transfers along the fixed time-of-flight family in Figure  5.17 are colored as

a function of the initial perilune radius. The variation of the transfer geometry for the
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Figure 5.16. Family of perilune transfers with a time-of-flight equal to 266
days (in green) and family of perilune transfers with an initial perilune radius
equal to 10,000 km (in blue), overlaid on the map from Figure  5.15(a) .

(a) Earth-Moon rotating frame (b) Sun-B1 rotating frame

Figure 5.17. Family of perilune transfers to a L2 halo quasi-periodic with
maximum z amplitude equal to 225,000 km. The transfers have a fixed time-
of-flight equal to 266 days and are colored as a function of the initial perilune
radius. These transfers correspond to the vertical green line in Figure  5.16 .
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(a) Earth-Moon rotating frame (b) Sun-B1 rotating frame

Figure 5.18. Family of perilune transfers to a L2 halo quasi-periodic with
maximum z amplitude equal to 225,000 km. The transfers have a fixed initial
perilune radius equal to 10,000 km, colored as a function of the time-of-flight.
These transfers correspond to the horizontal blue line in Figure  5.16 .

fixed time-of-flight family is primarily apparent in the Earth-Moon rotating frame view

in Figure  5.17(a) , where the gradient of distances from the initial state to the Moon is

visible. Note that the transfers presented in Figures  5.17 and  5.18 are spatial; thus, the

trajectories in Figures  5.17(a) and  5.18(a) do not intersect the Moon. The trajectories in

Figure  5.17(b) all depart at the same Moon angle value θ, since both the time-of-flight and the

epoch of the insertion into the heliocentric halo orbit are fixed. The variations in geometry

are more pronounced for the transfers with variable time-of-flight and fixed initial perilune

distance, plotted in Figure  5.18 . An extra loop near the Moon is apparent in Figure  5.18(a) ;

this loop allows for the correct phasing of the trajectories within the Sun-B1 rotating in

Figure  5.18(b) . When represented in the Sun-B1 rotating frame, the initial states associated

with the transfers in Figure  5.18 cover the majority of quadrant I and part of quadrant II.

A variety of geometries within the Earth-Moon rotating frame and phasing with respect to

Sun-B1 rotating frame is available from the perilune transfers map.
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5.3.3 Initial Guess Selection

A strategy to construct an initial guess for an end-to-end transfer between the 9:2 synodic

resonant L2 NRHO and a Sun-B1 halo orbit is detailed. The first parameter is the selection

of the destination orbit: in this example, an L1 halo orbit with a maximum z amplitude of

225,000 km is identified. This trajectory is consistent with orbits selected for solar weather

observatory missions, such as the WIND spacecraft [ 97 ]. The perilune of a predetermined

transfer to this L1 destination orbit is selected and highlighted in Figure  5.19(a) . The perilune

is located in quadrant III, and its associated energy is above the value associated with the

state along the NRHO that possesses the same Earth-Moon-Sun orientation. The minimum

energy difference for this Sun angle value, plotted in Figure  (b) , is approximately equal to

−0.04.

(a) (b)

Figure 5.19. Perilune of the sample initial guess to the 225,000 km z ampli-
tude L1 halo orbit, as viewed in the Sun-B1 rotating frame (a). Energy-like
value associated the initial guess perilune as a function of the Sun angle θ (b).

The selected transfer is examined in configuration space. The departure orbit, the arrival

orbit, and the transfer are plotted as viewed in the Sun-B1 rotating frame in Figure  5.20(a) .

The lunar orbit is plotted in gray and the perilune state from Figure  5.19(a) is denoted by

a red diamond. The time of flight between the perilune and the end of the trajectory along
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the L1 halo is approximately 280 days. Note that this time includes some ’winding’ on the

destination orbit and may not be representative of the actual transfer time of flight. A close

view of the trajectory near the Moon, as viewed in the Earth-Moon rotating frame, appears

in Figure  5.20(b) . The departure orbit, the 9:2 synodic resonant L2 NRHO, is plotted in blue.

Note the generally close alignment of the trajectory in black and the NRHO as viewed in the

lunar-centered, Earth-Moon rotating frame. However, it is apparent from Figures  5.19(b) 

and  5.20(a) that the perilune along the transfer and the closest perilune along the 9:2 synodic

resonant L2 NRHO are not at the same Sun-Earth-Moon orientation. Thus, this difference

in epoch is rectified during the differential corrections scheme or, alternatively, an additional

arc is leveraged to connect the two components of the transfers (see Section  5.4.1 ).

(a) (b)

Figure 5.20. Sample initial guess in the BCR4BP to the 225,000 km am-
plitude L1 halo orbit, as viewed in the Sun-B1 rotating frame (a) and the
Moon-centered Earth-Moon rotating frame (b). The departure orbit, that is,
the 9:2 synodic resonant L2 NRHO, and the destination heliocentric halo orbit,
are colored in blue. The perilune is denoted by the red diamond.

Alternatively, initial guesses for the end-to-end transfer are selected from the map of

perilune transfers, in Figure  5.15 , given certain parameters. Recall that the perilune maps

in Figure  5.15 corresponds to families of transfers from a perilune state to two L2 halo

orbits. In addition to the insertion ∆V into the destination orbit, the Earth-Moon energy-

like values, H, corresponding to the departure states are compared to the values along the

Earth-Moon periodic orbit. Initial guess trajectories that represent the smallest difference in

the energy-like value values are sought, as they generally yield transfers with small departure
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maneuvers. For instance, consider the initial guesses for the end-to-end transfers plotted in

Figure  5.21 , as viewed in the Earth-Moon rotating frame. Perilune states with Earth-Moon

energy-like values that are similar to the 9:2 NRHO are selected from Figure  5.15(a) and

plotted as the colored dots. The transfers associated with these perilune states are plotted

in gray. The energy-like values along the 9:2 synodic resonant orbit range from 1693.29

to 1693.31; this range is slightly above the color bar used in Figure  5.21 . The perilunes

along transfers with departure energy levels that are similar to the departure NRHO orbit

correspond to the darkest dots in Figure  5.21 . In addition to the energy-like value, multiple

parameters are relevant when selecting potential transfer from the maps in Figure  5.15 to

seed an initial guess for an end-to-end transfer.

(a) (b)

Figure 5.21. Selected initial guesses for transfers from the 9:2 synodic reso-
nant NRHO to the Sun-B1 halo orbit, as viewed in the Earth-Moon rotating
frame. Perilune states are colored by their associated Earth-Moon Hamilto-
nian values.

5.4 End-to-End Transfers

Continuous end-to-end transfers in the BCR4BP between the 9:2 synodic resonant L2

NRHO and a Sun-B1 halo orbit are constructed using a numerical scheme. The initial

guess is selected employing one of the methods in Section  5.3.3 . A maneuver departure
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location along the 9:2 synodic resonant L2 NRHO is selected; a bridge arc is leveraged if

the phasing between the departure state and the perilune is not consistent with the selected

perilune state. In this investigation, the differential correction schemes for the transfer

generation are applied for states as represented in the Earth-Moon rotating frame. However,

recall that the dynamics in the BCR4BP as described by the equations of motion in the

Earth-Moon frame (Equations ( 2.4 ) and ( 2.5 )) are identical to the behavior modeled by the

equations of motion in the Sun-B1 frame (Equations ( 2.8 ) and ( 2.9 )). Boudad et al.[  49 ]

employ numerical corrections on states represented in the Sun-B1 rotating frame; results in

the current investigation are consistent within the specified numerical tolerance. The initial

guess trajectory is discretized into patch points to facilitate the convergence process. While

a single-shooting algorithm is an acceptable alternative in certain scenarios, it generally fails

for long transfers with close passages of one or more primaries. Thus, a multiple-shooting

scheme is selected for the numerical corrections. The trajectory is corrected for continuity

between consecutive patch points. Maneuvers are allowed at the departure from the NRHO,

at the insertion into the Sun-B1 destination orbit and, when a bridge arc is used, at the

connection between the bridge arc and the heliocentric part of the transfer. The arrival

location and epoch in the Sun-B1 halo orbit are fixed in the current implementation of the

numerical scheme. The time of flight is not explicitly allowed to vary during the corrections

process, but it is adjusted by modifying the departure location along the Earth-Moon NRHO.

Recall that the BCR4BP is a time-dependent, periodic model. Thus, adjusting the departure

state also changes the departure time and, thus, modifies the time of flight. Once a transfer

satisfies the constraints within some specified numerical tolerance, families of transfers are

produced by continuing the numerical corrections along some parameter, such as departure

location from the NRHO.

5.4.1 Bridge Arcs

A technique to bridge the cislunar orbit to a preselected heliocentric arc, thus mitigating

phasing discrepancies, is introduced. Recall the selected arc in Figure  5.19 , connecting the

vicinity of the Moon to a Sun-B1 halo orbit with maximum z component approximately
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equal to 225,000 km. However, it is apparent from Figures  5.19(b) and  5.20(a) that perilune

along the transfer and the closest perilune along the 9:2 synodic resonant L2 NRHO are not

at the same Sun-Earth-Moon orientation. Thus, a direct transfer departing from the perilune

along the 9:2 NRHO is not possible. Rather, a ‘bridge’ arc is leveraged to link the transfer

trajectory and the departure state along the NRHO, as plotted in Figure  5.22 . The departure

location from the NRHO is selected near perilune and is labeled ‘1’. The time of flight along

the bridge arc is approximately one and one-half revolutions along the 9:2 NRHO, that is,

approximately ten days. A second maneuver, labeled ‘2’ in Figure  5.22 , allows a connection

between the bridge arc and the transfer arc plotted in Figure  5.20 . After a differential

corrections process, the first and second ∆V maneuver magnitudes are approximately 20

m/s and 74 m/s, respectively. After the second maneuver, the black arc in Figure  5.22 

corresponds to a ballistic trajectory into the Sun-B1 L1 halo orbit in Figure  5.20(a) . Thus,

a feasible guess for a transfer from the 9:2 synodic resonant L2 NRHO to the selected L1

halo orbit is produced for a ∆V impulsive maneuver cost under 100 m/s. Bridge arcs are

successfully to overcome challenges in connecting the cislunar orbit and the heliocentric arcs.

Figure 5.22. Bridge arc (in red) between the 9:2 synodic resonant L2 NRHO
(in blue) and the transfer trajectory (in black) to the Sun-B1 L1 halo orbit, as
viewed in the Earth-Moon rotating frame. Two maneuvers, labeled 1 and 2,
are allowed.
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5.4.2 One-Way Transfers

One-way transfers from the 9:2 synodic resonant L2 NRHO to Sun-B1 halo orbits as-

sociated with the L1 or the L2 points are constructed within the BCR4BP. A variety of

geometries, both in cislunar and heliocentric spaces, are presented. The transfers represent

a range of departure and arrival epochs. Characteristics, including the energy and the di-

rections of the departure maneuvers, are explored along the families of one-way transfers.

Transfers to L1 halos

End-to-end transfers from the NRHO to L1 Sun-B1 halo orbits with maximum z ampli-

tude equal to 225,000 km are computed for different epochs. Representative transfers are

plotted in Figures  5.23 and  5.24 . Trajectories are colored according to the total ∆V, that

is, the sum of the departure, arrival, and potential bridge maneuver magnitudes. Transfers

in Figures  5.23(a) and  5.24(a) possess a total ∆V ranging from approximately 130 to 240

m/s. The insertion ∆V varies from 7 to 30 m/s, while the bridge ∆V remains below 10 m/s.

Transfers in Figures  5.23(b) and  5.24(b) possess a total ∆V ranging between 90 and 250

m/s. No bridge arc is leveraged for constructing this family, and the insertion ∆V is ranges

from 20 to 30 m/s. Thus, the majority of the maneuver cost occurs at the NRHO departure

for both families of transfers. The initial epoch, i.e., the Earth-Moon-Sun relative geometry

at departure, is different for each group of transfers in Figures  5.23 and  5.24 . Though the

departure locations for both families, denoted by gray dots in Figures  5.23(a) and  5.23(b) are

all located in quadrant III, the two families are separated in epoch by a synodic month. The

geometry of the departure from the Earth-Moon NRHO is also explored. The close vicinity

of the Moon in the Earth-Moon rotating frame is apparent in Figures  5.24(a) and  5.24(b) .

The departure locations along the NRHO are also denoted by gray dots in these plots. The

locations for the departure maneuver are selected to occur after perilune, on the side of

the NRHO with a positive rotating y component for the transfers in Figure  5.24(a) , and

after apolune (states with a negative rotating y component) in Figure  5.24(b) . Note that

no departure location is selected close to perilune; near this apse, higher dynamical sensi-
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(a)

(b)

Figure 5.23. Two geometries of representative end-to-end transfers in the
BCR4BP between the 9:2 NRHO and the Sun-B1 L1 halo orbit with maximum
z amplitude equal to 225,000 km, as viewed in the Sun-B1 rotating frame.

tivities present challenges in constructing consistent departures. The departure geometry in

Figure  5.24(a) presents a sharp ‘turn’ after departing the NRHO; this behavior is consistent

with observations from previous contributions [ 48 ], [ 49 ]. However, the departure arcs in

Figure  5.24(b) do not include this turn geometry; rather, they wind off from the NRHO.

The tilted lobe around the Moon could suggest some structures from a BCR4BP resonant

3:1 NRHO [ 44 ] or from a higher-period dynamical structure near the NRHO [ 42 ]. Note that
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(a) (b)

Figure 5.24. Two geometries of representative end-to-end transfers in the
BCR4BP between the 9:2 NRHO and the Sun-B1 L1 halo orbit with maximum
z amplitude equal to 225,000 km, as viewed in the Earth-Moon rotating frame
near the Moon .

none of these transfers are optimized. Nevertheless, this investigation demonstrates that

low-cost transfers leveraging natural arcs between the 9:2 synodic resonant L2 NRHO and

Sun-B1 L1 halo orbits can be produced using dynamical systems tools in the BCR4BP.

The evolution of the energy along the NRHO-to-halo transfer families is explored. Recall

that the BCR4BP does not admit an integral of the motion. Two time-dependent energy-like

values, the Earth-Moon H value, and the Sun-B1 H value, are defined to be the energy-

like quantities in the BCR4BP. The Earth-Moon energy-like values along the transfers in

Figures  5.23 and  5.24 are plotted as function of time in Figure  5.25 . The initial time is

arbitrarily defined as the initial time along the departure orbit, that is, the 9:2 synodic

resonant L2 NRHO. The energy-like values associated with the departure and the arrival

orbit, the L1 halo orbit with maximum z equal to 225,000 km, are plotted in blue. Note

that the difference in the energy-like values oscillations between the two periodic orbits. The

oscillations along the Sun-B1 halo H values are much larger than those along the values

associated with the Earth-Moon NRHO, since the dimensions of the Sun-B1 halo are larger

when represented in the Earth-Moon rotating frame. The oscillations along the Sun-B1 halo
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energy-like values also have a lower frequency due to the longer orbital period of the orbit as

compared to the 9:2 synodic resonant L2 NRHO. The H values associated with the transfers

in Figures  5.23(a) and  5.24(a) are depicted in turquoise, and orange lines are associated with

the energy-like values along the trajectories in Figures  5.23(b) and  5.24(b) . The energy-like

values depicted in Figure  5.25 accomplish the required change of energy naturally between

the 9:2 NRHO and the Sun-B1 halo orbit. Two small discontinuities in energy-like values

are present, one at departure from the Earth-Moon NRHO and one at arrival in the Sun-B1

halo orbit, as illustrated in the inserts in Figure  5.25 . These differences in H values are

labeled the ∆Hdep and ∆Harr, and correspond to the minimum ∆V maneuver magnitudes

required to accomplish the change in energy, without considering the velocity direction. The

two families of transfers in Figure  5.25 share the same departure and arrival orbit, but they

differ in phasing. The transfers from Figures  5.23(a) and  5.24(a) have a longer time-of-flight

than the transfers from Figures  5.23(b) and  5.24(b) ; they depart earlier from the NRHO

and insert later into the Sun-B1 halo orbit. The correct transfer phasing is accomplished

differently along each family. Transfers Figure  5.24(a) included a quick departure from the

Figure 5.25. Earth-Moon energy-like values as a function of time along the
trajectories plotted in Figures  5.23 and  5.24 . The blue lines denote the Earth-
Moon departure and Sun-B1 arrival orbits.

NRHO, as observed in Figure  5.24(a) , but spend some time in the Earth-Moon vicinity
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before inserting into the Sun-B1 orbit, as apparent in Figure  5.23(a) . Conversely, transfers

from Figures  5.23(b) and  5.24(b) present a slower departure from the lunar vicinity: note

the extra lobes in Figure  5.24(b) and the longer ’flat’ orange lines for the energy-like values

after departure in Figure  5.25 . After departure from the lunar vicinity, the trajectories in

Figure  5.23(b) deliver a shorter time of flight before inserting into the Sun-B1 halo. The

analysis of the Earth-Moon energy-like values along the transfers trajectories offer insight

into the changes in energy and phasing.

Transfers to L2 halos

End-to-end transfers from the NRHO to a Sun-B1 L2 halo orbit with maximum z ampli-

tude equal to 225,000 km are computed for different epochs. Representative transfers in the

Sun-B1 rotating frame are plotted in Figures  5.26 and  5.27 . Trajectories are colored accord-

ing to the total ∆V , that is, the sum of the departure and arrival maneuver magnitudes.

Transfers in Figures  5.26(a) and  5.26(b) possess a total ∆V ranging from approximately 90

m/s to 200 m/s, while transfers in Figure  5.26(c) require a total maneuver cost between 200

m/s and 250 m/s. The insertion ∆V remains consistent across all the transfers, i.e., between

4 and 6 m/s.

The majority of the maneuver cost occurs at the NRHO departure: the minimum depar-

ture ∆V is approximately 87 m/s for a transfer in Figure  5.26(b) and the maximum ∆V ,

about 245 m/s, is produced for a transfer in Figure  5.26(c) . The range of ∆V, as well of

times-of-flight and initial epochs, for each family of transfers is summarized in Table  5.3 .

The initial epoch, i.e., the Earth-Moon-Sun relative geometry at departure, is different for

each group of transfers in Figure  5.26 . Recall that, in the BCR4BP, the epoch is described

by the Sun angle in the Earth-Moon rotating frame, or, equivalently, the Moon angle and/or

the quadrants in the Sun-B1 frame. Transfers plotted in Figures  5.26(a) and  5.26(c) possess

departure states from the NRHO as located in quadrant IV. The majority of departure states

for the transfers in Figure  5.26(b) are located in quadrant I and incorporate Moon angles

at departures that are similar to the transfers described by Folta and Webster[ 3 ]. Note that

none of these transfers are optimized. Nevertheless, this investigation demonstrates that
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(a)

(b)

(c)

Figure 5.26. Representative end-to-end transfers between the 9:2 NRHO and
the Sun-B1 halo orbit B, as viewed in the Sun-B1 rotating frame. Additional
views of the transfers are available in Figure  5.27 .
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(a)

(b)

(c)

Figure 5.27. Additional views of the transfers from Figure  5.26 .

natural/low-cost transfers between to cislunar and heliocentric space can be obtained using

dynamical systems tools in the BCR4BP.

The geometry of the departure from the Earth-Moon NRHO is explored. Close views of

the previous transfers in Figures  5.26 and  5.27 are now plotted in the Earth-Moon rotating

frame in Figure  5.28 . The maneuver to depart from the NRHO is constrained to occur to

near apolune. Near perilune, higher dynamical sensitivity and higher orbit determination
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errors present challenges to obtain consistent departures. However, note the difference in

the departure location from the NRHO: transfers in Figures  5.28(a) and  5.28(c) include

departure maneuvers prior to apolune, while transfers in Figure  5.28(b) depart from the

NRHO after perilune. All transfers present this sharp ‘turn’, indicated by the red arrows in

Figure  5.28 in space after leaving the NRHO. This geometry is consistent with observations

from previous contributions[ 48 ]: departure arcs from the NRHO that do not present this

‘turn’ do not have sufficient energy to depart the Sun-B1 portals. The numbers of loops

around the Moon differ for each type of transfer plotted in Figure  5.28 : no loop around the

Moon for the transfers in Figure  5.28(b) , one loop for the transfers in Figure  5.28(a) , and

two loops for the transfers in Figure  5.28(c) . Note that the close lunar flybys in trajectories

in Figure  5.28(c) could cause some navigation challenges, and that some of the trajectories

intersect the lunar radius.

Table 5.3. Range of the characteristics associated with the transfers plotted
in Figures  5.26 and  5.28 

Transfers (a) Transfers (b) Transfers (c)
Dep. ∆V [m/s] 117.0 : 202.2 87.4 : 187.4 196.9 : 245.1
Arr. ∆V [m/s] 5.3 : 5.4 4.7 : 4.8 4.5 : 4.6

Total ∆V [m/s] 122.3 : 207.6 92.1 : 192.1 201.4 : 249.7
Time of flight [days] 271.2 : 273.3 263.0 : 265.4 274.5 : 275.9

Dep. Moon angle [deg] −30.5 : −4.8 66.2 : 95.4 −61.8 : −45.6

Similar to the transfers to the L1 halo orbits, the evolution of the energy along the NRHO-

to-halo transfers is also explored. Recall that the BCR4BP does not admit an integral of the

motion. The Earth-Moon energy-like values, H, along the transfers in Figure  5.26(b) are

plotted as a function of the Moon angle θ in Figure  5.29 . The energy-like values associated

with the Earth-Moon 9:2 NRHO are plotted in black. The states of the Sun-B1 halo orbit are

rotated into the Earth-Moon rotating frame; the associated Earth-Moon energy-like values

are plotted in red in Figure  5.29 . Note the differences in the energy-like value oscillations

between the two periodic orbits. The oscillations along the red line are much larger than

those along the black line, since the dimensions of the Sun-B1 halo orbit are larger when

represented in the Earth-Moon rotating frame. The oscillations along the red line also have a
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(a) Transfers from (a)

(b) Transfers from (b)

(c) Transfers from (c)

Figure 5.28. NRHO departure geometry from the end-to-end transfers in
Figure  5.26 , as viewed in the Earth-Moon rotating frame. The departure ma-
neuver locations are denoted by gray dots.
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lower frequency due to the longer orbital period of the halo orbit as compared to the NRHO,

represented in black. The energy-like values associated with the transfers in Figures  5.26(b) 

and  5.28(b) , depicted in the blue to purple colors in Figure  5.29 , accomplish naturally the

required change of energy between the Earth-Moon NRHO and the Sun-B1 halo orbit. Small

discontinuities in energy-like values are present at departure between the transfer arc and the

NRHO, and at arrival between the transfer arc and the Sun-B1 halo orbit, as illustrated in

the insets in Figure  5.29 . These differences are labeled the departure ∆H and the arrival ∆H,

and correspond to the minimum ∆V maneuver required to achieve this change of energy,

assuming the velocity vector of the incoming/outgoing transfer arc and the velocity vector

of the insertion/departure location in the periodic orbit are aligned. A larger maneuver is

required if the directions of the velocity vectors are not aligned. The angle between the

transfer arc velocity vector and the velocity vector along the periodic orbit, Λ, is defined

Λ = arccos v̄t · v̄p.o.

‖v̄t‖‖v̄p.o.‖
(5.3)

where v̄t and v̄p.o. are the velocity vectors along the transfer arcs and the periodic orbit,

respectively. For Λ equal 0◦, the maneuver is tangential to the periodic orbit velocity vector

and maximizes the change in energy. Conversely, for Λ equal 90◦, the maneuver direction

Figure 5.29. Earth-Moon energy-like values along the transfers in Fig-
ure  5.26(b) ; energy-like values associated with the Earth-Moon NRHO and
the Sun-B1 halo orbit B are plotted in black and in red, respectively.
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and the velocity vector along the periodic orbit are perpendicular, the maneuver minimizes

the change in energy. The Λ angles at the departure from the NRHO for transfers in

Figures  5.26(b) and  5.28(b) are plotted as a function of the z component of the departure

location in Figure  5.30(a) . Transfers near apolune possess a Λ angle between 50◦ and 70◦,

and thus, the associated maneuvers do not efficiently change the energy-like value. As a

consequence, the total ∆V for these transfers is relatively high, between 160 and 190 m/s.

In contrast, the Λ angle for departure locations with z component between -55,000 km and

-38,000 km possess a Λ angle between 10◦ and 15◦. The maneuvers from these locations

are close to tangential to the periodic orbit, and the total ∆V is between 90 and 110 m/s.

Note that the theoretical minimum ∆V [ 98 ] maneuvers between the Earth-Moon NRHO and

the stable manifold of the Sun-B1 halo orbit range from 40 m/s to 85 m/s, depending on

the departure location along the NRHO. Additional numerical corrections processes could

potentially further decrease the value of Λ and thus, the total ∆V s associated with the

transfers. The majority of the energy change required in the transfer between the Earth-

Moon NRHO and the Sun-B1 halo orbit occurs with the natural dynamics of the Earth-Moon-

(a) (b)

Figure 5.30. Λ angle at departure from the Earth-Moon NRHO associated
with the transfers in Figures  5.26(b) and  5.28(b) (a). Departure locations along
the Earth-Moon NRHO, as viewed in the Earth-Moon rotating frame (b).
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Sun system, and the effectiveness of the departure and insertion maneuvers is assessed using

the Λ angle.

5.4.3 Round-Trip Transfers

A sampling of round-trip transfer families to heliocentric orbits near the L1 and L2 La-

grange points are examined. To construct a family of inbound or outbound transfers, an

initial guess is first select using of the methods presented in Section  5.3.3 . The time-of-flight

along this initial guess is adjusted to be continuous in epoch with the selected departure or

arrival state along the 9:2 synodic resonant L2 NRHO. In cases where the epoch discontinu-

ity between the initial guess and the NRHO state is significant, additional trajectory arcs,

labelled ‘bridge arcs’ and described in Section  5.4.1 , are employed to facilitate the process.

A numerical differential corrections scheme on the transfer trajectory is then employed to

reduce the discontinuities between consecutive patch points to within a specified tolerance,

while allowing the maneuvers noted in Figure  5.1 . Once a continuous end-to-end transfer is

obtained, it may be continued into a family of transfers by varying a parameter, such as the

maneuver location and repeating the differential corrections process. Among the constructed

families of outbound and inbound transfers, a round-trip trajectory that presents the lowest

∆V for each leg and its characteristics are explored.

Round-trip Transfers to Sun-B1 L1 Orbits

Families of end-to-end outbound and inbound transfers between the 9:2 synodic resonant

L2 NRHO and the Sun-B1 halo orbits around the L1 libration point are constructed. As an

illustration, consider the transfer families to and from the BCR4BP L1 halo bounded motion

with maximum z component magnitude equal to 225,000 km, as produced in Figure  5.31 .

Two families are plotted in each figure: one corresponding to the inbound transfers and one

for the outbound transfers. Each arc is colored as a function of the total ∆V along the leg.

For instance, the total ∆V along the outbound leg is the sum of the departure maneuver

from the Earth-Moon NRHO and the arrival maneuver into the Sun-B1 halo orbit. The

transfer families in Figure  5.31 possess a total leg ∆V ranging between 98 and 300 m/s for
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the outbound family, and ranging between 245 and 300 m/s. (The maximum allowable ∆V

magnitude for one leg of the round trip was set to 300 m/s in this analysis). The times-

of-flight range from 220 to 226 days for the outbound transfers, and from 254 to 257 days

for the inbound legs. The geometry of the transfers with respect to the Sun-B1 rotating

(a) Sun-B1 rotating frame

(b) Earth-Moon rotating frame

Figure 5.31. Outbound and inbound transfers as computed in the BCR4BP.
The heliocentric orbit is the L1 halo bounded motion with 225,000 km maxi-
mum z component magnitude.

frame is apparent in Figure  5.31(a) . The cislunar and heliocentric orbits are colored in blue,

and the lunar orbit is the gray circle. The location of the CR3BP libration points and their
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osculating BCR4BP counterparts are denoted by the green points and are indistinguishable

at this scale. The maneuver locations along the NRHO are highlighted by white dots. The

geometry of the transfers near the Moon, as viewed in the Earth-Moon rotating frame, is also

explored in Figure  5.31(b) . The locations for the NRHO departure and arrival maneuvers

occur near an apolune, but on different revolutions along the NRHO. Note that no departure

or arrival location is selected close to perilune: near this apse, higher dynamical sensitivities

introduce different challenges in constructing consistent transfers and, thus, are avoided.

The outbound and inbound transfer families both include additional revolutions around the

Moon near the NRHO after departure and before arrival, respectively. The geometry of

these extra revolutions suggests some arcs from a higher-period dynamical structures [ 42 ]

are possibly leveraged to access and depart from the vicinity of the NRHO.

The round-trip transfer from the Earth-Moon 9:2 synodic resonant L2 NRHO to the

selected Sun-B1 halo orbit that reflects the lowest total ∆V cost is plotted in Figure  5.32 .

The associated total time-of-flight is 616 days and the total ∆V cost is 412 m/s. For a

round-trip transfer, the time-of-flight is defined as the sum of the time-of-flight along the

outbound leg, the time spent in the heliocentric halo orbit, and the time-of-flight on the

inbound leg. The location of the maneuvers is highlighted by red dots and text boxes in

Figure  5.32 ; all four maneuvers are apparent in the Sun-B1 rotating frame in Figure  5.32(a) .

The initial and final maneuvers along the transfer, i.e., the departure from and insertion

into the Earth-Moon NRHO are visible in Figure  5.32(b) . The magnitude associated with

each the maneuvers is listed in Table  5.4 . The majority (approximately 65%) of the total

∆V cost is employed for the insertion into the Earth-Moon NRHO on the inbound leg of the

transfer. This high insertion cost could potentially be reduced using a different initial guess

for the inbound leg. Despite this relatively high insertion ∆V maneuver magnitude, note that

natural Sun-Earth-Moon dynamical flow is leveraged for the round-trip transfer. Consider

the Sun-B1 rotating velocity profile along the round-trip transfer as a function of the time

along the trajectory in Figure  5.33 . The colors are consistent with Figure  5.32 : black for the

cislunar and heliocentric orbits, blue for the outbound leg and orange for the inbound leg.

The black spikes correspond to the rapid velocity change near perilune along the Earth-Moon

9:2 NRHO. Small discontinuities are apparent at each color transition; each discontinuity
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(a) Sun-B1 rotating frame

(b) Earth-Moon rotating frame

Figure 5.32. Round-trip transfer with the lowest total ∆V cost among the
transfers in Figure  5.31 . The total ∆V is 412 m/s and the total time-of-flight
is 616 days.
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Table 5.4. ∆V maneuvers along the round-trip transfer in Figure  5.32 

Maneuver Label Magnitude [m/s]
E-M NRHO departure 1 77.3

S-B1 halo arrival 2 20.6

S-B1 halo departure 3 43.1

E-M NRHO arrival 4 271.5
Total 412.4

corresponds to a ∆V maneuver and is identified by a red label. The small, sometimes

indistinguishable, discontinuities do not significantly change the post-maneuver evolution of

the velocity curve. Therefore, the round-trip transfer between the Earth-Moon NRHO and

the Sun-B1 libration point orbit leverages the natural Sun-Earth-Moon dynamical flow.
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Figure 5.33. Sun-B1 rotating velocity profile as a function of the time along
the round-trip transfer in Figure  5.32 

Round-trip Transfers to Sun-B1 L2 Orbits

Using this trajectory design framework, families of round-trip BCR4BP transfers to the

Sun-B1 L2 halo orbits are also successfully constructed. For example, consider the trajec-

tories in Figure  5.34 . The selected halo bounded motion has a maximum z component

magnitude equal to 185,000 km. Recall that the cislunar orbit is the 9:2 synodic resonant L2
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NRHO with a phase consistent with the Gateway baseline orbit. Similar to the transfers in

Figure  5.31 , the trajectories are colored as a function of the ∆V along each leg. A round-trip

transfer involves an outbound (NRHO to Halo) leg and an inbound (Halo to NRHO) leg.

Thus, the total ∆V for a round-trip transfer is the sum of the ∆V’s for each leg. The ∆V

for the transfers along the family in Figure  5.34 range from 144 to 255 m/s for the outbound

transfers and from 178 to 255 m/s for the inbound legs. The time-of-flight varies between

232 and 236 days, and between 307 and 312 days for the outbound and inbound trajectories,

respectively. The times-of-flight between outbound and inbound legs may differ for a variety

of reasons. First, the departure/arrival motion from the Sun-B1 LPO leverages the approx-

imate manifold associated with the orbit. Thus, the spacecraft may be in close proximity

to the heliocentric orbit over a significant amount of time before the insertion maneuver (in

the case of the outbound trajectories) and the end of the transfer leg. This ‘winding’ onto

the LPO, apparent in Figure  5.34(a) , is generally different for the outbound and inbound

transfers and thus, results in different ranges for times-of-flight for the two parts of the trans-

fer. Second, the geometry of the outbound and inbound transfers themselves are in general

different. There is no resonance between the Earth-Moon 9:2 synodic resonant L2 NRHO

and the range of Sun-B1 LPOs in Figure  5.4 that can be exploited in this investigation. If a

resonance exists, symmetric, repeatable round-trip transfers would be available between the

Earth-Moon NRHO and the Sun-B1 halo orbit. Since it is not the case here, the geometries

and, thus, the times-of-flight for the outbound and inbound legs differ to accommodate the

change in relative phasing between the two orbits. Note the additional lobe and apogee along

the inbound transfers as viewed in the Sun-B1 rotating frame in Figure  5.34 . This geometry

is similar to the one associated with ballistic lunar transfers[ 99 ]. Inbound and outbound

transfers that possess different Sun-B1 geometries and times-of-flight are constructed in the

BCR4BP employing the proposed trajectory design framework.

The transfers are also examined in the vicinity of the NRHO, in the Earth-Moon rotating

frame, as plotted in Figure  5.34(b) . In contrast to the transfers in Figure  5.31 , these transfers

do not possess multiple revolutions near the NRHO after departure or before arrival. In

Figure  5.34 , the outbound trajectories directly depart the vicinity of the NRHO after the

departure maneuver; the inbound trajectories present one large revolution near the NRHO
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(a) Sun-B1 rotating frame

(b) Earth-Moon rotating frame

Figure 5.34. Families of outbound and inbound transfers, as computed in the
BCR4BP. The heliocentric orbit is the L2 halo bounded motion with 185,000
km maximum z component magnitude.
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(a) Sun-B1 rotating frame

(b) Earth-Moon rotating frame

Figure 5.35. Round-trip transfer with the lowest total ∆V cost among the
transfers in Figure  5.34 . The total ∆V is 323 m/s and the total time-of-flight
is 638 days.
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before the insertion ∆V maneuver. The location of the maneuvers along the NRHO are

denoted by the white dots. Both departure and arrival maneuvers occur after an apolune

state, that is, on the side of the NRHO with a negative rotating y component. Note that

such as a location is not a requirement for constructing transfers: transfer families departing

(or arriving) to a state prior to an apolune have been successfully constructed using this

framework.

The round-trip transfer from the Earth-Moon NRHO to the Sun-Earth L2 LPO that

offers the lowest total ∆V cost is extracted from Figure  5.34 and plotted in Figure  5.35 . The

color along each arc is consistent with Figure  5.1 and each maneuver is located by a red dot

and a label. Note that only the initial and final maneuvers are visible in the Earth-Moon

rotating frame view in Figure  5.35(b) . The total ∆V value associated with this transfer is

323 m/s and the associated time-of-flight is 638 days. Recall that the time-of-flight along

a round-trip is comprised of the times-of-flight along the outbound and inbound legs, as

well as the time-of-flight along the heliocentric LPO, between the arrival and departure

maneuvers. The magnitude for each of the four maneuvers along the transfer is summarized

in Table  5.5 . As compared to the transfer to the L1 region in Figures  5.32 and  5.33 , the

∆V budget is relatively balanced between the two parts of the transfers. The ∆V cost for

the outbound leg (i.e., maneuvers 1 and 2) is 144.3 m/s while the maneuvers (3 and 4)

for the inbound leg amount to 179 m/s. The Sun-B1 rotating velocity profile along the

transfer is presented as a function of time along the trajectory in Figure  5.36 . The small

discontinuities at each color transition represents the ∆V maneuver and is indicated by a

Table 5.5. ∆V maneuvers along the round-trip transfer in Figure  5.35 

Maneuver Label Magnitude [m/s]
E-M NRHO departure 1 124.5

S-B1 halo arrival 2 19.8

S-B1 halo departure 3 23.6

E-M NRHO arrival 4 155.2
Total 323.1
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red arrow and label. Similar to the velocity profile for the round-trip transfer to the L1 LPO

in Figure  5.33 , the velocity profile in Figure  5.36 is nearly continuous; the maneuvers do not

significantly affect the downstream evolution of the velocity profile. Thus, the round-trip
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Figure 5.36. Sun-B1 rotating velocity profile as a function of the time along
the round-trip transfer in Figure  5.35 

transfer that is constructed between the Earth-Moon 9:2 synodic resonant L2 NRHO and the

selected heliocentric L2 LPO leverages the natural dynamics of the blended Earth-Moon-Sun

system.

5.5 Validation in the Ephemeris Model

The round-trip trajectories between the Earth-Moon NRHO and selected Sun-B1 halo

orbits are transitioned to the higher-fidelity ephemeris model for validation. First, a method

to transform an epoch between the BCR4BP and the ephemeris model, that is, to convert a

Sun angle to a calendar date, is introduced. Second, the reference cislunar and heliocentric

orbits are transitioned. Reconstructing the departure and arrival motion in ephemeris model

a priori typically facilitate the convergence of the end-to-end transfer. Third, the two for-

mulations of the BCR4BP, i.e., the Earth-Moon frame and the Sun-B1 frame formulations,

are leveraged to construct an initial guess for the end-to-end transfers in the Earth centered

inertial frame associated with the ephemeris model. Lastly, sample round-trip transfers are

205



transitioned from the BCR4BP to the ephemeris model, and characteristics of the transfers

in the two dynamical models are compared.

5.5.1 Epoch Transformation between the BCR4BP and the Ephemeris Model

The process employed in this investigation to convert between a BCR4BP epoch, that

is, a specific value of Sun angle, and the epoch employed in the ephemeris force model is

detailed. Recall that the BCR4BP is a time-dependent model, as is the ephemeris model.

However, the BCR4BP is a periodic model, of period equal to the lunar synodic month.

Thus, a Sun-Earth-Moon configuration represented by a certain Sun angle corresponds to

an infinite number of epochs in the higher-fidelity ephemeris model. For instance, a Sun

angle equal to 180◦ corresponds to an alignment of the Sun, the Earth, and the Moon, in

this order. This configuration also corresponds to the first phase of the lunar cycle, that is,

a new Moon. Thus, the Sun angle θ = 180◦ corresponds to all possible new Moon epochs.

Since the BCR4BP is a periodic dynamical model, the conversion of the epoch from the

BCR4BP to the ephemeris force model is not unique.

For practical reasons, the Sun angle in the BCR4BP is matched to an epoch given a

specific month and a specific year. For instance, the Sun angle θ = 180◦ is mapped to a

unique epoch for the month of February 2020. The month and year are selected to be as close

as possible to the desired epoch in the ephemeris model. To determine the day within the

month and year that corresponds to the BCR4BP configuration, the osculating Sun angle is

computed over this range as

θ̂ = arccos
(

ρ̄RB1-Moon · ρ̄RB1-Sun
‖ρ̄RB1-Moon‖‖ρ̄RB1-Sun‖

)
(5.4)

where ρ̄RB1-i is the position vector from the Earth-Moon barycenter to the body i, obtained

from ephemerides and rotated to the Earth-Moon rotating frame. Then the corresponding

epoch is determined in the ephemeris by locating the epoch corresponding the minimum
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error between the Sun angle in the BCR4BP and the osculating Sun angle as computed in

the ephemeris model, that is,

equivalent epoch = arg min
month,

year

(
‖θ − θ̂‖

)
(5.5)

Some assumptions are incorporated when employing this conversion process between epochs

in the ephemeris and the BCR4BP. First, the Sun position vector employed in Equation ( 5.4 )

to compute the osculating Sun angle is generally not in the Earth-Moon plane, since the

Earth, Moon, and Sun are not located in the same plane in the ephemeris model. Thus, the

equivalent epoch in Equation ( 5.5 ) is computed by comparing angles defined in two different

planes. However, note that this approximation is acceptable for the Earth-Moon-Sun system,

as the mean inclination of the lunar orbit with respect to the ecliptic plane is approximately

5.14◦. For instance, the conversion method, described in Equations ( 5.4 ) and ( 5.5 ) and tested

for the month of February 2020, predicts a new Moon (θ = 180◦) on the 09th at 07:47 UTC.

According to the NASA GSFC Sky Events Calendar [  100 ], a new Moon occurred on February

09th at 07:33 UTC. Thus, the simplified scheme is a suitable approximation for converting

between ephemeris and BCR4BP epochs. The second assumption maps each Sun angle to

one epoch for a given month and year. In reality, this mapping is not always unique, since

the lunar synodic month (approximately 29.5 days) is shorter than the mean month-length

(30.4 days). Thus, for certain months, a specific Sun angle corresponds to two different

days. For instance, a new Moon (θ = 180◦) occurs on both the 1st and the 30th day in

April 2022. In such instances, the strategy in Equations (  5.4 ) and (  5.5 ) returns the epoch

that is numerically the closest to the selected Sun angle θ. The equivalent epochs for the

apolunes in the BCR4BP 3:1 NRHO as plotted in Figure  4.37 are computed for the month

of May 2023 using the technique described in Equations ( 5.4 ) and ( 5.5 ) and are included

in Table  5.6 . The method procedure in this investigation maps an epoch as defined in the

BCR4BP, that is, a Sun angle value, to an epoch in the ephemeris model given a certain

month and year.
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Table 5.6. Sun angle and equivalent epochs for the month of May 2023 for
the two configurations of BCR4BP 3:1 NRHOs plotted in Figure  4.37(b) .

Configuration A B
Lobe θ, deg Equivalent Epoch θ, deg Equivalent Epoch
L −64 2023 MAY 25 05:44:30 116 2023 MAY 10 15:18:11
C 180 2023 MAY 05 17:33:41 0 2023 MAY 19 15:16:45
R 64 2023 MAY 14 14:03:14 −116 2023 MAY 29 23:18:11

5.5.2 Reference Cislunar and Heliocentric Orbits

To facilitate the convergence of the numerical corrections scheme in the ephemeris, the

cislunar 9:2 NRHO and the Sun-B1 halo orbits are converged are first reconstructed in the

higher-fidelity model separately from the end-to-end transfers. Recall that precisely periodic

motion generally does not exist in the ephemeris. Thus, periodic orbits from the lower-

fidelity are transitioned to quasi-periodic orbits in the higher-fidelity model, similarly to the

bounded motions in the BCR4BP in Section  4.3.6 .

The process for transitioning a solution from the CR3BP or the BCR4BP to the ephemeris

is not unique, that is, there are multiple processes that generate converged solutions with

different characteristics in the ephemeris model. Recall that the ephemeris model relies on

ephemerides for the position, velocity, and epoch states of the celestial bodies. Consequently,

the ephemeris model is not time-autonomous, like the CR3BP; nor is it time-dependent and

periodic like the BCR4BP. Periodic orbits from lower-fidelity models, that is, the CR3BP or

the BCR4BP, are thus transitioned to a bounded or, at best, quasi-periodic motion in the

ephemeris model. As such, without careful consideration of the details of the transitioning

process, an infinite variety of trajectories may emerge. One transition approach to shift a

periodic orbit between models involves a stacking process [ 101 ]. Multiple revolutions of the

periodic orbit from the CR3BP (or the BCR4BP) are stacked, discretized, and corrected for

continuity in the ephemeris model using a differential corrections scheme. However, period-

icity is not enforced: the initial and final states along the corrected ephemeris trajectory do

not necessarily match. The present investigation leverages a homogeneous stacking method
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to transition periodic orbits in the CR3BP/BCR4BP to bounded motions in the ephemeris

model.

As an illustration of the transition process between lower- and higher-fidelity models,

consider the trajectories in Figure  5.37 . Four L2 halo orbits are transitioned from the Earth-

Moon CR3BP to the Earth-Moon-Sun-Jupiter ephemeris model. Recall that in this formu-

lation of the ephemeris model, the celestial bodies are included as point masses. The four

selected halo orbits are characterized by synodic resonant periods; each period is a rational

multiple of the synodic period, that is, approximately 29.5 days. In this example, the 2:1,

3:1, 9:2, and 5:1 synodic resonant L2 halo orbits are selected. Their associated orbital periods

are equal to 1/2, 1/3, 2/9, and 1/5 of the synodic period, respectively. For each orbit, 12 revolu-

tions are stacked and the epoch for the initial state is set to May 15th, 2023. The resulting

trajectories are discretized; patch points are selected every 2 days and propagated without

corrections in the ephemeris model. The resulting initial guesses that are not converged in

the ephemeris are plotted as viewed in the Earth-Moon rotating frame in Figure  5.37(a) .

The trajectories are discontinuous, as highlighted by the insert in Figure  5.37(a) . Thus, a

differential corrections scheme is employed to enforce continuity in position, velocity, and

epoch between consecutive arcs. The resulting converged bounded motions are plotted in

Figure  5.37(b) . For the 2:1 halo orbit, the 9:2 NRHO, and the 5:1 halo orbit, the ballistic tra-

jectories as constructed in the ephemeris model remain in close vicinity in configuration space

of the CR3BP periodic orbits, plotted as the black dashed lines in Figure  5.37(b) . (Note the

CR3BP periodic orbits are also plotted for reference in Figure  5.37(a) , but are indistinguish-

able given the initial guesses propagated in the ephemeris model.) However, the geometry

of the 3:1 NRHO is not maintained in the ephemeris model. The trajectory that results

from the differential corrections scheme, plotted in red in Figure  5.37(b) , does not resemble

the 3:1 NRHO from the Earth-Moon CR3BP, denoted by the black dashed line, or even

the initial guess in the ephemeris model, plotted in red in Figure  5.37(a) . The ephemeris

trajectory from the differential corrections scheme is continuous in position, velocity, and

epoch, and remains in the vicinity of the Moon, but does not follow any bounded pattern.

In this example, at this epoch, the 3:1 L2 NRHO is not successfully transitioned from the

Earth-Moon CR3BP to the Earth-Moon-Sun-Jupiter ephemeris model. Thus, Boudad et al.
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(a) Initial guesses

(b) Converged trajectories

Figure 5.37. Initial arcs (a) and converged trajectories (b) for various Earth-
Moon L2 halo orbits, as computed in the Earth-Moon-Sun-Jupiter ephemeris
model and plotted in the Earth-Moon rotating frame. The initial guesses are
constructed leveraging CR3BP periodic orbits.
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[ 52 ] employ the BCR4BP as an intermediate step along the transition process to further

maintain boundedness and repeatability in the ephemeris model. While it does not guaran-

tee convergence or a preserved geometry, the transition employed in this analysis between

lower- and higher-fidelity models generally yield continuous, repeatable motion.

The cislunar reference orbit, the 9:2 synodic resonant L2 NRHO is transitioned from the

Earth-Moon-Sun BCR4BP to the Earth-Moon-Sun-Jupiter ephemeris model. A stack of

multiple 9:2 synodic resonant NRHOs as computed in the BCR4BP is assembled, and the

resulting trajectory is discretized. The initial epoch associated with the trajectory is com-

puted using the method introduced in Section  5.5.1 . A differential corrections scheme is then

employed to create a continuous trajectory in the ephemeris model, under the dynamics from

Equation ( 2.16 ). The result of this differential correction process is plotted in Figure  5.38 

for a stack of two BCR4BP 9:2 NRHOs, i.e., approximately 120 days of times-of-flight. In

Figure  5.38(a) , the trajectory is represented in the Earth-Moon rotating-pulsating frame;

the similarity with the underlying periodic orbit from Figure  5.2(a) is apparent. The initial

epoch associated with this solution is May 7th, 2024. The trajectory is also represented in

the Sun-Earth rotating-pulsating frame in Figure  5.38(b) . The lunar orbit is obtained from

(a) Earth-Moon rotat-
ing pulsating frame

(b) Sun-Earth rotating-pulsating frame

Figure 5.38. 120 days of the 9:2 synodic resonant L2 NRHO as computed
in the Earth-Moon-Sun-Jupiter ephemeris model. The initial guess for this
converged trajectory is a stack of 2 9:2 NRHO as constructed in the Earth-
Moon-Sun BCR4BP, from Figure  5.2 .
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ephemerides [ 39 ], [ 54 ]; the trajectory is not periodic as the true eccentricity of the lunar

orbit and its inclination with respect to the Earth ecliptic plane are considered. The char-

acteristics, including the avoidance of the shadow of the Earth, associated the 9:2 synodic

resonant L2 NRHO in the BCR4BP, from Figure  5.2(b) are maintained. The cislunar refer-

ence orbit, the 9:2 synodic resonant L2 NRHO as constructed in the BCR4BP, is successfully

transitioned to the Earth-Moon-Sun-Jupiter ephemeris model.

The Sun-B1 reference orbits, the bounded motions around selected L1 and L2 orbits are

also transitioned to the ephemeris model. Recall that bounded motion in the BCR4BP is

constructed for non-synodic resonant orbits, such as the range of Sun-B1 halo orbits in Fig-

ure  5.5 . For such cases, the stack of orbits is first corrected in the BCR4BP, as in Figure  4.52 ,

then discretized for the transition to the ephemeris model. As an illustration, consider the

transition process in Figure  5.39(b) . Three and half years (7 revolutions) of bounded motion

associated with the L2 halo orbit with 185,000 km maximum z amplitude are constructed in

the BCR4BP and appear in blue in Figure  5.39(a) . Note that this trajectory is not periodic,

but the discontinuity between the final and initial states is imperceptible at the scale of Fig-

ure  5.39(a) . This trajectory is discretized, and the patch points are employed as the initial

guess for a continuous trajectory in the ephemeris model. A differential corrections scheme is

employed to reduce position, velocity, and epoch discontinuities between consecutive arcs to

within an acceptable tolerance. The result of this differential corrections scheme is the blue

trajectory in Figure  5.39(b) . While this trajectory still closely resembles the bounded motion

from the BCR4BP, the influence of the perturbations from the true motions of the celestial

bodies, here Earth, the Moon, the Sun, and Jupiter, is apparent. The non-periodicity of

the solution is also evidenced by the disconnected start of the trajectory near the rotating-

pulsating x̂ axis. Note the lunar orbit, colored in gray in Figure  5.39 . In the BCR4BP, in

Figure  5.39(a) , the lunar orbit is assumed to be circular and coplanar with the Sun-Earth

plane. In the ephemeris model, the lunar orbit is obtained from ephemerides; the eccentric-

ity and inclination with respect to the ecliptic plane are considered. In Figure  5.39(b) , the

lunar orbit is included for the same epochs as the blue trajectory, i.e., three and a half years

starting on May 1st, 2024. This span of time corresponds to approximately 43 revolutions of

the Moon in the Sun-Earth rotating-pulsating frame; the lunar orbit thus appears as a torus
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(a) BCR4BP, Sun-B1 rotating frame

(b) Earth-Moon-Sun-Jupiter Ephemeris Model, Sun-Earth rotating frame

Figure 5.39. 3.5 years around the L1 halo orbit with maximum z amplitude
equal to 185,000 km, as computed in the Earth-Moon-Sun BCR4BP (a) and
the Earth-Moon-Sun-Jupiter ephemeris model (b). The lunar orbit is denoted
by the gray curves.

around the Earth. The differences in scale for the characteristics length, time, and masses

between the Earth-Moon and Sun-B1 systems are summarized in Chapter  B . Bounded mo-

tion around the Sun-B1 libration points is successfully transitioned from the BCR4BP to

the higher-fidelity model.
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5.5.3 Transformation Considerations for the Ephemeris Initial Guess

The end-to-end, round-trip transfers between the NRHO in cislunar space and the halo

orbit in heliocentric space are transitioned to the higher-fidelity ephemeris model for vali-

dation. Recall that the equations of motion for the ephemeris model in Equation ( 2.16 ) are

defined in an inertial frame and with respect to a central body. In this analysis, the Earth is

selected as the central body, as it is a primary in both the Earth-Moon and the Sun-Earth 

1
 

frames. Additionally, recall that the equations of motion for the BCR4BP are defined in two

frames: the Earth-Moon rotating frame in Equation ( 2.4 ) and the Sun-B1 rotating frame in

Equation ( 2.8 ). Thus, the initial guess for the end-to-end transfers is rotated from either

the Earth-Moon rotating frame or the Sun-B1 rotating frame, to an inertial Earth-centered

ephemeris frame.

The influence of the selection of the transformation scheme on the initial guess in the

higher-fidelity model is non-negligible. For instance, consider the round-trip transfer to a L2

halo orbit as converged in the BCR4BP in Figure  5.35 . All the states along the trajectory are

rotated to the J2000 Earth-Centered Inertial (ECI) frame in Figure  5.40 using the method

detailed in [  98 ], [ 102 ], [ 103 ]. The differences between the results of the two transformation

schemes are evident. While the two trajectories remain relatively close to each other at the

beginning and end, the rotated ECI trajectory from the Earth-Moon rotating states presents

loops when away from the Earth. These loops are an artifact of the scaling factor employed in

the transformation scheme. As detailed by Ocampo [ 102 ], this scaling factor is employed to

incorporate the variations, or pulsations, between the primaries in the higher-fidelity model.

For transformation from the Earth-Moon rotating frame, the scaling factor corresponds to

the change of Earth-Moon distance due to the eccentricity of the lunar orbit. Similarly, the

eccentricity of the Earth orbit around the Sun is incorporated in the scaling factor when

transforming states from the Sun-B1 frame to the J2000 ECI frame. Since the characteristic

lengths (presented in Appendix  B ) and the eccentricities of the Earth’s and the Moon’s

orbits (0.0167 and 0.0549 on average, respectively), the scaling factors affects differently the
1

 ↑ Due to the data available from ephemerides, the Sun-Earth rotating frame, rather than the Sun-B1 rotating
frame is considered is considered in the ephemeris model.
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(a) (b)

Figure 5.40. BCR4BP round-trip trajectory from Figure  5.35 rotated to the
J2000 ECI from Earth-Moon rotating states (in purple) and Sun-B1 rotating
states (in cyan).

transformation to the ECI frame. The influence of each scaling factor distinctively appears in

Figure  5.41 . The distance to Earth is plotted as a function of time for both rotated transfers

from Figure  5.40 . Both curves follow the same trend. However, the purple curve, correspond

to states transformed from the Earth-Moon rotating frame, appears to oscillate around the

cyan curve. The period of the oscillations is approximately 28 days, that is, the sidereal

period of the Moon around the Earth. The second, longer period apparent in Figure  5.41 

is approximately equal to six months. This variation is not associated with either of the

scaling factors; rather, it is associated with the period of the Sun-B1 halo orbit. Thus, these

oscillations correspond to the part of the trajectory where the spacecraft is flying along the

Sun-B1 halo orbit. The choice of the original frame for the transformation of a transfer to

the J2000 ECI frame presents decisive implications.

The selection of the initial frame for the transformation bears implication for the quality

of the propagation of the initial guess in the ephemeris model. Following the transformation

from the selected rotated frame to the ECI frame, the BCR4BP trajectory is discretized.

The resulting patch points are then propagated using the ephemeris dynamics from Equa-

tion ( 2.16 ). For instance, consider the propagated arcs in Figure  5.42 . The black lines
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Figure 5.41. Distance to Earth as a function of time along each rotated trans-
fer in Figure  5.40 . The cyan line corresponds to J2000 ECI states transformed
from the Sun-B1 rotating frame, while the purple curve denotes J2000 ECI
states transformed from the Earth-Moon rotating frame.

correspond to the rotated BCR4BP trajectories from Figure  5.40 . Patch points are se-

lected every 300,000 km along the black curves and propagated in using the Earth-centered

ephemeris equations of motion from Equation ( 2.16 ). The included celestial bodies are

Earth, the Moon, the Sun, and Jupiter. The propagated arcs plotted in color in Figure  5.42 .

Propagated arcs that employ initial states transformed from the Sun-B1 rotating states, in

Figure  5.42(a) , appear to follow more closely the lower-fidelity trajectory (in configuration

space), plotted in black, than propagated arcs employing transformed Earth-Moon rotating

states in Figure  5.42(b) . Proximity between the propagated lower- and higher-fidelity mod-

els is an insightful measure of the quality of the estimation from the lower-fidelity model.

For instance, the Sun-B1 rotating states from the BCR4BP seem to appropriately capture

the dynamics of the Earth-Moon-Sun-Jupiter ephemeris model in heliocentric space, as the

cyan arcs closely align the with the black trajectory away from the Earth in Figure  5.42(a) .

Unsurprisingly, the states transformed from the BCR4BP Earth-Moon rotating frame do

not reflect the higher-fidelity dynamical environment away from the Earth-Moon vicinity.

Recall that the loops observed in Figure  5.42(b) are a consequence of a scaling factor in

the transformation scheme; they are not caused by the dynamics. Thus, the arcs in Fig-
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(a) From Sun-B1 rotating states (b) From Earth-Moon rotating states

Figure 5.42. Trajectories propagated using the ephemeris equations of motion
(colored) employing patch points along the rotated BCR4BP transfer (black).
The celestial bodies included for the ephemeris are Earth, the Moon, the Sun,
and Jupiter.

ure  5.42(b) , propagated using the dynamics of the ephemeris model, do not follow these

loops. Although states in the Earth-Moon and Sun-B1 rotating frames reflect the same

dynamics in the BCR4BP, the transformation scheme between rotating frame impacts the

quality of the initial guess for the ephemeris model.

While they do not provide a suitable initial guess for the ephemeris dynamics in heliocen-

tric space, the ECI states obtained from the Earth-Moon rotating frame adequately reflect

the higher-fidelity dynamics in the lunar vicinity. The propagated arcs from Figure  5.42 

are transformed from the J2000 ECI frame to a Sun-Earth rotating-pulsating frame, in

Figure  5.43(a) , and to an Earth-Moon rotating-pulsating frame, in Figure  5.43(b) . In helio-

centric space, the poor quality of the initial guess from Earth-Moon rotating states is demon-

strated by the disconnected purple arcs around L2, in Figure  5.43(a) . The arcs propagated

in the ephemeris model with initial guesses transformed from the Sun-B1 rotating frame,

colored in cyan in Figure  5.43 , closely align with the expected L2 halo motion. However,

these cyan propagated arcs do not appropriately reflect the desired motion in the vicinity

of the Moon, as apparent from the Earth-Moon rotating-pulsating view in Figure  5.43(b) .
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(a) Sun-Earth rotating-pulsating frame

(b) Earth-Moon rotating-pulsating frame

Figure 5.43. Propagated ephemeris arcs from Figure  5.42 , as viewed in two
rotating-pulsating frames. The initial guess from the BCR4BP is denoted by
the grey dashed line.

Moreover, the purple arcs corresponding to the inbound leg of the transfer do not return to

an NRHO-like motion; these propagated arcs appear to ‘miss’ the Moon. Recall that the

scaling factor in the transformation between Sun-B1 rotating and ECI does not explicitly

account for the eccentricity of the Moon and, thus, the variations in the Earth-Moon dis-

tance. The purple arcs are trajectories propagated in the Earth-Moon-Sun-Jupiter ephemeris

model in the J2000 ECI frame using initial states transformed from Earth-Moon rotating
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BCR4BP states. These propagated arcs are closely aligned with the BCR4BP, plotted as the

grey dashed line, in Figure  5.43(b) . While the scaling factor in the transformation from the

Earth-Moon rotating frame distorts trajectories in heliocentric space, it allows for the accu-

rate incorporation of the Earth-Moon pulsation in cislunar space, including in the vicinity

of NRHO.

An alternative method for transforming a cislunar-to-heliocentric transfer from BCR4BP

to an initial guess in the J2000 ECI frame for the ephemeris model. This alternative method

blends the transformations from the Earth-Moon rotating frame and the Sun-B1 rotating

frame, to exploit the benefits of each transformation. The transformation is varied along

the transfer; in the lunar vicinity, states from the Earth-Moon rotating frame are leveraged

since their associated transformation accurately represent the eccentricity of the lunar orbit

in the ephemeris model. Conversely, in heliocentric space, the process that transforms the

Sun-B1 states is employed, as it adequately renders the dynamics of the ephemeris model

in this region. In this analysis, the instantaneous distance to the Moon along the trajectory

is employed to determine which transformation to use for each state. For states within

one Earth-Moon characteristic length, that is, l∗ ≈ 384, 000 km, the Earth-Moon states are

transformed to the J2000 ECI frame. For states outside this sphere, the transformation that

leverages the Sun-B1 frame states is employed. Note that the cutoff parameters are a function

of the applications; this combination of switching conditions yield adequate results for this

analysis. As an illustration, return to the round-trip transfer to a L2 halo constructed in the

BCR4BP and examined in Figures  5.35 and  5.40 – 5.42 . This transfer is plotted in the Sun-

B1 and Earth-Moon rotating frames and colored as a function of the distance to the Moon

in Figure  5.44 . Purple states are located within one l∗ of the Moon, while cyan states are

outside this boundary. Thus, these states are rotated to the J2000 ECI frame leveraging the

Sun-B1 rotating states, represented by the cyan curve in Figure  5.44(a) . Conversely, points

within the defined lunar distance are rotated to the J2000 ECI frame employing Earth-

Moon rotating states, i.e., the purple points in Figure  5.44(b) . The blended transformation

method developed in this investigation employs the distance to the Moon along the trajectory

to determine the set of states to employ for the transformation to the J2000 ECI.
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(a) Sun-B1 rotating frame

(b) Earth-Moon rotating frame

Figure 5.44. BCR4BP round-trip trajectory from Figure  5.35 , colored as a
function of the distance to the Moon. Purple states are located within one
l∗ ≈ 384, 000 km of the Moon, cyan states are outside this region.

Employing this proposed transition method, initial guesses for the differential correc-

tions scheme in the ephemeris model are constructed. The transfer from Figure  5.44 is

transformed to the J2000 ECI frame with the blended method; the resulting trajectory is

presented in Figure  5.45(a) . Purple and cyan states are transformed using the Earth-Moon

and Sun-B1 states, respectively. Note that the purple and cyan curves in Figure  5.45(a) 

are not connected; the small discontinuities at the interface between the two transformation
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schemes are due to the different scaling factors. Patch points are distributed every 300,000

km along the cyan and purple trajectories in Figure  5.45(a) . These patch points are then

propagated in the Earth-Moon-Sun-Jupiter ephemeris model using the equations of motion

from Equation ( 2.16 ). The resulting trajectories appear in Figure  5.45(b) . Although the

trajectory is not continuous, it closely follows the transfer constructed in the lower-fidelity

model in Figure  5.45(a) . Thus, the trajectory in Figure  5.45(b) is an adequate initial guess

for the reconstructing the round-trip transfer in the ephemeris model. A differential correc-

tions scheme is employed to reduce position, velocity, and epoch discontinuities between the

consecutive black arcs to within an acceptable tolerance. The blended transition method

improves the quality of the initial guess for the numerical corrections in the higher-fidelity

model, thus increasing the likelihood of smooth and quick convergence.

(a) Rotated states from the BCR4BP (b) Propagated states in the ephemeris model

Figure 5.45. Result of the blended transformation of the converged transfer
constructed in the BCR4BP to the J2000 ECI frame (a). The propagated
arcs in (b) form a suitable initial guess for a differential corrections scheme to
reconstruct the transfer in the higher-fidelity ephemeris.

5.5.4 Converged Transfers

Round-trip transfers between the cislunar NRHOs and selected Sun-B1 bounded halo

motions are transitioned to the ephemeris force model. Initial guesses from the higher-
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fidelity transfers are constructed using the end-to-end transfers generated in the BCR4BP

in Section  5.4.3 and the blended transformation method from Section  5.5.3 . The discon-

tinuous initial guesses are passed to a differential corrections scheme that is employed to

reduce discontinuities between the consecutive arcs to within an acceptable tolerance set to

10−12. The phases associated with the cislunar and heliocentric are not allowed to vary.

This targeting scheme is implemented in the J2000 ECI frame and the celestial bodies in-

cluded in the ephemeris model are Earth, the Moon, the Sun, and Jupiter. The constraints

associated with the targeting scheme include continuity in position, velocity, and epoch be-

tween consecutive arcs; velocity discontinuities are allowed in four locations to represent

the NRHO and halo insertion and departure ∆V maneuvers. The converged trajectories

are then transformed back to the Earth-Moon and Sun-Earth rotating-pulsating frames for

visualizations purposes. Round-trip transfers between cislunar and heliocentric space are

transitioned to the ephemeris model leveraging a blended transformation of the BCR4BP

states and a differential corrections scheme.

As an illustration, the round-trip transfer between the 9:2 NRHO and a L1 halo orbit with

185, 000 km maximum z amplitude from Section  5.5.3 is transitioned to the ephemeris model.

The resulting trajectory for a departure from the NRHO on May 14th 2024 is presented in the

Sun-B1 rotating pulsating frame in Figure  5.46 and in the Earth-Moon rotating-pulsating

frame in Figure  5.47 . The geometry of the ephemeris solution generally follows the lower-

fidelity transfer from the BCR4BP, plotted as the dashed black line. The motion near

the L2 libration point is shifted in position and inclination relative to the ecliptic plane.

The geometry of the initial guess is distorted along the differential corrections process; the

resulting motion in Figure  5.46 resembles revolutions along a Lissajous orbit [ 104 ], [  105 ]. The

original shape of the L2 motion may be further preserved by enforcing additional constraints

on the trajectory in the differential corrections scheme, such as a cone constraint [ 106 ]. In

the Earth-Moon rotating-pulsating frame, in Figure  5.47 , the resemblances between lower-

and higher-fidelity solutions are also apparent. The first apolune along the outbound leg is

and the last apolune along the inbound leg are closer to the Moon for the ephemeris solution

than they are in the BCR4BP. Additional constraints may also be implemented for the

NRHO departure and arrival to further maintain desired characteristics from the BCR4BP
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(a)

(b)

Figure 5.46. Round-trip ephemeris transfer (in blue) between the cislunar 9:2
NRHO and a heliocentric L2 halo orbit with maximum z amplitude equal to
185, 000 km, for an initial epoch of May 14th 2024. After 640 days (1.75 years),
the spacecraft returns to the NRHO on February 13th 2026. The BCR4BP
transfer is denoted by the dashed black line.
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(a)

(b)

Figure 5.47. Earth-Moon rotating-pulsating view of the transfer from Fig-
ure  5.46 , in the vicinity of the Moon.

transfer. A sample round-trip transfer between cislunar and heliocentric space is successfully

transitioned to the higher-fidelity ephemeris model.

The magnitudes of the ∆V maneuvers are compared between the BCR4BP and ephemeris

end-to-end transfer. Recall that four maneuvers are allowed along each transfer: two for the

NRHO departure and arrival near the Moon, and two for the halo insertion and departure

in heliocentric space. The magnitudes associated with each maneuver in both the BCR4BP
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and ephemeris model are summarized in Table  5.7 . The total ∆V associated with the

ephemeris is 646 m/s, and 412.4 m/s for the BCR4BP transfer. However, the increase

in ∆V is not uniform across the four maneuvers in the ephemeris. While the order of

magnitude is similar for the heliocentric maneuvers in both models, the maneuvers along

the NRHO vastly differ. For the ephemeris transfer, the NRHO departure that starts the

outbound leg is approximately four times larger (413.4 m/s in contrast to 77.3 m/s), while

the NRHO insertion that ends the inbound leg is approximately halved (133.1 m/s vs 271.5

m/s). Both the ephemeris and BCR4BP trajectories are feasible transfer. The total ∆V, the

times-of-flight, and the geometry of the transfer may be improved upon by iterating on the

corrections process or by numerical optimization. Note that these two avenues are beyond

the scope of this analysis, which aims to demonstrate a framework for transfers between

the cislunar to heliocentric regions. Furthermore, the end-to-end transfers presented in

Section  5.4.3 present compounded numerical and dynamical challenges, including long (over

one and half year) times-of-flight, at least two close (less than 5, 000 km) lunar flybys,

complex dynamics in the vicinity of the 9:2 NRHO. Further investigation into the transition

of such trajectories between lower- and higher-fidelity models is required. The magnitudes

of the four ∆V maneuvers may differ substantially between the BCR4BP and ephemeris

transfer, as a consequence of the transition between the lower- and higher-fidelity models.

Table 5.7. ∆V maneuvers along the round-trip transfers in Figures  5.46 and  5.47 .

Maneuver BCR4BP [m/s] Ephemeris [m/s]
E-M NRHO departure 77.3 413.4
S-B1 halo arrival 20.6 49.6
S-B1 halo departure 43.1 49.9
E-M NRHO arrival 271.5 133.1
Total 412.4 646.0
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6. CONCLUDING REMARKS

Many opportunities for frequent transit between the lunar vicinity and the heliocentric region

will arise in the near future, including servicing missions to space telescopes and proposed

missions to various asteroids or other destinations in the solar system. Trajectory design con-

necting two different dynamical environments, such as the Earth-Moon regime and the Sun-

Earth regimes, is generally challenging as phasing and disparate scales for time, distances,

and energy must be considered. In this analysis, the framework developed for trajectory de-

sign leverages a four-body dynamical model, the Bicircular Restricted Four-Body Problem

(BCR4BP), that includes the dynamical structures that exist due to the combined influences

of the Earth, the Moon, and the Sun. The capabilities of this framework are demonstrated

for constructing complex end-to-end transfers between a cislunar orbit, the 9:2 synodic res-

onant NRHO, and various heliocentric halo orbits associated with the Sun-Earth L1 and L2

libration points. The results of the present analysis are summarized below.

6.1 Dynamical Structures within an Earth-Moon-Sun Model

The Bicircular Restricted Four-Body Problem (BCR4BP) is employed to describe the

motion of a spacecraft in the Earth-Moon-Sun regime. Two equivalent formulations of this

dynamical model are derived. The first formulation is defined in the Earth-Moon rotating

frame and corresponds to a Sun-perturbed Earth-Moon CR3BP. The second formulation

describes a Moon-perturbed Sun-Earth CR3BP and is defined in the Sun-B1 rotating frame,

where B1 is the Earth-Moon barycenter. Unlike the CR3BP, the BCR4BP is explicitly a

function of time. However, the assumptions for the motion of the Earth, the Moon, and the

sun, yield a periodic model, thus alleviating some of the challenges associated with the time-

dependency. The BCR4BP is an intermediate step between the CR3BP and a high-fidelity,

time-dependent, non-periodic ephemeris model.

Dynamical structures within the Earth-Moon-Sun BCR4BP are catalogued. Instanta-

neous equilibrium solutions exist in the BCR4BP, as non-autonomous counterparts of the

time-invariant Lagrange points in the CR3BP. Instantaneous, or pulsating, zero velocity

surfaces appear in the BCR4BP to add perspective for the dynamical behavior. The in-
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stantaneous equilibrium points and zero velocity surfaces are related through an energy-like

quantity, defined in this analysis as the scaled Hamiltonian function associated with the

BCR4BP. Both of these instantaneous dynamical structures provide insights into the allow-

able motion within Earth-Moon-Sun system for a given energy-like value. Various periodic

orbits and bounded motion are also constructed. In the BCR4BP, precisely periodic orbits

must possess orbital periods in resonance with the Earth-Moon-Sun period, i.e., the synodic

period. Such orbits, available in both formulations of the BCR4BP, include the baseline orbit

for the Gateway, the 9:2 synodic resonant L2 NRHO. As requirement of synodic resonance

considerably restricts the availability of periodic orbits in the BCR4BP, a method for con-

structing bounded or quasi-periodic motion is developed. Lastly, strategies to compute global

invariant manifolds associated with periodic orbits and bounded motion are introduced. The

invariant manifolds are an essential component of the trajectory design framework, as they

offer ballistic flow into and out of linearly unstable periodic and quasi-periodic orbits.

6.2 Framework for Cislunar-to-Heliocentric Trajectory Design

Employing the dynamical structures catalogued in the BCR4BP, a transfer framework

is developed. Natural motion to and from the lunar vicinity is explored using the global

manifold associated the heliocentric halo orbits. As these trajectories evolve towards the

Moon (in either forward or backward propagation), a small subset of the arcs encounters the

Moon. These ballistic arcs connecting the cislunar and heliocentric regions exist due to the

incorporation of all the bodies of interest, i.e., the Earth, the Moon, and the Sun, as well as

the motion along their respective orbits. The dynamical structures explored in the BCR4BP

are the foundations of the transfer design framework.

Point solutions along the global manifolds are extended into families of arcs connecting

the lunar vicinity and halo orbits associated with the Sun-Earth libration points. The per-

ilune transfer families extend the pool of available initial guesses for the end-to-end transfer

between the cislunar and heliocentric regions and are summarized in perilune transfer maps.

Filtering techniques are described to identify candidate arcs to construct an initial guess for

an end-to-end transfer between an orbit in cislunar point and a Sun-Earth libration point
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orbit. Tools from dynamical system theory, such as mapping techniques, differential cor-

rections, and continuation schemes are employed such that the natural flow and low-energy

pathways emerge between the catalogued structures in the cislunar space and the heliocentric

region.

Multiple methods to select an initial guess among the collection of available arcs for

a transfer to/from the Earth-Moon orbits, given certain desired transfer characteristics,

are detailed. The selected initial guess is then corrected using a differential corrections

scheme, resulting in a continuous end-to-end trajectory. The framework currently supports

two types of transfers. One-way transfers are continuous solutions that connect the orbit

in the lunar vicinity to the libration point orbit in heliocentric space. Round-trip transfers

include a cislunar-to-heliocentric transfer, as well as a trajectory returning to the lunar

orbit after completion of the objectives in heliocentric space. Round-trip trajectories are

generally multi-year solutions that returns to the NRHO after completion of the objectives

in heliocentric that present significant challenges in terms in phasing; such trajectories are

successfully constructed employing the presented framework.

6.3 End-to-End Transfers between Earth-Moon NRHOs and Sun-B1 Halo Or-
bits

To illustrate the trajectory design framework, multiple families of round-trip transfers

between the Earth-Moon 9:2 synodic resonant BCR4BP NRHO and L1/L2 libration point

orbits are constructed. The transfers represent a range of departure and arrival epochs

along the Earth-Moon NRHO, as well as a variety of the geometries near the Moon and in

heliocentric space. Round-trip transfers offering low total ∆V magnitude are extracted from

the transfer families and explored. The proposed trajectory design framework is successfully

employed to design round-trip transfers between the Gateway facility orbit and heliocentric

space, while overcoming the challenges in the phasing and energy discrepancies associated

with problems involving of blended dynamical systems.

The effectiveness of the trajectory design framework is verified in the higher-fidelity

ephemeris model. The validation process requires multiple steps to ensure that the char-

acteristics of the transfers constructed in the BCR4BP are adequately transitioned to the
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ephemeris model. A method to transform an epoch between the BCR4BP and the ephemeris

model, that is, to convert a Sun angle to a calendar date, is introduced. The reference cislu-

nar and heliocentric orbits are transitioned. Reconstructing the departure and arrival motion

in ephemeris model a priori typically facilitate the convergence of the end-to-end transfer.

Third, the two formulations of the BCR4BP, i.e., the Earth-Moon frame and the Sun-B1

frame formulations, are leveraged to construct an initial guess for the end-to-end transfers in

the Earth centered inertial frame associated with the ephemeris model. The round-trip tra-

jectories between the Earth-Moon NRHO and selected heliocentric halo orbits are validated

in the higher-fidelity ephemeris model for validation, and characteristics of the transfers in

the two dynamical models are compared.

6.4 Recommendations for Future Work

As the number of opportunities for transit between the lunar vicinity and heliocentric

space continues to increase, an understanding of the dynamics that govern this four-body

dynamical regime becomes increasingly indispensable. Many avenues could be explored to

augment the present investigation. For conciseness purposes, only a few of the areas are

listed below:

Energy analysis extension

The energy-like quantity employed in this investigation, the scaled Hamiltonian func-

tion, provides useful insights for the identifying suitable arcs for transfers. Further

analysis is required to broaden the understanding of the energy-like quantity in the

Earth-Moon-Sun regime. Analytic or semi-analytic approaches may be used, including

the development of normal forms for the Hamiltonian function leveraging canonical

transformations that remove the time-dependency for analysis near a periodic solu-

tion [  22 ]. Alternatively, geometric methods that relate the change in energy-location

quantities to the phase space [  107 ] may be examined to further catalog the dynamical

structures in the BCR4BP.

Inclusion of intermediate staging orbits

One of the challenges associated with the design of transfers between cislunar and
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heliocentric space is the phasing between the initial and final orbits. The inclusion of

intermediate staging orbits may alleviate some of these challenges. When acting as

boundaries between phases of a transfer, the staging orbit simplifies the design process

and offers additional dynamical structures [ 101 ] that may be leveraged for the transfer.

Candidates for the staging orbits include Earth-Moon halo orbits outside of the NRHO

ranges and resonant orbits [ 108 ]. Furthermore, incorporating quasi-periodic orbits as

the intermediate staging orbit may significantly expand the array of available paths for

transfers between the cislunar and heliocentric regions.

Access to destination beyond the Sun-Earth libration point regions

The proposed framework successfully demonstrate transit between periodic orbits in

the Earth-Moon and Sun-Earth regime. A natural extension of this design framework

may include transfers to destination beyond the Sun-Earth libration point regions.

For instance, transfer arcs from the BCR4BP may be connected interplanetary arcs

to other destinations in the solar system, such as Mars or an asteroid, to construct

end-to-end transfers originating at the Gateway.

Long-term behavior of transit trajectories in heliocentric space

An indirect application of the presented trajectory design framework is the design

of reliable disposal trajectories from Gateway to heliocentric space beyond the Sun-

Earth libration point. Preliminary results of disposal trajectories from the lunar to

vicinity to heliocentric space suggest some orbital resonance for the long-term motion

of the disposal object. Therefore, a long-term risk of return to cislunar space from the

heliocentric region exists and, thus, a possibility for the disposal object to become a

potential threat to other assets in the cislunar region. Further analysis of the dynamics

of disposed objects and the long-term risk of reentry into the cislunar space is necessary.

Enhancement of the transition process to the ephemeris model Strategies were de-

veloped along this research to facilitate the transition of the constructed dynamical

transfers to the higher-fidelity ephemeris model. Additional analysis is required to

better address the challenges associated with validating the cislunar-to-heliocentric
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transfers, such as the extensive times-of-flight or the complex dynamics associated

with the proximity to the Moon, require further analysis. One avenue includes the

comparison of the current ‘direct’ transition process to an alternative method that

transitions the different phases of the transfer separately [ 101 ]. Finally, an iterative

comparison of solutions in the CR3BP (lower-fidelity), the BCR4BP, and the ephemeris

model (higher-fidelity) may further specify the limitations of the BCR4BP, and how

it compares to other medium-fidelity models such as the Hill Restricted Four-Body

Problem [ 24 ].

These recommendations offer several research avenues to further support the design of tra-

jectories in an Earth-Moon-Sun environment.

6.5 Trajectory Design Mind Map

A mind map is a diagram that visually organizes or summarizes information [ 109 ]. The

different aspects of the trajectory design framework developed in this analysis are summa-

rized in the mind map in Figure  6.1 .
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A. MULTI-BODY REGIMES

A body moves through space under the gravitational influence of infinitely many other bod-

ies. To predict the behavior, a mathematical framework of differential equations of motion

is required to represent the dynamical environment. The first general approach to modeling

the behavior via equations of motion was introduced by Newton the in PhilosophiæNaturalis

Principia Mathematica [ 110 ], published in 1687. As expressed in modern terminology, New-

ton’s second law, in particular, relates the vector sum of forces acting on a particle in an

inertial frame to its rate of change of momentum. Newton’s laws serve as the foundations

of classical mechanics and are used to describe the motions of objects throughout the solar

system.

If the number of bodies is limited to N , the motion of any of these bodies through space

is subjected to the action of the remaining N − 1 bodies; such a scenario is termed the N -

Body problem. A vector definition of the problem is depicted on Figure  A.1 . The position

vectors R̄i are all defined with respect to an inertially fixed basepoint O. If each body Pi,

of massMi, is assumed centrobaric, Newton’s second law yields

Mi
¨̄Ri = −G

N∑
j=1
j6=i

MiMj

‖R̄ji‖3 R̄ji (A.1)

where

R̄ji = R̄i − R̄j (A.2)

and time is the independent variable. Here, a prime indicates a derivative with respect to the

dimensional time as viewed by an inertial observer. Then, G, the gravitational constant, is

approximately 6.674 · 10−11 N·kg-2·m2. Vectors are indicated by an overbar and dimensional

quantities are expressed with upper case letters or symbols. The N -body problem does

not admit a closed-form solution. Equation ( A.1 ) is equivalent to six first-order differential

equations: three for position and three for velocity. Because the motion of the particle Pi

influences the motion of all the other particles, the 6N scalar first-order differential equations

are solved simultaneously. Since only ten integrals of the motion are available for theN -body
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Figure A.1. N -body problem

problem as formulated in the inertial frame, a closed-form solution of the N -body problem

does not exist, even for N = 2. However, the two-body problem does possess an analytical

solution when formulated in terms of relative motion. Because the number of variables

generally exceeds the number of known integrals of the motion, additional simplifications

allow an improved understanding of the motion of a particle in space.

243



B. CHARACTERISTIC QUANTITIES

Table B.1. Characteristic quantities of the Earth-Moon CR3BP

Quantity Value Unit Comment
l∗ 3.8440 · 105 km
mm 4.9028 · 103 kg3·s-2

me 3.9860 · 105 kg3·s-2

m∗ 4.0350 · 105 kg3·s-2 me + mm
µ 1.2151 · 10−2 ndim me/m∗

t∗ 4.3425 days 1/86400 ·
√

(l∗)3/m∗

Table B.2. Characteristic quantities of the Sun-B1 CR3BP

Quantity Value Unit Comment
l∗ 1.4960 · 108 km
mB1 4.0350 · 105 kg3·s-2 m∗

ms 1.3271 · 1011 kg3·s-2

m∗ 4.0350 · 105 kg3·s-2 ms + mB1

µ 3.0404 · 10−6 ndim ms/m∗

t∗ 58.1324 days 1/86400 ·
√

(l∗)3/m∗

Table B.3. Characteristic quantities of the Earth-Moon-Sun BCR4BP

Quantity Value Unit Comment
µ 1.2151 · 10−2 ndim me/m∗

as 3.8917 · 102 ndim l∗/l∗

µs 3.2889 · 105 ndim ms/m∗

ω -0.9253 ndim 1−
√

1+µ/a3
s

ω 12.3869 ndim |ω|/(1−|ω|)
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Figure B.1. Nondimensional Sun distance between 2022 and 2025 using
ephemerides data from NAIF [ 39 ]. The black line denotes the constant value
(as = 389.1725 ndim) employed in this investigation.
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C. DERIVATIONS
C.1 Equations of Motion for the BCR4BP, Earth-Moon Formulation

In the BCR4BP, the motion of an object of negligible mass, i.e., the spacecraft, is sub-

jected to the point-mass gravitational influences of the Earth, the Moon, and the Sun. This

formulation of the BCR4BP corresponds to a Sun-perturbed Earth-Moon CR3BP. Similar

to the Earth-Moon CR3BP, the derivation of the equations of motion for this formulation

of the BCR4BP originates considering the motion of the Earth, the Moon, and the Sun

in an arbitrary inertial frame centered at the Earth-Moon barycenter, B1, as presented in

Figure  C.1 . In this arbitrary inertial frame, the position of the spacecraft with respect to B1

is denoted as

X̄(t) =


X(t)

Y (t)

Z(t)

 (C.1)

where t is the independent time variable. Furthermore, the positions of the Earth, the Moon,

and the Sun are described by the vectors R̄e, R̄m, and R̄s, respectively,

R̄e(t) =


Xe

Ye

Ze

 =


−µ cos(nt)

−µ sin(nt)

0

 , R̄m(t) =


Xm

Ym

Zm

 =


(1− µ) cos(nt)

(1− µ) sin(nt)

0

 , R̄s(t) =


Xs

Ys

Zs

 =


as cos(nst)

as sin(nst)

0


(C.2)

where µ is the mass parameter of the Earth-Moon system, n is the mean motion of the Earth

and the Moon, ns is the mean motion of the Sun, and as is the nondimensional distance from

B1 to the Sun. Note that the quantities are nondimensionalized consistent with the Earth-

Moon CR3BP 

1
 .

The position vector X̄ for the spacecraft is defined with respect to the X̂ŶẐ frame. This

frame, of origin B1, is not inertial because of the presence of the Sun. Thus, Newton’s second

law cannot be applied to the X̄ vector. However, the barycenter of the Earth-Moon-Sun
1

 ↑ See the derivation of the CR3BP in [ 21 ] for more details on nondimensionalization.
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Ŷ
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nt

Figure C.1. Schematic of the BCR4BP in an arbitrary inertial frame with
origin B1 (adapted from [ 20 ])

system, that is, B2, is by definition an inertially fixed point. The position of the spacecraft

with respect to B2 is defined as X̄I such that

X̄I = X̄ − (1− µs)R̄s
XI

YI

ZI

 =


X − µs

µs+1Xs

Y − µs
µs+1Ys

Z − µs
µs+1Zs


(C.3)

where µs = ms
me+mm

is the nondimensional mass of the Sun. The second derivative of Equa-

tion ( C.3 ) with respect to the independent time variable t yields


ẌI

ŸI

Z̈I

 =


Ẍ + n2

sµs
µs+1Xs

Ÿ + n2
sµs

µs+1Ys

Z̈ + n2
sµs

µs+1Zs

 (C.4)
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Employing Kepler’s 3rd Law[  53 ], the constant term multiplying the Sun position components

is simplified to
n2

sµs

µs + 1 = µs

µs + 1
µs + 1
as3 = µs

as3 (C.5)

Combining Equations ( C.4 ) and ( C.5 ) and rearranging the terms, the acceleration of the

spacecraft with respect to B1 is written as


Ẍ

Ÿ

Z̈

 =


ẌI − µs

as3Xs

ŸI − µs
as3Ys

Z̈I − µs
as3Zs

 (C.6)

The inertial acceleration ẌI , ŸI , and Z̈I are obtained employing the N -body equation from

Equation ( A.1 ):

ẌI = −(1− µ) (X −Xe)
‖R̄e-sc‖3 − µ (X −Xm)

‖R̄m-sc‖3 − µs (X −Xs)
‖R̄s-sc‖3

ŸI = −(1− µ) (Y − Ye)
‖R̄e-sc‖3 − µ (Y − Ym)

‖R̄m-sc‖3 −
µs (Y − Ys)
‖R̄s-sc‖3

Z̈I = −(1− µ) (Z − Ze)
‖R̄e-sc‖3 − µ (Z − Zm)

‖R̄m-sc‖3 − µs (Z − Zs)
‖R̄s-sc‖3

(C.7)

Then, substituting Equation ( C.7 ) into Equation ( C.6 ), the inertial equations of motion for

the BCR4BP Restricted Four-Body with respect to B1 are summarized as

Ẍ = −(1− µ) (X −Xe)
‖R̄e-sc‖3 − µ (X −Xm)

‖R̄m-sc‖3 − µs (X −Xs)
‖R̄s-sc‖3 − µs

as3Xs

Ÿ = −(1− µ) (Y − Ye)
‖R̄e-sc‖3 − µ (Y − Ym)

‖R̄m-sc‖3 −
µs (Y − Ys)
‖R̄s-sc‖3 − µs

as3Ys

Z̈ = −(1− µ) (Z − Ze)
‖R̄e-sc‖3 − µ (Z − Zm)

‖R̄m-sc‖3 − µs (Z − Zs)
‖R̄s-sc‖3 − µs

as3Zs

(C.8)
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Observe that the scalar expressions in Equation ( C.8 ) are components of the acceleration in

the (X̂ŶẐ) frame, as defined in Figure  C.1 . A rotating frame is defined consistent with the

Earth-Moon synodic frame [  21 ] such that

x = X cos(nt) + Y sin(nt)

y = −X sin(nt) + Y cos(nt)

z = Z

(C.9)

Using the kinematic expansion [ 21 ], the nondimensional equations of motion for the BCR4BP

as formulated in the Earth-Moon rotating frame are produced,

ẍ = 2ẏ + x− (1− µ) (x+ µ)
‖r̄e-sc‖3 − µ (x− 1 + µ)

‖r̄m-sc‖3 − µs (x− xs)
‖r̄s-sc‖3 − µs

as
xs

ÿ = −2ẋ+ x− (1− µ) y
‖r̄e-sc‖3 −

µy

‖r̄m-sc‖3 −
µs (y − ys)
‖r̄s-sc‖3 − µs

as
ys

z̈ = −(1− µ) z
‖r̄e-sc‖3 −

µz

‖r̄m-sc‖3 −
µs (z − zs)
‖r̄s-sc‖3 − µs

as
zs

(C.10)

where the position vectors of the spacecraft relative to the primaries are

r̄e-sc =


x+ µ

y

z

 , r̄m-sc =


x− 1 + µ

y

z

 , r̄s-sc =


x− xs

y − ys

z − zs

 (C.11)

and the position of the Sun with respect to B1 in terms of Earth-Moon rotating frame

components is given by

r̄s =


xs

ys

zs

 = as


cos(θ)

sin(θ)

0

 (C.12)

Then, θ is denoted the Sun angle and corresponds to the epoch in the BCR4BP. It is defined

as

θ = ωt+ θ0 = (ns − n) t+ θ0 (C.13)
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The planar and circular assumptions for the orbits of the Earth, the Moon, and the Sun

yield constant mean motions for all three bodies in both the inertial and rotating frames.

Viewed from Earth, the mean motion of the Moon is higher than the mean motion of the

Sun. Therefore, in the Earth-Moon rotating frame, the Sun rotates clockwise around the

Earth-Moon barycenter with an angular rate equal to ω = −0.9253.

C.2 Equations of Motion for the BCR4BP, Sun-B1 Formulation

The present formulation of the BCR4BP corresponds to a Moon-perturbed Sun-Earth

CR3BP. The Earth and the Moon are assumed to move in circular orbits around their com-

mon barycenter, B1, while the Sun and B1 move in circular orbits around the Earth-Moon-

Sun barycenter, B2, as represented in Figure  C.2 . All the quantities are nondimensionalized

consistent with the Sun-{Earth-Moon} CR3BP. In this arbitrary inertial X̂ŶẐ frame, the

position of the spacecraft with respect to B1 is denoted as

X̄(t) =


X(t)

Y (t)

Z(t)

 (C.14)

where t is the independent time variable, expressed in Sun-B1 nondimensional units. The

positions of the Sun and the Earth-Moon barycenter B1 with respect to B2,

R̄s(t) =


Xs

Y s

Zs

 =


− 1
µs+1 cos(n t)

− 1
µs+1 sin(n t)

0

 , R̄B1
(t) =


XB1

Y B1

ZB1

 =


(

1− 1
µs+1

)
cos(n t)(

1− 1
µs+1

)
sin(n t)

0

 (C.15)

where n is the mean motion of the Sun and B1 along their respective orbits. Then, the

relative positions of the Earth and the Moon with respect to B2 are given by
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Figure C.2. Schematic of the BCR4BP in an arbitrary inertial frame of origin B2

R̄e = R̄B1 + R̄B1e =


Xe

Y e

Ze

 =


− 1
µs+1 cos(nt)

− 1
µs+1 sin(nt)

0

+


− µ
as

cos(ñt)

− µ
as

sin(ñt)

0



R̄m = R̄B1 + R̄B1m =


Xm

Y m

Zm

 =


(
1− 1

µs+1

)
cos(nt)(

1− 1
µs+1

)
sin(nt)

0

+


1−µ
as

cos(ñt)
1−µ
as

sin(ñt)

0



(C.16)

where as is the Earth-Moon nondimensional distance between B1 and the Sun  

2
 , and ñ =

as3/√µs+1 is the Sun-B1 nondimensional mean motions of the Earth and the Moon along their

respective orbits.

The inertial acceleration acting the spacecraft, i.e., X̄ i is straightforwardly obtained by

leveraging the N -body differential equation in Equation ( A.1 ), since the position vector
2

 ↑ Note that this value is equal to the inverse of the Sun-Earth nondimensional distance between the Earth
and the Moon.
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X̄ is defined with respect to an inertially fixed point, that is, the Earth-Moon-Sun system

barycenter B2. Thus, the inertial equations of motion for the BCR4BP Restricted Four-Body

with respect to B2 are

Ẍ = −
(
1− 1

µs+1

)
(X −Xs)

‖R̄s-sc‖3 −
1−µ
µs+1(X −Xe)
‖R̄e-sc‖3 −

µ
µs+1(X −Xm)
‖R̄m-sc‖3

Ÿ = −
(
1− 1

µs+1

)
(Y − Y s)

‖R̄s-sc‖3 −
1−µ
µs+1(Y − Y e)
‖R̄e-sc‖3 −

µ
µs+1(Y − Y m)
‖R̄m-sc‖3

Z̈ = −
(
1− 1

µs+1

)
(Z − Zs)

‖R̄s-sc‖3 −
1−µ
µs+1(Z − Ze)
‖R̄e-sc‖3 −

µ
µs+1(Z − Zm)
‖R̄m-sc‖3

(C.17)

A rotating frame consistent with the rotation of the Sun and B1 is defined such that

x = X cos(nt) + Y sin(nt)

y = −X sin(nt) + Y cos(nt)

z = Z

(C.18)

Then, using the kinematic expansion [ 21 ] yields the nondimensional equations of motion for

the BCR4BP as formulated in the Sun-B1 rotating frame,

ẍ = 2ẏ + x−
(
1− 1

µs+1

) (
x− 1

µs+1

)
‖r̄s-sc‖3 −

1−µ
µs+1 (x− xe)
‖r̄e-sc‖3 −

µ
µs+1 (x− xm)
‖r̄m-sc‖3

ÿ = −2ẋ+ y −
(
1− 1

µs+1

) (
y − 1

µs+1

)
‖r̄s-sc‖3 −

1−µ
µs+1

(
y − ye

)
‖r̄e-sc‖3 −

µ
µs+1

(
y − ym

)
‖r̄m-sc‖3

z̈ = −
(
1− 1

µs+1

) (
z − 1

µs+1

)
‖r̄s-sc‖3 −

1−µ
µs+1 (z − ze)
‖r̄e-sc‖3 −

µ
µs+1 (z − zm)
‖r̄m-sc‖3

(C.19)
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The position vectors of the Earth and the Moon with respect to the system barycenter B2

are given by

r̄e = r̄B1 + r̄B1e =


xe

ye

ze

 =


1− 1

µs+1

1− 1
µs+1

0

+


− µ
as

cos(θ)

− µ
as

sin(θ)

0



r̄m = r̄B1 + r̄B1m =


xm

ym

zm

 =


1− 1

µs+1

1− 1
µs+1+

0

+


1−µ
as

cos(θ)
1−µ
as

sin(θ)

0



(C.20)

where θ = π − θ = ωt + θ0 is denoted the Moon angle and corresponds to the epoch of the

BCR4BP, and ω = |ω|
1−|ω| is the nondimensional angular rate of the Earth and the Moon in

their motion around their common barycenter B1. Alignment of the Sun, Earth, and Moon

occurs every synodic period, that is, approximately 29.5 days. Similar to the BCR4BP

formulated in the Earth-Moon rotating frame, the Sun-B1 BCR4BP is a non-autonomous,

periodic system.
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D. STATE/EPOCH DEPENDENCIES IN THE BCR4BP

The relationship between the change in initial epoch associated with a state and the change

in propagated position and velocity variables is derived for the Earth-Moon formulation of

the BCR4BP. A similar process is applicable for the dependencies in the Sun-B1 formulation

of the BCR4BP or for the N -body ephemeris model. See Cox [  98 ] and Pavlak [ 111 ] for a

general derivation of the explicit and implicit dependencies. Consider a state propagated

from x̄i to x̄f using the equations of motion in Equation (  2.4 ). The relationship between the

change in epoch associated with the initial state, that is θi, and the change in final position

and velocity is

δx̄f = D (x̄, θ) δθi = ∂x̄

∂θi
δθi (D.1)

where the function D relates the propagated state to the initial epoch. There is no straight-

forward analytical relation for this function. Thus, the derivative of this function with respect

to the time is considered. Since the initial epoch and the time variable are independent from

each other, the order of derivatives is interchangeable,

d

dt

∂x̄f
∂θi

= ∂

∂θi

dx̄

dt∂

= ∂

∂θi

(
˙̄x
)

= ∂

∂θi

(
f̄(t, x̄, r̄s-sc)

)
(D.2)

where f̄ represents the equations of motion of the BCR4BP. Using the chain rule,

∂f̄

∂θi
= ∂f̄

∂t

dt

dθi
+ ∂f̄

∂x̄

dx̄

dθi
+ ∂f̄

∂r̄s-sc

dr̄s-sc

dθi
(D.3)

Since the initial epoch and the time variable are independent, dt
dθi

= 0. Thus,

∂f̄

∂θi
= ∂f̄

∂x̄

dx̄

dθi
+ ∂f̄

∂r̄s-sc

dr̄s-sc

dθi

= A dx̄

dθi
+ ∂f̄

∂r̄s-sc
˙̄rS

(D.4)
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Where A is the matrix defined for the linear variational equations of motion of the BCR4BP

in Equation (  3.6 ). the second term in Equation (  D.4 ) relates the velocity and acceleration

of the state to the position of Sun

∂f̄

∂r̄s-sc
=


∂ẋ
∂xS

∂ẋ
∂yS

∂ẋ
∂zS... ...

∂z̈
∂xS

∂z̈
∂yS

∂z̈
∂zS

 =



0 0 0

0 0 0

0 0 0
∂ẍ
∂xS

∂ẍ
∂yS

∂ẍ
∂zS

∂ÿ
∂xS

∂ÿ
∂yS

∂ÿ
∂zS

∂z̈
∂xS

∂z̈
∂yS

∂z̈
∂zS


(D.5)

The differential equations in ∂x̄f
∂θi

in Equation ( D.4 ) are numerically integrated along the equa-

tions of motion and the STM of the BCR4BP. Since initial epoch and time are independent,

the initial conditions for these differential equations are the (6× 1) zero vector.
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E. INITIAL CONDITIONS FOR BCR4BP PERIODIC ORBITS

Initial conditions are provided for a selection of periodic orbits in the BCR4BP. The periodic

solutions are discretized into patch points. The states, either in terms of Earth-Moon rotating

frame or Sun-B1 rotating frame components are given in the columns two through seven.

The epoch is stated in column eight, either as a Sun angle θ or a Moon angle θ. Finally, the

nondimensional propagation time to the next patch point is given in the last column. The

periodic orbits are converged to the relative and absolute tolerances of 10−12, employing the

characteristic quantities stated in Appendix  B .

E.1 Earth-Moon NRHOs

Table E.1. Initial conditions in the Earth-Moon rotating frame for the 3:1
NRHO (analog A) in the BCR4BP from Figures  4.29(b) and  4.37 .

pp x y z ẋ ẏ ż θ Tp

1 1.0868 −0.0098 −0.1746 0.0124 −0.2349 −0.0765 −0.7854 2.2635

2 1.0497 0.0355 −0.2086 0.0204 −0.1192 −0.1108 −2.8797 2.2635

3 1.0511 0.1228 −0.1596 0.1200 −0.1283 −0.1242 −4.9742 2.2635

Table E.2. Initial conditions in the Earth-Moon rotating frame for the 4:1
NRHO (analog A) in the BCR4BP from Figures  4.29(b) and  4.39 .

pp x y z ẋ ẏ ż θ Tp

1 1.0272 0.0000 −0.1906 0.0000 −0.1259 0.0000 0.0000 1.6976

2 1.0456 0.0001 −0.1879 0.0001 −0.1418 0.0000 −1.5707 1.6976

3 1.0272 0.0000 −0.1905 0.0000 −0.1260 0.0000 −3.1416 1.6976

4 1.0456 −0.0001 −0.1879 −0.0001 −0.1418 0.0000 −4.7124 1.6976
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Table E.3. Initial conditions in the Earth-Moon rotating frame for the 9:2
NRHO in the BCR4BP from Figures  4.29(b) and  4.31 .

pp x y z ẋ ẏ ż θ Tp

1 1.0031 0.0181 −0.1701 0.0225 −0.0824 −0.1109 0.1904 1.5090

2 1.0314 0.0221 −0.1712 0.0295 −0.0985 −0.0980 −1.2057 1.5090

3 1.0077 0.0205 −0.1703 0.0262 −0.0882 −0.1081 −2.6020 1.5090

4 1.0272 0.0224 −0.1713 0.0307 −0.0996 −0.0965 −3.9983 1.5090

5 1.0186 0.0225 −0.1692 0.0294 −0.0992 −0.1095 −5.3945 1.5090

6 1.0187 0.0207 −0.1702 0.0280 −0.0968 −0.1043 −6.7909 1.5090

7 1.0279 0.0225 −0.1684 0.0291 −0.1037 −0.1112 −8.1872 1.5090

8 1.0083 0.0183 −0.1696 0.0233 −0.0880 −0.1115 −9.5834 1.5090

9 1.0318 0.0217 −0.1696 0.0281 −0.1006 −0.1062 −10.9797 1.5090

Table E.4. Initial conditions in the Earth-Moon rotating frame for the 5:1
NRHO in the BCR4BP from Figure  4.29(b) .

pp x y z ẋ ẏ ż θ Tp

1 0.9771 0.0000 −0.1686 0.0000 −0.0635 0.0002 0.0000 1.3581

2 1.0356 0.0056 −0.1708 −0.0017 −0.0838 −0.0116 −1.2566 1.3581

3 0.9976 −0.0082 −0.1698 0.0046 −0.0684 −0.0083 −2.5132 1.3581

4 0.9976 0.0081 −0.1698 −0.0047 −0.0684 0.0087 −3.7699 1.3581

5 1.0356 −0.0056 −0.1708 0.0016 −0.0838 0.0120 −5.0265 1.3581
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E.2 Sun-B1 Halo Orbits

Table E.5. Initial conditions in the Sun-B1 rotating frame for the 12:73 L2
halo orbit in the BCR4BP from Figure  4.46(b) .

pp x y z ẋ ẏ ż θ Tp

1 1.00745 −0.00149 −0.00278 −0.00045 0.01238 −0.00230 0.00 3.086

2 1.00745 −0.00149 −0.00278 −0.00045 0.01238 −0.00230 38.22 3.086

3 1.00745 −0.00149 −0.00278 −0.00045 0.01238 −0.00231 76.45 3.086

4 1.00745 −0.00149 −0.00278 −0.00044 0.01238 −0.00231 114.67 3.086

5 1.00745 −0.00149 −0.00278 −0.00044 0.01237 −0.00232 152.89 3.086

6 1.00745 −0.00149 −0.00278 −0.00045 0.01237 −0.00232 191.11 3.086

7 1.00745 −0.00149 −0.00278 −0.00045 0.01238 −0.00232 229.34 3.086

8 1.00745 −0.00149 −0.00278 −0.00045 0.01239 −0.00232 267.56 3.086

9 1.00745 −0.00149 −0.00278 −0.00045 0.01239 −0.00232 305.78 3.086

10 1.00745 −0.00149 −0.00278 −0.00044 0.01239 −0.00232 344.00 3.086

11 1.00745 −0.00149 −0.00278 −0.00044 0.01239 −0.00232 382.23 3.086

12 1.00745 −0.00149 −0.00278 −0.00044 0.01238 −0.00231 420.45 3.086
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Table E.6. Initial conditions in the Sun-B1 rotating frame for the 4:19 L2
halo orbit in the BCR4BP from Figure  4.46(b) .

pp x y z ẋ ẏ ż θ Tp

1 1.00055 −0.00321 −0.00249 −0.00384 0.03030 −0.01775 0.00 0.80

2 1.00528 0.00604 0.00922 0.00663 −0.00869 0.01218 9.95 0.80

3 1.00630 −0.00427 0.01096 −0.00447 −0.01202 −0.00791 19.90 0.80

4 1.00066 −0.00341 −0.00251 −0.00426 0.02891 −0.01813 29.84 0.80

5 1.00523 0.00635 0.00879 0.00687 −0.00831 0.01270 39.79 0.80

6 1.00643 −0.00400 0.01102 −0.00437 −0.01239 −0.00727 49.74 0.80

7 1.00066 −0.00377 −0.00212 −0.00478 0.02735 −0.01955 59.69 0.80

8 1.00504 0.00623 0.00906 0.00675 −0.00811 0.01268 69.64 0.80

9 1.00626 −0.00390 0.01117 −0.00421 −0.01219 −0.00752 79.59 0.80

10 1.00059 −0.00344 −0.00229 −0.00468 0.02890 −0.01920 89.54 0.80

11 1.00524 0.00607 0.00907 0.00676 −0.00868 0.01233 99.48 0.80

12 1.00625 −0.00429 0.01092 −0.00461 −0.01204 −0.00780 109.43 0.80

Table E.7. Initial conditions in the Sun-B1 rotating frame for the 1:4 L2 halo
orbit in the BCR4BP from Figure  4.46(b) .

pp x y z ẋ ẏ ż θ Tp

1 0.99994 0.00000 −0.00207 0.00000 0.05189 0.00000 0.00 0.68

2 1.00457 0.00384 0.01063 0.00484 −0.00957 0.00940 8.38 0.68

3 1.00457 −0.00384 0.01063 −0.00484 −0.00957 −0.00940 16.76 0.68
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Table E.8. Initial conditions in the Sun-B1 rotating frame for the 2:7 L2 halo
orbit in the BCR4BP from Figure  4.46(b) .

pp x y z ẋ ẏ ż θ Tp

1 0.99990 0.00000 −0.00126 0.00000 0.06710 0.00000 0.00 0.36

2 1.00227 0.00433 0.00766 0.00651 −0.00298 0.01697 4.40 0.36

3 1.00393 0.00194 0.01153 0.00258 −0.00926 0.00532 8.80 0.36

4 1.00401 −0.00155 0.01155 −0.00218 −0.00951 −0.00525 13.19 0.36

5 1.00244 −0.00412 0.00769 −0.00645 −0.00365 −0.01699 17.59 0.36

6 0.99990 0.00000 −0.00126 0.00000 0.06720 −0.00001 21.99 0.36

7 1.00244 0.00412 0.00769 0.00645 −0.00365 0.01699 26.39 0.36

8 1.00401 0.00155 0.01155 0.00218 −0.00951 0.00525 30.79 0.36

9 1.00393 −0.00194 0.01153 −0.00258 −0.00926 −0.00532 35.19 0.36

10 1.00227 −0.00433 0.00766 −0.00651 −0.00298 −0.01697 39.58 0.36
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