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“As far as we can discern, the sole purpose of human existence is to kindle a light of

meaning in the darkness of mere being.”

Carl Jung, Memories, Dreams and Reflections (1963)
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Yb,j variable vector for the jth coast arc

Gb,j constraint vector for the jth thrust arc

Gb,j constraint vector for the jth coast arc

K number of phases

ei integration error for the ith trajectory segment

ē mean integration error

θΠ piecewise constant function
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ABSTRACT

Ozimek, Martin T. Ph.D., Purdue University, May 2010. Low-Thrust Trajectory
Design and Optimization of Lunar South Pole Coverage Missions. Major Professor:
Kathleen C. Howell.

A framework for designing and optimizing low-thrust trajectories for lunar south

pole coverage missions is developed. Such missions may involve three, two, or even

one satellite to maintain continuous communications between a lunar ground station

and the Earth. Special emphasis is dedicated to single satellite communication links,

which involve the design and discovery of novel pole-sitter orbits. Pole-sitters are pos-

sible, given the availability of an efficient low-thrust force in the model. Low-thrust

acceleration can be delivered in various forms; solar sails and electric propulsion en-

gines are obvious examples. Low-thrust propulsion may also be employed to construct

transfer trajectories to the coverage orbits of interest as well as end-of-life transfers.

Additionally, a low-thrust thruster allows a spacecraft to shift between lunar cov-

erage orbits. In this scenario, an optimal control-based approach is applicable for

rapidly computing trajectories, however, in general, the many complexities involved

in generating the trajectories are best solved with a direct transcription approach

using collocation and mesh refinement. This general process is robust and allows

for the inclusion of an unknown control history, path constraints, and the simulta-

neous optimization of multiple phases while exploiting matrix sparsity for maximum

computational efficiency. Even incorporating higher-fidelity dynamical effects, the

pole-sitter solutions can be sustained as a long-duration option, using a solar sail, or

as a temporary option in excess of one year on a small 500 kg spacecraft, using a solar

electric propulsion engine comparable to existing technology.



1

1. INTRODUCTION

As humans explore the possibilities of building a sustainable outpost on the moon

for long-term exploration, the near-term space technology development efforts will

require careful planning and the infrastructure to undertake such an ambitious plan.

Currently, missions such as NASA’s Lunar Reconnaissance Orbiter [1] (LRO) and

Lunar Crater Observation and Sensing Satellite (LCROSS), [1] the Indian Space Re-

search Organisation’s Chandrayaan-1, [2] and JAXA’s Selenological and Engineering

Explorer [3] all involve a detailed analysis of the lunar geological composition and

potential lunar ground site locations, with emphasis on the south pole region due to

the existence of frozen water ice and continual sunlight. Should the lunar south pole

be utilized for a future human outpost, relay satellites are a necessary component

to maintain continuous communications with the Earth since a direct line-of-sight is

unavailable from any Earth ground stations.

The use of efficient, high specific impulse, low-thrust propulsion yields potential

fuel-saving benefits in the effort to establish and maintain reliable relay satellites.

With the successful, long-duration technology demonstration of the Deep Space 1

and the SMART-1 probes, this technology now has a proven heritage, and continues

to be proposed for missions where fuel savings are desirable at the expense of ad-

ditional time-of-flight. New trajectory design options that are available to support

a lunar south pole facility include long-duration, low-thrust transfers, the flexibility

to shift between different mission orbits, and single-spacecraft “pole-sitter” orbits.

The current state of low-thrust propulsion technology suggests that it is now possible

to realize these capabilities. As the state of different types of low-thrust technology

advances, the possibility of nearly propellant-free trajectories with solar sails may

even soon be viable. Many trajectory options also exploit the dynamical structure

available in the circular restricted three-body model. This environment exposes ad-
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ditional dynamical pathways that emerge as a result of the existence of five libration

points. The three-body model and these corresponding equilibrium points open new

possible regions for natural coverage orbits as well as controlled, path constrained or-

bits. The resulting three-body solutions are then accessible with fuel-efficient transfer

trajectories that exploit the orbital stability properties.

The realization of low-thrust, lunar relay mission architectures involves the suc-

cessful management of several design complexities. For example, a continuously

changing steering direction is required to meet the prescribed problem constraints.

This control history for the thruster must be determined for each specific mission

application. An initial guess for the shape of a transfer trajectory as well as a pole-

sitter orbit is necessary. It is also likely that the fuel consumption or time-of-flight are

optimization objectives in a given phase of a mission, subject to conditions that must

be met during all of the other phases. Additionally, robust and accurate numerical

algorithms must be developed that retain their integrity under the effects of chaotic

dynamical behavior. Designs must be verified with accurate higher-fidelity models as

well. Finally, the overall performance of the trajectories as part of a larger mission

framework must be defined and then assessed. These major design complexities and

the associated challenges are considered within this work.

1.1 Problem Definition

The ultimate goal is the development of a framework for the design and optimiza-

tion of low-thrust trajectories for lunar south pole coverage relays and the application

to potential mission scenarios, given the state of current and future technology. All

trajectories evaluated here are assumed to rely exclusively on low-thrust propulsion,

that is, the advantages of a potential fuel expenditure savings compared to traditional

high-thrust chemical options is considered a necessity. Applications for transfers, cov-

erage orbits, and end-of-life scenarios are explored. The culmination of the design

process involves the computation of all phases of the trajectory simultaneously in
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one multi-phase optimization process. The investigation of transfers includes the de-

parture from an Earth orbit, deployment into a coverage orbit, and even transfers

between orbits of interest. The investigation of coverage orbits includes a discussion

and survey of naturally occurring options that incorporate two or more spacecraft for

continuous coverage; and, a detailed investigation of the novel pole-sitter option is a

primary design focus. Finally, end-of-life trajectories are incorporated as a mission

planning necessity when a spacecraft may potentially exceed available fuel or power.

Trajectory optimization is discussed for individual phases, but the methodology is

also extended to optimize the fuel or the time associated with a specified phase, given

the coupling between the variables in other phases. By linking the phases together

in a single, larger-dimensioned process, improvements in the final optimization objec-

tive are possible. Finally, a detailed analysis and discussion of the optimized mission

scenarios is included.

1.2 Previous Work

1.2.1 Brief History of Low-Thrust Propulsion

Three low-thrust propulsion technologies are the focus in this analysis. These

technologies include solar electric propulsion (assumed to be constant specific im-

pulse), variable specific impulse propulsion, and solar sailing. The first two forms

of propulsion require fuel mass and kilowatt-class power sources, while solar sailing

relies on the propellant-free effect of controlling solar radiation pressure through the

use of reflecting material with a large surface area.

Modern electric thrusters operate at a specific impulse of about eight times that

of chemical thrusters; this type of propulsion is commonly used on communications

satellites for north–south stationkeeping and orbit raising. According to Sovey et

al., [4] the higher specific impulse operation saves enough propellant mass, compared

to a traditional chemical system, to nearly double the transponder hardware on a com-

munications satellite. Experiments in ion propulsion began as early as 1916, when
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Robert H. Goddard experimented with ionized thrust for near-vacuum conditions at

high altitudes. [5] In 1923, Hermann Oberth, in the book “Wege zur Raumschiffahrt”

(Ways to Spaceflight), [6] documented the possibilities of fuel mass savings from elec-

tric propulsion, and advocated the use of electrostatic propulsion from charged gases.

A working ion thruster was built by Harold R. Kaufman in 1959 at the NASA Glenn

facility. Substantial early testing of the innovative technology ensued in the 1960’s

and 1970’s with the Space Electric Rocket Test (SERT) flights. Suborbital testing

first commenced in 1964 with SERT I, which successfully operated for 31 minutes.

The SERT II program followed with additional flight tests in the 1970’s and included

ground tests with sustained operation for 6,742 hours and 5,169 hours, respectively.

The SERT II flight is considered the major in-space demonstration of the technology,

with a six month orbital test of a thruster with a 0.85 kW maximum power level,

providing operation at a 28 mN thrust level and 4,200 seconds specific impulse. At

this time, the Air Force also established similar testing, through Program 661A in the

1960’s. In the late 1960’s, the Solar Electric Propulsion System Technology (SEPST)

program [7] was established at the Jet Propulsion Laboratory (JPL) in an effort to use

solar electric power for interplanetary spacecraft applications. Detailed ground tests

were conducted on a 2.5 kW thruster capable of 88 mN of power and 3,600 seconds of

specific impulse. In anticipation of the technology development, several astrodynam-

icists began examining methods to produce the corresponding trajectories. [8–10] By

the late 1990’s, ion propulsion systems finally emerged for operational use. In 1997,

the Hughes Space and Communications Company launched 10 operational communi-

cations satellites with four 0.44 kW xenon ion thrusters, and on October 24, 1998 the

Deep Space 1 spacecraft [11] was launched with the NSTAR solar electric thruster,

capable of 0.5–2.3 kW of power, 19–92 mN of thrust, and 1,900–3,100 seconds of

specific impulse. (See Figure 1.1.) By February 17, 2001, the NSTAR successfully

operated for 9,241 continuous hours. [12] Significant missions involving solar elec-

tric spacecraft, examples since Deep Space 1, include the European Space Agency’s

SMART-1 [13] that involved a controlled collision into the moon, and NASA’s 2007
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Dawn mission that will explore the asteroid Vesta and the dwarf planet Ceres us-

ing three Deep Space 1 heritage thrusters. [14] Currently, almost 200 solar-powered

satellites in Earth orbit utilize electric propulsion [15] and over the next few decades,

many advanced ion propulsion missions are being suggested for further interplane-

tary flight, such as new comet missions, a Mars sample return, and proposed Europa

landers.

Figure 1.1. Ground Testing of the Deep Space 1 Spacecraft. [16]

A distinguishing characteristic of an electric thruster is the engine and its oper-

ation at a constant or a variable specific impulse. The commonly-employed electro-

static ion engines, such as the NSTAR engine, normally operate at constant specific

impulse via the Coulomb force, but variable specific impulse thrusters, such as Hall

effect thrusters, as flown aboard SMART-1 and the Variable Specific Impulse Magne-

toplasma Rocket (VASIMR), incorporate the capability to vary the thrust magnitude.

In particular, the VASIMR engine is a higher-power alternative that has been under
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development at NASA Johnson Space Center’s Advanced Propulsion Laboratory since

1994. The existing prototype technology is expected to produce engines that can op-

erate anywhere between 10–200 kW. Successful ground testing of the 200 kW power

prototype has already occurred, and a flight test on the International Space Station

is planned for 2013. [17] With the use of nuclear power in the megawatt range, the

technology could be used to transport heavy lunar cargo and other large unmanned

or even manned vehicles in the near future. [18] (See Figure 1.2.)

Figure 1.2. Conceptual Application of the VASIMR Engine. [19]

Finally, a propellant-free form of low-thrust propulsion is also available from a

solar sail. (See Figure 1.3.) The concept of practical solar sailing was introduced

as early as the 1920’s, according to the writings of the Soviet pioneer Tsiolkovsky

and his colleague Tsander. [20] Following a proposal by Richard Garwin of the IBM

Watson Laboratory at Columbia University in 1958, who coined the term “solar sail-

ing”, more detailed studies ensued in the later 1950’s, and the 1960’s. Aided in part

by mission applications envisioned by prominent science-fiction authors, [21] serious

investigations continued to be pursued. In 1967, Vonbun proposed an interesting and
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relevant mission concept using low-thrust propulsion, not for transporting a space-

craft, but to maintain a stationary position at the Earth-moon L2 point. [22] From

1976-1978, NASA initiated the first major mission design study incorporating a so-

lar sail to rendezvous with Halley’s Comet. In 1991, Robert L. Forward, proposed

“statites” that would employ solar radiation pressure to levitate in non-Keplerian

trajectories. [23] Forward also proposed “polestats”, i.e., statites that hover above

the polar regions of the Earth. These applications resemble Vonbun’s hummingbird

concept, but rely specifically on a solar sail for propulsion. In 2006, solar sails were

also identified as one of five technological capabilities under consideration in NASA’s

Millennium Space Technology 9 (ST-9) mission. Proposals for ST-9 have included

solar sails that produce thrust on the order of 0.58 mm/s2 to values as high as 1.70

mm/s2. [24] A recent study by West also considers these magnitudes of characteristic

acceleration in designing lunar pole-sitters. [25]. Ongoing efforts continue to focus on

an in-flight demonstration of a solar sail.

Figure 1.3. Nanosail-D: An Example of a Solar Sail. [26]
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1.2.2 Low-Thrust Trajectory Design and Optimization

Systematic design of a low-thrust, deep-space or interplanetary spacecraft trajec-

tory is not a straightforward procedure. Despite the potential fuel-savings offered by

the technology, actually computing low-thrust trajectories and optimizing the result

has remained an ongoing area of active research in astrodynamics since the 1960’s.

The key difficulty lies in the selection of a thrust magnitude and direction at each

instant along the continuous path, while subject to a set of nonlinear differential

equations that are unsolvable in closed form. Therefore, solutions are not known a

priori. Since solutions are not unique under the existence of a control input, a tra-

jectory optimization problem is formulated to minimize or maximize a performance

index, such as burn time or fuel mass. Additional challenges in the implementation

of this process include the fact that the dynamical model may elicit chaotic behavior,

the trajectory may also require path constraints (e.g., thrusting within a specified

region only), the thrust magnitude may vary, and the direction may be constrained

(as in solar sails). In total, this complexity often implies a lack of intuition for po-

tential solutions and additional computational difficulties. Over the last 50 years,

three distinct low-thrust trajectory design and optimization strategies have emerged:

(i,ii) locally optimizing methods, which are gradient-based, and can be subdivided

into indirect and direct approaches, and (iii) globally optimizing methods (which are

inherently direct methods, but are not necessarily gradient-based).

The original approach for solving a low-thrust trajectory optimization problem

is the indirect method that locally minimizes a performance index using optimal

control theory, resulting in a two-point boundary-value problem (TPBVP). [8–10]

Indirect methods are advantageous because they yield a relatively low-dimensioned

problem with an algebraic control law and a set of constraint equations, that, when

satisfied, guarantee local optimality. Solving indirect problems requires at most an

iterative root-solving procedure, such as Newton’s method; accurate initial guesses

often produce rapid convergence. Usually, an explicit numerical integration scheme
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in conjunction with a shooting method [27] produces a highly accurate result. How-

ever, in general, the radius of convergence for problems solved with indirect methods

is small, usually requiring a very accurate initial guess. Numerical methods, such

as multiple shooting [27, 28] can be used to decompose a trajectory into a series of

segments and partition the sensitivities over many “nodes”, but sensitivities may still

remain. Producing an initial guess for the associated costate boundary conditions,

which are not typically physically intuitive, can be very complicated (although trans-

formation relationships are sometimes available). [29] Furthermore, the optimality

conditions are often increasingly cumbersome to derive if the boundary conditions

become more complex. Changing the objective function or adding phases to the de-

sign often necessitates a nontrivial re-derivation of the entire problem. Finally, path

constraints are difficult to enforce. Despite these disadvantages, however, indirect

methods are still used extensively, [30–33] generally because many solutions can be

quickly investigated and the converged solutions are very accurate.

As computational speeds have dramatically increased since the 1990’s, the larger

dimensioned direct methods have risen in prominence, and have been developed al-

most primarily due to the perceived difficulty of solving the indirect problems. The

most well-known direct approaches are direct transcription via collocation (or direct

collocation) and the pseudospectral method. Both methods use collocation [34] and

discretize the entire continuous path into node points that lie on a polynomial approx-

imation to the actual path. In direct transcription via collocation, a local collocation

approach is used with a number of fixed internal points. Many trajectory segments

between the nodes parameterize the path via piecewise polynomials. [35, 36] With a

pseudospectral method, the collocation is typically handled globally with a low num-

ber of trajectory segments and node points, but with a high number of collocation

points that parameterize the path using only a few piecewise polynomials. [37, 38]

While discretization only yields an approximation to the path and the exact optimal-

ity conditions, in the limit the Karush-Kuhn-Tucker (KKT) conditions are equivalent

to the necessary conditions stipulated by the indirect method. [39] (In this work, the
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direct transcription approach with local collocation is employed.) With collocation

and direct transcription, path constraints along the entire trajectory, e.g., restriction

of the spacecraft position history to a region below the lunar south pole, are easily

enforced. Once the necessary constraint and gradient information is obtained, a vari-

ety of numerical methods are available for computing feasible [27] and/or optimal [40]

trajectories. For trade studies, direct collocation methods are also easily adapted for

changes in the objective function or adding phases of flight to the overall trajectory

design problem. A larger basin of convergence is observed with collocation. In many

cases, arbitrary initial conditions still yield solutions, thus, the technique is extremely

useful when there is little intuition about the problem. One possible disadvantage of

solving problems with collocation and direct transcription is their large dimension-

ality. However, with the increasing speed of computers and the efficiency of modern

(linear algebra) computer algorithms, these approaches are now more tractable. Col-

location strategies are also implemented in some capacity in software packages such

as COLSYS, [41] AUTO, [42] OTIS, [35] and SOCS. [43]

The preceding indirect and direct approaches characterize a variety of local op-

timization techniques. Often, many local extrema exist for the performance index

in a given problem. In such cases, global optimization procedures may be employed

to further improve a solution generated from a local method. While the software to

compute a local optimum is typically a gradient-based procedure, many globally op-

timizing algorithms, such as genetic algorithms, are stochastic. In trajectory design,

genetic algorithms have been applied with notable success to gravitational flyby arcs,

which involve an extraordinarily large number of feasible and locally optimal possi-

bilities. [44,45] Global methods often involve significant computational expense, and

require feasible or locally optimal solutions that can be rapidly generated. Currently,

the trajectories explored in this work are only locally optimizing because the compu-

tational expense for a global investigation, given current computational capabilities,

would require a very large cluster of processors.
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1.2.3 Lunar South Pole Coverage

Shortly after the Vision for Space Exploration was announced in 2004, [46] strate-

gies for lunar south pole constellation architectures were studied by considering the

operation of three satellites in low-altitude, elliptically inclined lunar orbits, with

two of the three vehicles always in view of the south pole. [47–50] These studies

consider a perturbed two-body analysis without full consideration to the possible ad-

vantages of the multi-body regime. Later, in 2006, Grebow et al. [51] demonstrated

that constant communications can alternatively be accomplished with two spacecraft

in many different combinations of Earth-moon libration point orbits, however, the

higher altitudes in these orbits may have implications on the required communica-

tions instrumentation. (See Hamera et al. [52] for a mission feasibility comparison

of these two different orbit configuration concepts.) Designing the trajectories in

the chaotic system of the restricted three-body problem also suggests that constant

surveillance might be achieved with just one spacecraft in the presence of a small

control input. This possibility was confirmed by Ozimek et al., [53] who explored

the capabilities of solar sails comparable to those proposed for NASA’s Millennium

Space Technology (ST-9) mission and applied to continuous south pole surveillance.

Lunar pole-sitters were also investigated by West. [25] As previously noted however,

the solar sail technology to support these trajectories is still under ongoing develop-

ment. Alternatively, temporary long-duration coverage may be accomplished with

one spacecraft and electric propulsion. This option remains virtually unexplored by

researchers. In fact, after extensive literature review, only two previous investiga-

tions were discovered, with both focusing on the capabilities of low-thrust engines

operating as Earth-based and not moon-based pole-sitters. [54, 55]

1.3 Scope of the Present Work

In light of the challenges of low-thrust trajectory design, and the potential mission

applications, the goal of this research effort is the utilization of systematic method-
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ologies and algorithms for designing and optimizing low-thrust trajectories applied to

the lunar coverage problem. The recurring applications of interest include transfers

between libration point orbits, as well as the end-to-end design of a low-thrust pole-

sitter mission using either a solar sail or a solar electric thruster. Emphasis is then

placed on the implementation of a process to systematically model and design all

of the significant trajectory phases in such missions, including transfer trajectories,

coverage orbits, and even end-of-life options. These mission phases are first discussed

independently, but then the systematic multi-phase transcription method is demon-

strated as a means to complete this process with one large-dimensioned algorithm.

Within this framework, any trajectory phase of interest can be optimized, while si-

multaneously considering the consequences of the functional dependency on the other

phases. The remainder of this work is organized as follows:

• Chapter 2: A detailed derivation of all dynamical models is presented. The basic

dynamical model that is employed for lower-fidelity analysis and preliminary

design is the restricted three-body problem with the addition of low-thrust

forces from electric propulsion or solar sails. A higher-fidelity model is also

detailed, where the effects of planetary ephemerides, solar radiation pressure,

and Earth-oblateness are incorporated. Other higher-fidelity effects of interest

such as shadowing and lunar librations are also developed. Finally, coordinate

transformations are derived between the reference frames of interest.

• Chapter 3: The trajectory design and optimization methods are derived in de-

tail. The general approach for constructing, implementing, and applying the

shooting method is initially developed. The focus then transitions to the opti-

mization of an objective function, and employment of the calculus of variations

to derive the two-point boundary-value problem that is applied to transfer tra-

jectories using power-limited, variable specific impulse engines. The remainder

of Chapter 3 is devoted to a description of the direct transcription process using

higher-order collocation. The methodology is adaptable for multiple phases and
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includes a procedure to refine the discrete mesh points until a desired integration

accuracy is achieved.

• Chapter 4: The initial focus of a multi-phase lunar relay architecture is the

coverage orbit. Several mission options and potential applications are computed

for these orbits. The possibilities include lunar frozen orbits, libration point

orbits, and pole-sitter orbits. Although frozen orbits are not considered in

this work as coverage orbits, they may be exploited in end-of-life scenarios in

a multiple phase mission. The libration point orbits have also been studied

elsewhere, but are especially useful for transfer trajectories. Finally, the pole-

sitter solutions are covered in detail, as well as the general process for configuring

the collocation and transcription method to generate preliminary orbits.

• Chapter 5: The process of trajectory design is discussed in terms of (i) a transfer

trajectory to a coverage orbit, (ii) transfers between coverage orbits, or (iii)

transfers into an end-of-life scenario. An illustrative example of the optimal

control approach is presented for the design of a transfer between libration

point coverage orbits using a variable specific impulse engine. The capability

to rapidly explore the associated design space is demonstrated. Methodologies

to develop an initial guess for the collocation and transcription method with

basic control laws are outlined. Refinement of an initial guess with collocation

is addressed for the solar sail pole-sitter scenario, leading to a discussion for

the completed mission design. The initial guesses for the transfer trajectories

involving a solar electric propulsion pole-sitter are stored as part of a large multi-

phase direct transcription problem, and discussed in further depth in Chapter 6.

• Chapter 6: Preliminary orbit designs from Chapter 4 are combined with trans-

fer trajectories and end-of-life arcs from Chapter 5 for the direct transcription

solution of the multi-phase pole-sitter mission using a solar electric thruster.

This mission application demonstrates the full implementation of the direct

transcription methodology discussed in Chapter 3. A simpler, proof-of-concept
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implementation is first achieved with the lower-fidelity models and no mesh re-

finement, and then the designs are validated by returning to the same problem

and again generating a solution, but with a model that incorporates higher-

fidelity effects and a transcription scheme that includes mesh refinement. The

complete results for both the lower-fidelity and higher-fidelity solutions are dis-

cussed and compared.

• Chapter 7: Concluding remarks are presented and potential future research

directions are offered.
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2. SYSTEM MODELS

The fundamental dynamical model to reflect the influence of gravity, used through-

out this investigation, is the set of differential equations in the Circular Restricted

Three-Body Problem (RTBP.) Then, spacecraft thrust acceleration is added to com-

pletely represent the most significant forces on the spacecraft. In the absence of

thrusting, an important solution in the RTBP is the set of five equilibrium points

that are the basis for the computation of special periodic and quasi-periodic orbits.

The equations of motion in the RTBP are derived in detail; in addition, the constant

of the motion is derived as well as the locations for the corresponding equilibrium

points. When spacecraft thrusting is considered, three different low-thrust models

are presented. Ultimately, transition to a higher-fidelity force model is desired. A

representative higher-fidelity model is derived, one that includes the effects of plan-

etary ephemerides, solar radiation pressure, and Earth oblateness. Other important

factors such as shadowing and lunar librations are also discussed. Finally, all relevant

coordinate transformations that are employed throughout the entire investigation are

detailed.

2.1 Restricted Three-Body Problem with Low-Thrust

Designing trajectories for lunar south pole coverage requires a simplified dynamical

model before higher levels of fidelity are incorporated. For this investigation, this

simplified model is the Earth-moon Circular Restricted Three-Body Problem (RTBP)

with the addition of low-thrust acceleration. Even though the RTBP is unsolvable

in closed form, it is selected as a preliminary design model for several important

reasons. First, the system still possesses useful dynamical properties that assist in

the design of a preliminary trajectory, such as an energy-like integral of the motion,



16

equilibrium points, time invariance, and symmetries. Another important property is

the existence of families of periodic and quasi-periodic orbits. The growth of high-

speed computing in recent decades has yielded the capability to rapidly compute

these orbits through the use of numerical integration. Furthermore, many RTBP

orbit solutions of particular interest in the problem of lunar south pole coverage do

not exist in more basic dynamical models such as the two-body problem. These

solutions of interest include non-Keplerian orbital motions, such as “figure-eight”

orbits, “halo” orbits, and an infinite variety of other orbits. Through the use of a

thruster, pole-sitters and other unique, path-constrained trajectories are also possible.

The RTBP describes the motion of an infinitesimally small point mass, P3 (of

mass m3), moving with respect to two particles of finite mass, or primaries, P1 (of

mass m1) and P2 (of mass m2). (Unless otherwise specified, in this analysis P1 always

represents the Earth and P2 always refers to the moon. (See Figure 2.1.) Given

an arbitrary inertial reference point, dynamical analysis indicates that 18 first-order

differential equations of motion are required to mathematically model the system

comprised of the three bodies. This number, however, is reduced by considering the

relative motion. The masses are thus defined such thatm1 > m2 � m3, restricting the

problem in the sense that all gravitational influence exerted by m3 is neglected. With

this assumption, the motion of P1 and P2 is entirely Keplerian, and reduced to the

solution of the two-body problem. Additionally, this two-body motion is constrained

by assuming that the primaries move in a circular orbit about their common center of

mass, or barycenter, B. As a result, the problem only requires 6 first-order differential

equations.

2.1.1 Geometry of the Restricted Three-Body Problem with Low-Thrust

An inertial reference frame, I, described in terms of unit vectors X̂B-ŶB-ẐB, is

centered at the barycenter, B, such that the X̂B-ŶB plane is defined to be coincident

with the orbital plane for the primary orbits, such that ẑ = ẐB. (Note that unit
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vectors belonging to a right-handed, orthonormal coordinate system are denoted in

non-bold font with a “̂” overbar.) The primaries maintain a circular orbit in the

X̂B-ŶB plane, but the third body can move in any of the three spatial dimensions. A

rotating frame, R, with coordinate axes x̂-ŷ-ẑ is initially aligned with I, then rotates

through the angle θ, such that the x̂-axis is always directed from P1 toward P2. Both

the ẑ-direction and ẐB-direction are parallel to the orbital angular velocity vector

of the primaries, and thus, the ŷ and ŶB axes complete the respective right-handed

systems. Due to the circular primary motion, the angular rate, θ̇ = Ω, is constant

and equal to the Keplerian mean motion, n12. The position vector of each primary,

Pi, with respect to the barycenter is defined by ri, and the relative position vector of

P3 with respect to P1 and P2 is defined by r13 and r23, respectively. Note that a bold,

italic font indicates a vector quantity. Shifting the base-point to the moon-centered,

rotating (MCR) reference frame x̂M -ŷM -ẑM or the Earth-centered, rotating (ECR)

reference frame x̂E-ŷE-ẑE is often useful for visualization purposes. (Note that for

simplicity, the subscripts indicating the central body are typically dropped unless the

distinction is necessary.)

2.1.2 Lower-Fidelity Equations of Motion

The derivation of the differential equations that govern the behavior in the RTBP

exploits the classical nondimensionalized form. It is useful to note that dimensional

and nondimensional quantities will be used hereafter, with the latter more commonly

employed throughout for numerical scaling purposes. Thus, if it is necessary to distin-

guish dimensional quantities, a “ ˜ ” overbar is introduced. In figures, the dimensions

are always included in the axis labels to avoid any ambiguities. Given these notational

considerations, the derivation proceeds.
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Figure 2.1. Geometry of the Earth-Moon System Model.

From Newton’s 2nd Law, the vector differential equation describing the motion of

P3 is written

F̃3 = m̃3

Id2r̃

dt̃2

= F̃13 + F̃23 + F̃T

= −G̃m̃1m̃3

‖r̃13‖3 r̃13 −
G̃m̃2m̃3

‖r̃23‖3 r̃23 + F̃T

(2.1)

where F̃3 is the total force acting on the spacecraft, t̃ is the time, G̃ is the universal

gravitational constant, and the superscript I represents differentiation as viewed from

an inertial perspective. The total force F̃3 is composed of the gravity force F̃13 due

to the larger primary and along the direction of the relative position vector r̃13, the

gravity force F̃23 due to the smaller primary parallel to the direction of position

vector r̃23, and the thrust force F̃T . A traditional nondimensionalization process is

employed to characterize mass, length, and time for interpreting the trajectories, and

for preventing unwanted roundoff error during simulations. Since the mass of the



19

third body is negligible, let the characteristic mass parameter for the bodies, m∗b , be

defined as the sum of the two primary masses

m∗b ≡ m̃1 + m̃2 (2.2)

To prevent significant round-off error during numerical simulations, if the thruster

force model of interest, F̃T , includes a spacecraft mass term m, i.e., the mass of P3,

an alternative mass parameter is incorporated. The thruster is instead scaled by the

initial spacecraft mass (typically the total wet mass in orbit), m0, rather than m∗b

m∗ ≡ m0 (2.3)

This second mass scale is acceptable without any loss in generality, since the equations

of motion ultimately reduce to dimensions of [length] / [time]2. The characteristic

length l∗ is specified as the distance between the primaries

l∗ ≡ ‖r̃1‖+ ‖r̃2‖ (2.4)

and finally, the characteristic time is selected as the reciprocal of the mean motion of

the system, thus scaling the nondimensional gravitational constant, G, to unity, i.e.,

G = 1.

t∗ ≡
√

l∗3

G̃m∗b
(2.5)

These newly-defined natural units lead to the following nondimensional quantities,

r =
r̃

l∗
, γ =

m̃2

m∗b
, t =

t̃

t∗
(2.6)

where γ is the mass ratio of the smaller primary (moon) to the total system mass.

Eliminating m̃3 and nondimensionalizing equation (2.1) by the appropriate quantities

from equations (2.2)-(2.5) yields

Id2r

dt2
= − 1− γ
‖r13‖3r13 −

γ

‖r23‖3r23 + fT (2.7)

where the lowercase vector fT now implies that the corresponding force FT is scaled

by the spacecraft mass, i.e., fT = FT/m3. To complete the derivation of the equa-

tions of motion, the forces specified in equation (2.7) must be equated to kinematical
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relationships that incorporates the coordinates from a rotating frame. The following

well-known operator relationships are employed

I ṙ =
Idr

dt
=

Rdr

dt
+ Ω× r (2.8)

I r̈ =
Id2r

dt2
=

Rd2r

dt2
+ 2Ω×

Rdr

dt
+ Ω×Ω× r (2.9)

where IωR = Ω = Ωẑ is the constant angular velocity of the rotating frame, R,

with respect to the inertial frame, I, consistent with the given assumptions from the

RTBP. In component-form, the following nondimensional, Cartesian, rotating vectors

can be expanded

r = xx̂+ yŷ + zẑ (2.10)

Rdr

dt
= ẋx̂+ ẏŷ + żẑ (2.11)

Rd

dt

(
dr

dt

)
= ẍx̂+ ÿŷ + z̈ẑ (2.12)

fT = fTxx̂+ fTy ŷ + fTz ẑ (2.13)

where dots indicate derivatives with respect to nondimensional time. Note that

Ω = n12ẑ = ẑ since the nondimensional mean motion is equal to one. Substitution of

the appropriate components from equations (2.10)-(2.12) into equation (2.9) yields

I r̈ = (ẍ− 2ẏ − x)x̂+ (ÿ + 2ẋ− y)ŷ + z̈ẑ (2.14)

The relative position vectors between the primaries are also expanded in rotating

coordinates

r13 = (x− γ)x̂+ yŷ + zẑ (2.15)

r23 = (x− (1− γ)) x̂+ yŷ + zẑ (2.16)

where

‖r13‖ =
√

(x− γ)2 + y2 + z2 (2.17)

‖r23‖ =

√
(x− (1− γ))2 + y2 + z2 (2.18)
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Finally, the equations of motion in the rotating frame are completed by combining

the kinematics (equations (2.14)-(2.16)) with the nondimensional force model (equa-

tion (2.7)). Solving for the second derivatives of the rotating components yields

ẍ = 2ẏ + x− (1− γ)(x− γ)

‖r13|‖3 − γ(x+ 1− γ)

‖r23‖3 + fTx (2.19)

ÿ = −2ẋ+ y − (1− γ)y

‖r13|‖3 −
γy

‖r23‖3 + fTy (2.20)

z̈ = −(1− γ)z

‖r13|‖3 −
γz

‖r23‖3 + fTz (2.21)

The position terms in equations (2.19)-(2.21) are derivable from the pseudo-potential

function U

U(r) =
(1− γ)

‖r13‖
+

γ

‖r23‖
+

1

2
(x2 + y2) (2.22)

where

∇U (r) =

(
∂U

∂x
,
∂U

∂y
,
∂U

∂z

)
(2.23)

such that equations (2.19)-(2.21) are also written

ẍ = 2ẏ +
∂U

∂x
+ fTx (2.24)

ÿ = −2ẋ+
∂U

∂y
+ fTy (2.25)

z̈ =
∂U

∂z
+ fTz (2.26)

The availability of the pseudo-potential in equation (2.22) is especially useful when

designing certain categories of lunar south pole coverage orbits.

When the equations are uncontrolled (fT = 0), an integral of the motion is avail-

able by first dotting equations (2.24), 2.25, (2.26) by ẋ, ẏ, and ż respectively, and

adding all three to yield

ẋẍ+ ẏÿ + ẋz̈ =
∂U

∂x
ẋ+

∂U

∂y
ẏ +

∂U

∂x
ẋ =

dU

dt
(2.27)

Integration of equation (2.27) yields

ẋ2 + ẏ2 + ż2 = 2U + 2H (2.28)
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where H is the Hamiltonian of the RTBP. It is common to replace H with Jacobi’s

constant Cj, where Cj = −2H. Jacobi’s constant is an energy-like constant with many

useful properties, but for the purposes of this investigation it is primarily employed

for numerical integration accuracy checks of the uncontrolled equations of motion. In

Chapter 3, it is demonstrated that the Hamiltonian of the controlled system can also

be used for similar checks.

2.1.3 Derivation of the Thruster Models

In this work, three different models are considered for the low-thrust acceleration

term fT . The first model considers the acceleration force due to a solar sail. The

magnitude of the solar radiation pressure force provided by the sail is defined as

the characteristic acceleration κ, and it is directed along the vector u, the control

parameter normal to the surface and fixed on one side of the sail. Either side of the

sail may be used to provide thrust. Although the force changes when modeling the

effects of a real sail, the idealized, perfectly reflective model is assumed since this

investigation is primarily concerned with a feasibility analysis. The proper thrust

direction of the two-sided sail is realized when its acceleration is modeled as

fT = κû
(
l̂ · û

)2

sgn
(
l̂ · û

)
(2.29)

where l̂ is the unit-vector directed from the sun to the spacecraft, and

û =
u

‖u‖ (2.30)

In the model associated with the RTBP, l̂ is simplified to rotate in a circular orbit

within the Earth-moon plane once per synodic lunar month, or with angular rate ωs,

i.e.

l̂ = {cos (ωst) ,− sin (ωst) , 0}T (2.31)

To further parameterize the thrust direction for the sail, it is often useful to introduce

two steering angles. Let the clock angle δ be the angle between the projection of the
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sail normal unit vector û in the Earth-moon plane and the vector l̂. Next, the pitch

angle α is the out-of-plane angle measured from the Earth-moon plane to û. (See

Figure 2.2.) Then the components of û in the rotating frame can be computed from

the angles δ and α, i.e.

û =





cosα cos (δ − ωst)

cosα sin (δ − ωst)

sinα





(2.32)

In addition to the solar sail, two different types of electric propulsion models are

employed. The first model is that of a thrust-limited, constant specific impulse (CSI)

engine. An example of such an engine is a solar electric thruster such as the NSTAR

engine. Here, the thrust acceleration is modeled

fT =
T

m0 − t · T/(g0Isp)
û (2.33)

where T is the constant thrust magnitude, g0 is the Earth gravitational acceleration

constant at sea level, and Isp is the specific impulse. (Recall that the spacecraft mass

and thrust magnitude are scaled by m∗ instead of m∗b .) This model assumes that

sufficient power is always available for the engine to operate at a constant thrust

level, even in the presence of solar array degradation. Because these engines operate

at a relatively constant Isp, the thrust is either always “on” at the constant maximum

value, or completely “off” for coasting arcs, i.e., T = 0 and therefore fT = 0. As a

result, the decrease in fuel mass is monotonic when the thruster is active, resulting

in an increasing thrust acceleration magnitude. (When the thruster is off, then no

fuel mass is lost.) The second electric propulsion model is a power-limited, variable

specific impulse (VSI) engine, with the thrust acceleration vector modeled as

fT =
T

m
û (2.34)

where

ṁ = − T
2

2P
(2.35)

and P denotes the engine power. An example of such an engine is the VASIMR engine

being developed at NASA. [17] In the case of VASIMR, the variable Isp (and, hence,
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variable thrust) is produced by varying the amount of energy dedicated to electron

heating and the amount of propellant delivered for plasma generation. Such an engine

might be used to bridge the gap between high-thrust, low-specific impulse propulsion

systems and low-thrust, high-specific impulse systems. Due to the variable Isp, the

thrust magnitude T is controllable and not modeled as a constant value for the VSI

engine. Hence, equation (2.35) cannot be solved in closed form, and the spacecraft

mass, m, is considered an additional state variable when employing the VSI engine

model.

Figure 2.2. Relation of Control Angles to the Normal Vector u for a Solar Sail.

2.2 First-Order, Lower-Fidelity Equations of Motion

For later ease of reference, the lower-fidelity equations of motion are cast in

first-order form in three different formats, depending on the thrust model. Setting

v = Rdr/dt, and substituting equation (2.29) into equations (2.24)-(2.26), the re-

stricted three-body differential equations that include a solar sail are

ẋ = f (t,x,u,µ) =

(
ṙ

v̇

)

=





v

κû
(
l̂ · û

)2

sgn
(
l̂ · û

)
− 2Ω× v + ∇TU (r)





(2.36)

where ∇T represents the gradient-transpose, and µ is a problem parameter vector

to be discussed further when the implementation of numerical corrections procedures
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are introduced. Similarly, the equations that incorporate a CSI engine are formed by

substituting equation (2.33) into equations (2.24)-(2.26)

ẋ = f (t,x,u,µ) =

(
ṙ

v̇

)

=





v

T

m0 − t · T/(g0Isp)
û− 2Ω× v + ∇TU (r)





(2.37)

And finally, with a VSI engine, the lower-fidelity equations are derived by substitution

of equation (2.34) into equations (2.24)-(2.26)

ẋ = f (t,x,uc,µ) =




ṙ

v̇

ṁ


 =





v

T

m
û− 2Ω× v + ∇TU (r)

−T 2/2P





(2.38)

where the control vector for the VSI engine uc includes the steering direction û, in

addition to the thrust magnitude T and power P , i.e.

uc =




û

T

P


 (2.39)

Equations (2.36)-(2.38) are all in forms that are readily implemented into a numerical

integration scheme, assuming that a value for the control history, u, is available.

Obtaining continuous values for the control, as a function of time, is explored further

in Chapter 3.

2.3 The Libration Points

Since the natural equations of motion in the restricted problem (i.e., when fT is

set equal to zero) are time invariant when formulated within the context of a rotating

frame, the possibility exists for equilibrium locations as constant solutions to the

differential equations. Thus, such solutions are characterized by stationary position

and velocity in the rotating frame R. These particular solutions are determined by
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nulling the velocity and acceleration terms in equations (2.19)-(2.21), resulting in the

scalar equations,

−xeq = −(1− γ)(xeq − γ)∥∥r13eq

∥∥3 − γ(xeq + 1− γ)∥∥r23eq

∥∥3 (2.40)

−yeq = −(1− γ)yeq∥∥r13eq

∥∥3 −
γyeq∥∥r23eq

∥∥3 (2.41)

0 = −(1− γ)zeq∥∥r13eq

∥∥3 −
γxeq∥∥r23eq

∥∥3 (2.42)

Equation (2.42) is immediately solvable, yielding zeq = 0. Substitution of this result

into equations (2.40)-(2.41) produces a coupled system of two equations and two

unknowns, xeq and yeq. As discovered by Lagrange, if ‖r13‖ = ‖r23‖ = 1, then

equations (2.40)-(2.41) reduce to identity, implying that two of the equilibrium points,

denoted L4 and L5, are located at vertices of two unique equilateral triangles. Thus,

in Cartesian coordinates, the primaries comprise two of the common vertices of both

triangles, with the remaining vertex defined by xeq = 1
2
− γ and yeq = ±

√
3

2
. Three

other equilibrium points also exist along the x-axis. Discovered first by Euler, they

are denoted the collinear points and can be computed by forcing yeq = zeq = 0.

Substitution into equation (2.40) yields

xeq −
(1− γ)(xeq − γ)

|xeq − γ|3
− γ(xeq + 1 = γ)

|xeq + 1− γ|3
= 0 (2.43)

Equation (2.43) is a quintic equation in xeq. These solutions require numerical root

solving methods that ultimately yield three real solutions, labeled L1, L2, and L3.

The L1 and L2 points are defined such that L1 is between the primaries, L2 is on the

far side of the smaller mass, and L3 is nearly a unit distance from the larger primary.

The geometry of all five libration points appears in Figure 2.3.

2.4 Linear Instability of the Collinear Libration Points

This investigation is primarily concerned with orbits at or near the Earth-moon

L1 and L2 collinear libration points, due to their potential use in lunar relay orbit
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Figure 2.3. Equilibrium Point Locations in the Restricted Three-Body Problem.

design. Since the collinear points are linearly unstable, the dynamical structure in

this region might be exploited for efficient transfer trajectories. To investigate the

nonlinear dynamical behavior near these points, consider the natural, uncontrolled

dynamics (fT = 0) that arise from equations (2.19)-(2.21) in the vicinity of Li. Given

that xTeq = (rTeq,v
T
eq) = (xeq, yeq, zeq, 0, 0, 0) is an equilibrium state of the system, then

without loss of generality, using any of the uncontrolled forms of equations (2.36)-

(2.38)

f (xeq) = 0 (2.44)

Suppose that f is differentiable at xeq with derivatives Df(xeq). When x is “close”

to xeq, it follows from a first-order Taylor series expansion about xeq, as well as the

definition of the first derivative, that

f(x) ≈ f(xeq) +Df(xeq)(x− xeq) = Df(xeq)(x− xeq) (2.45)



28

Define a perturbed state as the variation δx, i.e.

δx = x− xeq (2.46)

then

δẋ = f(x) ≈ Df(xeq)δx = Aδx (2.47)

For the RTBP, this Jacobian matrix of derivatives becomes

A =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∂2U(xeq)

∂x∂x

∂2U(xeq)

∂x∂y

∂2U(xeq)

∂x∂z
0 2 0

∂2U(xeq)

∂y∂x

∂2U(xeq)

∂y∂y

∂2U(xeq)

∂y∂z
−2 0 0

∂2U(xeq)

∂z∂x

∂2U(xeq)

∂z∂y

∂2U(xeq)

∂z∂z
0 0 0




(2.48)

where the second partials are evaluated at the equilibrium point; the A matrix is

constant. Applying a linear stability analysis, the determinant of A always yields

one eigenvalue that is greater than zero corresponding to the collinear points L1

and L2. Then, the local unstable behavior associated with the nonlinear system,

relative to xeq, is qualitatively the same as the corresponding linearized system. The

remaining eigenvalues of the system, however, suggest that periodic solutions exist

with the proper selection of initial conditions. Thus, periodic orbits in the vicinity of

the collinear libration points exhibit linear instability that requires a stationkeeping

capability, but this very behavior can also be exploited for fuel-efficient insertion into

and departure from the orbits. This concept is of key importance in the successful

application of invariant manifold theory. For general detail, see [56], and for further

depth concerning low-thrust astrodynamics applications, the reader is referred to

[57–60].
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2.5 Gravity Contours for Stationary Trajectories

Although an infinite number of periodic orbits can be computed in the RTBP, only

the five libration points exist as constant equilibrium solutions. Thus, if a particle

(spacecraft) remains completely stationary, i.e., with zero velocity at any point other

than the libration points, then the gravity forces must be completely offset by the

thrust force fT . In this unique situation, the gravity force is dependent only on posi-

tion, as is evident upon inspection of equations (2.24)-(2.26). The magnitude of this

gravity force is simply ‖∇U‖. For developing single spacecraft “pole-sitter” trajec-

tories, the value of ‖∇U‖ supplies a simple method of predicting the required thrust

magnitude ‖fT‖ to achieve a stationary trajectory at a given spatial location. From

a design perspective, the instantaneous, two-dimensional, x-z contours of ‖∇U‖, as

indicated in Figure 2.4, provide a simple visual tool to pre-determine these required

thrust acceleration values for a given point in space.

As a sample application using Figure 2.4, consider the preliminary design of a

stationary trajectory below the moon using the prescribed thrust range 0.5 mm/s2 ≤
‖fT‖ ≤ 1.7 mm/s2. Near the lower boundary of ‖fT‖, inspection of the contours of

constant ‖∇U‖ in Figure 2.4 indicate that a pole-sitting spacecraft is, at the lower

thrust acceleration bound, restricted to the red regions that surround the collinear

libration points L1 and L2. At the higher boundary, the spacecraft can potentially

enter the yellow and green locations that wrap below the lunar south pole. For a

solar sail, ‖fT‖ is fixed and depends on the physical dimensions of the sail, but for

the operation of a CSI or VSI engine, the value slowly increases across the given range

due to fuel expenditure, allowing new regions to be accessed as time progresses. The

utilization of this concept as an initial guess tool is revisited in Chapter 4.
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Figure 2.4. Contours of ‖∇U‖ in mm/s2, MCR Frame.

2.6 The Body-Centered, Relative Equations of Motion

In transitioning the investigation to consider the higher-fidelity dynamical effects,

beyond assumptions of the RTBP model, the formulation of a new set of ordinary

differential equations governing the spacecraft motion is necessary.



31

2.6.1 Geometry

When deriving higher-fidelity differential equations, an arbitrary number of grav-

itational bodies can be considered, and the assumption that these bodies are con-

strained to circular orbits is eliminated. The numerical simulation is then accom-

plished in the standard Earth mean-of-equator of J2000 frame (EMEJ2000). De-

pending upon the focus in a particular simulation, it is either most convenient to

consider the Earth-centered inertial (ECI) frame in EMEJ2000 coordinates, using the

X̂E-ŶE-ẐE vector basis, or, the moon-centered inertial (MCI) frame in EMEJ2000

coordinates, using the X̂M -ŶM -ẐM coordinates as described in Figure 2.1. For sim-

plicity, and consistent with standard nomenclature in this discipline, the subscripts

are often dropped, and the X̂-Ŷ -Ẑ frame designation corresponds to the central body

associated with the numerical integration process. Using the ECI and MCI frames,

position vectors corresponding to the gravitating bodies are easily accessible using an

ephemeris file without any additional transformations. For purposes of visualization

and interpretation, it often convenient to view the evolution of the trajectory during

a higher-fidelity simulation from the perspective of the rotating frame. Since the

primaries no longer rotate in a circular orbit, the ECR and MCR reference frames

introduced in Section 2.1.1 are rotating and pulsating. In addition to the EMEJ2000

and rotating frames, sometimes a more appropriate reference frame for visualizing a

lunar orbit is the moon-centered, inertial, International Astronomical Union frame

X̂L-ŶL-ẐL, to be discussed later in Section 2.8.2.

2.6.2 Derivation of a Higher-Fidelity Model

The most efficient and straightforward approach to simulate higher-fidelity, point

mass, gravitational effects is to propagate in a body-centered inertial frame due to

the availability of the locations of the sun, planets, and moons from highly accu-

rate ephemeris files. This analysis employs the NASA Jet Propulsion Laboratory

(JPL) DE405 ephemeris file that is available in binary format and capable of being
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read with an openly-available, pre-existing FORTRAN 77 subroutine. [61] More re-

cently, comparable MATLAB R© functions [62] have become available, but the use of a

scripting interface involves a significant computational time penalty compared to the

FORTRAN version.

Returning to Newton’s Newton’s 2nd Law, the vector differential equation of mo-

tion of a spacecraft subject to the gravitational forces of nb bodies is

F̃i = m̃i

Id2R̃i

dt̃2
= G̃

nb∑

j=1
j 6=i

m̃im̃j∥∥∥R̃ij

∥∥∥
3 R̃ij (2.49)

where the subscript i corresponds to the spacecraft, the subscript j is the summing

index for the gravitational bodies, and the capitalized vector R̃ now distinguishes an

inertial vector. The vector R̃ij is defined such that

R̃ij = R̃j − R̃i (2.50)

As required by Newton’s 2nd Law, the base point for the vectors Ri and Rj must be

inertially fixed, and this point is again selected as the barycenter, B, illustrated in

Figure 2.5. Use of a barycentric coordinate frame is impractical, however, and the

state of the spacecraft relative to a gravitational body is preferred. In this analysis,

this central body, q, is either the Earth or the moon as indicated in Figure 2.1.

Rewriting the equations first requires the observation that R̃i can be decomposed

such that
Id2R̃i

dt̃2
=

Id2R̃q

dt̃2
+

Id2R̃qi

dt̃2
(2.51)

Equation (2.51) includes the vector R̃qi, the relative spacecraft position that is the

significant dependent variable, and R̃q, the central body position vector relative to

the barycenter, that is also subject to Newton’s Newton’s 2nd Law

Id2R̃q

dt̃2
= G̃

nb∑

j=1
j 6=i

m̃jR̃qj∥∥∥R̃qj

∥∥∥
3 (2.52)
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Substituting equation (2.52) into equation (2.51), and the result into equation (2.49)

yields
Id2R̃qi

dt̃2
+ G̃

nb∑

j=1
j 6=i

m̃jR̃qj∥∥∥R̃qj

∥∥∥
3 = G̃

nb∑

j=1
j 6=i

m̃j∥∥∥R̃ij

∥∥∥
3 R̃ij (2.53)

Finally, by retaining the prior assumption that the spacecraft mass is negligible, isolat-

ing the spacecraft position vector relative to the central body, and applying the same

characteristic quantities consistent with those in the RTBP model, equation (2.53)

can be written as

Id2Rqi

dt2
= −Gmq

Rqi

‖Rqi‖3 +

nb∑

j=1
j 6=i

Gmj

(
Rij

‖Rij‖3 −
Rqj

‖Rqj‖3

)
(2.54)

To reduce equation (2.54) to three scalar equations of motion for an arbitrary central

body, let

R ≡ Rqi = XX̂ + Y Ŷ + ZẐ (2.55)

Rqj = XjX̂ + YjŶ + ZjẐ (2.56)

where the X̂-Ŷ -Ẑ frame is an EMEJ2000 coordinate frame with a base point at the

central body q. The components in equation (2.56) are the locations of the j perturb-

ing gravitational bodies relative to the central body q that are readily available from

the ephemeris file. Due to availability of these ephemeris positions, it is convenient

to write Rij, the position vector from the spacecraft to perturbing body j, as

Rij = Rqj −Rqi = Rqj −R (2.57)

Rij = (Xj −X)X̂ + (Yj − Y )Ŷ + (Zj − Z)Ẑ (2.58)

The vectorRij as expressed in equation (2.58), contains the position variables of inter-

est (X, Y, Z) that will ultimately be numerically integrated as state variables, and the

readily-available ephemeris positions (Xj, Yj, Zj). Finally, the three scalar, nondimen-
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sional, relative equations of motion are written by substituting equations (2.55)-(2.58)

into equation (2.54) and equating the components

Ẍ = −GmqX

‖Rqj‖3 −
nb∑

j=1
j 6=i,q

Gmj

(
X −Xj

‖Rqj −R‖3 +
Xj

‖Rqj‖3

)
(2.59)

Ÿ = −GmqY

‖Rqj‖3 −
nb∑

j=1
j 6=i,q

Gmj

(
Y − Yj

‖Rqj −R‖3 +
Yj

‖Rqj‖3

)
(2.60)

Z̈ = −GmqZ

‖Rqj‖3 −
nb∑

j=1
j 6=i,q

Gmj

(
Z − Zj

‖Rqj −R‖3 +
Zj

‖Rqj‖3

)
(2.61)

Equations (2.59)-(2.61) represent a higher-fidelity point-mass gravitational model as

compared to the differential equations in the RTBP, since an arbitrary number of

gravitating bodies can be included, along with the ephemeris file that supplies accu-

rate positions of the planets.

Figure 2.5. The General Problem of nb Bodies.
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2.7 First-Order, Higher-Fidelity, Equations of Motion

For the higher-fidelity model, the equations of motion in the body-centered, Earth

mean equatorial of J2000 (EMEJ2000) frame are written in a compact form as

ẋ = f(t,x,u,µ) =

(
Ṙ

V̇

)

=

{
V

fG + fO + fS + fT

} (2.62)

where the vector R is the body-centered (either Earth or moon) EMEJ2000 posi-

tion vector with components X, Y , and Z as defined in equation (2.55). As in

equations (2.36)-(2.38), the control is u, and µ is a problem parameter vector to

be discussed in Chapter 3. For all computations, equation (2.62) is scaled with the

same characteristic quantities as those defined in the Earth-moon RTBP, that is,

m∗B, m∗, l∗, and t∗, as described in equations (2.36)-(2.38). The right-hand side of

equation (2.62) sums the acceleration vector fG from gravitational point-mass accel-

erations due to the moon, the Earth, and the sun, fO from Earth oblateness due

to J2, fS from solar radiation pressure (not including the solar sail, if present), and

the low-thrust acceleration fT . Equation (2.62) is in a form that may be numeri-

cally integrated once expressions for fG, fO, fS, and fT are available in terms of the

state variables. For simplicity, and because only the moon and Earth are employed

as central bodies in this analysis, the models are detailed for both of the possible

central bodies. Furthermore, the following notation is used: Body $ = moon, body

� = Earth, and body � = sun. (All other bodies are neglected.)

2.7.1 Moon-Centered Acceleration Model

The moon is employed as the central gravitating body for the majority of the

higher-fidelity simulations, including transfers near the moon, coverage orbits, and

end-of-life trajectories. When this model is employed, all positions and velocities,

including the spacecraft states R and V are measured in terms of MCI, EMEJ2000
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coordinates. The accelerations fG due to the point-mass gravity of the moon, Earth,

and sun are extracted from equations (2.59)-(2.61), that is

fG = −Gm$
R

‖R‖3

−Gm�

(
R−R$�∥∥R−R$�

∥∥3 +
R$�∥∥R$�

∥∥3

)

−Gm�

(
R−R$�∥∥R−R$�

∥∥3 +
R$�∥∥R$�

∥∥3

)
(2.63)

where R$� is the ephemeris position vector of the Earth relative to the moon, and

R$� is the ephemeris position vector of the sun relative to the moon. The first term

in equation (2.63) reflects the inverse square field due to moon, and the remaining

terms represent the Earth and sun gravity perturbations. The perturbing acceleration

fO due to Earth oblateness from the J2 term [63], [64] is modeled as

fO = −3

2

Gm�J2r
2
�∥∥R−R$�
∥∥5





(X −X$�)

(
1− 5

(Z − Z$�)2

∥∥R−R$�
∥∥2

)

(Y − Y$�)

(
1− 5

(Z − Z$�)2

∥∥R−R$�
∥∥2

)

(Z − Z$�)

(
3− 5

(Z − Z$�)2

∥∥R−R$�
∥∥2

)





(2.64)

where r� is the mean radius of the Earth. The oblateness model assumes that the

Earth’s axis of rotation is fixed in inertial space along the positive Ẑ-axis of the

EMEJ2000 frame. The solar radiation pressure perturbation fS is modeled to be

consistent with the authors in references [65] and [66]

fS =
k�AS�0

∥∥R��0

∥∥2

cm

R−R$�∥∥R−R$�
∥∥3 (2.65)

where k� is a material parameter dependent on absorptivity of the spacecraft surface,

A is the projected cross-sectional area (a spherical body, and therefore a circular cross-

section is assumed), c is the speed of light, S�0
is the solar light flux associated with

the nominal distance
∥∥R��0

∥∥ = 1 AU, and m is the spacecraft mass. Finally, the

accelerations due to the thruster are modeled with equations (2.29)-(2.33). When the
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higher-fidelity equations are employed, the directions for the thrust acceleration are

written in terms of inertial components

fT = fTX X̂ + fTY Ŷ + fTZ Ẑ (2.66)

No higher-fidelity efforts in this investigation include the VSI engine model.

Figure 2.6. Geometry of the Moon-Centered, Higher-Fidelity System Model.

2.7.2 Earth-Centered Acceleration Model

The Earth is selected as the central gravitating body primarily for low-thrust

transfer trajectories from low-Earth orbit that include many spirals. When this model

is employed, all positions and velocities, including the spacecraft states R and V are



38

measured in terms of ECI, EMEJ2000 coordinates. The corresponding accelerations

become

fG = −Gm�
R

‖R‖3

−Gm$
(

R−R�$∥∥R−R�$
∥∥3 +

R�$∥∥R$�
∥∥3

)

−Gm�

(
R−R��∥∥R−R��

∥∥3 +
R��∥∥R��

∥∥3

)
(2.67)

fO = −3

2

Gm�J2r
2
�

‖R‖5





X

(
1− 5

Z2

‖R‖2

)

Y

(
1− 5

Z2

‖R‖2

)

Z

(
3− 5

Z2

‖R‖2

)





(2.68)

fS =
k�AS�0

∥∥R��0

∥∥2

cm

R−R��∥∥R−R��
∥∥3 (2.69)

where R�$ is the ephemeris position vector of the moon relative to the Earth, and

R�� is the ephemeris position vector of the sun relative to the Earth. Similar to

the moon-centered formulations, the accelerations due to the thruster are modeled

consistent with with equations (2.29)-(2.33).

2.7.3 Shadowing

When the spacecraft is in the Earth’s shadow, a crude approximation of the

penumbra region is modeled with the sun as a point mass, as seen in Figure 2.8.

Let a vector originate at the sun and terminate at the edge of the penumbra. Then,

θ1 is defined as the angle between this vector and the sun-to-Earth vector R�� avail-

able from the ephemeris file. This angle lies in the plane formed by R�� and the

sun-to-spacecraft vector l = R�� +R, where R is the ECI spacecraft position vec-

tor. As is apparent in Figure 2.8, these vectors sweep out the angle θ2. Both angles,
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Figure 2.7. Geometry of the Earth-Centered, Higher-Fidelity System Model.

θ1 and θ2, are measured off of R��. Furthermore, it is assumed that θ1 may be

mathematically constructed as the angle between R�� and R�� + r�, where

r� = r�
(R�� × l)×R��∥∥(R�� × l)×R��

∥∥ (2.70)

Then, the angles θ1 and θ2 are computed as direction cosines in the same plane, and

measured from R��

θ1 = cos−1 (R�� + r�) ·R��∥∥(R�� + r�) ·R��
∥∥ (2.71)

θ2 = cos−1 l ·R��∥∥l ·R��
∥∥ (2.72)
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Note that θ1 and θ2 are both assumed positive to remove any quadrant ambiguity.

Finally, the following sufficient conditions for spacecraft shadowing apply to fT and

fS

 fT

fS


 = 0 if





θ2 < θ1

and

‖l‖ >
∥∥R��

∥∥

Even though there is some visible light within the penumbra region, this basic crite-

ria serves as a model for the worst-case scenario to represent fT and fS, assuming

that there is negligible SRP for a thrust force or perturbing acceleration and that

insufficient power is available from the solar arrays to activate a CSI engine. The

presence of the Earth’s shadow poses considerable design complexity for a solar elec-

tric propulsion (CSI) engine or solar sail mission during the spiral-out phase from

low-Earth orbit. As a result, the time-of-flight for a transfer sequence will increase,

and is therefore frequently included in higher-fidelity low-thrust simulations. [67, 68]

In particular, Flandro analytically demonstrates that a 27% time-of-flight penalty is

incurred during his solar electric propulsion orbit-raising sequence when incorporat-

ing shadow entry and exit. [69] Currently, this shadow model is only implemented in

the Earth-centered higher-fidelity model, and applied during a low-thrust spiral-out

phase, where its effects have been demonstrated to be significant.

Figure 2.8. Eclipsing Conditions Schematic.
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2.7.4 Lunar Librations

When implementing the moon-centered, higher-fidelity model and considering the

design of orbits to support line-of-sight for a potential lunar ground station, incorpo-

rating the precise position of the ground station in a higher-fidelity model is crucial.

Even though the moon is tidally locked with the Earth, a variety of factors, such

as the eccentricity and inclination of the moon’s orbit, as well as the rotation of

the Earth, cause a perturbation that is manifested in lunar libration relative to its

nominal orientation. Let Rg be defined as the position vector, relative to the lunar

center, that locates the surface site on the moon. In moon-fixed coordinates, this

position vector can be specified in terms of two angles: the latitude θg and longitude

δg associated with the ground site

Rg = r$





cos θg cos δg

cos θg sin δg

sin θg





(2.73)

where r$ is the mean radius of the moon. The angles θg and δg are available from

the ephemeris file, and fully incorporate the effect of the lunar librations. Further

discussion on the methods of modeling the lunar librations is available in [70]. Since

the state variables are integrated in MCI, EMEJ2000 coordinates, Rg requires a

coordinate transformation that is discussed in the next section.

2.8 Common Coordinate Transformations

2.8.1 EMEJ2000 Inertial Frame to P1-P2 Rotating Frame

In the problem analysis, it is often necessary to shift between inertial coordinates

and coordinates defined in terms of the rotating frame. The following discussion

summarizes the rotation matrix derivations by Anderson. [71] The system geometry,

along with the ephemeris file (if required) is employed to formulate the rotation matrix
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ICR that transforms the vector coordinates from the rotating frame R to the inertial

frame I such that 


X̂

Ŷ

Ẑ


 = ICR




x̂

ŷ

ẑ


 (2.74)

where

ICR =




C11 C12 C13

C21 C22 C23

C31 C32 C33


 (2.75)

As a direction cosine matrix, ICR is orthogonal, i.e., RCI = ICR−1

= ICRT

and

ICRT ICR = I, where I is the identity matrix. When the higher-fidelity equations of

motion are employed, the equations are non-autonomous, thus any direction cosine

matrix is a function of time, i.e., C = C(t). To transfer from inertial coordinates

X̂-Ŷ -Ẑ to P1-P2 rotating coordinates x̂-ŷ-ẑ, the ephemeris file is accessed to obtain

ICR =

[
R�$∥∥R�$

∥∥
R�$ × (R�$ × V�$)∥∥R�$ × (R�$ × V�$)

∥∥
R�$ × V�$∥∥R�$ × V�$

∥∥
]

(2.76)

Recall that the angular velocity of the rotating frame is defined as IωR = θ̇ẑ, where

θ is now time-varying in general. The well-known operator relationships from equa-

tions (2.8)-(2.9) are re-applied with equations (2.74)-(2.75) to yield




X

Y

Z

Ẋ

Ẏ

Ż

Ẍ

Ÿ

Z̈




=




ICR 0 0
I
Ċ
R ICR 0

I
C̈
R I

Ċ
R ICR







x

y

z

ż

ẏ

ż

ẍ

ÿ

z̈




(2.77)
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where each entry in the matrix in equation (2.77) is a 3×3 sub-matrix. The associated

matrix derivatives of ICR are expanded to

I
Ċ
R

=




θ̇C12 −θ̇C11 0

θ̇C22 −θ̇C21 0

θ̇C32 −θ̇C31 0


 (2.78)

I
C̈
R

=




−θ̇2C11 + θ̈C12 −θ̈C11 − θ̇2C12 0

−θ̇2C21 + θ̈C22 −θ̈C21 − θ̇2C22 0

−θ̇2C31 + θ̈C12 −θ̈C31 − θ̇2C32 0


 (2.79)

Finally, inertial coordinates are converted to rotating coordinates by inverting equa-

tion (2.77), where the matrix inverse is simply composed of the transpose of each of

the nine, orthogonal sub-matrices



X

Y

Z

Ẋ

Ẏ

Ż

Ẍ

Ÿ

Z̈




=




RCI 0 0
R
Ċ
I RCI 0

R
C̈
I R

Ċ
I RCI







x

y

z

ż

ẏ

ż

ẍ

ÿ

z̈




(2.80)

Equation (2.77) and equation (2.80) are used to transform from inertial to rotating

coordinates and vice versa, as required. Typical applications for the transformations

include (i) shifting inertial position data into the rotating, pulsating ECR frame or

(ii) into the MCR frame, both for visualization purposes, or (iii) translating an initial

guess for a numerical scheme from the barycentric, rotating frame of the RTBP into

ECI or MCI coordinates to use as an initial guess for the higher-fidelity models. If

a base point shift is necessary during the transformation sequence, for example from

ECI to MCR coordinates, then additional vector addition is required to complete the

transformation to the new position vector.
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2.8.2 EMEJ2000 Inertial Frame to International Astronomical Union Frame

The International Astronomical Union (IAU) frame, X̂L-ŶL-ẐL, is a moon-centered

inertial frame that is useful for visualizing lunar coverage orbits. The fundamental

plane of this inertial system is the lunar mean equator, frozen at 2000 January 1,

12:00:00 Coordinated Universal Time (UTC), or a Julian date of 2451545. To estab-

lish the frame, first define the X̂L axis as the IAU node of J2000, as visualized by

Figure 2.9. Next, define αL and δL as right ascension and declination angles relative

to the MCI, EMEJ2000 frame that orient the moon’s mean north pole on the given

Julian date. From [72], these angles are determined (in units of degrees), as

αL =269.9949− 3.8787 sinE1 − 0.1204 sinE2 (2.81)

+ 0.0700 sinE3 − 0.0172 sinE4 + 0.0072 sinE6

− 0.0052 sinE10 + 0.0043 sinE13

βL =66.5392 + 1.5419 cosE1 + 0.0239 cosE2 (2.82)

− 0.0278 cosE3 + 0.0068 cosE4 − 0.0029 cosE6

+ 0.0009 cosE7 + 0.0008 cosE10 − 0.0009 cosE13

where trigonometric arguments in equations (2.81)-(2.82) are

E1 = 125.045

E2 = 250.089

E3 = 260.008

E4 = 176.625

E6 = 311.589

E7 = 134.963

E10 = 15.134

E13 = 25.053

(2.83)
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In degrees, the Euler 3-1-3 angle set (φL,ϑL,ψL) are defined using the right ascension

and declination angles

ϕL = −90◦ − αL (2.84)

ϑL = −90◦ + δL (2.85)

ψL = 0◦ (2.86)

These angles are used to transform from MCI, EMEJ2000 (I frame) coordinates to

IAU (L frame) coordinates

LCI =




cφLcψL − sφLcϑLsψL sφLcψL + cφLcϑLsψL sϑLsψL

−cφLsψL − sφLcϑLcψL −sφLsψL + cφLcϑLcψL sϑLcψL

sψLsϑL −cφLsϑL cϑL


 (2.87)

where 


X̂L

ŶL

ẐL


 = LCI




X̂M

X̂M

ẐM


 (2.88)

The “c” and “s” symbols that appear in equation (2.87) are shorthand for the cosine

and sine functions, respectively. The matrix LCI is a constant matrix that only

requires computation once, since both the IAU and the MCI, EMEJ2000 frame are

inertial frames. Due to the alignment of the ẐL axis with the mean lunar north pole,

the IAU frame is distinguished in the literature as a natural choice for lunar south

pole trajectory design. [47]

2.8.3 Moon Body-Fixed Frame to EMEJ2000 Inertial Frame

The position of the lunar ground facility in the moon body-fixed frame, F , with

components x̂F -ŷF -ẑF often requires a transformation into the working MCI frame of

interest or vice versa. To complete this transformation, it is first necessary to specify

the orientation of the moon body-fixed frame relative to the MCI frame: Let x̂F locate

the intersection between the lunar equator and the prime meridian of the moon. The
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Figure 2.9. Geometry of the IAU frame with respect to the MCI,
EMEJ2000 Frame. [72]

third vector in F , ẑF , is parallel to the spin axis of the moon. Finally, ŷF = x̂F × ẑF
completes the right-handed set. The angle set (φ$,ϑ$,ψ$), corresponding to 3-1-3

Euler angles, is available from the JPL DE405 ephemeris file and serves to define the

orientation rotation sequence, such that



x̂F

ŷF

ẑF


 = FCI




X̂M

X̂M

ẐM


 (2.89)

where

FCI =




cφ$cψ$ − sφ$cϑ$sψ$ sφ$cψ$ + cφ$cϑ$sψ$ sϑ$sψ$
−cφ$sψ$ − sφ$cϑ$cψ$ −sφ$sψ$ + cφ$cϑ$cψ$ sϑ$cψ$

sψ$sϑ$ −cφ$sϑ$ cϑ$


 (2.90)

With FCI available, the body-fixed coordinates may also be transformed to rotating

coordinates by using ICR from the previous section to construct FCR = FCI ICR.
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Similar combinations can also be accommodated with the IAU to MCI, EMEJ2000

transformation, LCI . All required transformations can, thus, be accomplished.

2.9 Constant Parameters

During the course of this work, several constant parameters are used across many

problems, and are listed in Table 2.1. When the spacecraft model is generated with

either a CSI or a VSI engine, then the total spacecraft mass is included in the system

model. In these cases, the initial mass is always equal to m0 = 500 kg, and the

minimum allowable mass, i.e., the dry mass, is mf = 50 kg. For many transfers,

the value of mf is not constrained to reach the dry mass value, except for low-thrust

pole-sitter missions, where the final mass is specified. Unless otherwise noted, for

mission applications using higher-fidelity models, the location of the lunar ground

station is assumed at the Shackleton Crater using the θg and δg coordinates specified

in the Table 2.1.
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Table 2.1 List of Constants.

Parameter Value Units

l∗ 384, 431.4584485 km

t∗ 375, 236.314564115 s

Gm$ 4, 902.799140594719 km3/s2

Gm� 398, 600.4480734463 km3/s2

Gm� 132, 712, 439, 935.4841 km3/s2

r$ 1, 738 km

r� 6, 378.14 km

J2 0.0010827

κ 0.58 or 1.70 mm/s2

m0 500 kg

mf 50 kg

g0 9.80665 m/s2

T (CSI Engine) 150 mN

Isp (CSI Engine) 1, 650 s

Pmax (VSI Engine) 2 kW

k� 1.4

S�0
1, 358.098 W/m2

A 3.14159265358979 m2

c 299, 792.458 km/s
∥∥R��0

∥∥ 149, 597, 927 km

θg −89.9 ◦

δg 0 ◦
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3. TRAJECTORY COMPUTATION AND

OPTIMIZATION

There exist several iterative methodologies to design and optimize trajectories subject

to differential equations that are not solvable in closed form. Choosing the best

approach often depends on the trajectory design problem at hand, and the adequacy

of the initial guess for the solution. When designing an uncontrolled, natural solution

such as a periodic orbit in the restricted three-body problem, typically a shooting

method based on Newton’s method will yield a result that meets the desired endpoint

and periodicity constraints. With the inclusion of low-thrust propulsion, there are

associated controls, such as the thrust magnitude and steering direction that appear in

the dynamical model, yielding an infinite number of candidate trajectories to satisfy

the constraints in a given problem. To begin isolating a unique solution, then, a

framework must be established to obtain a parameterization for such parameters.

In general, the selection of a control history to obtain a unique trajectory of

interest is approached through the formulation of an optimal control problem. With

the availability of control parameters, a natural choice for a unique solution is the

optimal result. The criteria for the “best” trajectory is established by defining a

performance index or cost function, but several approaches exist to actually compute

the trajectory that solves the associated optimal control problem. The calculus-

of-variations-based optimal control theory establishes a two-point boundary value

problem that can be solved with the aforementioned shooting methods. The high

sensitivity of the dynamics and the associated costates sometimes limits the ability

to generate a solution, especially in designing long-duration, low-thrust trajectories

involving many spirals around a primary. Relatively robust and rapid convergence is,
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however, observed in computing shorter time-of-flight transfers between orbits using

power-limited variable specific impulse engines.

For purposes of robustness and systematic implementation, the primary method

in this analysis to design and optimize a controlled trajectory is a direct transcription

scheme via collocation. The collocation approach involves a complete discretization of

the trajectory with a higher-order Gauss-Lobatto approach. Collocation is well-suited

for generating feasible solutions with a minimum-norm approach and for transcrip-

tion of the discretetized optimal control problem into the latest nonlinear programing

software parameter optimization routines. If the initial guess is suitable, a feasible

minimum-norm solution based on Newton’s method is often an immediate option to

rapidly explore trajectory designs. The minimum-norm approach may even be uti-

lized to generate near-optimal solutions if, in fact, an optimal trajectory is known

to lie near the boundary of a given set of path constraints. Given the sensitivities

involved in trajectories for lunar south pole coverage, generation of a feasible solu-

tion is also a first step toward generating an optimal solution with the transcription

method. Despite the fact that collocation involves a large-scale problem of many

variables and nonlinear constraints, efficient methods exist to handle the correspond-

ing sparse matrix algebra involved in generating a solution. Finally, the transcription

methodology is easily modified to add different mission phases. When multiple phases

are considered, functional dependencies between seemingly independent portions of

a trajectory can be connected in an even larger optimization process to achieve an

improved locally optimal result.

3.1 Multi-Variable Newton’s Method

A recurring theme throughout this investigation is the iterative computation of

a trajectory that satisfies all of the mission design constraints. Regardless of the

design approach, the selection of feasible trajectories directly relies on the process of

a multi-variable Newton-Raphson method, including root-solving software packages
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that are primarily quasi-Newton methods. To begin, consider the general problem of

iteratively adjusting the nX-vector X = (X1, X2, ..., XnX ) until the vector F (X) of

mX nonlinear equations

F (X) =




F1(X)
...

FmX (X)


 = 0 (3.1)

is satisfied. For at least one solution, it is necessary that nX ≥ mX . The iterative

method for updating a given point X = (X1, X2, ..., XnX )T is of the form

Xj+1 = Xj + αdS (3.2)

where Xj+1 is the updated estimate on X to solve equation (3.1), αd is the scalar

step length along the direction S. Since the system F (X) is not readily solvable with

algebraic manipulation, consider re-writing the entire system as an approximation

using the first two terms of a Taylor series expansion about the current point Xj

F (X) ≈ F (Xj) +DF (Xj)(X −Xj) (3.3)

where

DF =




∂F1

∂X1

∂F1

∂X2

. . .
∂F1

∂XnX

∂F2

∂X1

∂F2

∂X2

. . .
∂F2

∂XnX

...
...

. . .
...

∂FmX
∂X1

∂FmX
∂X2

. . .
∂FmX
∂XnX




(3.4)

When nX = mX , equation (3.3) is immediately solvable for an updated value of

X = Xj+1, i.e.

Xj+1 = Xj −DF−1(Xj)Xj (3.5)

where equation (3.5) is in the form of equation (3.2) with αd = 1 and

S = −DF−1(Xj)Xj (3.6)
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When nX > mX , the number of free variables is greater than the number of nonlinear

constraints, and infinitely many potential solutions exist. Often, it is desirable to

locate the solution with a Euclidian norm that is nearby the initial guess. For this

solution, let αd = 1 and the goal is then to solve the following optimization problem

for the under-determined system of linearized constraints

Min J(S) = STS = (X −Xj)
T

(X −Xj)

Subject to F (Xj) +DF (Xj)(S) = 0

If the cost function is augmented to produce an unconstrained problem using the

mX-vector, λmX of Lagrange multipliers, such that

J ′(S,λmX ) = J(S) + λmX
T (F (Xj) +DF (Xj)S) (3.7)

= STS + λmX
T (F (Xj) +DF (Xj)S) (3.8)

then the necessary conditions for a stationary value of J are

dJ ′

dS

T

= 2S +DF (Xj)TλmX = 0 (3.9)

dJ ′

dλmX

T

= F (Xj) +DF (Xj)S = 0 (3.10)

Solving equations (3.9)-(3.10) for S yields the minimum-norm search direction, that

is

S = −DF
(
Xj
)T [

DF
(
Xj
)
·DF

(
Xj
)T]−1

F
(
Xj
)

(3.11)

A simple second-derivative test on equation (3.7) yields

d2J

dS2
= 2 > 0 (3.12)

to confirm that the solution for S is minimizing. Both the Newton and the minimum-

norm search direction will satisfy equation (3.1) with a quadratic rate of convergence,

as long as the initial guess for X is within the convergence radius. Unfortunately,

the convergence radius for a given problem is not known a priori, and the sensitivity

to the initial guess will vary from problem to problem. To combat this issue, many

nonlinear equation solving software packages have been designed to iterate with a
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variable step length αd such that a more robust convergence capability results at

the expense of quadratic convergence. Some of these packages include, but are not

limited to, MATLAB R©’s “fsolve” routine, the feasible solver in SNOPT, [73] and the

FORTRAN package NS11AD from the archive of the Harwell Subroutine Library. [74]

3.2 Explicit Integration

The first class of trajectory design and optimization methods employ explicit

numerical integration or propagation through the use of ordinary differential equation

(ODE) solving subroutines such as MATLAB R©’s ODE45 or ODE113. To obtain state

information over the time interval ta ≤ t ≤ tb, these solvers require the equations of

motion in terms of nx first-order ODE’s. Consider, for example, the arbitrary system

ẋ =




ẋ1

ẋ2

...

ẋnx




= f(t,x,µ) =




f1(t, x1(t), . . . , xnx(t), µ1, . . . , µnµ)

f2(t, x1(t), . . . , xnx(t), µ1, . . . , µnµ)
...

fnx(t, x1(t), . . . , xnx(t), µ1, . . . , µnµ)




(3.13)

where it is assumed here that the control, if present, is expressed as a function of the

nµ-vector of parameters µ and time t. Using an ODE solver, the system is converted

into an initial value problem by supplying ta, x(ta), and µ to obtain x(tb). This

process consumes most of the function evaluations within the shooting method for

feasible and optimal solutions.

3.3 The Shooting Method

The preceding root-finding methods are adaptable to solving boundary value prob-

lems in trajectory design. The only difference is that a shooting method is intended

to satisfy equation (3.1) when it is functionally dependent on the integration of a

system of ODE’s. Consider the arbitrary first-order system in equation (3.13). Us-



54

ing the shooting method, the goal is to guess a propagation time, initial state, and

parameters for X = (tf ,x(t0)T ,µT )T such that

F (X) = F (tf ,x(tf ),µ) = 0 (3.14)

Even though the constraints in equation (3.14) depend on the final state, they are

functionally dependent on numerical integration originating with the initial states.

The general approach representing the shooting method can be summarized as follows:

1. Guess the initial conditions, X0 = (tf ,x(t0)T ,µT )T .

2. Propagate the differential equations from t0 to tf .

3. Evaluate the error in the boundary conditions F (X) = F (tf ,x(tf ),µ). If

F (X) < ε, then stop.

4. Use Newton’s method, or a nonlinear equation solver package to adjust X to

satisfy F (X). Repeat steps 2-4.

where ε is a user-defined tolerance. While the above procedure is illustrative of

a single shooting procedure, shooting methods can easily be expanded to include

constraints at several intermediate steps over the course of a trajectory. When such a

condition occurs, intermediate calls to numerical integration subroutines are required

to complete the process, but the adaptation into a so-called “multiple” or “parallel”

shooting formulation is straightforward. A detailed explanation of this process is

available in [75].

3.3.1 The State Transition Matrix

Analytical derivative information for a shooting method requires, among other

types of derivatives, partial derivatives that relate, or map, variations in an initial

state to variations in a final state. While a closed-form solution (if it exists) to a

given set of differential equations provides an exact mapping, an approximation in
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the form of a linear mapping is available for these derivatives through the use of a

state transition matrix approach. In addition to linearizing relative to the libration

points as detailed in Section 2.3, the equations of motion, when expressed in first-

order form, may also be linearized at each instant in time in the neighborhood of the

trajectory of interest. Consider the contemporaneous variation δx for the arbitrary

system described in equation (3.13)

δx = x− x∗ (3.15)

where the “∗” superscript indicates a condition along a reference trajectory. When x is

in the neighborhood of the reference trajectory, then the first-order Taylor expansion

relative to the reference approximates the system model such that

f(t,x,µ) ≈ f(t,x∗,µ) +Df(t,x∗,µ)(x− x∗) (3.16)

Then, from equations (3.15)-(3.16)

δẋ = ẋ− ẋ∗ = f(t,x,µ)− f(t,x∗,µ)

= Df(t,x∗,µ)δx

= A(t)δx (3.17)

The solution of equation (3.17) is available by solving

Φ̇(t, t0) = A(t)Φ̇(t, t0) (3.18)

where Φ(t, t0) is defined as the state transition matrix (STM) and the initial condi-

tions are defined as

Φ(t0, t0) = I (3.19)

Here, the matrix I is the nx × nx identity matrix. Given the applications that follow,

let x = (x, y, z, vx, vy, vz)
T . (For a higher-fidelity model in inertial coordinates, this

vector is replaced with x = (X, Y, Z, VX , VY , VZ)T .) The components of the STM are
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then interpreted as the partial derivatives that relate the initial states to the final

states of interest.

Φ(t, t0) =




∂x

∂x0

∂x

∂y0

∂x

∂z0

∂x

∂vx0

∂x

∂vy0

∂x

∂vz0
∂y

∂x0

∂y

∂y0

∂y

∂z0

∂y

∂vx0

∂y

∂vy0

∂y

∂vz0
∂z

∂x0

∂z

∂y0

∂z

∂z0

∂z

∂vx0

∂z

∂vy0

∂z

∂vz0
∂vx
∂x0

∂vx
∂y0

∂vx
∂z0

∂vx
∂vx0

∂vx
∂vy0

∂vx
∂vz0

∂vy
∂x0

∂vy
∂y0

∂vy
∂z0

∂vy
∂vy0

∂vy
∂vy0

∂vy
∂vz0

∂vz
∂x0

∂vz
∂y0

∂vz
∂z0

∂vz
∂vz0

∂vz
∂vy0

∂vz
∂vz0




(3.20)

Assuming that analytical expressions for these partial derivatives are constructed, the

vector equation (3.18) implies that an additional n2
x differential equations, in addition

to the equations of motion, must be numerically integrated simultaneously to properly

evaluate the state and the STM at every instant in time. The n2
x elements of A(t) must

be computed a priori for the given system model. Despite this additional analytical

effort and computational expense, the derivatives Φ representing the linear mapping

are usually as accurate as the integrated state variables. (An exception might possibly

occur if the elements of A(t) are very complicated or formulated in some manner

that allows significant round-off error.) The computational expense is also typically

far less than an alternative lower-accuracy central differencing method. Once the

STM is available, many of the necessary analytical partial derivatives are available

to obtain a search direction and produce an update as part of the shooting scheme.

When implementing this partial derivative information into a shooting algorithm, this

information is used to complete step #4 in Section 3.1.

3.3.2 Finite Difference Derivatives

Sometimes, a derivative element in the Jacobian matrix, DF , is cumbersome or

difficult to evaluate analytically. At the cost of numerical accuracy and some ad-
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ditional computations, these elements may alternatively be evaluated by numerical

finite-difference derivatives. A standard approach is to implement the central differ-

encing formula. For the jth scalar constraint element Fj, the derivative with respect

to the ith scalar variable Xi in DF becomes

∂Fj
∂Xi

≈ Fj(Xi + hd)− Fj(Xi − hd)
2hd

(3.21)

where hd is a “small” step size. The approximate derivative in equation (3.21) is of

order O(h2
d). The selection of an appropriate step size hd is important to minimize

the truncation error without overly inducing round-off error due to subtractive can-

cellation, however methods to deal with this choice are available in [76]. Note that

each derivative that is constructed from equation (3.21) requires two evaluations of

Fj, each potentially involving costly numerical integrations. For a large DF matrix,

this finite-differencing procedure clearly leads to increased numerical expense. If Fj is

analytic, and the computing platform supports the evaluation of Fj in terms of com-

plex numbers, then the complex-step finite-differencing method can be employed. [77]

Consider the third-order, complex Taylor series approximation of Fj

Fj(Xj + îhd) = Fj(Xj) + îhd
∂Fj
∂Xi

− h2
d

∂2Fj
∂X2

i

− îh3
d

∂3Fj
∂X3

i

+ ... (3.22)

where î is an imaginary step direction. Isolating the imaginary components and

solving for ∂Fj/∂Xi yields

∂Fj
∂Xi

=
=
[
Fj(Xi + îhd)

]

hd
+ h2

d

∂3Fj
∂X3

i

+ ... (3.23)

≈
=
[
Fj(Xi + îhd)

]

hd
(3.24)

where the notation “=” denotes only the imaginary component of the function. Here,

∂Fj/∂Xi is approximated to order O(h2
d), yet the subtractive cancellation round-off

error issue observed in the central differencing formula of equation (3.21) does not

appear. Hence, a very small step size is selected to achieve derivatives to machine

precision and, thus, equivalent to the accuracy of analytical derivatives. Ongoing
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research in the complex-step method indicates that derivatives that are functionally

dependent on a numerically integrated initial condition, such as finite-differenced

STM elements, are also possible. [78]

3.3.3 Periodic Orbits in the Restricted Three-Body Problem

The application of a shooting method is easily illustrated through the computa-

tion of natural periodic orbits in the RTBP. First, consider the use of the uncontrolled

equations of motion (fT = 0) in equation (2.36) or equation (2.37) without any pa-

rameters µ. For L1 and L2 halo and vertical orbits, as well as L2 butterfly orbits, a

perpendicular crossing with the x̂-ẑ plane is always observed such that the velocity

components in the x- and z-directions is zero. If the time-of-flight for the orbit is

specified as a period P, and the initial state is selected at one perpendicular crossing,

then the following three constraints must be satisfied

F (X) =




y(P/2)

vx(P/2)

vz(P/2)


 = 0 (3.25)

where the vector of free variables X = (x0, z0, vy0)
T is defined as a subset of the

states at t = 0. The values of X are then used to update the initial state vector

x0 = (x0, 0, z0, 0, vy0 , 0)T . The necessary derivative information is obtained by evalu-

ating

DF =




∂y(P/2)

∂x0

∂y(P/2)

∂z0

∂y(P/2)

∂vy0
∂vx(P/2)

∂x0

∂vx(P/2)

∂z0

∂vx(P/2)

∂vy0
∂vz(P/2)

∂x0

∂vz(P/2)

∂z0

∂vz(P/2)

∂vy0




(3.26)

All of the required information is then in place to implement the shooting procedure.

For step #1, an initial guess is supplied to X = (x0, z0, vy0)
T with the initial time

set to t0 = 0 and the final time fixed at tf = P/2. For step #2, the initial guess is

employed to integrate the initial state and the STM via equation (2.36) with fT = 0
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and equations (3.18)-(3.19). Given the sensitivity in the RTBP, the guess will likely

not satisfy the constraints within the prescribed tolerances for step #3, so an update

is computed for X via equation (3.2) and equation (3.6) since nX = mX . If initial

conditions are not available for X0, then a guess from the linearization about the

libration points (as explored in Section 2.4) is one possible source. The shooting

process is easily modified for other orbit symmetries, or, to obtain the same periodic

orbits with a different approach. For example, the position and velocity corresponding

to a periodic orbit at a fixed initial x location in the x̂ − ẑ plane is preferred, then

the variable vector becomes

X =


 z0

vy0


 (3.27)

where a degree of freedom for tf (a quantity that must still implicitly vary) is auto-

matically removed given that a termination condition is supplied to the integrator to

force an x̂-ẑ plane crossing, i.e., yf = 0. The constraints are then modified, i.e.

F (X) =


vx(tf )
vz(tf )


 = 0 (3.28)

and the constraint matrix, including the functional dependency on the unspecified

half-period final time, becomes

DF =




∂vx(tf )

∂z0

∂vx(tf )

∂vy0

∂vx(tf )

∂tf
∂vz(tf )

∂z0

∂vz(tf )

∂vy0

∂vz(tf )

∂tf


 (3.29)

Given an initial guess for X, the steps corresponding to the shooting method are

re-visited for this alternative problem formulation to determine a nearby solution. In

this case, nX > mX , so equation (3.11) serves as the basis to compute the search

direction in equation (3.2) and to complete in step #4 in the shooting scheme.

3.4 Indirect Trajectory Optimization via Optimal Control Theory

For some problems, the application of a calculus of variations formulation to op-

timize a trajectory is a simple and relatively robust approach. An advantage of this
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approach is that the solution, once fully formulated through application of the Euler-

Lagrange equations, merely involves the solution of a system of nonlinear constraints

from a two-point boundary value problem. Compared to alternative approaches, this

type of solution process involves a relatively low-dimensioned problem where an op-

timal trajectory is rapidly produced. To solve this system of nonlinear equations, the

shooting method is again employed with either numerical, or preferably, analytical

partial derivatives. Because of this structuring of the entire optimization problem

through constraint equations, the method is termed an indirect method. The disad-

vantage of the indirect approach is that the nonlinear equations are composed not

only of kinematic boundary conditions, but also optimality or natural boundary con-

ditions. The sensitivity of an initial guess to the satisfaction of both the kinematic

and the natural boundary constraints is well-documented. Betts, [79] in particular

notes the following passage from page 215 of the landmark textbook by Bryson and

Ho [80]

“The main difficulty with these methods is getting started ; i.e., finding

a first estimate of the unspecified conditions at one end that produces a

solution reasonably close to the specified conditions at the other end. The

reason for this peculiar difficulty is the extremal solutions are often very

sensitive to small changes in the unspecified boundary conditions...Since

the system equations and the Euler-Lagrange equations are coupled to-

gether, it is not unusual for the numerical integration, with poorly guessed

initial conditions to produce “wild trajectories” in the state space.”

These problems are especially present in trajectories that involve many spirals, such

as a long-duration, low-thrust transfer from LEO to the moon. (In such a case, a

systematic procedure is required to produce a convergent initial guess for the shoot-

ing method.) Nevertheless, relatively robust convergence in the indirect approach is

observed in the computation of shorter-duration transfers trajectories that employ

low-thrust. The general theoretical framework for optimal control applied to space-

craft trajectory optimization is completely presented in the work by Lawden, [8] but
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the derivation of the complete two-point boundary value problem is still highly de-

pendent on the details of the optimization problem under consideration. The specifics

of the formulation of a low-thrust trajectory optimization problem are presented such

that the methodology is still generalizable to a wide array of orbital transfer applica-

tions.

3.4.1 Application to Power-Limited, Finite-Burn Engine Transfers

Designing a fuel-optimal, low-thrust transfer between libration point orbits is well-

suited for an indirect method. The analysis here is applied to VSI engines, but

for comparable derivations using a CSI engine, see [33]. Key points from optimal

control theory, for this application are summarized. First, the fixed-time optimization

problem is posed

Min J = −κ ·mf (3.30)

where mf is the spacecraft mass at the final time, and κ is a constant parameter. To

avoid the well-documented infinite-time solutions associated with the VSI engine, [58]

the time-of-flight is fixed by specifying the initial and final times t0 and tf . The cost

function in equation (3.30) is subject to the dynamical constraints

ẋ = f(t,x,uc) =




ṙ

v̇

ṁ


 =





v

T

m
û+ g(r,v)

−T 2/(2P )





(3.31)

where equation (3.31) reduces to equation (2.38) for the RTBP with g(r,v) equal to

the gravity field forces as written in terms of rotating coordinates. The generalization,

however, implies that higher- or lower-fidelity gravity models can easily be represented

by the function g(r,v). Recall that the full vector of controls uc for the VSI engine
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includes the steering direction and engine controls in equation (2.39). Optimization

of the cost is also subject to the kinematic boundary conditions

ψ0 =


r0 − r(τ1)

v0 − v(τ1)


 (3.32)

ψf =


rf − r(τ2)

vf − v(τ2)


 (3.33)

and constraints on the control

 ûT û = 1

P = Pmax sin2 σ


 (3.34)

The first constraint forces û to be a vector of unit magnitude, and the second con-

straint employs the slack variable σ to enforce the switching conditions on the power

P with a maximum value of Pmax. The variables τ1 and τ2 denote time-like parameters

that locate a state on the initial and final orbit, respectively. To begin deriving the

necessary conditions for optimality, define the Hamiltonian function for the Mayer

problem, that is

H = λTf (3.35)

= λTr v + λTv ((T/m)û+ g)− λmT 2/(2P ) (3.36)

where λ = (λTr ,λ
T
r , λm)T are defined as the costate variables. Next, the cost function

J is augmented into an unconstrained optimization function J ′ by adjoining the La-

grange multipliers ν1 = (νTr1 ,ν
T
v1

)T and ν2 = (νTr2 ,ν
T
v2

)T to the boundary conditions

as well as the time-varying costates λ and Lagrange multipliers η1, and η2 to the

dynamic constraints and controls, respectively, i.e.

J ′ = Θ +

∫ tf

t0

[
I− λT ẋ

]
dt (3.37)
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where

Θ = −κ ·mf + νT1ψ0 + νT2ψf (3.38)

I = H + η1(ûT û− 1) + η2(P − Pmax sin2 σ) (3.39)

= λTr v + λTv ((T/m)û+ g)− λmT 2/(2P )

+ η1(ûT û− 1) + η2(P − Pmax sin2 σ) (3.40)

Since the initial and final times are fixed, a local maximum or minimum is available

by nulling the total variation in J ′

dJ ′ = δJ ′ =
∂Θ

∂τ1

δτ1 +
∂Θ

∂τ2

δτ2 +

(
∂Θ

∂xf
− λTf

)
δxf +

∂Θ

∂ν1

δν1 +
∂Θ

∂ν2

δν2

+

∫ tf

t0

[(
∂I

∂x
+ λ̇T

)
δx+

∂I

∂uc
δuc +

∂I

∂η1

δη1 +
∂I

∂η2

δη2 +
∂I

∂σ
δσ

]
dt = 0 (3.41)

Equation (3.41) contains the required information to extract the Euler-Lagrange equa-

tions, the transversality conditions, and the requirements for the optimal controls. A

term-by-term analysis is now undertaken to guarantee that the free variable selection

ensures the satisfaction of equation (3.41). For arbitrary variations along the path,

δx 6= 0 in general; then to satisfy equation (3.41), it is required that

λ̇ = − ∂I

∂x

T

= −∂H
∂x

T

(3.42)

where

λ̇r = −∂g
∂r

T

λv (3.43)

λ̇v = −λr −
∂g

∂v

T

λv (3.44)

λ̇m = −‖λv‖
T

m2
(3.45)
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For variations in the controls, slack variables, and the Lagrange multipliers within

the integral expression in equation (3.41), examination of equation (3.40) leads to the

following

∂I

∂û

T

= λv/m+ 2η1û = 0 (3.46)

∂I

∂T
= λTv û/m− λmT/P = 0 (3.47)

∂I

∂P
= λmT

2/(2P 2) + η2 = 0 (3.48)

∂I

∂σ
= −2η2Pmax sinσ cosσ = 0 (3.49)

∂I

∂η1

= ûT û− 1 = 0 (3.50)

∂I

∂η2

= P − Pmax sin2 σ = 0 (3.51)

Equations (3.50)-(3.51) recover the constraints on the controls. If equation (3.50)

is satisfied, then û must, in general, be directed such that the direction nulls the

other term in equation (3.46). Therefore û = ±λv/ ‖λv‖. To evaluate which of

the two possible sign options yields a minimizing control, via Pontryagin’s Minimum

Principle, the Hamiltonian in equation (3.36) is minimized such that

û = − λv
‖λv‖

(3.52)

where λv is Lawden’s well-known primer vector. [8] Equation (3.47) is now solved by

substituting from equation (3.52) to produce

T = −‖λv‖P
λmm

(3.53)

Eliminating û from H yields

H = λTr v + λTvg − T · S (3.54)

where S is Lawden’s switching function defined as

S ≡ ‖λv‖
m

+
T

2P
λm (3.55)
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Applying the Minimum Principle a second time for P reveals: if λm is always negative

in S (which is later demonstrated to be true), then selecting P = Pmax always mini-

mizes H. Other switching options need not be considered, and the optimal controls

for power as well as thrust, from equation (3.53) are

P = Pmax, T = −‖λv‖Pmax

λmm
(3.56)

These controls are logically consistent with equations (3.48)-(3.49), where either η2,

cosσ, or sinσ equal zero. Inspection of equation (3.51) suggests three possibilities:

(i) if cosσ = 0, then P = Pmax; (ii) if sinσ = 0, then P = 0; and, (iii) if η2 = 0 ,

then 0 ≤ P ≤ Pmax. Clearly, then, the preceding analysis is consistent with case (i).

The boundary constraints that emerge from the remaining terms in equation (3.41)

are denoted the natural boundary conditions or the transversality conditions

∂Θ

∂τ1

= λTr0v0 + λTv0g0 = 0 (3.57)

∂Θ

∂τ2

= λTrfvf + λTvfgf = 0 (3.58)

∂Θ

∂xf

T

− λf =
(
νTr2 − λTrf ,ν

T
v2
− λTvf ,−κ− λmf

)T
= 0 (3.59)

∂Θ

∂ν1

T

= ψ0 = 0 (3.60)

∂Θ

∂ν2

T

= ψf = 0 (3.61)

Equations (3.57)-(3.58) require an iterative solution along with the kinematic bound-

ary conditions. Equation (3.59) is trivial except for the term that equates λmf
= −κ.

Since κ is a positive constant, selecting λm0 = −1 removes a degree of freedom from

the problem and satisfies the condition on λmf
because λm monotonically decreases



66

consistent with equation (3.45). Finally, note that there is no explicit time depen-

dency in equation (3.36), i.e. H 6= H(t), and thus by equations (3.35) and (3.42)

dH

dt
=
∂H

∂x

dx

dt
+
∂H

∂λ

dλ

dt
+
∂H

∂t

=
∂H

∂x

dx

dt
+
∂H

∂λ

dλ

dt

= −λ̇T ẋ+ fT λ̇ (3.62)

= 0 (3.63)

Thus,

H = constant (3.64)

The Hamiltonian of the problem is therefore an integral of the motion, and is especially

useful for numerical integration accuracy checks.

3.4.2 Solution via Indirect Shooting

The derivation of the optimal control problem to fuel-optimally transfer between

two orbits using a VSI engine appears in the previous section. However, the problem

still requires an iterative solution and must be formally posed as a two-point boundary

value problem. The unknown terms that may vary are collected into the vector X of

free variables

X =




λr0

λv0

τ1

τ2




(3.65)

The values corresponding to the states at τ1 and τ2 are (r(τ1)T ,v(τ1)T )T and (r(τ2)T ,v(τ2)T )T ,

respectively. These values are generated using a spline parameterization over τ1 and

τ2 that is computed a priori, or simply from separate time indices that are integrated

from periodic orbits at fixed states and epochs. The constraints are the kinematic
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boundary conditions (equations (3.32)-(3.33)) and the non-trivial natural boundary

conditions (equations (3.57)-(3.58))

F (X) =




rf − r(τ2)

vf − v(τ2)

λTr0v0 + λTv0g0

λTrfvf + λTvfgf




(3.66)

Thus, the well-formed, two-point boundary value problem with 8 free variables and

8 constraints is completed. The required derivative information to implement the

shooting method becomes

DF =




∂rf
∂λr0

∂rf
∂λv0

∂rf
∂τ1

−∂r(τ2)
∂τ2

∂vf
∂λr0

∂vf
∂λv0

∂vf
∂τ1

−∂v(τ2)
∂τ2

vT0 gT0 λTr0
∂v0
∂τ1

+ λTv0

(
∂g0
∂r0

∂r0
∂τ1

+ ∂g0
∂v0

∂v0
∂τ1

)
0

∂F8

∂λr0

∂F8

∂λv0

∂F8

∂τ1
0




(3.67)

where

∂F8

∂λr0
= vTf

∂λrf
∂λr0

+ λTrf
∂vf
∂λr0

+ gTf
∂λvf
∂λr0

+ λTvf

(
∂gf
∂rf

∂rf
∂λr0

+
∂gf
∂vf

∂vf
∂λr0

)
(3.68)

∂F8

∂λv0
= vTf

∂λrf
∂λv0

+ λTrf
∂vf
∂λv0

+ gTf
∂λvf
∂λv0

+ λTvf

(
∂gf
∂rf

∂rf
∂λv0

+
∂gf
∂vf

∂vf
∂λv0

)
(3.69)

∂F8

∂τ1

= vTf
∂λrf
∂τ1

+ λTrf
∂vf
∂τ1

+ gTf
∂λvf
∂τ1

+ λTvf

(
∂gf
∂rf

∂rf
∂τ1

+
∂gf
∂vf

∂vf
∂τ1

)
(3.70)

Satisfying the constraints F (X) with this formulation of the problem is an indirect

shooting approach because it simply involves solving a system of nonlinear constraints

that minimize the value of J without any actual manipulation or evaluation of equa-

tion (3.30). The process is implemented as follows:

1. If necessary, generate a spline approximation for (r(τ1)T ,v(τ1)T )T and

(r(τ2)T ,v(τ2)T )T using pre-generated data representing a periodic orbit.

2. Guess the initial conditions, X0.
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3. Propagate the state and costate system, equation (3.31) and equations (3.43)-

(3.45) from t0 to tf using the optimal controls derived in equation (3.52) and

equation (3.56), and let λm0 = −1. If analytical partial derivatives are desired,

then simultaneously propagate equation (3.18). (Additional analytical differen-

tiation is required to compute A(t) a priori for the full state and costate system

model.)

4. Evaluate the error in the boundary conditions F (X). If F (X) < ε, then stop.

5. Use equation (3.6), or a nonlinear equation solver package to adjustX to satisfy

F (X). Repeat steps 3-5.

Recall the comment from Bryson and Ho (Section 3.4) concerning the indirect meth-

ods and the difficulties in “getting started”. Delivering a first guess for step #2 is

considerably aided by using the adjoint control transformation (ACT) [29] to obtain

λr0 and λv0 . For details about this application of the ACT process, see Appendix A.

3.4.3 Solution via Direct Shooting

Another viable option to solve the optimal control problem for fuel-optimal, low-

thrust transfers between orbits with a VSI engine is to employ a direct shooting

method. In contrast to indirect shooting, the direct shooting approach involves elim-

ination of the highly sensitive natural boundary conditions, i.e., equations (3.57)-

(3.58). Then, a cost function for the under-constrained problem is directly minimized

with nonlinear programming software. In the literature, this strategy that employs

the calculus of variations derivation for the control laws, but minimizes with an NLP

algorithm has also been labeled a hybrid method. [59], [81], [82] For some problems,

the direct minimization via NLP widens the convergence radius, although some accu-

racy in the local minimum is possibly sacrificed. The NLP cost function F0 is posed

as follows

Min F0(X) = −mf (3.71)
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where the constant κ in equation (3.30) is now removed without loss of generality. The

unknown parameters in X remain the same as in equation (3.65). The constraints,

however, are now only equations (3.32)-(3.33)

F (X) =


rf − r(τ2)

vf − v(τ2)


 (3.72)

Thus, the required constraint derivative information to implement the shooting method

becomes

DF =




∂rf
∂λr0

∂rf
∂λv0

∂rf
∂τ1

−∂r(τ2)
∂τ2

∂vf
∂λr0

∂vf
∂λv0

∂vf
∂τ1

−∂v(τ2)
∂τ2


 (3.73)

Gradient-based NLP software also requires derivatives of the cost with respect to X,

i.e.

DF0 =

(
− ∂mf

∂λr0

T

,− ∂mf

∂λv0

T

, 0, 0

)
(3.74)

The process is now executed as follows:

1. If necessary, generate a spline approximation for (r(τ1)T ,v(τ1)T )T and

(r(τ2)T ,v(τ2)T )T using pre-generated data representing a periodic orbit.

2. Guess initial conditions, X.

3. Propagate the state and costate system, equation (3.31) and equations (3.43)-

(3.45) from t0 to tf using the optimal controls derived in equation (3.52) and

equation (3.56), and let λm0 = −1. If analytical partial derivatives are desired,

then simultaneously propagate equation (3.18). (Additional analytical differen-

tiation is required to compute A(t) a priori for the full state and costate system

model.)

4. Evaluate the error in the boundary conditions F (X) and the optimality of F0.

If F (X) < ε and F0 is minimal, then stop.

5. Adjust X to satisfy F (X) and minimize F0. Repeat steps 3-5.
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Here, steps #3-#5 are typically completed via the NLP software, once the necessary

cost, constraint, and derivative information is available for the iteration procedure.

The ACT is optionally used for an initial guess, consistent with Appendix A.

3.5 Direct Trajectory Optimization via the Transcription Approach

Among the options for solving a general trajectory design and optimization prob-

lem, often the best choice is a direct transcription scheme via collocation, also known

as direct collocation. In contrast to the previously discussed approaches, direct col-

location fundamentally relies on completely discretizing a solution to the equations

of motion with an implicit integration scheme. Feasible solutions are first computed

by allowing the states and controls at points along the entire trajectory to enter the

problem as unknown variables. Such a process is especially useful when there is very

little intuition about the solution space. Knowledge of a control law is not required;

the thrust vector is oriented exactly as needed at every instant to satisfy objective

constraints. Unlike explicit integration subroutines, where the problem sensitivity

depends only on the initial state, a larger convergence radius is expected for implicit

schemes that partition the sensitivities over the many discrete points. This feature is

especially important for design in chaotic systems, where a slight change in the initial

state could induce large variations and unpredictable behavior downstream. In recent

decades, computational speed increases and improved techniques for exploiting sparse

matrices have resulted in faster implicit schemes, in addition to the robustness, allow-

ing for rapid exploration of the design space. They are also readily adapted for direct

optimization. According to Betts, [79] the direct transcription method is decomposed

into three fundamental steps:

1. Convert the dynamic system into a problem with a finite set of variables. This

process involves discretization with a collocation approach.

2. Solve the finite-dimensional problem using a parameter optimization method.

(Feasible solutions may also be alternatively considered.)



71

3. Assess the accuracy of the finite-dimensional approximation and if necessary

repeat the transcription and optimization steps. This is known as the process

of mesh refinement.

The formulation and implementation of the direct transcription method using collo-

cation follows.

3.5.1 Collocation

The core of the transcription approach is to convert the continuous time problem

into a discrete domain that can be reduced to a system of many nonlinear equations

and solved iteratively with Newton’s method, a nonlinear equation solving package,

or NLP software for optimization. This concept contrasts with indirect and direct

shooting methods for continuous systems that are tied to a requirement for explicit

integration, and thus, enforcement of constraints only at the boundaries of the inte-

grated path. To begin the discretization process, let n nodes partition the solution

into n− 1 segments consistent with the fixed mesh

Π : t1 < t2 < · · · < tn−1 < tn (3.75)

The time interval along a given segment can be converted from [ti, ti+1] to τ ∈ [0, 1]

using

τ =
t− ti
∆ti

(3.76)

where ∆ti = ti+1− ti. Given this discrete domain, a high-accuracy solution is still de-

sired, and therefore a 7th-degree piecewise polynomial approach using Gauss-Lobatto

points is employed.
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Seventh-Degree Gauss-Lobatto Approach

One approach to solve the problem is to employ highly-accurate 7th-degree piece-

wise continuous polynomials and the method of collocation, resulting in a 12th-order

accurate solution. The polynomials representing the segment are defined

x(τ) = M× {1 τ τ 2 τ 3 τ 4 τ 5 τ 6 τ 7}T (3.77)

where M is the matrix of coefficients. Let xj = x(τj), uj = u(τj), and x′j = x′(τj),

where the subscript “j” is prescribed in Figure 3.1. Prime indicates a derivative

with respect to normalized time τ , i.e., x′j = ∆tif(tj,xj,uj,µ). Only the four

points xi, xi,2, xi,3, xi+1 are necessary to uniquely determine the polynomials repre-

sented by equation (3.77). Additionally there are three defect points and, therefore,

seven points total are required to construct the Gauss-Lobatto integration constraints.

The points are distributed on the normalized time interval consistent with the set

{0, τi,1, τi,2, τi,c, τi,3, τi,4, 1}. The normalized time values τi,1, τi,2, τi,c, τi,3, τi,4 are

the same for every segment and selected to minimize the local truncation error. (See

Table 3.1.) Recall that the known points along the segment are xi, xi,2, xi,3, xi+1.

From equation (3.77), the points must satisfy

{xi x′i xi,2 x′i,2 xi,3 x′i,3 xi+1 x′i+1

}
= MB (3.78)

Figure 3.1. The Seventh-Degree Gauss-Lobatto Node Segment
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where

B =




1 0 1 0 1 0 1 0

0 1 τi,2 1 τi,4 1 1 1

0 0 τ 2
i,2 2τi,2 τ 2

i,3 2τi,3 1 2

0 0 τ 3
i,2 3τ 2

i,2 τ 3
i,3 3τ 2

i,3 1 3

0 0 τ 4
i,2 4τ 3

i,2 τ 4
i,3 4τ 3

i,3 1 4

0 0 τ 5
i,2 5τ 4

i,2 τ 5
i,3 5τ 4

i,3 1 5

0 0 τ 6
i,2 6τ 5

i,2 τ 6
i,3 6τ 5

i,3 1 6

0 0 τ 7
i,2 7τ 6

i,2 τ 7
i,3 7τ 6

i,3 1 7




(3.79)

Since the left side of equation (3.78) is given and B is a known (constant) matrix,

the coefficients M are computed from equation (3.78). Then, to satisfy the system

equations, the time derivatives of the polynomials must also satisfy the system ODEs

at the defect points xi,1, xi,c, and xi,4. (See Figure 3.2 for a geometric representation

of the defect constraints.) Using equation (3.77), the interpolated expressions for

these quantities are

xi,1 = a1
ixi + a1

i,2xi,2 + a1
i,3xi,3 + a1

i+1xi+1

+∆ti
(
v1
i fi + v1

i,2fi,2 + v1
i,3fi,3 + v1

i+1fi+1

) (3.80)

xi,c = acixi + aci,2xi,2 + aci,3xi,3 + aci+1xi+1

+∆ti
(
vcifi + vci,2fi,2 + vci,3fi,3 + vci+1fi+1

) (3.81)

xi,4 = a4
ixi + a4

i,2xi,2 + a4
i,3xi,3 + a4

i+1xi+1

+∆ti
(
v4
i fi + v4

i,2fi,2 + v4
i,3fi,3 + v4

i+1fi+1

) (3.82)

where fj = f(tj,xj,uj,µ), and unless otherwise specified, the control is based upon

a piecewise linear parameterization between the nodes, i.e.

u(t) =

(
ui+1 − ui
ti+1 − ti

)
t+ ui, ti ≤ t ≤ ti+1 (3.83)

The resulting defect constraint equations are

∆i,1(xi,ui,xi,2,xi,4,xi+1,ui+1,µ) = b1
ixi + b1

i,2xi,2 + b1
i,3xi,3 + b1

i+1xi+1

+∆ti
(
w1
i fi + w1

i,1fi,1 + w1
i,2fi,2 + w1

i,3fi,3 + w1
i+1fi+1

)
= 0

(3.84)
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∆i,c(xi,ui,xi,2,xi,4,xi+1,ui+1,µ) = bcixi + bci,2xi,2 + bci,3xi,3 + bci+1xi+1

+∆ti
(
wcifi + wci,2fi,2 + wci,cfi,c + wci,3fi,3 + wci+1fi+1

)
= 0

(3.85)

∆i,4(xi,ui,xi,2,xi,4,xi+1,ui+1,µ) = b4
ixi + b4

i,2xi,2 + b4
i,3xi,3 + b4

i+1xi+1

+∆ti
(
w4
i fi + w4

i,2fi,2 + w4
i,3fi,3 + w4

i,4fi,4 + w4
i+1fi+1

)
= 0

(3.86)

The coefficients a, v, b, and w that appear in equations (3.80)-(3.86) are the same for

every segment, and are listed in Table 3.1.

3.5.2 Establishing the Free Variables and Constraints

To compute a continuous solution, the defects ∆i,1, ∆i,c, and ∆i,4, for every

segment must be reduced to zero. This step is accomplished by allowing xi and

ui to vary at every node point, and the internal collocation points xi,2 and xi,3 to

vary as well. Therefore, there are a total of 18n − 12 defect constraint equations

and 21n− 12 free variables for the n nodes (with an additional p free variables that

represent parameters, if they are present in the problem). It is also often necessary

to apply control constraints ψi over the entire path. Typically, this control constraint

Figure 3.2. Defect Constraint Illustration
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Table 3.1 List of Constants for Numerical Integration

τi,1 = +8.48880518607166d-2

τi,2 = +2.65575603264643d-1

τi,c = +5d-1

τi,3 = +7.34424396735357d-1

τi,4 = +9.15111948139283d-1

a1
i = +6.18612232711785d-1 b1i = +8.84260109348311d-1

a1
i,2 = +3.34253095933642d-1 b1i,2 = −8.23622559094327d-1

a1
i,3 = +1.52679626438851d-2 b1i,3 = −2.35465327970606d-2

a1
i+1 = +3.18667087106879d-2 b1i+1 = −3.70910174569208d-2

v1
i = +2.57387738427162d-2 w1

i = +1.62213410652341d-2

w1
i,1 = +1.38413023680783d-1

v1
i,2 = −5.50098654524528d-2 w1

i,2 = +9.71662045547156d-2

v1
i,3 = −1.53026046503702d-2 w1

i,3 = +1.85682012187242d-2

v1
i+1 = −2.38759243962924d-3 w1

i+1 = +2.74945307600086d-3

aci = +1.41445282326366d-1 bci = +7.86488731947674d-2

aci,2 = +3.58554717673634d-1 bci,2 = +8.00076026297266d-1

aci,3 = +3.58554717673634d-1 bci,3 = −8.00076026297266d-1

aci+1 = +1.41445282326366d-1 bci+1 = −7.86488731947674d-2

vci = +9.92317607754556d-3 wci = +4.83872966828888d-3

vci,2 = +9.62835932121973d-2 wci,2 = +1.00138284831491d-1

wci,c = +2.43809523809524d-1

vci,3 = −9.62835932121973d-2 wci,3 = +1.00138284831491d-1

vci+1 = −9.92317607754556d-3 wci+1 = +4.83872966828888d-3

a4
i = +3.18667087106879d-2 b4i = +3.70910174569208d-2

a4
i,2 = +1.52679626438851d-2 b4i,2 = +2.35465327970606d-2

a4
i,3 = +3.34253095933642d-1 b4i,3 = +8.23622559094327d-1

a4
i+1 = +6.18612232711785d-1 b4i+1 = −8.84260109348311d-1

v4
i = +2.38759243962924d-3 w4

i = +2.74945307600086d-3

v4
i,2 = +1.53026046503702d-2 w4

i,2 = +1.85682012187242d-2

v4
i,3 = +5.50098654524528d-2 w4

i,3 = +9.71662045547156d-2

w4
i,4 = +1.38413023680783d-1

v4
i+1 = −2.57387738427162d-2 w4

i+1 = +1.62213410652341d-2
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is implemented to force the control direction, ui = ûi, as indicated in equation (2.30)

to possess unit magnitude. This requirement is enforced by adding n additional

constraints

ψi (ui) = ‖ui‖2 − 1 = 0 for i = 1, 2, .., n (3.87)

Alternatively, equation (3.87) can be removed, leaving ui unconstrained, and then

impose equation (2.30) directly in the equations of motion. This choice reduces the

number of constraints, but there is a chance that unbounding ui leads to numerical

ill-conditioning. Additional inequality path constraints are also easily included in the

collocation scheme. These constraints are useful in bounding the entire solution to a

particular region of the phase space. The path constraints are of the form ḡ (x,u) < 0,

where ḡ is an m-element column vector. The continuous constraints are discretized,

and converted to m (3n− 2) equality constraints by introducing m (3n− 2) slack

variables, i.e.

gi (xi,ui,ηi) = ḡi (xi,ui) + η2
i = 0 for i = 1, 2, .., n

gi,2 (xi,2,ηi,2) = ḡi,2 (xi2) + η2
i,2 = 0 for i = 1, 2, .., n− 1

gi,3 (xi,3,ηi,3) = ḡi,3 (xi3) + η2
i,3 = 0 for i = 1, 2, .., n− 1

(3.88)

where the η2 terms are vectors, i.e., the element-wise square of the m-element slack

variable η, and of the same dimension. Finally, it is sometimes useful to constrain

specific node states and/or control. The general form for these constraints is

hr = 0 for r = 1, 2, .., l (3.89)

In contrast to the constraints in equation (3.88), the constraints in equation (3.87)

and equation (3.89) are scalar-valued.

In summary, there are a total of 21n + m (3n− 2) − 12 + p free parameters in

general: 6n associated with the node states, 3n associated with the node controls,

12n− 12 associated with the states at the internal points, m (3n− 2) for all the slack
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variables, and p associated with the parameter vector µ. Therefore, the vector X is

defined as

XT =
(
xT1 ,u

T
1 ,x

T
1,2,x

T
1,3,x

T
2 ,u

T
2 ,x

T
2,2,x

T
2,3, ...,x

T
n ,u

T
n ,

ηT1 ,η
T
1,2,η

T
1,3,η

T
2 ,η

T
2,2,η

T
2,3, ...,η

T
n ,µ

T
) (3.90)

There are also a total of 19n+m (3n− 2)+l−18 constraints: 18n−18 for the defects,

n for the node controls, m (3n− 2) for the path constraints, and l for additional node

constraints. The full constraint vector is

F (X)T =
(
∆T

1,1,∆
T
1,c,∆

T
1,4,∆

T
2,1,∆

T
2,c,∆

T
2,4, ...,∆

T
n−1,1,∆

T
n−1,c,∆

T
n−1,4,

ψ1, ψ2, ..., ψn, g
T
1 , g

T
1,2, g

T
1,3, g

T
2 , g

T
2,2, g

T
2,3, ..., g

T
n , h1, h2, ..., hl

) (3.91)

Then, the goal is to either determine a nearby feasible solution X∗∗ that satisfies the

constraint F (X∗∗) = 0, or to solve the transcription problem of determining X∗∗

that satisfies F (X∗∗) = 0 and optimizes F0(X∗∗) using nonlinear programming.

Modification for Thrusting and Coasting Arcs

When a CSI engine such as a solar electric thruster is employed, extra development

of the constraints and free variables is required to accommodate an arbitrary number

of thrusting and coasting arcs. It is assumed that CSI engines operate on the principle

of “bang-bang” control and, thus, either T = 0 or T = Tmax for an arbitrary arc that

is composed of many Gauss-Lobatto node segments. Furthermore, since no fuel is

being expended, the spacecraft mass must remain unchanged when the spacecraft is

coasting. The basic thrust-coast structure is depicted in Figure 3.3, where coast arcs

are blue and thrust arcs are red. A similar problem structure appears in Enright, [39]

however, the algorithm in the reference accommodates only two thrust arcs. In this

analysis the number of thrust arcs, k, is predetermined and a coast arc is always

inserted between two thrust arcs. For example, for k = 2 there are two thrust

arcs separated by one coast arc: the structure is simply thrust-coast-thrust. The

collocation strategy then shifts the arcs in configuration space as necessary to satisfy

the problem constraints, including the optimality conditions for direct transcription.
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A relationship between time and initial mass is available from the denominator

of equation (2.33). Therefore, the initial mass m0,j for each thrust arc is adjusted

accordingly, so that the time is zero at the beginning of the arc. (For coasting when

an RTBP model is used, no adjustment is necessary due to time invariance in the

model.) The total times along the jth arc, that is, Tb,j and Tc,j, are specified as

problem variables, and so the strategy is capable of removing unnecessary arcs by

reducing Tb,j or Tc,j to zero. Inequality constraints ensure that Tb,j and Tc,j remain

nonnegative. The black dots along the trajectory in Figure 3.3 represent nodes, with

nb,j indicating the number of nodes for the jth thrust arc and similarly for nc,j. Each

value of nb,j and nb,c is predetermined, so that the number of nodes per arc is a user-

defined input. The shared node that connects thrust and coast arcs is formulated

as part of the thrust arc. Node times are specified as a fixed ratio of the total time

for each arc. For example, for the jth thrust arc, the times corresponding to each

node are specified as Tb,j ×{0, δ2, δ3, ..., δnb,j−2, δnb,j−1, 1}, where the ratios δi are such

that 0 < δ2 < δ3 < · · · < δnb,j−2 < δnb,j−1 < 1. For each arc, the time ratios δi are

fixed, but may be different for different arcs. The number and spacing of the nodes

is determined by the initial accuracy desired for the solution, although there may be

a change during mesh refinement.

For thrust arcs, the problem dependent parameters are µi = (Tb,j,m0,j)
T . Thus,

Tb,j and m0,j are assumed to be independent variables for each node segment. For

coast arcs, the problem dependent parameter is just µi = Tc,j. Consequently, con-

straint equations are applied to enforce the requirement that µi be the same for each

node segment along the arc. The constraint equations are imposed on adjacent node

segments, or

hl = µl − µl−1 = 0 (3.92)

Here, l = 2, .., nb,j − 1 and l = 2, .., nc,j − 1, for thrusting and coasting, respectively.

Formulating the problem in this manner may appear nonintuitive, seeming to increase

the size of the problem unnecessarily. However, the assumption of independent vectors

µi significantly increases the sparsity of DF and DF · DF T . Computing DF is
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Figure 3.3. Thrust-Coast Problem Structure.

also more tractable, since now all the constraints do not depend on single variables

representing Tb,j and m0,j, or Tc,j. Manipulating the dependencies in this way can

impact the structure of DF considerably, and may mean the difference between an

algorithm that requires a few seconds to complete versus one that terminates only

after many hours.

Constraints are also imposed on each arc. To ensure that Tb,j and Tc,j remain

nonnegative and that mass is continuous, enforce

cb,j = −Tb,j + ν2
b,j = 0, for j = 1, .., k

cc,j = −Tc,j + ν2
c,j = 0, for j = 1, .., k − 1

ψb,j = m0,j − (m0,j−1 − T · Tb,j−1/(g0Isp)) = 0, for j = 2, .., k

(3.93)

where νb,j and νc,j are new slack variables introduced into the problem. Equa-

tion (3.93) is only applied to the last node segment along each arc, i.e., the variables

that appear in equation (3.93) correspond to µnb,j−1 and µnc,j−1.
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For all the phases, the problem variables and constraints are composed of those

from each thrust and coast arc. Therefore, the construction of X and F is the same

for all three phases. That is,

XT =
(
Y T
b,1,Y

T
c,1,Y

T
b,2,Y

T
c,2, ...,Y

T
b,k, νb,1, νc,1, νb,2, νc,2, ..., νb,k

)
(3.94)

and

F (X)T =
(
GT
b,1,G

T
c,1,G

T
b,2,G

T
c,2, ...,G

T
b,k, cb,1, cc,1, cb,2, cc,2, ..., cb,k,

ψb,2, ψb,3, ..., ψb,k)
(3.95)

where the vectors Yb,j and Yc,j are comprised of the variables for the thrust and coast

arcs, respectively. Similarly, the constraint vectors for each arc are Gb,j and Gc,j.

That is,

Y T
b,j =

(
xT1 ,u

T
1 ,x

T
1,2,x

T
1,3,µ

T
1 ,x

T
2 ,u

T
2 ,x

T
2,2,x

T
2,3,µ

T
2 , ...,x

T
nb,j
,uTnb,j

,

ηT1 ,η
T
1,2,η

T
1,3,η

T
2 ,η

T
2,2,η

T
2,3, ...,η

T
nb,j

)

Y T
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T
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T
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T
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T
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T
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T
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)

GT
b,j =

(
∆T
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(3.96)

The vectors gi, gi,2, and gi,3 represent possible path constraints imposed on the trajec-

tory, and the associated slack variables are ηi, ηi,2, and ηi,3. Notice that the variables

in Yc,j begin and end at internal points along the node segment since the shared end-

point nodes are already included in Yb,j. Note also that Gb,j depends exclusively on

Yb,j, whereas Gc,j depends on Yc,j and also the shared node states between adjacent

thrust arcs.
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3.5.3 Optimization via Nonlinear Programming

After a thorough exploration of the feasible design space, extremal solutions are

often desired. Obtaining a general extremal trajectory implies the minimization of

an objective function of the design variables. This problem can succinctly be posed

as

Min J = F0(X)

subject to F (X) = 0
(3.97)

The problem is still solved with equation (3.2). However, now αd and S must di-

rect Xj+1 to detect the convex, stationary point associated with the cost function,

in addition to satisfying the nonlinear constraints. This type of problem is a non-

linear programming problem (NLP), and there are many approaches that produce

solutions. In general, however, this parameter optimization formulation does not

explicitly involve the Euler-Lagrange constraints and, hence, the objective function

is directly minimized without resorting to costate differential equations. It can be

demonstrated, however, that the result of the direct method implicitly satisfies the

Euler-Lagrange equations. [83]

One NLP technique is sequential quadratic programming (SQP). This process

first uses minor iterations for constructing S, and then major iterations with equa-

tion (3.2). The minor iterations involve solving a quadratic programming (QP) sub-

problem. The constraints associated with this QP sub-problem involve linearization

of the elements of F (X), and the objective function of the sub-problem is a quadratic

approximation to the Lagrangian function. The sub-problem is posed as

Min Q (Sq) = F0(Xj) +DF0 (Xj)Sq + 1
2
SqTGSq

subject to DF (Xj)Sq + βdF (Xj) = 0
(3.98)

Here, q is the minor iteration number, G is a positive-definite matrix that approaches

the Hessian of the Lagrangian during an iterative procedure, and the scalar βd is

a problem-dependent parameter, where typically 0 < βd ≤ 1. Once S is obtained

from the QP sub-problem, the major iterations determine αd from a one-dimensional
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search on the first-order conditions. (For full details on an SQP algorithm, see Gill

et al. [40])

Almost all of the necessary ingredients for the direct transcription process are

available from the formulation of the preceding feasible solution. In fact, the only

additional information required is the set of relationships for F0(X) and DF0(X).

For most NLP algorithms to solve the direct transcription procedure, including SQP,

this first-order information is sufficient. Hence, direct transcription is a natural design

transition from the feasible solution method using collocation. As with the approach

to produce the feasible solution, the efficient handling of the often large, sparse Ja-

cobian matrix DF is crucial. The general-purpose NLP software package SNOPT is

one useful tool to solve such problems, while also exploiting the sparse Jacobian ma-

trix structure for economical computation. [40] The NLP problem is also continually

re-solved during nodal refinement iterations to converge upon a desired integration

error tolerance, while maintaining an optimal solution. [84]

3.5.4 Multi-Phase Optimization

The solution for a feasible or an optimal trajectory may also involve multiple

phases as part of one large corrections process. For example, the design of a solar

electric propulsion pole-sitter mission might involve several transfer phases in addition

to the coverage orbit phase. Furthermore, there is no requirement that a given phase

possess the same system model as another phase. By considering a combination of

the problem into one large process, the functional dependencies of all phases can be

considered in the optimization of a single phase while at the same time satisfying

all of the constraints. Returning to the electric propulsion pole-sitter example, this

implies that if a maximum time-of-flight for the coverage orbit is the optimization

objective, then the transcription process is capable of saving fuel in the transfer

phases and expending that fuel instead during the orbit for additional flight time.

This example, which will be explored throughout this investigation, highlights how
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the multi-phase problem formulation is capable of further improving the value of an

optimization objective. For numerical efficiency, the phases are initially assumed to

be independent, and boundary conditions are required to ensure (i) that the states,

parameters, and/or controls match user-specified values at the beginning and end

of the complete trajectory, and (ii) that there exists state, parameter, and control

continuity at the interface between each phase. Dependency between the phases

is established by requirement (ii). These boundary conditions are straightforward

to formulate, and comprise the constraint vector FBC. Then, to solve the larger

collocation problem for K phases, the variable vector becomes

XT =
(
XT

1 ,X
T
2 , ...,X

T
K

)
(3.99)

The respective constraints of the problem simply “stack” in similar fashion, and the

entire constraint vector is

F T =
(
F T

1 ,F
T
2 , ...,F

T
K ,F

T
BC

)
(3.100)

Since the phases are initially assumed to be independent, the Jacobian matrix is

block diagonal, composed of the Jacobian sub-matrices for each phase and the highly

sparse matrix DFBC(X). Thus, DF (X) is easily constructed by inserting the sub-

matrices DF1(X1), DF2(X2), ..., DFK(XK) into the appropriate locations, and com-

puting DFBC(X). The resulting block diagonal DF (X) is extremely sparse, since

each sub-matrix is also sparse.

A feasible solution is still calculated with equation (3.2) and equation (3.11) us-

ing equation (3.99) and equation (3.100), or with nonlinear equation solving pack-

ages. Depending on the problem sensitivity, quadratic convergence in the Newton and

minimum-norm schemes can be sacrificed by reducing the step length αd as necessary,

however, αd is typically reset to one to regain the quadratic rate when entering the

basin of attraction. (The nonlinear equation solver packages will automate this pro-

cedure.) A feasible solution serves as an initial guess for the optimization procedure
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with NLP software, and a performance index composed of variables from any phase

j may be minimized, i.e.

Min F0(Xj) (3.101)

subject to the equality constraints in equation (3.100).

3.5.5 Mesh Refinement

An optimal mesh (1) equally distributes the error associated with each segment,

and (2) reduces the equally distributed error below a user-specified tolerance. There-

fore, mesh refinement is based on an error analysis between the actual and approxi-

mate polynomial solutions. The previously described Gauss-Lobatto scheme possesses

an order of accuracy equal to 12. Since the order of the method is greater than eight

(one more than the degree), the error for the ith segment is

ei = C∆t8i
∥∥x(8)

∥∥
i
+O(∆t9i ) (3.102)

where x(8) is the eighth time derivative of x. Using the analysis presented in the

Appendix from Russell and Christiansen, [85] the constant C (dimensionless) for the

7th-degree Gauss-Lobatto scheme is

C = 2.93579395141895d-9 (3.103)

In general, x(8) is unknown. In fact, using the 7th-degree polynomial representation

in equation (3.77), x(8) = 0. De Boor [86] circumnavigates this potential problem by

approximating ||x(8)|| with the piecewise constant function x(7)(τ) and a difference

formula. From de Boor

||x(8)|| ≈ θΠ(t)
4
=





max

[
2
|y1 − y2|

∆t1 + ∆t2

]
, on (t1, t2)

max

[ |yi−1 − yi|
∆ti−1 + ∆ti

+
|yi+1 − yi+2|

∆ti+1 + ∆ti+2

]
, on (ti, ti+1), i = 2, ..., n− 2

max

[
2
|yn−2 − yn−1|

∆tn−2 + ∆tn−1

]
, on (tn−1, tn)

(3.104)
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where

yi = x(7)(τ)/∆t7i on (ti, ti+1)

= 7! {xi x′i xi,2 x′i,2 xi,3 x′i,3 xi+1 x′i+1

}
× b/∆t7i

(3.105)

The vector b in equation (3.105) is the last column of B−1.

Equidistribution

A potential solution that satisfies the problem constraints may have widely varying

error ∆ei for the initial mesh Π. The function θΠ(t) can be used to determine a new

mesh that asymptotically equidistributes the error. The new mesh points are selected

such that

ti+1 = I−1

[
iI(tn)

n− 1

]
, i = 1, ..., n− 2 (3.106)

where

I(t) =

∫ t

t1

θΠ(s)1/8ds (3.107)

Since θΠ(t) is a piecewise constant function, the integral I(t) is a monotonically

increasing piecewise linear function and can easily be determined using a rectangle

rule. In equation (3.106), I−1 represents the inverse integral, and the process reduces

to solving for t where I(t) takes the value in the argument. Given the new mesh, the

polynomial expressions are used to interpolate the state variables associated with the

new times. Interpolating the new state variables minimizes the constraint violation

introduced from the new mesh. The slack variables are selected such that the path

constraints are initially satisfied. A new solution with a better equidistribution of

error is then computed with Newton’s method. The process repeats until the error is

equally distributed and within a specified tolerance.
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Meeting an Integration Tolerance

Given a specified number of nodes n, generally one equidistribution iteration suf-

ficiently distributes the error. If the error has been sufficiently equidistributed, the

number of nodes is updated with

n =

(
ē

ε/10

)1/8

(3.108)

The variable ē represents the mean error associated with the equidistributed mesh

(ē ≈ ∆ei). The user-defined tolerance is ε. Equation (3.108) determines the num-

ber of nodes required such that the error will reach an order of magnitude less than

the specified tolerance. Given the new number of nodes n, a new mesh Π is then

constructed with equation (3.106). Again, the state variables for the mesh are inter-

polated from the polynomial and slack variables are computed that initially satisfy

the path constraints. The approximation is re-converged with a Newton’s method,

minimum norm, or nonlinear equation solving procedure for feasible solutions or NLP

software for optimization. A series of equidistribution iterations brings the maximum

error (and, therefore, also the maximum difference in error) below ε. In summary,

the algorithm runs as follows:

1. Obtain an initial guess X and Π.

2. Update X until either:

a. F (X) = 0 using Newton’s method or a nonlinear equation solving package for

a feasible solution, or

b. F (X) = 0 and F0 is minimized using NLP software for an optimal solution.

3. Update Π consistent with equation (3.106) and construct the new X.

4. Repeat 2-3 until the error is approximately equidistributed (start with 2, end with

2).

5. Update n using equation (3.108).
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6. Repeat 2-3 until the error is below ε (start with 3, end with 2).

The process usually requires only a few refinements to meet the desired tolerance.
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4. DESIGN AND SELECTION OF COVERAGE ORBITS

The end-to-end trajectory design and optimization of low-thrust, lunar south pole

coverage missions begins with the design and selection of a coverage orbit. The

design process initially involves a thorough exploration of many different types of

orbits that are capable of providing continuous communications to a lunar ground

station. This rapid generation and exploration process is decoupled from an explicit

optimization objective, and is especially useful because a large body of candidate

solutions are investigated even in the presence of changing optimization goals. After

extensive design and investigation of the coverage orbits, four possible orbit types

have emerged: two-body lunar frozen orbits, Earth-moon L1 and L2 libration point

orbits, and pole sitter orbits with either a solar sail or solar electric propulsion. The

first two orbit classes have been largely explored elsewhere, but brief summaries are

warranted for completeness. The novel pole-sitter orbits are explored in detail, and

are achievable with an efficient means of propulsion. Given that only small thrust

magnitudes are available for maintaining a long-duration pole-sitter, however, locating

an accessible region for continuous coverage requires the exploitation of the RTBP

“gravity wells” near the Earth-moon L1 and L2 points, as detailed in Section 2.5.

With little intuition other than this accessible region for the pole-sitter, a crude

initial guess is adjusted into an optimized coverage orbit with the collocation and

direct transcription approach. The solar sail pole-sitters serve as a long-duration

option for lunar coverage, and are immediately transitioned and validated within a

higher-fidelity model. Near-optimal solutions in terms of minimum elevation angle

performance are also generated. The solar electric propulsion option is a temporary

solution due to fuel limitations, and therefore the trajectory development in this

chapter is dedicated only to obtaining a preliminary orbit. In later chapters, the

solar electric propulsion pole-sitter orbit is combined with the transfer phases as part
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of a larger optimization problem to maximize the time-of-flight for lunar surveillance.

Each orbit option ultimately exhibits several advantages and disadvantages for a

potential lunar south pole coverage mission, therefore a qualitative summary of the

options is provided.

4.1 Lunar Frozen Orbits

The type of orbit originally conceived for a lunar south pole coverage mission is

the lunar frozen orbit and has been thoroughly explored by Ely et al., [47,48] Folta et

al., [49] as well as Elipe. [87] While these orbits are not explored in this work, they are

briefly mentioned to allow context for the various orbit options that follow. According

to Prado, [88] the conditions that produce a lunar frozen orbit require a selection of

lunar orbital elements for the values of argument of periapse, ω$, inclination, i$,

and eccentricity, e$, such that

de$
dt

=
di$
dt

=
dω$
dt

= 0 (4.1)

in the traditional third-body perturbing problem. Here, da$/dt = 0 is already true,

and a detailed analysis on a double-averaged form of Lagrange’s planetary equations

reveals that the following conditions

sin 2ω$ = 0 and e2$ +
5

3
cos2 i$ = 1 (4.2)

satisfy equation (4.1). Thus, the conditions of interest for lunar frozen orbits oc-

cur when ω$ = 90◦, e$ = 0.6, and i$ = 56.2◦. While these conditions are not

precisely satisfied in higher-order models, they exhibit acceptable bounded behavior

with no fuel expenditure in simulations for up to 10 years using a low-altitude orbit

with a$ = 15, 000 km. [50] The low-altitudes, however, imply that line-of-site losses

occur frequently enough to necessitate two or three spacecraft to ensure continuous

coverage of the lunar south pole. The required inclinations also limit the maximum

elevation angle performance of the spacecraft with respect to the lunar horizon. (The

current simulations indicate that at least one spacecraft remains above 15◦ at all
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times.) This need for multiple spacecraft, the relatively low elevation angles, as well

as the difficulties of departing these stable orbits has motivated the exploration of

the additional orbit options. For further detail on this frozen orbit option for lunar

coverage, see [47–50].

4.2 Libration Point Orbits

Additional lunar south pole coverage orbit options for continuous communications

emerge from exploiting the properties of the lower-fidelity, RTBP model. Families of

orbits are available with maximum lunar altitudes on the order of 60,000-100,000 km.

In the RTBP, these orbits share the common symmetry of a perpendicular crossing

with the x̂-ẑ plane, and therefore the shooting algorithm applied in Section 3.3.3 is

immediately employed. The maximum altitude bound of 100,000 km from the ground

site is assumed as a communications instrument constraint; a minimum bound of 50

km is selected arbitrarily to avoid a subsurface arc. Orbits that are within the ac-

ceptable altitude ranges from the L1 and L2 southern halo orbit families appear in

the MCR frame in Figure 4.1. [51], [89] The halo orbits (a term first coined by Far-

quhar [90]), bifurcate from both the L1 and L2 Lyapunov family of planar orbits,

and resemble a halo-like shape about the moon when viewed from the Earth in the

rotating frame. The orbits are particularly effective in the lunar south pole cover-

age problem since the motion is almost always within line-of-of sight to the Earth

due to the periodicity within the rotating frame, and the orbits maintain large max-

imum elevation angles with respect to the lunar horizon. (The best configurations

result in at least one spacecraft remaining 65◦ above the horizon at all times, in

contrast with only 15◦ for the lunar frozen orbits.) The family is composed of halo

orbits, with a shape that resembles the traditional “halo”, as well as highly “elliptic”,

near-rectilinear orbits with passage very close to the moon’s surface. For almost the

entire period of motion, a spacecraft in any near-rectilinear halo orbit possesses a

line-of-sight to the lunar south pole. The halo orbit families have been thoroughly
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investigated by Farquhar, [90], Breakwell and Brown, [91], Howell, [92], and Gómez

et al. [93] imum elevation angles with respect to the lunar horizon. (The best config-

urations result in at least one spacecraft remaining 65◦ above the horizon at all times,

in contrast with only 15◦ for the lunar frozen orbits.) The family is composed of halo

orbits, with a shape that resembles the traditional “halo”, as well as highly “elliptic”,

near-rectilinear orbits with passage very close to the moon’s surface. For almost the

entire period of motion, a spacecraft in any near-rectilinear halo orbit possesses a

line-of-sight to the lunar south pole. The halo orbit families have been thoroughly

investigated by Farquhar, [90], Breakwell and Brown, [91], Howell, [92], and Gómez

et al. [93]

Members of the southern L1 and L2 vertical orbit family are depicted in Figure 4.2.

The motion consists of a doubly symmetric, “figure-8” shaped pattern when viewed in

the ŷ-ẑ plane. These orbits occur near the libration points. The existence of the orbits

was predicted by Moulton in 1920, [94] and they have also been studied recently by

Dichmann et al. [95] Large amplitude L1 vertical orbits terminate when they become

exactly vertical, while large amplitude L2 vertical orbits encompass both primaries

(although these trajectories are not included due to the mission constraints). The

orbits also possess the characteristic of bending toward both the north and south

poles of the moon, a favorable trait for maintaining line-of-sight over a pole. An

additional family also includes orbits that remain in view of the lunar south pole for

significant intervals of time. Some of these orbits possess characteristics similar to

the near-rectilinear halo orbits. The orbits bifurcate from a 6-day near-rectilinear L2

halo orbit and might be described in terms of a “butterfly” shape. (See Figure 4.3).

Comparable motions around the smaller primary have been documented by Robin and

Markellos. [96] Similar to vertical orbits, the motion in a butterfly orbit resembles

a“figure-8” shape, however, these orbits wrap around both the near- and far-side of

the moon, such that a direct line-of-sight to the lunar south pole exists for nearly the

entire orbital period.
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The time to complete one full period is used as a design parameter for orbit

selection to be applied in the coverage problem using libration point orbits. Let the

maximum excursion distance along the rotating x-axis identify a particular orbit, i.e.,

the maximum |xm| value along an orbit. In Figure 4.4, orbital periods are plotted

against maximum excursion distance during initial design selection. Commensurate

orbits are sought to phase multiple spacecraft for complete line-of-sight coverage.

One such region might consist of orbits in L1 and L2 halo families sharing periods

between 7.9 and 12.2 days. An example that exhibits feasible south pole coverage is

a 12-day L1 and 12-day L2 halo orbit combination, illustrated by the black dashed

line in Figure 4.4. Another region with commensurate combinations consists of orbits

with a ratio of periods equal to 2:1, that is, one period is exactly twice that of the

other. Note that L2 halo orbits with periods between 6.0 and 7.2 days exhibit this

behavior with the entire L2 butterfly orbit family. This is not actually surprising

when the shapes of the orbits are viewed in Figure 4.1 and Figure 4.3. An example

from this region consists of a 14-day L2 butterfly orbit and a 7-day L2 halo orbit

combination, as noted by the two red dashed lines in Figure 4.4. The information in

Figure 4.4 serves as a basis for the determination of many other commensurate orbit

combinations that lead to complete south pole coverage. Stability criteria may also

play a factor in the selection of the periodic orbits of interest. [51]

Once two libration point orbits of given periods are selected, they are phased

accordingly to maximize the out-of-plane distance |zm| below the Earth-moon funda-

mental plane such that at least one spacecraft maintains line-of-sight, i.e., to maintain

100% line-of-sight and minimize the maximimum value of zm − r$ over the cover-

age duration. This design parameter is chosen for avoidance of line-of-sight obstacles

such as the lip of a crater, or other geographical terrain. As an example, consider

two spacecraft in a single L1 halo orbit. A typical two-spacecraft coverage scheme

is achieved by displacing the motion of each spacecraft by a half-period. Thus, the

two spacecraft are then phase-shifted in the L1 halo orbit with the corresponding zm

displacement of each spacecraft as a function of time appearing in Figure 4.5. The
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dashed line highlights the zm value at which the two spacecraft possess a common

zm component but are moving in opposite zm directions along the orbit. The dashed

line in Figure 4.5 demonstrates that the zm crossing occurs significantly below the

fundamental plane, ensuring that at least one spacecraft is always within direct line of

sight to the south pole. Due to the symmetry of the RTBP, several points will lie on

the dashed line, but the behavior is slightly perturbed when ephemerides and lunar

librations are incorporated in higher-fidelity models. While further detailed analy-

sis of these libration point orbit families for lunar coverage is not a central focus of

this work, extensive further investigation appears in [51] and [89]. The lower-fidelity,

RTBP solutions presented here are easily transitioned to a higher-fidelity model using

a multiple shooting algorithm as described in [75]. All of the orbit solutions require

stationkeeping propellant, but previous analysis indicates that, among the options in-

vestigated for lunar south pole coverage, the total ||∆Ṽ || ranges between 4.82-171.82

m/s per year for each spacecraft. While the expenditure of any ||∆Ṽ || is disadvan-

tageous compared to the lunar frozen orbits, which require none, the instability of

the libration point orbits is advantageous for the generation of fuel-efficient transit

between orbits. This possibility is explored in the next chapter.

4.3 Solar Sail Pole-Sitter Orbits

With the use of an efficient long-term thrust device, the number of spacecraft

for continuous coverage of the lunar south pole can be reduced to just one. These

“pole-sitter” orbits require only a low-thrust component of force by exploiting the

system properties of the lower-fidelity, RTBP system model. One possible thruster

choice that supplies an additional force to produce a long-duration pole-sitter orbit

is a solar sail. The current technology readiness level of a solar sail with the acceler-

ation magnitudes required for such a mission is not adequate to exploit all possible

orbits. However, sails are in ongoing development and the proposed ranges have

been suggested in recent technology demonstration proposals. [24] Many complexities
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Figure 4.4. Period Versus Maximum xm Distance from the Moon.

Figure 4.5. Out-of-Plane Displacement, zm, in the Rotating Frame
for Two Spacecraft in 12-day L1 Halo Orbits.
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are involved with actually computing pole-sitter orbits. Little intuition exists for the

shape of the orbits or for the corresponding control history that is required to maintain

them. Furthermore, the high sensitivity to variations in any initial guess demands ro-

bust convergence. There are also many potential methods of measuring performance,

so a solution that is decoupled from the optimization of a cost function is initially

desired. For these reasons, the collocation approach detailed in Sections 3.5.1-3.5.2

is employed, along with the mesh refinement strategy from Section 3.5.5 using the

minimum-norm strategy outlined in Section 3.1. After the solution approach is im-

plemented, optimization is then approached implicitly by adjusting the appropriate

path constraint boundaries.

When initially computing the solar sail pole-sitter orbits, the complexity of the

problem is reduced by searching for feasible solutions that are singly periodic in the

lower-fidelity, RTBP model. Then, due to their ergodic behavior, the solutions are

preserved for all time within the model in equation (2.36). These initial periodic orbits

occur at periods commensurate with the lunar synodic month. In this analysis, only

orbits with periods equal to one lunar synodic month are investigated, although this

is not a necessary condition for the existence of periodic solar sail orbits in the Earth-

moon RTBP. The periodic orbits are not embedded in families because solutions for

the controlled sail are not unique. As a consequence, this study is primarily an in-

vestigation of suitable point solutions for several orbits that support lunar south pole

coverage. The problem-specific periodicity constraints are introduced, and path con-

straints amenable for lunar south pole coverage are derived. The collocation method

is very robust, converging on periodic solutions when almost no information about

the orbit shape or control history is known. Finally, the process is employed to com-

pute many point solutions, but only five near-optimal solutions for lunar south pole

coverage are presented. These solutions are then validated in a higher-fidelity model

that includes ephemerides, an accurate direction of the incoming sun-to-spacecraft

line, and the effects of lunar librations.
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4.3.1 Path and Periodicity Constraints for Continuous Coverage in the

Lower-Fidelity Model

In addition to the defect constraints, preliminary design of perfectly repeating

periodic orbits in the RTBP, with solar sail thrust, are determined with periods

equal to one lunar synodic month, or period P = 2π/ωs = 29.64 days. For the

orbits in this investigation, the magnitude of the gravity gradient experienced by

the spacecraft remains relatively constant. Therefore, during implementation of the

collocation schemes for these orbits, a fixed value of ∆ti is adequate for a given number

of nodes n. Then, let ∆ti = P/ (n− 1). For a periodic orbit, the initial state and

control must equal the final state and control, or

h1 (x1, xn) = xn − x1 = 0, h4 (vx1 , vxn) = vxn − vx1 = 0

h2 (y1, yn) = yn − y1 = 0, h5 (vy1 , vyn) = vyn − vy1 = 0

h3 (z1, zn) = zn − z1 = 0, h6 (vz1 , vzn) = vzn − vz1 = 0

(4.3)

h7

(
u

(1)
1 , u(1)

n

)
= u(1)

n − u(1)
1 = 0

h8

(
u

(2)
1 , u(2)

n

)
= u(2)

n − u(2)
1 = 0

h9

(
u

(3)
1 , u(3)

n

)
= u(3)

n − u(3)
1 = 0

(4.4)

where ui =
(
u

(1)
i , u

(2)
i , u

(3)
i

)T
. These constraints, in addition to the defect constraints

and control constraints ψi = 0 in equation (3.87), are the only constraints necessary

for computing periodic orbits with the collocation schemes. The problem depen-

dent parameters µ appearing in equation (3.90) are unnecessary for this orbit design

formulation that employs piecewise linear control.

It is also necessary to apply path constraints that completely confine the space-

craft to a region of phase space. For continuous lunar south pole coverage with only

one spacecraft, path constraints are required on the minimum elevation angle φlb and

maximum altitude aub of the spacecraft from the lunar south pole, forming a “bound-
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ing cone” beneath the lunar south pole. Ignoring lunar librations, the constraints

that accomplish this objective are

gi (ri,ηi) =





sinφlb +
zi + r$
ai

ai − aub



 + η2

i = 0

gi,2 (ri,2,ηi,2) =





sinφlb +
zi,2 + r$
ai,2

ai,2 − aub



 + η2

i,2 = 0

gi,3 (ri,3,ηi,3) =





sinφlb +
zi,3 + r$
ai,3

ai,3 − aub



 + η2

i,3 = 0

(4.5)

where a =
√

(x− 1 + γ)2 + y2 +
(
z + r$

)2
and recall that r$ is the non-dimensional

mean radius of the moon. (The number of path constraints is, thus, m = 2.) The

problem is now fully defined. The design variable vector X and constraint vector F

can be constructed as indicated in equation (3.90) and equation (3.91).

4.3.2 Solving the System of Nonlinear Equations

A solution Xj+1 such that ‖F (Xj+1)‖ < ‖F (Xj)‖ until F (X) = 0 is required.

There are exactly 2n− l+6 more free variables than controls, and therefore DF (Xj)

is a non-square matrix. As a consequence, there are generally an infinite number of

solutions Xj+1 that satisfy F . Rather than satisfying an optimization objective, the

minimum-norm update to Xj+1 detailed in equation (3.11) is employed to locate a

solution nearby the initial guess that satisfies the continuous path constraints.

In general, the Jacobian matrix DF is very large and sparse. The general form of

DF for the higher-order Gauss-Lobatto method and l = 0 appears in Appendix B.

Consider a problem with only 100 nodes and with only one path constraint applied

to gi, gi,2, and gi,3 in equation (3.88), i.e., m = 1. The length of the design variable

vector X is 2,386. If there are no other node constraints (l = 0), the length of the

corresponding constraint vector F is 2,180. Then the size of DF is 2, 180 × 1, 000.

Therefore, DF is a 2, 180×2, 386 matrix. Due to the large number of design variables,

it is apparent that even these relatively smaller problems (where n = 100, m = 1,
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and l = 0) require efficient methods for the implementation of equation (3.11). The

efficiency of the computation is increased by utilizing the sparseness of DF . Recall

from equations (3.84)-(3.86) that the ∆ constraints depend only on the adjacent node

states and controls, and are independent of all the other node states and controls and

also any other variables that appear in equation (3.90). As a result, DF is primarily

a block diagonal matrix of non-zero sub-matrices D∆i,1, D∆i,c, and D∆i,4. The

sparsity of DF is even more apparent when considering Dψi, Dgi, and Dhk, all of

which only depend on specific node states and/or controls. In fact, there cannot

be more than n (60m+ 30l + 543) − 24m − 12l − 540 non-zero entries in DF . This

implies that for the case when n = 100, m = 1, and l = 0, there exist no more

than 1.51% of the total number of entries in DF , as demonstrated in Figure 4.6.

There are a number of ways to exploit the sparsity to increase efficiency. First, when

Figure 4.6. Sparse Structure of DF when n = 100, m = 1, and l = 0.
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pre-allocating the size of DF , memory is only allocated for the maximum number

of non-zero entries, and not for all of the zero entries (which can be very large).

Also, considering the sparsity of DF , perhaps the most efficient means of comput-

ing
[
DF ·DF T

]−1
F is to use sparse Cholesky factorization. The standard package

CHOLMOD is commonly used and appears in MATLAB R©. [97] Finally, to avoid the

cost of computing derivatives numerically, the non-zero elements in DF are computed

analytically whenever tractable. For example, Dψi, Dgi, Dgi,2, Dgi,3, and Dhk are

all computed analytically, and their expressions are, in general, straightforward. Un-

fortunately, the defect derivatives D∆i,1, D∆i,c, and D∆i,4 are already very involved,

and cumbersome to compute analytically. In this case, a numerical scheme may be

more tractable. For example, consider computing the 6× 30 sub-matrix D∆i,c with

the complex-step method in equation (3.23). If xi =
(
x

(1)
i , x

(2)
i , x

(3)
i , x

(4)
i , x

(5)
i , x

(6)
i

)T

and ui =
(
u

(1)
i , u

(2)
i , u

(3)
i

)T
, then
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∂∆i,c

∂xi
,
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∂∆i,c
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)
(4.6)
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)}

hd

(4.7)

and hd is chosen as a very small step at, or below, machine precision. Therefore,

all the columns of D∆i,c in equation (4.6) can be computed using equations (4.7).

Note that equations (4.7) are only numerical approximations of the actual partial

derivatives
∂∆i,c

∂x
(j)
i

,
∂∆i,c

∂u
(j)
i

,
∂∆i,c

∂x
(j)
i,2

,
∂∆i,c

∂x
(j)
i,3

,
∂∆i,c

∂x
(j)
i+1

, and
∂∆i,c

∂u
(j)
i+1

. However, the expressions are writ-

ten as equalities in equations (4.7) because, while they are only approximations, the

full advantages of double-precision accuracy are exploited. Furthermore, recall that
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unlike the alternative central differencing scheme, it is not necessary to determine an

optimal value for hd.

4.3.3 Near-Optimal Orbits in the Restricted Problem

In computing solar sail pole-sitter orbits, the elevation and altitude constraints

are a priority. For this sample scenario, no initial guess is available for X, which

includes all the node states and controls, slack variables, and additional states and

slack variables for internal points. Once the problem formulation of the constraints,

free variables, and Jacobian matrix derivatives is completed, the corrections with

equation (3.11) (or a nonlinear equation solving package) are very robust with only a

few pieces of information necessary to determine an initial guess that converges to a

periodic solution. In general, the only information required to generate a converging

initial guess is established as follows:

1. Examine Figure 2.4 and approximate a feasible region given a desired charac-

teristic solar sail acceleration κ.

2. Specify desirable values of φlb and aub that encompass this region.

3. Within the bounds imposed by φlb and aub, select any set of feasible positions

for all the position variables.

It should be noted that the first two steps in the process may be interchanged. For

example, another option is to first specify a region of interest with φlb and aub and

then determine the value of κ necessary to maintain the spacecraft within this region.

For application in the lower-fidelity, RTBP model, the orbits are initially assumed

to be stationary, therefore all the position variables are initially constant and all the

velocity variables are always initially set to zero. The initial time is also zero, i.e.,

t1 = 0. An initial guess for the slack variables is determined by solving for ηi, ηi,2,

and ηi,3 that satisfy equation (3.88).
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Initially, for all node points, δ = 0◦, and α = −35.26◦ to maximize the out-of-

plane component of sail thrust in the negative z-direction. [98] Then, for an initial

guess, the components of ûi in the rotating frame can be computed from the angles δ

and α in equation (2.32). Except for selecting a realistic value of κ from Figure 2.4,

very little information about the natural dynamics is necessary for computing the

periodic orbits that satisfy the boundary constraints with this scheme. A control

pattern is established for a solution that is close to the initial guess and meets the

specified constraints. Given a feasible value of κ and an appropriate number of nodes

n, the method generally determines a solution with a smooth control history in less

than five iterations of equation (3.11). Difficulties are only encountered when the

path constraints that are selected force the spacecraft to a region that is physically

impossible to maintain for the given characteristic acceleration κ, implying that, for

the bounds selected, a nearby solution does not exist. Using this strategy, many orbits

favorable for lunar south pole coverage are easily computed. In fact, the entire process

is adapted into a graphical user interface (GUI) tool in MATLAB R©. (A screenshot of

the tool appears in Figure 4.7.) Using this tool, a user may visually inspect Figure 2.4,

specify the path constraints that form the bounding “cone”, select a feasible region

to place the nodes, and converge an initial guess using the transcription process for

feasible solutions in real time. From all the orbits investigated in this process, five

orbits of interest are selected from three different regions. (See Figure 4.8.) For

comparison, in Figure 4.9 the elevation angle histories for the five orbits are plotted

versus time. (Hereafter, the color schemes for the different orbits will remain as

defined in Figure 4.8.) Inspection of Figure 2.4 reveals that for the realistic sail

κ = 0.58 mm/s2, any orbits favorable for lunar south pole coverage will be located

just below L1 and L2. Positioning the initial guess just below the L1 and L2 points,

φlb is selected to be as large as physically possible for the characteristic acceleration

value κ = 0.58 mm/s2. The limiting boundary for feasible trajectories that maintain

constant south pole surveillance occurs at elevation angles φlb = 4.2◦ for L1 and φlb =

6.8◦ for L2. A sail can reach even greater elevation angles of constant surveillance
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when the characteristic acceleration κ is slightly increased. For example, when κ =

1.70 mm/s2, the limiting boundaries are φlb = 15.8◦ and φlb = 18.8◦ for L1 and L2,

respectively. In fact, an entirely new type of orbit that appears to “hover” under

the lunar south pole, is available for κ = 1.70 mm/s2 and this trajectory can be

computed from an initial guess just under the lunar south pole. The boundary of

feasible solutions for this orbit is φlb = 15.0◦. From these results, and several other

orbits investigated, it appears that for constant surveillance of the lunar south pole

with a solar sail, a spacecraft near L2 may yield the highest minimum elevation angle

for both κ = 0.58 mm/s2 and κ = 1.70 mm/s2. Such a conclusion is consistent with

Figure 2.4, where the contours corresponding to these characteristic accelerations near

L2 extend further below the x-axis than the L1 contours. A spacecraft in any one of

these orbits also maintains constant line-of-sight with the Earth, since the solar sail

orbits are displaced sufficiently far below the x-y plane. The L2 orbits are in constant

view of the far-side of the moon as well, a feature that may be useful for future lunar

missions.

The control time histories for the L2 orbit with κ = 0.58 mm/s2 appear in Fig-

ure 4.10. For this study, fluctuations in the control are not constrained, but the

method is general enough that they could be added. The possible off-nominal accel-

erations of the sail have not been modeled. Though the system allows the spacecraft

to use both sides of the sail, all the orbits investigated only employ one side. For

example, from Figure 4.10 it is clear that for the L2 orbit with κ = 0.58 mm/s2,

−90◦ < δ < 90◦. Also, since the driving factor in the investigation is φlb, for all

computations aub is set to some arbitrarily large value. For all simulations, the Gauss-

Lobatto scheme is employed with the constraints described previously and n = 100.

This corresponds to a time-step of about 0.3 days or roughly 0.07 nondimensional

time units. With the constraints implemented, the sizes of X and F are 2, 684 and

2, 487, respectively. Thus, over 98.6% of the entries in the matrix DF are zero.
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Figure 4.7. Screenshot of MATLAB R© Solar Sail Pole-Sitter Orbit Design GUI.
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Orbit in the Lower-Fidelity Model.
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An Alternative Control Parameterization

Recall that the components of the control vector û in equation (2.36) can also

be parameterized by the angles δ and α. By inspection of the previously converged

control histories, for example the solution appearing in Figure 4.10, the behavior for

the angle α resembles an even sinusoidal function, while the angle δ appears to closely

follow an odd-valued sinusoid as a function of time. Given the problem symmetries

and the physical interpretation of these angles, an alternative to the general piecewise

linear parameterization for the cartesian components of u is to instead parameterize

the angles α and δ using an even and odd Fourier series. Here, α and δ can be

represented as

α(t) = α0 +
N∑

k=1

αk cos(kωst)

δ(t) =
N∑

k=1

δk sin(kωst)

(4.8)

By construction, the period of α(t) and δ(t) is P = 2π/ωs. For implementation of the

control in the collocation scheme, the Fourier coefficients are varied until the precise

control law is uncovered for a given orbit. This result is achieved by storing the

coefficients in the problem parameters vector µ for corrections, i.e.

µT = (α0, α1, ..., αN , δ1, ..., δN) (4.9)

Since the control is periodic by definition, no constraint h is needed to force the control

to repeat. When formulating X according to equation (3.90), there is also no longer

a need to include the control uj at any node j as an independent variable because

the parameters µ globally define the steering law over the entire trajectory. In other

words, the sail acceleration vector fT in equation (2.29) is completely defined with

û in equation (2.32), which is continuously defined by a selection of the coefficients

µ in equation (4.8). Once a solution is computed and the corresponding vector µ

is determined, an additional benefit of the Fourier series approach is that extraction
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of the control rates is straightforward. The control rates α̇ and δ̇, which represent

changes in the angles relative to l̂, follow as

α̇(t) = −
N∑

k=1

αkkωs sin(kωst)

δ̇(t) =
N∑

k=1

δkkωs cos(kωst)

(4.10)

The Fourier series control law provided in equation (4.8) is sufficiently general for

implementation using the shooting method with explicit integration. Note, however,

that this possibility is only available given the a posteriori observation of the control

history trends found from the converged solutions that employ the more general piece-

wise linear control approach, which allows the nodal controls uj to enter the problem

as free variables. The resulting orbits and control histories bear close resemblance

to the trajectories by the piecewise linear control approach. The data summary in

Table 4.1 indicates that with only a small number of Fourier coefficients, the mini-

mum elevation angle φmin along any orbit deviates by at most 0.2◦ compared to the

minimum elevation angle found with the piecewise linear control parameterization.

No control rate boundaries are imposed on α̇ and δ̇, but all rates remain close to

the 12.1◦/day baseline rate that is already necessary for the sail to turn to contin-

uously face the sun in the rotating frame. The mesh refinement algorithm is also

successfully applied to the resulting orbits. Using an initial “coarse” grid of points,

the transcription approach for feasible solutions is used to find solutions that are

accurate to 1× 10−12 nondimensional units in position and velocity.

4.3.4 Transition to the Ephemeris

From a number of simplifications in the lower-fidelity model, two critical assump-

tions must be further examined. First, in the RTBP the sun-to-spacecraft line is

assumed to move in the Earth-moon plane. In reality, the moon’s orbit plane is

inclined with respect to that of the Earth by about 5.15◦. This difference is sig-

nificant, and it is therefore necessary to demonstrate that any solar sail trajectory
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Table 4.1 Data Summary for Near-Optimal Solar Sail Orbits in the
Lower-Fidelity Model.

κ = 0.58 mm/s2 κ = 1.70 mm/s2

Type L1 L2 L1 L2 Hover

Color Blue Green Red Purple Gray

x0 +8.334577959416795d-1 +1.156211421789636d-0 +8.358382331873345d-1 +1.133709934961812d-0 +1.142606758444961d-0

z0 −1.674447029156162d-2 −2.785681461021011d-2 −5.080489933754771d-2 −7.014221018336932d-2 −1.079440386848905d-1

ẏ0 −2.970274544651623d-2 −7.264216970640185d-2 −1.035256763465011d-1 −1.321776217291153d-1 −2.309935244587937d-1

α0 −6.343037134654265d-1 −6.532727216254634d-1 −6.550832921434782d-1 −8.076988446188386d-1 −7.176650914056956d-1

α1 −1.639142648497209d-2 −3.496431271743909d-3 +1.109111936118494d-2 −3.760510052379947d-2 −9.455764413908209d-2

α2 −1.005162216606042d-3 +2.525294068828327d-2 −7.204002256366904d-3 +9.198677776698262d-2 −1.657526877433217d-1

α3 +4.186000055059244d-2 −6.282315518132125d-3 +7.724704156521697d-2 +4.178169912132836d-2 +4.081942483021073d-2

α4 +1.276497472641706d-2 −2.827459153365777d-2 −9.084935129312299d-3 −5.380796885631299d-3 +9.546331387483088d-2

α5 −7.108087578028680d-3 −1.076977595277608d-2 −3.141687535102539d-2 +1.457063836041965d-2 +1.510595399780250d-2

δ1 +9.923829906300495d-2 −1.978177053068336d-1 +4.240662342949236d-1 −4.206338880883266d-1 −5.455275819483647d-1

δ2 +1.024195843920122d-3 −4.157860433873927d-2 −7.898408737806689d-4 +6.788375238824441d-2 −6.872290868371695d-3

δ3 +3.345688507820322d-3 −7.153711065518781d-2 −1.269064717140005d-1 −1.503551493545528d-1 +1.478868620356161d-1

δ4 +8.333198429994938d-4 −3.504456801267981d-3 +1.277367799213988d-1 +3.061175727108182d-2 +2.429599424843301d-2

δ5 +6.021023233999644d-3 −1.440196545516193d-2 +1.736235859640061d-2 −2.337621947580810d-2 −5.042661386056409d-2

φmin (◦)∗ 4.2 6.8 15.8 18.8 15.0

φmin (◦) 4.2 6.8 15.6 18.6 15.0

α̇max (◦/day) 2.28 2.27 4.60 3.48 9.61

δ̇max (◦/day) 1.76 7.06 12.78 15.14 10.78

Initial n 15 15 15 15 15

Initial Size X 355 355 355 355 355

Mesh Refinements 2 2 2 2 2

Final n 51 50 79 68 83

Final Size X 1, 219 1, 195 1, 891 1, 627 1, 987

∗Values from piecewise linear control parameterization

modeled in the lower-fidelity, RTBP model (irrespective of the mission design objec-

tive) is sufficiently accurate for transitioning into the higher-fidelity model. Second,

the lower-fidelity model currently ignores lunar librations, assuming that the south

pole of the moon is directly below the moon’s center and stationary for all time. In

the reality, the lunar equatorial plane is inclined to Earth’s orbit plane by about 1.55◦.

Considering these two angles, that is, the angles between the Earth orbit plane and

both the lunar orbit plane and the lunar equatorial plane, it appears likely that even

if the orbits can be transferred to the higher-fidelity model, some of the orbits from

the RTBP model, for example, the L1 orbit for κ = 0.58 mm/s2 with a minimum el-
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evation angle of φmin = 4.2◦, will not maintain a positive elevation angle with respect

to the actual lunar south pole. However, the collocation schemes can be adapted for

computations in the higher-fidelity model. In fact, all the orbits can be transitioned

to the higher-fidelity model while ensuring that most maintain a positive elevation

angle φmin.

Given multiple revolutions of any baseline orbits from the lower-fidelity model, the

goal is computation of a nearby periodic solution in the higher-fidelity model. The

only constraints necessary for computing the nearby solution are the usual defect

constraints and the control constraints ψi = 0. It is still, however, useful to enforce

the path constraints that are ideal for lunar south pole coverage. To ensure that the

desired elevation angles and altitudes are satisfied with respect to the actual lunar

south pole, equation (4.5) must be modified. At any given time ti, the exact position of

the ground station Rg at lunar south pole (θg, δg) = (−90◦, 0◦) can be determined by

manipulating the Euler 3-1-3 sequence for lunar librations available in the JPL DE405

ephemeris file, as discussed in Section 2.7.4. Then, the continuous path constraints

for elevation angle and altitude in the higher-fidelity model are discretized as

gi(Ri,ηi) =





sin(φlb) +
Rgi · (Rgi −Ri)

||Ri −Rgi ||||Rgi ||
||Ri −Rgi || − aub



+ η2

i = 0

gi,2(Ri,2,ηi,2) =





sin(φlb) +
Rgi,2 ·

(
Rgi,2 −Ri,2

)

||Ri,2 −Rgi,2||||Rgi,2||
||Ri,2 −Rgi,2 || − aub





+ η2
i,2 = 0 (4.11)

gi,3(Ri,3,ηi,3) =





sin(φlb) +
Rgi,3 ·

(
Rgi,3 −Ri,3

)

||Ri,3 −Rgi,3||||Rgi,3||
||Ri,3 −Rgi,3 || − aub





+ η2
i,3 = 0

Recall that even though the vector bases are now associated with the MCI, EMEJ2000

frame, all quantities are still nondimensional based on the characteristic quantities in

the RTBP given in Table 2.1.

Before the application of the transcription procedure, it is first necessary to trans-

form all the states from the barycentric, rotating frame in the RTBP to the EMEJ2000

frame in the higher-fidelity model. Since the orbits are relatively close to the moon,
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the moon is set as the central body in equation (2.62) using fT from equation (2.29)

and fG from equation (2.63). (The remaining higher-fidelity effects are neglected for

this analysis.) Thus, all higher-fidelity simulations employ coordinates in the MCI

frame. Recall that the additional perturbing bodies include the Earth and the sun,

and the defects in equations (3.84)-(3.86) are now computed with respect to the func-

tion f , available from equation (2.62). Since the orbits are only quasi-periodic in the

higher-fidelity model, the more general piecewise linear control approach is again se-

lected. Thus, the choice for the node controls ui must also be adjusted to be defined

relative to the real sun-to-spacecraft line. Therefore, given ui =
(
u

(1)
i , u

(2)
i , u

(3)
i

)T

from the lower-fidelity, RTBP model, first αi and δi are computed, i.e.

αi = sin−1 u
(3)
i

δi = tan−1

(
u

(1)
i sinωsti + u

(2)
i cosωsti

u
(1)
i cosωsti − u(2)

i sinωsti

)
(4.12)

where −90◦ ≤ sin−1 (·) ≤ 90◦ and −180◦ ≤ tan−1 (·) ≤ 180◦, and ωs is as calculated

in lower-fidelity model. Then, to determine ui in the EMEJ2000 frame given αi and

δi, consider using

ui =

[
l̂i

ĥi × l̂i∥∥∥ĥi × l̂i
∥∥∥

l̂i ×
ĥi × l̂i∥∥∥ĥi × l̂i

∥∥∥

]




cosαi cos δi

cosαi sin δi

sinαi





(4.13)

where both l̂i and ĥi possess unit magnitudes. Here the instantaneous direction of

the sun-to-spacecraft line l̂i is no longer computed with the simplified model given in

equation (2.31). Instead, the direction is extracted from the ephemeris files. In MCI

coordinates, this vector is simply

l̂ =
R−R$�∥∥R−R$�

∥∥ (4.14)

The vector ĥi is the unit vector parallel to the angular momentum associated with

the Earth’s orbit relative to the sun, i.e.

ĥ =
R�$ × V�$∥∥R�$ × V�$

∥∥ (4.15)

and is also easily determined from the files.



114

4.3.5 Quasi-Periodic Orbits in the Ephemeris Model

Since the orbits are periodic in the RTBP, multiple revolutions can be quickly

obtained by “stacking” the node states and controls for a baseline 25-revolution, two-

year mission. The number of nodes per revolution is adjusted to 35, for a total number

of nodes n = 851. From equation (2.29) and equation (2.31), it is apparent that an

epoch must be identified when the moon is at opposition to match the conditions

at t = 0 for the lower-fidelity model. The total lunar eclipse of 2011 December

10, 14:31:46 UTC meets this requirement and is selected as the epoch for all of

the orbits. Since the segment time ∆ti remains fixed, all the body locations in the

system model, as well as the location of the lunar south pole, are computed prior to

applying the collocation scheme and stored in memory for future access. Therefore,

the ephemeris files are never called during implementation of the collocation schemes.

As previously stated, the node states and controls (as well as the states corresponding

to the internal points for the Gauss-Lobatto scheme) are transformed into the MCI,

EMEJ2000 frame, and the values of φlb and aub are selected. The values for the bounds

φlb and aub must be such that the initial guess is feasible or at least very close to

feasible. If the initial guess is infeasible, then using equation (3.88) to compute initial

values for the slack variables, the variables are defined in terms of the real components

(and the imaginary components are discarded). Using the transformed guess from

the barycentric, lower-fidelity model and the bounds described in equation (4.11),

equation (3.11) is once again applied in an iterative manner. In just a few iterations,

the scheme successfully computes quasi-periodic solutions for solar sail trajectories.

All five orbits designed in the lower-fidelity model are successfully transitioned to

the higher-fidelity model using the higher-order Gauss-Lobatto transcription method

for feasible trajectories. The results appear in Figure 4.11 where the orbits are plot-

ted in the MCR frame. A corresponding data summary appears in Table 4.2. For

comparison, elevation angle is plotted as a function of time for both L2 orbits in Fig-

ure 4.12. After transition, the L1 orbit with κ = 0.58 mm/s2 possesses a minimum
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elevation angle φmin = −2.70◦, that is, “below” the horizon and out of sight of the

south pole. Thus, lunar librations completely eliminate the possibility for continuous

line-of-sight with the lunar south pole for the set of orbits near L1 when κ = 0.58

mm/s2. In contrast, for this same value of κ, the L2 orbit is still barely feasible after

transitioning to the higher-fidelity model, where φmin = 0.01◦. Therefore, it appears

that for the more realistic sail with κ = 0.58 mm/s2, only orbits near L2 maintain con-

stant surveillance of the lunar south pole in the higher-fidelity model. For the slightly

larger characteristic acceleration κ = 1.70 mm/s2, however, all the orbits maintain

positive elevation angles in the higher-fidelity model. The minimum elevation angles

for L1 and L2 are φmin = 9.10◦ and φmin = 11.91◦, respectively, and φmin = 8.20◦ for

the hover orbit. Due to the lunar librations, it is not surprising that nearly all the

orbits lose about 6.7◦ of elevation between the lower-fidelity and higher-fidelity mod-

els. As characteristic acceleration increases for the sails, a large increase in elevation

angle is observed as a larger out-of-plane force is available. The unique “hover orbit”

possesses the best maximum elevation angle, but suffers a smaller minimum elevation

angle and a greater maximum altitude than the other orbits. All of the altitudes for

the solar sail pole-sitter orbits are comparable to the maximum apolune altitudes in

a previous libration point orbit architecture analysis by Grebow et al. [51] Ongoing

analysis by other researches has indicated that these altitudes are feasible for use with

existing communications hardware. [52]

A sample of the control time histories for the L2 orbit for κ = 0.58 mm/s2 appears

in Figure 4.13. Note that upon transition to the higher-fidelity model, the control

histories remain smooth, and are also relatively slow. (At most, only a few degrees

of re-orientation are required per day.) Quasi-periodic orbits may be computed for

up to 100 revolutions of the baseline orbit, and the results do not vary. Note that for

100 revolutions (approximately 8 years), n = 3, 401, setting the size of X and F to

91,811 and 85,003, respectively. However, roughly 99.97% of the entries in the matrix

DF are zero.
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Periodic Orbit in the Higher-Fidelity Model.
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Table 4.2 Data Summary for Near-Optimal Solar Sail Orbits in the
Higher-Fidelity Model.

κ = 0.58 mm/s2 κ = 1.70 mm/s2

Type L1 L2 L1 L2 hover

φmin (◦) -2.70 0.01 9.10 11.91 8.20

φmax (◦) 12.46 17.21 27.43 34.68 45.68

φavg (◦) 4.18 7.13 16.14 19.37 22.37

amin (km) 53,000 58,000 55,500 57,000 68,500

amax (km) 70,000 70,500 84,500 76,000 138,000

4.4 Solar Electric Propulsion Pole-Sitter Orbits

Pole-sitter orbits can also be constructed with a more conventional low-thrust

device such as solar electric propulsion, i.e., a CSI engine. However, because a CSI

engine is limited by propellant, these long duration pole-sitter orbits are ultimately

temporary in nature. For a near-term application that might be of interest for a

planned lunar facility, consider the allocation of payload space for a small 500 kg

spacecraft in a launch to the International Space Station (ISS). The coverage capa-

bilities of this spacecraft (for example, dry mass 50 kg) might offer new options if

equipped with a thruster similar to Deep Space 1’s NSTAR (thrust magnitude 150

mN, specific impulse 1,650 s). Departing from the International Space Station (ISS)

orbit, the entire low-thrust mission is characterized by three distinct phases:

1. Earth-centered, spiral out from the International Space Station to the Moon.

2. Pole-sitting position maintained for as long as possible.

3. Moon-centered, spiral down to an elliptically inclined stable orbit.

Note that after a transfer to the coverage orbit and the completion of a significant

surveillance period, an added advantage of the mission is that the spacecraft uses
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its remaining fuel to spiral-down into a stable lunar orbit for continued surveillance;

the spacecraft is then the first piece of the long duration, multiple-spacecraft constel-

lation discussed in Section 4.1. Such a mission would be beneficial for temporarily

maintaining constant surveillance with only one spacecraft, while waiting for the re-

maining spacecraft in the constellation, that is, those that are launched at a later

time. Solving for the end-to-end mission trajectory design, one that optimizes phase

#2 while considering the functional dependencies of phases #1 and #3, is ultimately

part of a multi-phase direct transcription process. However, the phases are first con-

sidered independently, with a priority on selecting an appropriate coverage orbit that

is continuous and satisfies the required path constraints. The following solar electric

propulsion mission design and analysis, therefore, pertains only to the selection of a

preliminary coverage orbit that can later be combined into a larger problem.

4.4.1 Preliminary Orbit Design in the Lower-Fidelity Model

As with the solar sailing pole-sitter, preliminary design for the temporary pole-

sitter mission with a CSI engine begins with a priority on the coverage orbit, or

phase #2. The initial mass upon arrival is usually close to 320 kg, yielding an ini-

tial thrust acceleration magnitude such that ‖fT‖ = 0.47 mm/s2. As is apparent

in equation (2.33), this value is the lowest thrust acceleration level over the dura-

tion of the coverage orbit, and, thus, a conservative estimate of worst-case coverage

performance. To formulate the initial guess, the general concept introduced in Sec-

tion 4.3.3 is repeated. The lower bound on elevation angle is fixed at φlb = 13.0◦ and

the upper bound on altitude is aub = 100, 000 km. As is demonstrated in Figure 2.4,

the assumed initial thrust acceleration limits the spacecraft to regions near L1 and

L2. However, since the spacecraft is continuously burning fuel, it cannot remain ex-

actly stationary. In fact, the thrust acceleration increases with time. As indicated by

Figure 2.4, increasing thrust acceleration allows the spacecraft to possibly enter the
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yellow and green locations that wrap below the lunar south pole. Thus, as phase #2

progresses, the coverage capabilities of the spacecraft increase.

Given the likelihood that the trajectory will shift as fuel is expended, the position

variables for the entire trajectory are “stacked” near L1 or L2 such that the boundary

constraints are satisfied. (Initially, there is no y-component for the trajectory posi-

tion.) Using the stationary assumption, the variables corresponding to velocity are

all set to zero. The thruster is initially aligned strictly in the negative z-direction.

The user then specifies the number of thrust arcs k. Since the magnitude of the

pseudo-potential gradient force experienced by the spacecraft remains relatively con-

stant, the nodes are spaced evenly over the arc. The time duration along all the

thrust arcs is initially assumed to be equal, and the total thrust time is determined

by the user-specified final mass. Here, the final mass after completion of the cover-

age phase is assumed to be 65 kg. The variables corresponding to initial mass are

determined by the thrust times. An initial estimate of the total coverage time minus

the total thrust time then allows the total coast time to be divided evenly over the

number of coast arcs. The problem formulation in Section 3.5.2 is applied to the de-

sign of a low-thrust, quasi-periodic coverage orbit using a CSI engine with the system

model that is consistent with equation (2.37). Now X0 is assimilated in accordance

with equation (3.94), where initial guesses for the slack variables are such that the

corresponding constraint is initially satisfied. Alternative approaches to develop the

initial guess for the coverage phase are available, however, the previous formulation

is perhaps the simplest. The construction best utilizes the pole-sitting assumption,

and nearby solutions determined via equations (3.2) and (3.11) are not biased by a

more complicated non-stationary initial guess. Furthermore, any other initial guess

strategy must assume a certain behavior across the entire solution, and such knowl-

edge is, at this point, unknown. Since the designs are preliminary, the transcription

method for feasible solutions is applied without any mesh refinements. This entire

preliminary orbit design procedure is also enhanced with a GUI design tool analogous

to the one introduced in Section 4.3.3 and Figure 4.7 for the solar sailing pole-sitter.
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By investigating initial guesses near L1 and L2, low-thrust trajectories are quickly

computed that satisfy a constraint such that the minimum elevation angle equals

13.0◦. The collocation scheme automatically determines the thruster alignment, and

positions the thrusting and coasting arcs as needed. It is observed that the spacecraft

thrusts whenever approaching the specified boundary. Hence, thrusting generally

occurs near the “top” of the trajectory and coasting near the bottom. A few candidate

results appear in Figure 4.14, where thrust arcs are red and blue represents a coast arc.

There are two characteristic types of solutions. For long duration trajectories, initial

estimates of total coverage time are 475 days and 600 days for L1 and L2, respectively.

These trajectories include a total of 76 thrust arcs and, primarily, the solutions involve

an engine pulsing in the negative z-direction, remaining below the libration points.

The trajectories appear in the left plots in Figure 4.14(a). The corrected coverage

times are 289.44 days for the L1 trajectory, and 445.03 days for L2. Given the large

number of thrust arcs, the pulsing solutions require many small thrusting segments,

each about 3 days in duration. The solutions might be considered impractical from

an operational standpoint, where thrusters most likely require longer, more sustained

thrusting and coasting times. Non-pulsing solutions are computed by decreasing the

number of total arcs while retaining a total coverage time that is high. For these

solutions, the total number of thrust arcs is set to 36, and initial guesses for the

coverage times are 425 days and 500 days for L1 and L2, respectively. The resulting

solutions near L1 and L2 can be viewed in the right plots in Figure 4.14(b). The

corrected time for the trajectory near L1 is 320.22 days, and the L2 trajectory sustains

coverage for 398.56 days. The thrusting segments for these solutions are about 8 days

in duration.

All the solutions shift toward the moon as coverage time increases, as predicted due

to the increase in thrust acceleration as fuel is consumed. Each solution continuously

maintains direct line-of-sight with both the lunar south pole and the Earth. The

non-pulsing solutions are similar to the pulsing ones, which appear to expand in the

y-direction to satisfy the increase in arc time. Therefore, whereas motion is primarily
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Figure 4.14. (a) Pulsing and (b) Non-Pulsing Trajectories for the
Coverage Phase, MCR Frame.
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in the x-z plane for the pulsing solutions, the non-pulsing solutions appear to be more

three-dimensional in nature. A striking feature about the non-pulsing solutions is that

the motion seems to be confined to a three-dimensional surface very similar to the

surfaces corresponding to the L1 and L2 southern halo orbit families in Figure 4.1. The

solutions not only appear to move along the family as energy changes, but they also

significantly alter the surface shape to allow satisfaction of the problem constraints.

Given that the optimal solutions are driven toward the constraint boundary, the

behavior of the feasible solution offers a mission design benefit: At the expense of

time-of-flight for a given quantity of fuel, the spacecraft can obtain a gradual increase

in elevation angle for improved line-of-sight as the mission progresses.

Since the L2 non-pulsing solution is more practical for implementation, and yields

long-duration coverage time, it is selected as the coverage orbit for the mission design

sequence. However, if any of the other trajectories are desired, they can easily be

incorporated into the three-phase design without significantly altering the process.

The control history for the L2 non-pulsing solution appears in Fig. 4.15 and the

coverage results and thrust acceleration are plotted in Figure 4.16. The elevation

angle results confirm that the spacecraft is always at least 13◦ above the south pole

horizon. As expected, the thrust acceleration increases with time, thereby altering the

energy and coverage capabilities of the spacecraft. In fact, the final thrust acceleration

is near 1.75 mm/s2, allowing the spacecraft to enter the light blue regions in Figure 2.4,

and so the trajectory shifts away from the boundary constraint and toward the moon.

4.4.2 Preliminary Orbit Design in the Higher-Fidelity Model

To generate a comparable, preliminary, design of the phase #2 coverage orbit,

the preceding problem is solved again with the MCI higher-fidelity model from equa-

tion (2.62), detailed in Section 2.7.1, and retaining the problem formulation in Sec-

tion 3.5.2. The effects of shadowing (Section 2.7.3) and lunar librations (Section 2.7.4)

are also considered. To converge on the initial coverage orbit, the transcription
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method for feasible solutions is employed using the minimum-norm approach (equa-

tion (3.11)), and the mesh refinement algorithm of Section 3.5.5 with a fully converged

initial guess from the lower-fidelity model. Recall that the x-y plane corresponds to

the moon orbit plane. A sample lower-fidelity feasible solution near L2 with 36 thrust

arcs appears in Figure 4.17. Here, the orbit is positioned in a region approximately

38, 400 km below the L2 point, and is within direct line-of-sight of the Shackleton

Crater. The trajectory appearing in Figure 4.17 is precisely the initial guess tra-
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Figure 4.17. Feasible Solution for Phase #2 in the Lower-Fidelity
Model, Thrust Arcs (Red) and Coast Arcs (Blue), MCR Frame.

jectory that is input to the transcription approach with the higher-fidelity model.

Like the lower-fidelity coverage orbit, approximations are still required for phases #1

and #3 in the higher-fidelity model, as discussed in the following chapter. Then, in

Chapter 6, all three phases enter a larger collocation scheme that applies boundary

conditions to ensure continuity between the phases.
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4.5 Summary of Orbit Options

Four different orbit options for lunar south pole coverage have been introduced.

Furthermore, the transcription method is demonstrated on sample pole-sitter orbit

mission scenarios involving solar sails as well as solar electric propulsion. Each of the

four orbit choices have distinct advantages and disadvantages that are qualitatively

summarized in Table 4.3. Recall that the first two orbits can be considered natural

options because they require only stationkeeping fuel at most. With these options,

two to three spacecraft are always required given the orbit configurations that are

possible with the natural dynamics of the system. At the expense of an additional

spacecraft, the need for any stationkeeping can be completely avoided with the lunar

frozen orbit option. The selection of libration point orbits requires stationkeeping

propellant, but the inherent unstable behavior implies that the spacecraft are not

permanently limited to a specific coverage orbit, due to the possibility of fuel-efficient

transfers. Once a low-thrust device is available, then the computation of single space-

craft pole-sitter options is possible. As the technology development for solar sailing

continues, a very long-duration pole-sitter orbit might one day be available to main-

tain continuous communications. Contemporary fuel-limited technology, comparable

to the NSTAR solar electric thruster, may also utilize the pole-sitter concept for a

temporary, continuous coverage mission that is part of the gradual establishment of

a long-term, multi-spacecraft constellation of naturally occurring orbits.
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Table 4.3 Attributes of Candidate Lunar Coverage Orbits.

Orbit Type Advantages Disadvantages

Lunar Frozen Orbit

• Low altitude

• Stable

• Well-known

• Long-duration

• Gravity harmonics

• Multiple spacecraft

• Mission compatibility

Libration Point Orbits

• Many configurations

• Large elevation angles

available

• Fuel-efficient transfers

• High altitude

• Multiple spacecraft

• Additional propellant

• No end-of-life

Solar Sail Pole-Sitter

• One spacecraft

• Continuous thrust

• Advanced technology

required

• Higher altitude

• Mission specific

EP Pole-Sitter

• One spacecraft

• Technology available

• Mission capability

• End-of-life

• Higher altitude

• Limited by fuel
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5. TRANSFERS

Once one or multiple coverage orbits are selected, the next stage of the design pro-

cess is to compute a transfer trajectory to arrive, and if needed, depart from the

orbit of interest. Transferring to the coverage orbit from an Earth parking orbit with

low-thrust initially requires a large number of spirals to depart the vicinity of the

Earth, leading to extremely high sensitivity in numerical corrections processes. In

this case, even the robust collocation approach requires an accurate initial guess to

compute a transfer arc. Typically, these initial guess schemes are based upon max-

imizing two-body kinetic energy by thrusting along the inertial velocity direction.

This guess strategy can be implemented without restrictions for the lower-fidelity de-

sign of CSI and VSI transfers. However, additional constraints are necessary for the

initial guess if the effects of shadowing in the higher-fidelity model are incorporated.

When a solar sail is employed, additional geometry considerations must be included

due to the fact that the sun’s location restricts how often the sail can be steered in a

desired direction. Once these preliminary thrusting laws produce a transfer arc that

nearly converges with an explicit propagation, then, if desired, the trajectory may be

immediately refined with collocation. In the case of the solar sail transfer, the col-

location process immediately begins linking the transfer to the previously computed

sail pole-sitter orbit within the higher-fidelity model. However, in the case of a solar

electric propulsion mission, the initial guess for the spiral-out from Earth is stored

and later inserted into a larger multi-phase direct transcription problem that includes

other phases, such as the coverage orbit, and an end-of-life transfer trajectory. The

approach to generating an initial guess for such end-of-life trajectories is similar to

the guess strategies for Earth departures. Transfer trajectories may also be sought

to transit between libration point orbits. For Li-toLi transfers, the relatively low
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times-of-flight allow the optimal control-based formulation to be employed for rapid

trajectory optimization.

The computation of different types of transfer trajectories are approached as sum-

marized below. The most successful strategy is dependent upon the coverage orbit

option. Thus, the schemes are organized by coverage orbit:

I. Lunar Frozen Orbits

i. Transfer from Earth parking orbit is not investigated here. However, many

previous efforts have focused on transfers to two-body lunar orbits. [81]

ii. Due to stability of the orbits, transfer between different frozen orbits is not

deemed feasible for this analysis.

iii. These orbits are suitable as a final insertion location for end-of-life transfers

in a temporary solar electric propulsion pole-sitter mission.

II. Libration Point Orbits

i. Transfer from Earth parking orbit is not investigated here, however, exten-

sive analysis was previously completed. [82]

ii. Many transfers between libration point orbits are rapidly computed by im-

plementing an optimal control strategy. The optimal control formulation is

tractable due to lower times-of-flight and numerical sensitivities.

iii. End-of-life trajectories are currently not considered because only a small

amount of stationkeeping propellant is required to remain in the libration

point orbits.

III. Solar Sail Pole-Sitter Orbits

i. An initial guess for a long-duration spiral trajectory from LEO is determined

by explicitly integrating a velocity-tangent steering law in backward time

while targeting the two-body eccentricity and angular momentum required

to arrive at the orbit. The path is then decomposed into node points.
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ii. Assuming that the coverage orbit is not part of the corrections process,

discontinuities in the boundary conditions are resolved by implementing the

transcription method for feasible solutions. Since the solar sail pole-sitter

orbits are already near-optimal in minimum elevation angle, the converged

transfers complete the mission design process.

iii. End-of-life trajectories are not considered because it is assumed that the

orbits are maintained for long durations with the solar sail, and hence,

without the use of significant fuel.

IV. Solar Electric Propulsion Pole-Sitter Orbits

i. Transfer Spiral-Out to the Orbit:

a. An initial guess for the transfer is generated by explicitly integrating

in forward time, starting from a low-altitude Earth orbit. The explicit

control law for the initial guess involves tangent steering along the ECI

velocity vector.

b. A thrust-coast-thrust structure is assumed.

c. The states, controls, and problem parameters are stored as node points

for a multi-phase direct transcription method.

ii. End-of-life Spiral-Down to a Lunar Frozen Orbit:

a. An initial guess for the transfer is generated by explicitly integrating in

forward time, starting at the end of the coverage orbit. The explicit

control law for the initial guess involves tangent steering along the MCI

anti-velocity vector.

b. A thrust-coast-thrust structure is assumed.

c. The states, controls, and problem parameters are stored as node points

for a multi-phase direct transcription method.

Mission design applications are described where these steps for low-thrust transfer

trajectory computation are successfully implemented.
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5.1 Transfers Between Libration Point Orbits

Several future mission concepts are possibly enabled with low-thrust, fuel-optimal

transfers between libration point orbits using a VSI engine. Most collinear libration

point orbits are linearly unstable, thus, they may be exploited for fuel-efficient trans-

fers to support cargo transportation for relay satellites or for shifts along multiple

coverage orbits during a single mission. The low-dimensioned indirect shooting ap-

proach from optimal control theory offers the capability to rapidly investigate many

possible locally optimal transfers within the design space. Given the selection of a

departure and arrival orbit, the availability of such solutions allows a trajectory of

interest to emerge based on a desired time or a fuel performance requirement. Fur-

thermore, the time history of the engine performance along a given solution may be

cross-checked against the requirements for a given VSI thruster.

5.1.1 Example: Transfers Between Two L1 Southern Halo Orbits

As a preliminary design scenario, consider the computation and investigation of

transfers between two different L1 southern halo orbits in the Earth-moon system,

selected from the family displayed in Figure 4.1. The two selected orbits appear in

Figure 5.1, with the departure orbit in orange and the arrival orbit in blue. The

departure orbit possesses a period P = 12 days and a z-amplitude of 13,000 km, with

a nondimensional, rotating, barycentric initial state, x0, equal to

xT0 = (rT0 ,v
T
0 )

= (0.8234713145012070, 0,−0.0343599127302230, 0, 0.1438549685353680, 0)

(5.1)

The arrival orbit is a near-rectilinear halo orbit with a period P = 10 days and a

z-amplitude of 72,000 km. The corresponding rotating, barycentric state, xf , is

xTf = (rTf ,v
T
f )

= (0.8652779595914100, 0,−0.1870934422517150, 0, 0.2471872973128290, 0)

(5.2)
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The initial values of x0 and xf simply locate reference states when time-like param-

eters τ1 = 0 and τ2 = 0, respectively. Then, recall that these parameters enter the

optimization problem as free variables that locate an optimal departure and insertion

location to maximize the final spacecraft mass, i.e., to minimize fuel. The VSI engine

parameters from Table 2.1 are implemented, and the lower-fidelity system model in

equation (2.38) is selected. The adjoint control transformation [29] (Appendix A) is

applied once to generate initial costates such that the VSI thruster is initially ori-

ented parallel to the velocity vector. Then, both the indirect shooting method from

Section 3.4.2 and the direct shooting method described in Section 3.4.3 are employed

with central differencing gradients to generate DF . After the initial converged solu-

tion is obtained, each remaining trajectory is determined via continuation, with tf as

the continuation parameter. Thus, the process maintains the previously converged

X∗∗ as the new initial guess X0, except that the variable tf is updated. Since the

initial burn time is fixed at t0 = 0, updating tf for each new solution is equivalent to

updating the time-of-flight. With this formulation, converged trajectories are quickly

computed for an entire family of solutions. Several sample optimal transfer trajecto-

ries appear in Figure 5.2, each with a different time-of-flight (TOF). Note that red

indicates the powered arc, with the arrows in the thrusting direction. The green paths

along each orbit depict the variation in the time-like-parameters τ1 and τ2 from the

reference states in equations (5.1)-(5.2).

The representative transfers in Figure 5.2 are only six example optimal solutions

out of 5,000 that are rapidly computed from the indirect shooting approach. The large

set of solutions can be viewed as a locally optimal Pareto front in the multi-objective

trade space represented as propellant consumed vs. time-of-flight, as appears in

Figure 5.3. (The “jump” in the data near the 6-day mark in Figure 5.3 indicates a

location where the optimization terminates due to numerical difficulties. The process

is then restarted with new initial conditions, and new locally optimal solutions are

obtained along a new solution branch. This may well reflect a dynamical challenge and

warrants further investigation.) This multi-objective trade space represents a simple,
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yet powerful selection tool for preliminary selection of a transfer based on the mission

needs. Since neither the thrust magnitude nor specific impulse are constrained, the

required engine performance for a given optimal transfer is available in Figures 5.4-

5.5. Thus, for any transfer trajectory of interest, the physical limitations of the engine

are quickly evaluated against the engine parameters required for implementation. As

expected with the VSI engine, a longer time-of-flight allows the engine to increase Isp

and reduce the thrust, thus, increasing efficiency as the time-of-flight is increased.

The indirect and direct shooting methods exhibit similar convergence behavior.

Initially, the indirect method is implemented using MATLAB R©’s nonlinear equation

solving package, “fsolve” with central difference gradients. However, a large time

penalty is incurred due to the scripting language employed in a bounded, quasi-

newton search with numerical gradients. The “real-time” speed is increased by a

factor of 7,200 in the indirect shooting approach by switching to FORTRAN 90 (a

compilable language), and incorporating SNOPT in its feasible mode. The direct

shooting approach is also tested with similar success in FORTRAN 90, with slightly

more robust behavior, but less rapidity in convergence. For further time comparison

data on the specific machine used for the study, see Table 5.1.

Table 5.1 Time Comparison of Solution Methods Using Numerical Gradients.

Actual Time∗

Solution Method Software Package Coding Number of Runs (Minutes)

Indirect Shooting fsolve MATLAB 50 360

Indirect Shooting SNOPT (Feasible Mode) FORTRAN 90 5,000 5

Direct Shooting SNOPT FORTRAN 90 2,000 2

∗Intel R© CoreTM2 Quad 2.4 Ghz. CPU
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(a) TOF = 2.18 Days. (b) TOF = 6.54 Days.

(c) TOF = 8.73 Days. (d) TOF = 10.91 Days.

(e) TOF = 15.3 Days. (f) TOF = 19.6 Days.

Figure 5.2. Optimal Transfers between 12-Day L1 Halo Orbits Using
a VSI Engine, MCR Frame.
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5.2 Higher-Fidelity, Solar Sail Orbit Transfers

The exclusive use of a solar sail for lunar south pole coverage implies that the

spacecraft ideally inserts into the pole-sitter orbit from a propellant-free transfer

trajectory using only the sail. (Alternative schemes are also available, but the use

of propellant for thrusting is required. [82]) Although a spiral-out from low-Earth

orbit is impractical due to atmospheric drag, an initial “piggy-back” leg along a

geosynchronous transfer orbit (GTO) has been proposed as a viable option by previous

researchers. [20] To reduce the potential effects of drag, which are not modeled in

this analysis, periapsis altitude for the GTO is defined as 1,000 km. To compute a

solar sail transfer, an intuitive preliminary control law is employed to generate an

accurate initial guess. All trajectory design occurs in the ECI higher-fidelity model,

that is, equation (2.62), that includes the forces fG described in equation (2.67)

due to point mass gravity of additional bodies in the ephemeris model, and fT as

described in equation (2.29) using the actual sun-to-spacecraft line l̂. The oblateness

term fO in equation (2.68), the non-sail related SRP force fS in equation (2.69) and

shadowing criteria in Section 2.7.3 are neglected in this preliminary analysis. Since

the transfer is essentially free of any propellant, fuel optimization is not required, and

the solution only requires feasibility as determined from numerical corrections using

the transcription method with the minimum norm search direction. Mesh refinement

iterations are not implemented, however, the time spacing of the node points matches

those input by the explicitly integrated initial guess. Once the guess that is supplied

to the transcription method converges, the boundary conditions corresponding to

the departure GTO and the previously identified near-optimal coverage orbits are

satisfied. Thus, the end-to-end baseline mission design for a solar sail pole-sitter in

support of lunar south pole communications is complete, and the concluding analysis

for the transfers is discussed.
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5.2.1 Preliminary Control Law

Due to very long flight times and sensitive, nonlinear dynamical behavior near

the Earth, an accurate initial guess is required to refine a transfer trajectory with

the collocation procedure. An intuitive, explicitly integrated initial guess scheme is

developed by assuming a steering law for the solar sail. All integration occurs in the

ECI, EMEJ2000 coordinate frame in the higher-fidelity model using the assumptions

from the previous section, since the RTBP offers no major simplifying assumptions

that can be exploited with this transfer scheme. Numerical integration also occurs in

backward time, allowing the initial state to be fixed on the lunar south pole coverage

orbit at the proper insertion date in the ephemeris model; as a consequence, the

exact GTO remains unspecified. Then, the initial guess scheme requires only that

the two-body energy E� and the orbital angular momentum H� with respect to the

Earth, are matched as close as possible to the corresponding GTO values when the

propagation terminates.

To reduce the energy during backward numerical integration, the velocity-tangent

steering law, detailed in Figure 5.6, is employed. The sail acceleration, fT , is initially

aligned along the inertial velocity vector V , but when l̂ · V is negative, the sail is

oriented such that u⊥l̂ produces no thrust. For a two-sided sail, u flips 180◦ at the

completion of every cycle, and as a consequence u is either parallel or anti-parallel to

V during thrusting. When the sail requires re-orientation to an attitude that yields

no acceleration, i.e., the sail is “off”, δ = ±90◦ and α is oriented such that u is as

close as possible to V (or −V depending on the cycle) to ensure a smooth control

transition the next time the sail is activated.

Using only this algorithm, E� is reduced without any attention to the rate of

decrease in H�. Problems arise during backward propagation because H� decreases

too quickly, resulting in a highly elliptical orbit that passes through the Earth. Other

possible approaches, such as McInnes’ locally optimal steering law, [20] reduce H�

even faster, since most thrusting occurs in the vicinity of apoapsis. For similar rates
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of decrease in E� and H�, the velocity-tangent steering law is, therefore, modified

to force maneuvers away from apoapsis during the transfer. This modification is

accomplished by selecting the Earth-relative flight-path-angle γ� as an additional

switching condition. Thus, the sail is now always off unless l̂ · V = 0 and γ� lies

within an acceptable region, at which point the sail switches on. This new “E-H”

steering law corresponds to wait-times until the correct phasing of the transfer with

the sun-to-spacecraft line occurs. Details for the full implementation of this method

are available by examination of the function generator in Figure 5.7. For numerical

considerations upon transition to the transcription method, initial guesses that pass

through the Earth are avoided. The stopping condition for the integration, that is,

E� = 0 and H� > 0, is sufficient to ensure this behavior. Backwards integration of the

E-H steering law is also repeated at initial conditions corresponding to nodes around

the baseline ephemeris coverage orbit (computed in Section 4.3.4) until an accurate

initial guess is obtained. Since the coverage orbit is a converged ephemeris solution,

a successful transfer obtained from the collocation scheme results in a continuous

insertion without a maneuver.

Figure 5.6. Velocity-Tangent Steering Law.
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Input γmin & EGTO, and set s = 1.

DO WHILE E� < EGTO

DO WHILE γ� < γmin

Propagate equation. (2.62) with fT = 0 until

l̂ · V = 0 & d(l̂ · V )/dt < 0.

Update γ�.

END

Propagate equation. (2.62) with u ‖ (sV ) until

l̂ · V = 0 & d(l̂ · V )/dt > 0.

Update E, and set s = −s.

END

Figure 5.7. Function Generator for the E-H Steering Law.

5.2.2 Refinement with the Transcription Method

From an accurate initial guess generated with the E-H thrusting law, the trajec-

tory must be refined with collocation to generate a feasible solution. The variable

vector is again filled with the elements in equation (3.90), however, there is no need to

specify any slack variables ηi,ηi,2, and ηi,3 or problem parameters µ. In formulating

the new constraint vector (equation (3.91)), the defect constraints ∆i,1, ∆i,c, and ∆i,4

(equations (3.84)-(3.86)), and the control-magnitude constraints ψi (equation (3.87))

are enforced as usual, but no path constraints (equation (3.88)) are required, i.e.

m = 0. The boundary conditions that bracket the transfer are enforced by adding

general constraints (equation (3.89)) at the 1st node and the nth node. These bound-
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ary conditions are defined as the insertion state on the lunar south pole coverage orbit

and the energy and angular momentum associated with GTO, i.e.

h1 (Xn) = Xn − X∗

h2 (Yn) = Yn − Y ∗

h3 (Zn) = Zn − Z∗ h1 (x1) = ‖V1‖2 /2− (1−Gm�) / ‖R1‖ − EGTO

h4 (VXn) = VXn − V ∗X h8 (x1) = ‖R1 × V1‖ −HGTO

h5 (VYn) = VYn − V ∗Y

h6 (VZn) = VZn − V ∗Z
(5.3)

where the superscript “*” identifies a condition along the coverage orbit. Since the

transfer involves a large number of spirals around the Earth, one strategy to compen-

sate for the sensitive dynamical region is to implement the mesh refinement scheme.

However, for simplicity, using pre-specified time ratios from the explicit integration of

the E-H thrusting law is effective. These time ratios are already spaced in recognition

of the sensitive dynamics, and since an accurate initial guess is input to the procedure,

adaptive refinement is bypassed. Since the time on each trajectory segment is fixed,

the locations of all celestial bodies within the DE405 ephemeris file are only initial-

ized once. The Earth-centered formulation of equation (2.62) is useful for numerical

accuracy due to the many spirals that pass near the Earth. For each transfer, 5,000

nodes are selected, resulting in 104,988 free variables, 94,990 total constraints, and a

DF matrix including over 99.96% zero entries. The states and controls are adjusted

until a control history is determined along a continuous trajectory that satisfies the

constraints in equation (3.91).

A successfully converged, higher-fidelity sample transfer to the L2 orbit, corre-

sponding to a sail acceleration level κ = 0.58 mm/s2, appears in Figure 5.8. The

total transfer time from GTO is 401 days, with 106 days of on-time, and 397 on/off

switches of the sail to arrive at the orbit (in green). These switches can be visualized

in Figure 5.8 since the red arcs correspond to on-times and the blue phases corre-

spond to off-times. Inspection of the control history in Figure 5.9 reveals these switch
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times as the instances when δ = ±90◦. Proper phasing of the sun, orbit, and sail is

important, since the sail is only active 26% of the time. It is again emphasized that

this resulting transfer requires no actual propellant, despite the fact that the transfer

time appears long. Such long times are feasible for the mission concept of satellites

designed for purposes of communications. The resulting transfer trajectories are pre-

liminary and do not consider the possibility of thermal issues. Unlike the coverage

orbits, the transfers also assume that the sail can change directions beyond the capac-

ity of current sail technology. With additional constraints on the sail turning rates,

however, this problem may still be avoided in future trajectory design iterations. All

transfers are currently computed independent of the coverage orbits and therefore

alternate sources of thrust can also be employed to support a pole-sitter mission.

5.2.3 Transfer Design Summary for the Solar Sail Pole-Sitter Mission

With the transfer trajectories computed, the full mission trajectory for the solar

sail pole-sitter for lunar coverage is complete. Hundreds of orbit scenarios were gener-

ated during the course of the investigation, but recall that only the five near-optimal

orbits from Section 4.3 are specifically selected as feasible and also possess the largest

elevation angle lower bound φlb. Each scenario of interest is successfully transitioned

to the higher-fidelity model. (See Table 5.2.) A higher percentage of sail on-time is

observed in the orbits with a lower characteristic acceleration. When more thrust

acceleration is available, the transfer time is not necessarily faster due to the unique

phasing required in the system. This unique phasing increases the times-of-flight, a

range over 248-446 days, due to the fact that the sail provides thrust only 8%-32% of

that time. Despite the penalty on flight time, the tremendous advantage is that each

transfer is potentially propellent-free.
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Figure 5.9. Control History for Transfer to the L2, κ = 0.58 mm/s2

Quasi-Periodic Pole-Sitter Orbit in the Higher-Fidelity Model.

5.3 Solar Electric Propulsion Transfers

After the feasible solution for a temporary coverage orbit using solar electric

propulsion is computed, the focus shifts to assembling independent guesses for the re-

maining portions of the multi-phase optimization problem as outlined in Section 4.4.

With the initial guess variables, X0
2 , for the preliminary coverage orbit already es-

tablished, initial guesses are required for the transfers in phases #1 and #3. Similar

to the process for the solar sailing transfers, explicitly integrated initial guesses are

determined first and, then, decomposed into collocation node points. In contrast to

the solar sailing transfers, however, the transcription process is not immediately em-

ployed to generate converged transfer trajectories. Rather, the node points for phase

#1 and phase #3 are assigned to the elements in the initial guess variable vectors

X0
1 and X0

3 , respectively. These initial guess vectors serve as input for a larger multi-

phase transcription process. Each transfer phase is structured with a pre-determined

thrust-coast-thrust sequence (k = 2), and a simple two-body inertial velocity-tangent

steering law is employed to model thrusting. This control structure is a reasonable

assumption due to the observed behavior of related solutions in the literature. [81].

The solar electric propulsion velocity-tangent law is less restrictive than the solar sail-
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ing version described in Section 5.2.1 because the thruster can always be aligned in

the velocity direction if necessary (given that there is no shadowing). Since the solar

electric propulsion pole-sitter mission is solved in both a lower- and higher-fidelity

model, the specific details for generating each initial guess is appropriate.

5.3.1 Initial Guesses for the Lower-Fidelity Transfers

For preliminary design in the RTBP, the barycentric system model represented in

equation (2.37) is employed and the ISS orbit is simulated as a circular orbit in the

x-y plane, with an altitude equal to 325 km. Departing the ISS orbit in phase #1

involves hundreds of spirals around the Earth as the spacecraft builds up sufficient

energy to escape. To avoid an unnecessary and possibly an intractable number of

design variables in the transcription formulation, including possible problems with

poorly scaled variables, an explicit integration process is used exclusively for the

majority of the Earth escape. For practical application, a basic velocity-tangent

steering law during Earth escape, one that maximizes the instantaneous two-body

kinetic energy, is operationally simple and is observed to closely track the direction

defined by Lawden’s primer vector in similar optimal control formulations. [32] This

phase #1 spiral sequence terminates once escape from Earth’s gravity field is observed,

after 202.16 days. (Note that, after this time, a velocity-pointing strategy no longer

reflects the fully converged solution as the thrust-direction must support the boundary

conditions in phase #2.) At this point, the boundary conditions are stored, and the

entire sequence is not considered further as part of the eventual three-phase numerical

procedure.

After spiral-out from the Earth, the remainder of phase #1 is the powered Earth-

escape leg without spirals, the translunar coast, and the powered insertion into phase

#2. These final stages of phase #1 are the only part that is decomposed into node

point variables and stored for later use in the multi-phase solution. (Recall that

the initial spiral out from Earth is fixed.) There are many ways to create an initial
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guess for input to the numerical procedure including a primer-vector law without the

optimality constraints or, even more simply, the velocity-pointing law. A simultaneous

forward and backward explicit integration process with the velocity-pointing law is

sufficient. A large discontinuity is observed at the translunar coasting match point,

but it is easily resolved in the multi-phase corrections process discussed in the next

chapter.

Construction of the third phase (phase #3) of the trajectory follows a strategy

similar to that used to develop phase #1, except that no preliminary spiraling is

required; in phase #3 the entire initial guess is used to initiate the solution process.

A variety of explicit integration and visual inspection procedures are available, with

various of control law predictions. As in the initial guess process for phase #1, a

discontinuity in the path is acceptable. In this case, for lunar orbit capture, the

thrusting portion of the thrust-coast-thrust arc employs an anti-velocity pointing

law. Also incorporated are the boundary conditions from phase #2 and the insertion

conditions for a lunar frozen orbit. The frozen orbit state that serves as a boundary

condition for this phase is the apoapse of an orbit from Ely. [47] (See Table 5.3 for the

associated orbital elements.) Insertion occurs at apoapsis in a frozen lunar orbit with

a 6,541.4 km semi-major axis and 0.6 eccentricity. The inclination with respect to the

x-y plane is 56.2◦. Once the integrated guesses for phase #1 and #3 are produced,

the paths are decomposed into nodes, and used in conjunction with the coverage

orbit solution as an initial guess to construct X0 consistent with equation (3.99).

The assembly of this variable vector is detailed in Chapter 6.

5.3.2 Initial Guesses for the Higher-Fidelity Transfers

For phases #1 and #3, the same explicit integration process is employed with the

higher-fidelity to model. However, the model and the associated boundary conditions

are modified to produce a more accurate mission design trajectory. For phase #1,

the full Earth-centered version of equation (2.62) is explicitly integrated, including
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shadowing conditions (Section 2.7.3), originating from an International Space Station

ephemeris state in Table 5.3, and using velocity-tangent steering. The Julian date at

epoch corresponds to July 17, 2009 at 16:00:00 UTC. Recall that the shadowing con-

ditions imply that when the geometry between the sun-spacecraft, Earth-spacecraft,

and Earth-sun vectors indicates eclipsing, the engine is turned off, i.e., fT = 0,

because power is unavailable from the solar arrays. Additionally, the spacecraft ex-

periences no SRP during the eclipse, and therefore fS = 0 in equation (2.69). As in

the lower-fidelity case, the initial spiral-out from ISS terminates when the trajectory

is observed to escape from the vicinity of the Earth and this sequence during phase

#1 is fixed, i.e., it does not enter further numerical corrections in the direct tran-

scription approach. This early part of the transfer is displayed in Figure 5.10, where

it is noted that significant instances of shadowing are clearly evident that force the

engine to switch off. (The time-of-flight penalty incurred due to this shadowing is

discussed later.) The remaining portion of the phase #1 trajectory follows the pre-

scribed thrust-coast-thrust pattern, and an initial guess is determined with explicit

integration by varying the time associated with each arc until the final state approx-

imately matches the initial state that defines the origin of phase #2. The initial

guess for phase #3 is generated using the frozen orbit conditions in Table 5.3 and

explicitly integrating the moon-centered version of equation (2.62), backward in time,

using anti-velocity-tangent steering. A guess for the final time to initiate the back-

ward integration is based on the results of the fully-converged lower-fidelity solution.

The paths are decomposed into nodes as part of the guess for X0 consistent with

equation (3.99), and the moon-centered version of equation (2.62) is used exclusively

thereafter in the corrections processes. Given the geometry of the path-constrained

coverage orbits, it is reasonable to assume that no shadowing occurs during instances

when the moon-centered equations are employed.



152

Figure 5.10. Higher-Fidelity, Fixed Earth Spiral-Out Trajectory in
the ECI Frame, with CSI Engine Thrusting (Red) and Coasting due
to Shadowing (Blue).
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Table 5.3 Transfer Phase Boundary Conditions.

Parameter Value Units

Julian date at epoch 2455030.16666667 days

X0 −217, 157.872523697 km

Y0 −265, 663.694939137 km

Z0 −143, 797.489787933 km

VX0 7.14747905069707 km/s

VY0 −0.072004027654518 km/s

VZ0 −4.64811621321917 km/s

a$f
6, 541.4 km

e$f
0.6 ◦

i$f
56.2 ◦

ω$f
−90 ◦
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6. MULTI-PHASE DIRECT TRANSCRIPTION OF AN

ELECTRIC PROPULSION POLE-SITTER MISSION

Producing an optimal, fully converged trajectory for a lunar pole-sitter mission, us-

ing solar electric propulsion, requires the full application of the direct transcription

method, including parameter optimization with nonlinear programming. Recall that

for temporary coverage of the lunar south pole, the end-to-end mission is ideally

decomposed into three separate phases:

1. Earth-centered, spiral out from the International Space Station to the Moon.

2. Pole-sitting position maintained for as long as possible.

3. Moon-centered, spiral down to an elliptically inclined stable orbit.

For the temporary coverage mission, the optimization goal is maximization of the

time-of-flight during phase #2 subject to the functional dependencies of phase #1

and phase #3. Recall that the problem is solved twice, using two different models as

discussed previously. The first solution employs a lower-fidelity model and consider-

able simplifications to investigate whether or not a solution is possible. The second

solution employs the higher-fidelity, moon-centered model and an implementation of

the complete direct transcription procedure including the mesh refinement algorithm

with NLP to validate the results. The full listing of differences in the two solutions is

summarized in Table 6.1. Note that for the trajectory design in this mission scenario,

all of the problem constants are found in Tables 2.1 and 5.3.

6.1 Combining the Phases for Direct Transcription

Sections 4.4 and 5.3 establish a framework for developing the initial guess for each

of these three phases. First, Section 4.4 describes a means of generating a feasible
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Table 6.1 Features of the Solar Electric Pole-Sitter Solutions.

Lower-Fidelity Solution Higher-Fidelity Solution

System Model RTBP, Equation (2.37) MCI Full Model, Equation (2.62)

Departure Orbit Circular, Planar Orbit, 325 km Altitude Ephemeris ISS State

End-of-Life Orbit Lunar Frozen Orbit Conditions [47] Lunar Frozen Orbit Conditions [47]

Ground Site Lunar South Pole Shackleton Crater

Gravitational Ephemerides No Yes

Lunar Librations No Yes

Shadowing No Yes∗

SRP No Yes

Earth Oblateness No Yes

Mesh Refinement No Yes

∗Shadowing is only assumed during the fixed ECI spiral-out computed in Section 5.3.

coverage orbit for phase #2 that continuously meets the path constraints representing

the bounding cone using many thrusting and coasting arcs. Then, Section 5.3 outlines

a method to produce a discretized initial guess for phases #1 and #3 that links the ISS

orbit and end-of-life orbit, yet still possesses an arrival and departure discontinuity

with phase #2. Now, the variables across all phases that comprise the complete, yet

still discontinuous initial guess, enter the multi-phase direct transcription problem

outlined in Section 3.5.4. Let the vector X2 represent the variables from a solution

for phase #2, and F2 comprises the corresponding constraints. Similarly, let X1 and

X3 be the variables for phases #1 and #3, with respective constraints F1 and F3.

To solve the larger collocation problem, the total design variable vector is simply

XT =
(
XT

1 ,X
T
2 ,X

T
3

)
(6.1)

and the entire constraint vector is

F T =
(
F T

1 ,F
T
2 ,F

T
3 ,F

T
BC

)
(6.2)

The resulting block-diagonal structure of the Jacobian matrix DF is depicted in

Figure 6.1, where zero entries are shaded in gray. Recall, however, from Section 3.5.4
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that each of the block elements of DF (X) in Figure 6.1 are actually sparse sub-

matrices, leading to a very sparse matrix that can be economically exploited during

numerical iterations.

Figure 6.1. Complete Structure of Jacobian Matrix.

A feasible solution is first calculated with equation (3.2) and equation (3.11), where

equation (6.1) and equation (6.2) specify the problem formulation. The elements

of DF are computed analytically when possible, but the complex-step method is

also used for cumbersome derivatives, as well as central differencing derivatives if

perturbed ephemeris function evaluations are required. The feasible solution serves

as an initial guess for the optimization with SNOPT where the time to complete

phase #2 is maximized. That is, in equation (3.97), the objective is

F0(X2) = −
k∑

j=1

Tb,j −
k−1∑

j=1

Tc,j (6.3)

where Tb,j and Tc,j are the times along each arc in phase #2, or the coverage phase.

The problem parameters for the thrust and coast arcs are initial mass, initial time,

and arc duration. The variables that appear in equation (6.3) are, thus, the problem

dependent variables corresponding to the last node segment along each arc, or µnb,j−1



157

and µnc,j−1. The problem parameters are assumed independent for each collocation

segment and constraints are added to enforce equality in the parameters across the

arc. (This assumption to maintain independent constraints aids in the numerical

efficiency for large-dimensioned, sparse problems.) Additionally, there are constraints

to ensure that arc duration is always positive and that initial mass and initial time for

each arc is consistent with Tb,j and Tc,j. The boundary conditions fix an initial state,

control, time, and mass at the initiation of the variable portion of phase #1. Boundary

conditions are also applied to ensure state, control, time, and mass continuity between

the phases. Finally, a boundary condition forces the final state along the phase

#3 trajectory arc to correspond to a semi-major axis, inclination, eccentricity, and

argument of periapsis consistent with conditions of Table 5.3 for the final lunar frozen

orbit. Constraints also force the insertion point into the lunar orbit to occur at

apoapsis of the frozen orbit and in the x-z plane associated with the MCR frame.

6.2 Lower-Fidelity Solution without Mesh Refinement

After a thorough exploration of the coverage orbit design space, the direct tran-

scription method, excluding mesh refinement, is applied simultaneously to all three

phases to obtain the desired proof-of-concept lower-fidelity trajectory. Feasibility is

obtained first with the minimum norm search direction and is then used as an initial

guess for an optimal solution using NLP.

6.2.1 Feasible Solution

Even with a relatively large discontinuity in the phase #1 and phase #3 transfers

that arrive and depart phase #2, the feasible three-phase solution is easily computed,

yielding a coverage orbit of 447.04 days. (See Figure 6.2.) The spiraling portion

denoted in purple, computed during the guess generation in Section 5.3.1, is not a

part of the corrections process; only the red thrusting and blue coasting arcs are

shifted during the collocation process. The plot also includes a propagation of the
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final stable lunar orbit (green) upon the completion of phase #3. The total time for

the transfer to the moon, including the fixed transfer-out as well as the time for phase

#1, is 244.97 days, corresponding to arrival at the coverage orbit with 315.90 kg of

fuel. At this point, the spacecraft utilizes 264.19 kg of fuel to achieve a total duration

of 447.04 days in the phase #2 coverage orbit. Although the coverage orbit uses 35

thrust arcs and 34 coast arcs, the minimum duration for any thrust or coast arc is

still 8.85 days. This long arc length implies that the operationally difficult engine

pulses are generally avoided. Since the thrust acceleration is high at the end of phase

#2, and the moon is a smaller body than the Earth, only 2.36 days and 1.76 kg of

propellant are necessary to complete phase #3.

The overall coverage time for the mission is limited by the amount of available

propellant, and thus, the mass-time history plots in Fig. 6.3 offer additional insight

into the performance. In the top plot in Figure 6.3, the overall spacecraft mass for all

three phases appears (with vertical dashed lines separating the phases). Recall that

the initial guess for the coverage orbit assumes equal time spacing along all of the

thrusting and coasting arcs, thus, the relatively piecewise linear decrease in mass over

time is not surprising during phase #2. Although the coast times gradually increase

to maintain continuity, the thrust times maintain a similar interval. In the middle

plot in Figure 6.3, the mass performance for phase #1 is clear and, as expected,

a significant translunar coast period is apparent during the transit between the two

primaries. Finally, the bottom plot in Fig. 6.3 reveals that only a very short coast time

is necessary to achieve insertion into a stable lunar frozen orbit. Since the feasible

three-phase solution is used as an initial guess for optimization, Figure 6.3 also serves

as a basis for comparison with the direct transcription procedure that manipulates

the design variables to adjust the relative phase of the thrusting intervals.
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Figure 6.2. Feasible, Lower-Fidelity Three-Phase Trajectory, Earth-
Moon Rotating Frame.
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Figure 6.3. Spacecraft Mass for the Feasible, Lower-Fidelity, Three-
Phase Solution, Including Phase #1 and #3.

6.2.2 Optimal Solution

The direct transcription procedure is successfully implemented using the con-

verged feasible three-phase solution as an initial condition for X0. While the feasible

solution is based on an existing trajectory that is near the initial guess, the direct

transcription method with NLP iterates to produce a trajectory that minimizes the

objective function in equation (6.3), or, in other words, maximizes the coverage time

during phase #2. In total, an additional 107.14 days are added to the coverage orbit

with this thrusting and coasting structure. The optimization procedure produces a
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significant variation from the initial guess. (Compare Figure 6.2 with Figure 6.4.)

The new trajectory, in comparison to the feasible solution, appears to lie closer to

the minimum elevation angle boundary constraint. Such a result is not surprising

considering, from Figure 2.4, that this region corresponds to lower required thrust

acceleration magnitudes to maintain the pole-sitter position. This observation com-

pares with the same behavior that is observed with the solar sail pole-sitter orbits

computed in Section 4.3. Thus, when the thrust acceleration magnitude is small

early in the trajectory, the most effective arcs are located in the regions closer to L2.

Although this behavior is somewhat intuitive in hindsight, it is remarkable that an

initial guess that is relatively far from the optimal solution is automatically discovered

by the method. The optimal solution inserts into the coverage orbit after a 236.30

day transfer, and achieves a total coverage orbit time of 554.18 days. Surprisingly,

only an additional 8.90 kg of mass are required to achieve this orbit in comparison to

the feasible solution. Considering that a mere 3% increase in fuel mass consumption

yields a 24% longer coverage phase suggests that the optimal trajectory is primarily

exploiting natural (uncontrolled) dynamics. In fact, optimization adds only a 3%

increase in the total thrust time for phase #2, whereas there is an 82% increase in

coast time.

Further insight into the behavior of the optimal solution is available in Figure 6.5.

Most obvious is that, compared to Figure 6.3, the thrust times for both phase #1

and phase #3 are shortened to maximize the total time in phase #2. In fact, the

optimizer reduces the first thrust arc in phase #3 to zero days, which is the equivalent

of shifting it into phase #2. In phase #2, the global trend is less linear compared to

the feasible solution. For this phase, it is more effective to thrust over longer duration

arcs early in the coverage orbit when the thrust acceleration magnitude is lower. Then,

when the thrust acceleration magnitude is higher, near the end of the trajectory, less

fuel is expended since it is only necessary to thrust in short bursts and coast during

longer intervals. A useful comparison of the thrusting and coasting intervals between

the feasible and optimal solutions appears in Figure 6.6. The time for each optimal
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Figure 6.4. Optimal, Lower-Fidelity, Three-Phase Trajectory, Earth-
Moon Rotating Frame.
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coast arc always lasts 2-5 days longer than the corresponding feasible coast arc. This

amounts to a total increase in coverage time of 96.03 days, just due to coasting.

(Compare this to the total increase in thrusting time of 11.11 days.) From Figure 6.6

it is clear that the optimal solution emphasizes the early long-thrusting arcs, and

then, later, thrusting arcs are actually shorter than coasting intervals. In contrast,

this exchange in thrust and coast time never occurs in the feasible solution. Clearly,

this solution supports the hypothesis deduced by visualizing the approximate gravity

field in Figure 2.4. Although the time increase along the optimal solution is highly

desirable, the well-behaved thrusting and coasting time intervals associated with the

feasible solution may offer advantages operationally for implementation. However,

the optimal solution may possesses operational advantages as well, for example, even

though the final thrust arc is only 0.34 days, most thrust arcs last longer than 9 days.

In fact, the duration of the first thrust arc is over 30 days.

6.3 High-Fidelity Solution with Mesh Refinement

With the initial proof-of-concept solution successfully computed and optimized,

the next step is to validate and assess the trajectory performance when it is computed

in a higher-fidelity model including the mesh refinement algorithm for accuracy. The

problem is thus re-solved with the enhancements detailed in Table 6.1, and compared

to the results in the lower-fidelity solution. The constraints and variables are still

constructed in the same manner as in the procedure for the lower-fidelity solution,

but the departure orbit boundary conditions are adjusted, and the system model is

upgraded. Before the optimization and mesh refinement steps, the process is seeded

by locating a feasible solution in SNOPT. Then, the complete multi-phase direct

transcription algorithm using the mesh refinement algorithm detailed in Section 3.5.5

ensues using step 2b. In total, the process amounts to a nodal equidistributing and

refining process that continually resolves the optimal control problem until the desired
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accuracy is reached. All constraint tolerances are set to the SNOPT defaults (10−6),

and the mesh refinement tolerances are input as 10−8.

6.3.1 Numerical Results

The solution procedure is successfully simulated to compute feasible and optimal

solutions to the three-phase pole-sitter scenario in a higher-fidelity model. Given

that the engine efficiency is 0.527, the engine power P is approximately 2.3 kW,

corresponding to the thrust T and Isp in Table 2.1.

To illustrate the results from phase #1, a complete ECI view of both the feasible

and optimal solutions appears in Figure 6.7. Note that the black point labeled “1”

near the center of the figure corresponds to the interface between the fixed portion

of phase #1 that remains constant in both the feasible and optimal solution, and

the portion that enters as part of the collocation and optimizing procedure, com-

bined with the other phases. An initial observation of the fixed transfer portion that

precedes the “1” label is that there are notable regions of coasting during the long-
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duration Earth spiral-out (plotted in blue). These engine-off durations result from

shadowing, and ultimately cause 21.86 days of additional coasting, which is a 9.09%

increase in total transfer time as compared to the phase #1 feasible solution and a

9.46% increase for the optimal solution. Compared to the lower-fidelity solution, the

feasible transfer in the higher-fidelity model requres an extension of 17.35 days, or

an additional 7.08%, and the optimal trajectory requires an interval that is longer

by 16.59 days, or an increase of 7.02%. More extensive durations of shadowing are

avoided because of the relatively high 51.6◦ inclination of the ISS departure orbit, as

opposed to a departure within the ecliptic plane. In Fig. 6.7, it is also noted that

beyond the point labeled “1,” the optimal solution retains a much larger out-of-plane

thrusting arc that reduces the time and the fuel consumed to be expended later in

phase #2. This remarkable behavior highlights the importance of optimizing the

time-of-flight in phase #2, subject to the design variables within the other phases.

From the thrust-coast-thrust structure in phase #1 that is apparent in the feasible

solution, the transfer corresponding to the optimal solution also relocates the large

coast arc such that it is more efficiently incorporated near the moon for the start of

phase #2. For further data regarding phase #1, see Table 6.2.

Since the remaining phases are difficult to interpret as viewed in Figure 6.7, phase

#2 and phase #3 appear in the IAU frame (Figure 6.8), and the MCR frame. (See

Figure 6.9.) Recall from Section 2.8.2 that the IAU frame is a moon-centered inertial

frame with a Ẑ-axis directed towards the lunar north pole. For reference, the points

along the trajectory as it enters phase #2 and phase #3 are noted in both the feasible

and optimal solutions, and are identified with the corresponding “2” and “3” labels in

Figure 6.9. The IAU plots in Figure 6.8 best reflect the continuous surveillance of both

solutions in inertial space, as the coverage orbits maintain a crown-like shape that

constantly hovers within a direct line-of-sight to the Shackleton crater. The rotating,

pulsating plots in Figure 6.9 are useful for examining the similarity to the initial guess

from the RTBP. (Compare with Figure 4.14 b). In both of the views in Figure 6.8

and Figure 6.9, it is apparent that the optimizing objective to maximize the time-of-
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flight during phase #2 is partly achieved by determining an orbit configuration that

extends the allowable coast arc durations. (This same behavior is also noted in the

lower-fidelity solution.) As a result, the optimal orbit utilizes coast arcs that “touch”

the boundary of the prescribed altitude upper limit, whereas the feasible solution

does not. Surprisingly, the optimal coverage orbit reaches altitudes as low as 7,941

km, as the final revolutions of the trajectory appears to pass closely by the moon

and into the L1 region before dropping into the lunar stable orbit. Even though the

total fuel mass is fixed at 450 kg, the optimal orbit manages to utilize an additional

8.6 kg of fuel (from phases #1 and #3) due to the multi-phase direct transcription

formulation. In the case of the optimal solution, only 0.89 kg are necessary to transfer

into the lunar frozen orbit. Note that the lunar frozen orbit is propagated for several

months to demonstrate its stable behavior without the use of any fuel.

In both the feasible and the optimal trajectories, the minimum elevation angle is

equal to the minimum allowable value of φlb = 6◦. This result is 7◦ smaller than the

lower-fidelity solution due to the inclusion of lunar librations and the requirement to

maintain line-of-sight with the ephemeris coordinates of the Shackleton site, rather

than a static south pole reference. A time history of elevation angle performance is

detailed in Figure 6.10. Here, some additional insight is also available between the

two solutions. In the feasible solution, coast arcs are short or non-existent during the

beginning segments of the trajectory. The coast arcs gradually elongate as the tra-

jectory evolves. The minimum elevation angle also increases as time progresses. This

initially unforeseen natural behavior evolves from the simple initial guess strategy,

and may correspond to another desirable performance characteristic for a pole-sitter

that is available at the expense of additional fuel mass. In contrast, the optimal

solution employs more coast arcs at the beginning of the trajectory, and arcs along

the trajectory continue to occasionally extend to the 6◦ minimum elevation boundary.

Another noted feature of the collocation process is that a thrust or a coast arc can

be automatically eliminated by shrinking its time to zero if it is unnecessary for the

final solution.
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In total, optimization results in 451.26 days of coverage time, an increase of 64.58

days, or 16.70% with only the 8.6 kg of additional fuel used in phase #2. (See

Table 6.2.) As previously noted, the large increase in time-of-flight with only a

small amount of additional fuel indicates that the optimizer locates an entirely new

dynamical solution primarily through the use of coast arc placement. This optimal

solution in the higher-fidelity model is still 102.92 days shorter than the result in the

lower-fidelity model, but both solutions are locally optimal and may not be indicative

of a true globally optimal comparison. Some of the time difference is also attributable

to the behavior in the out-of-plane departure orbit. Compared to the study in the

lower-fidelity model, the higher-fidelity departure spiral is a more complicated transfer

trajectory with many higher-fidelity perturbations, and ultimately requires more fuel

mass.

Table 6.2 Performance Comparison of Feasible and Optimal Three-Phase Solutions.

Lower-Fidelity Higher-Fidelity

Feasible Optimal Feasible Optimal

PHASE #1
Fuel Mass Consumed (kg) 184.10 175.55 188.61 185.04

Total Time (days) 244.97 236.30 262.32 252.89

PHASE #2

Fuel Mass Consumed (kg) 264.19 273.09 255.01 263.61

Total Time (days) 447.04 554.18 386.68 451.26

Min. Altitude (km) 32,400 24,750 29,916 7,941

Max. Altitude (km) 80,000 100,000 97,364 100,000

Min. Elevation Angle (◦) 13.0 13.0 6.0 6.0

Max. Elevation Angle (◦) 79.5 60.5 67.5 70.0

PHASE #3
Fuel Mass Consumed (kg) 1.76 1.41 1.90 0.89

Total Time (days) 2.36 2.37 2.37 1.11
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7. CONCLUSIONS

A thorough investigation of the design of lunar relay satellite missions with the ex-

clusive use of low-thrust propulsion is completed. To accomplish this objective, a key

focus of the investigation is the development of a systematic mathematical process

and computational approach to design and optimize various phases trajectory. With

this framework established, the trajectory design procedure centers on the selection of

a coverage orbit or orbits that ensure that continuous communications links between

the lunar south pole and the Earth are maintained. Low-thrust propulsion, while of-

ten envisioned as a means of achieving orbital transfer and performing stationkeeping,

is also well-suited to the design of novel pole-sitter orbits that maintain continuous

surveillance of the lunar south pole using only one spacecraft. The technology is also

useful as a means of easily shifting between different libration point orbits of interest,

or servicing cargo missions. The following sections summarize the accomplishments

as a result of this work and recommend future efforts.

7.1 Discovery and Analysis of Pole-Sitter Orbits

Among the previously examined lunar frozen orbits and libration point orbits,

a primary trajectory design focus in this analysis is the possibility of a pole-sitter

orbit when an efficient source of low-thrust propulsion is available. The pole-sitter

orbits supply two completely new trajectory options for developing a lunar south pole

relay architecture. The first possibility is to deploy a solar sail to achieve the pole-

sitter orbit. The current higher-fidelity designs indicates that a large solar sail can

maintain ongoing, continuous line-of-sight of the lunar south pole for long durations.

Assuming that a relatively small amount of control effort is required to continuously

reorient the sail, then the orbits remain a long-term option for south pole coverage.
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The second possibility for a pole-sitter mission is to implement more contemporary

low-thrust technology, such as solar electric propulsion. Here, the pole-sitter orbit

is selected as a temporary satellite that achieves a continuous communications link,

before being transferred into a multiple satellite constellation, presumably composed

of lunar frozen orbits. Such an option is desirable if there is a delay in launching all of

the satellites into the frozen orbit constellation. Rigorous analysis indicates that even

with advanced modeling effects considered, a small 500 kg satellite with a thruster

comparable to the NSTAR engine can achieve a temporary pole-sitter trajectory that

maintains single spacecraft coverage in excess of a year.

In total, the complete computation of a pole-sitter orbit, given the lack of a

priori information when beginning the process, represents the discovery of a new

type of controlled, path-constrained orbit. Prior literature indicates only that the

pole-sitter orbit exists in concept with certain thruster capabilities, but offers no

specifics concerning the shape of the orbits, the corresponding control history, or

the precise locations that they must occupy. This analysis demonstrates that by

exploiting the properties of the restricted three-body problem in the vicinity of the

L1 and L2 collinear points, new regions requiring a small thrust acceleration input

become available to maintain the pole-sitter orbit. Simple analysis of the associated

pseudo-potential gradient associated with the Earth-moon system quickly reveals the

available orbit regions for a given a thrust level, and then as previously noted, the

direct transcription process is capable of automatically generating the controlled,

path-constrained orbit. Regardless of the thruster, rigorous analysis in higher-fidelity

models confirms that the best region to place an orbit in terms of minimum elevation

angle performance is in the vicinity of the L2 point.

7.2 Direct Transcription Methodology

The primary computational approach is the higher-order Gauss-Lobatto direct

transcription method. In general, the direct collocation approaches represent a sig-
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nificant shift in the way spacecraft trajectories are designed and optimized that began

during the 1980’s. There are few other applications that highlight the computational

benefits of the direct transcription and collocation method more than the design of lu-

nar pole-sitter orbits. These orbits, a central design focus in the study, are computed

given an almost complete lack of intuition of the shape of the final trajectory or the

corresponding control history, yet the higher-order collocation method easily iterates

to determine the orbit that satisfies all of the constraints. Such design difficulties are

beyond the scope of the classical shooting method, and also exceed the capabilities of

an exhaustive, semi-analytical process to generate a nearly convergent initial guess.

Even in instances where the total number of variables exceeds 100,000, the ability to

exploit the sparse matrix problem structure results in relatively efficient computation

that often quickly generates a solution. The transcription methodology is also useful

for adding an arbitrary number of thrusting and coasting arcs, and removing those

that are unnecessary. Another advantage of the transcription process is the capability

to link together multiple phases that comprise a trajectory, thus offering the potential

for improved optimization results. Linking the phases allows variables that belong

to potentially dissimilar system models to share functional dependencies and change

to optimize a performance index. Finally, an accurate solution using the transcrip-

tion process is obtained by updating the discrete mesh of data points until the result

matches a user-specified accuracy. Thus, the completely discretized solution to the

trajectory design and optimization problem is re-solved until it is as accurate as a

solution obtained with an explicit propagator.

7.3 Transfer Trajectories and Intuitive Steering Law Guess Schemes

While highly sensitive, low-thrust transfers originating from Earth parking orbits

(or lowering into lunar orbits) do not share the same robust convergence behavior

as the preceding pole-sitter orbits, there are several schemes to generate an intuitive

guess that can be implemented within the collocation structure to achieve conver-



176

gence. Most of the rules are based on either orienting the thrust vector tangent to

the velocity or anti-velocity vector when the system geometry permits. Once a few

trajectories are explicitly propagated with these schemes, the transcription method

corrects the trajectory, locating a nearby or optimal solution. Typically, convergence

occurs even in the presence of large discontinuities in the boundary conditions.

7.4 Validation with Advanced Models

Since lunar pole-sitters are a largely unexplored concept, extra care is necessary

to validate the solutions given a number of higher-fidelity modeling effects. After

preliminary proof-of-concept analysis in the three-body problem, the solutions are

demonstrated to exist even after incorporating effects such as planetary ephemerides,

Earth oblateness, solar radiation pressure, and shadowing. In particular, shadowing

adds a significant time-of-flight penalty to the Earth spiral-out trajectories given

the many eclipsing incidents. However, the pole-sitter trajectories are still executed

within the prescribed mission requirements, including the minimum time-of-flight

duration of one year, as defined for the solar electric propulsion mission.

7.5 Transfers Between Libration Point Orbits

In situations when libration point orbit architectures are selected, the classical

optimal control-based formulation is implemented instead of the transcription ap-

proach for the rapid generation of many solutions. The shorter times-of-flight and

the reduced sensitivities, compared to long-duration spiral transfers or pole-sitter

orbit designs, imply that the optimal control approach is well-suited for the compu-

tation of solutions with indirect or direct shooting. A sample implementation of this

approach demonstrates that the multi-objective trade space involving fuel consump-

tion and time-of-flight can be generated to select a transfer of interest. The entire

process can then, if desired, be continuously repeated for many libration point orbit

combinations of interest.
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7.6 Recommended Future Efforts

There are several potential areas for additional investigation into low-thrust tra-

jectories applied to lunar south pole coverage missions. There are also several tangent

research topics that have arisen as a result of this investigation. These recommended

future efforts include:

• A detailed investigation of transfer trajectories between libration point orbits

should be continued. The current efforts primarily involve the development of a

methodology to compute the orbits, and then only a single illustrative example

scenario is included. However, an exhaustive exploration of the design space,

the benefits of including invariant manifolds in the design formulation, and

validation in the higher-fidelity model are all important steps to be considered

in the future. A globally optimizing algorithm, such as a genetic algorithm,

evolutionary algorithm, or particle swarm algorithm, are particularly well-suited

to performing a thorough examination of the multi-objective time-of-flight and

fuel consumption trade space.

• Many of the trajectory design problems explored herein offer a representative

example of a highly challenging optimal control problem. There are high nu-

merical sensitivities, continuous path constraints, a series of control parameters,

and little intuition for many of the solutions. Re-solving some of the optimiza-

tion problems presented in this investigation would provide a unique testbed for

assessing the performance of some of the latest trajectory optimization software

packages, such as the various pseudospectral approaches and other transcription

methodologies for solving an optimal control problem. In particular, the pole-

sitter problem requires a large amount of mesh points to generate a discretized

solution, and therefore, re-solving the problem with other software packages

would accentuate the computational efficiency or deficiencies inherent in these

existing algorithms.
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• Further development of complex-step, numerical derivatives is an important

step towards completely automating the differentiation process when using a

gradient-based corrections or optimization algorithm. The simplicity of com-

pletely automatic differentiation is especially enticing given that increasing com-

putational capabilities reduce the time-penalty of obtaining numerical deriva-

tives. Since the complex-step derivatives yield machine-precision accuracy, then

only the variables, constraints, cost function, and system model are necessary

to deliver to a trajectory optimization problem, and the formulation and so-

lution of any problem are easily automated. By eliminating the cumbersome

steps and propensity for human errors that are often associated with evaluating

analytical derivatives, the optimization of new trajectory concepts would result

in a much smoother process. Furthermore, the computation of Jacobian matrix

derivatives may be distributed as a parallel process for increased computational

speed.

• The trajectory designs produced in this analysis are “open-loop” solutions that

obtain a baseline feasible or optimal control history that satisfies all of the con-

straints. Given a perturbation from this nominal, open-loop path, no detailed

efforts are included to explore the ability to control to the reference orbit, or to

assess the total stationkeeping costs. Such closed-loop control analysis clearly

must be understood before these trajectories are implemented in an actual mis-

sion.

• Many other modeling effects can still be included into the system model. For

example, an accurate solar array power degradation model, solar sail billowing

effects, and implementation of a more accurate shadowing and SRP model might

all create a significant impact on the dynamical behavior. In a mission scenario

with a large solar sail, a full six degree-of-freedom simulation that incorporates

the attitude dynamics would also more accurately reflect the repercussions of

the maneuver sequence on the spacecraft performance. Other constraints may
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also become important to design a feasible mission trajectory, including thruster

turning rate constraints, and pointing requirements to ensure power to the solar

arrays.

• The general framework for the trajectory computation method allows for adap-

tation to many low-thrust and trajectory design problems of interest. In addi-

tion to re-solving the same problem involving other planetary moons of interest,

the higher-order direct collocation approach is easily applicable to many other

path-constrained design problems, including quasi-periodic orbit sizing, prox-

imity operations missions, formation flight, and optimal satellite reorientation.
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A. The Adjoint Control Transformation for Power-Limited,

Finite-Burn Engines

To obtain an initial guess of the costate variables with some physical meaning, con-

sider a reference frame centered at the spacecraft, defined by the unit vectors v̂-ŵ-ĥ,

i.e., the vwh-frame. The v̂-axis is aligned with the velocity vector, v. The ĥ-axis

is parallel to the instantaneous angular momentum vector, H = r × v. Finally, the

ŵ-axis is defined to complete a right-handed system. These unit vectors, and the

associated time derivatives, are defined as

v̂ =
v

‖v‖ , ĥ =
r × v
‖r × v‖ , ŵ = ĥ× v̂ (A.1)

˙̂v = v̇/ ‖v‖ − v ‖v̇‖ / ‖v‖2 (A.2)

˙̂
h = Ḣ/ ‖H‖ −H||Ḣ||/||H||2 (A.3)

˙̂w =
˙̂
h× v̂ + ĥ× ˙̂v (A.4)

Given a vector and its time derivative, the following relationships are also exploited

to fully determine equations (A.2)-(A.4),

‖v̇‖ = v · v̇/ ‖v‖ (A.5)

||Ḣ|| = H · Ḣ/||H|| (A.6)

Two spherical angles, αu and βu, as well as their time derivatives, α̇u and β̇u, specify

the orientation of the thrust direction relative to this frame, ûvwh, and also the time

derivative of the thrust direction, ˙̂uvwh, that is,

ûvwh =
[

cosαu cos βu sinαu cos βu sin βu

]T
(A.7)
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˙̂uvwh =




−α̇u sinαu cos βu − β̇u cosαu sin βu

α̇u cosαu cos βu − β̇u sinαu sin βu

β̇u cos βu


 (A.8)

Since the equations of motion are integrated in the Cartesian, barycentric rotating

frame (with unit vectors x̂-ŷ-ẑ), a direction cosine matrix, C, is required to transform

the thrust direction, ûvwh (and ˙̂uvwh),

C =




x̂ · v̂ x̂ · ŵ x̂ · ĥ
ŷ · v̂ ŷ · ŵ ŷ · ĥ
ẑ · v̂ ẑ · ŵ ẑ · ĥ


 , Ċ =




x̂ · ˙̂v x̂ · ˙̂w x̂ · ˙̂
h

ŷ · ˙̂v ŷ · ˙̂w ŷ · ˙̂
h

ẑ · ˙̂v ẑ · ˙̂w ẑ · ˙̂
h


 (A.9)

ûijk = Cûvwh (A.10)

˙̂uxyz = Ċûvwh + C ˙̂uvwh (A.11)

The subscript “xyz” denotes that the thrust direction is expressed in terms of unit

vectors in the original cartesian frame of the system model state variables. The

definition of the thrust direction from equation (3.52), is employed to parameterize

the primer vector,

λv = ‖λv‖ ûxyz (A.12)

Then, the equation of motion for the primer vector, equation (3.44), is directly in-

volved in parameterizing the position costate vector,

λr = −λ̇v − λTv
∂g

∂v
(A.13)

The derivative of the primer vector, λ̇v, is also available by differentiating equa-

tion (A.12), and substituting the result into equation (A.13),

λ̇v = −||λ̇v||ûxyz − ‖λv‖ ˙̂uxyz (A.14)

Additionally, equation (3.56) is used to parameterize ‖λv‖ in terms of the thrust, T .

Thus, the mapping sequence allows λr, λv to be calculated from αu, α̇u, βu, β̇u, T ,

and ||λ̇v||.
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